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CARTESIAN CLOSED TOPOLOGICAL HULL OF THE
CONSTRUCT OF CLOSURE SPACES

V. CLAES, E. LOWEN-COLEBUNDERS AND G. SONCK

ABSTRACT. A cartesian closed topological hull of the construct Cls of closure spaces
and continuous maps is constructed. The construction is performed in two steps. First
a cartesian closed extension L of Cls is obtained. We apply a method worked out by J.
Adámek and J. Reiterman [3] for constructing extensions of constructs that in some
sense “resemble” the construct of uniform spaces. Secondly, within this extension L the
cartesian closed topological hull L∗ of Cls is characterized as a full subconstruct. In order
to find the internal characterization of the objects of L∗ we produce a concrete functor
to the category of power closed collections based on Cls as introduced by J. Adámek, J.
Reiterman and G.E. Strecker in [4].

1. Introduction

Cls is the construct of closure spaces and continuous maps. A closure space (X,α) is a
pair, where X is a set and α is a subset of the powerset P(X) and satisfies the conditions
that X and ∅ belong to α and that α is closed under arbitrary unions. The sets in α are
called the open sets. A function f : (X,α) → (Y, β) between closure spaces (X,α) and
(Y, β) is said to be continuous if f−1(B) ∈ α whenever B ∈ β. Sometimes we denote the
closure space (X,α) simply by its underlying set X. C(X,Y ) is the set of all continuous
functions from X to Y .

Some isomorphic descriptions of Cls are often used f.i. by giving the collection of
all closed sets (the so called Moore family [8]) where as usual the closed sets are the
complements of the opens and continuity is defined accordingly. Another isomorphic
description is obtained by means of a closure operation and by defining continuity also
accordingly. Both isomorphic descriptions were considered by G. Birkhoff in [8]. The
closure operation cl : P(X) → P(X) associated with a closure space (X,α) is as usual
defined by x ∈ clZ ⇔ (∀A ∈ α, x ∈ A ⇒ A ∩ Z 	= ∅) where Z ⊆ X and x ∈ X.
The closure operation is allowed to be non-additive, but it does satisfy the conditions
cl∅ = ∅, (A ⊆ B ⇒ clA ⊆ clB), A ⊆ clA and cl(clA) = clA, whenever A and B are
subsets of X.

There are many examples of non-additive closures in Mathematics, in particular in
Algebra, Geometry and Analysis. Perhaps the best known example is the convex hull in
vector spaces. Other examples are listed f.i. in the introductory chapter of [12].
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In 1940 G. Birkhoff’s motivation for considering closures came from the fact that the
collection of closed sets of a topological space forms a complete lattice. The interrelation
between closures and complete lattices has been investigated thoroughly over the years
by many authors. A general treatment of this subject has been presented by M. Erné in
[11]. We also refer to that paper for a long list of references on that part of the subject.

Another motivation for considering closures can be found in G. Birkhoff’s book. He
associates closures with certain Galois connections. Starting with a binary relation R
between sets M and N , a Galois connection (called “polarity” in [8]) between the powerset
lattices is associated with this relation in a natural way. The Galois connection in turn
induces closures on M and N . Similar ideas also appear in G. Aumann’s work from
1970 on “contact relations”. [7] G. Aumann’s work was inspired by applications in social
sciences.

Applications on data analysis and knowledge representation were the motivation for
B. Ganter and R. Wille for developing a theory on formal contexts which is founded on
the same basic mathematical tools: binary relations and lattices and closures associated
with them. We refer to the recent book “Formal concept analysis” [12] by B. Ganter and
R. Wille for these applications.

In recent years closures are also used in connection with quantum logic and in the
representation theory of physical systems. The role of closures in this respect is explained
f.i. in [16], [17] and [18]. In this connection D. Aerts in [5] constructed the category SP
of “State property systems”. In [6] it was proved that the amnestic modification of SP in
fact is isomorphic to Cls.

Cls is known to be a well-fibred topological construct. In 1988 D. Dikranjan, E. Giuli
and A. Tozzi [10] gave the explicit formulation of initial and final structures in Cls. If
(fi : (Xi, αi) → X)i∈I is a structured sink in Cls, then the final structure α on X is defined
by G ∈ α ⇔ f−1

i (G) ∈ αi ∀i ∈ I. If (fi : X → (Xi, αi))i∈I is a structured source in Cls,
then the initial structure α on X is defined by first considering {f−1

i (G)|G ∈ αi, i ∈ I}
and then taking all possible unions of subcollections.
Clearly Top is embedded in Cls as a full bicoreflective subconstruct. Remark that, as in
Top, the Sierpinski two point space S2 is an initially dense object in Cls.

Categorical terminology follows J. Adámek, H. Herrlich and G. Strecker [1].

2. Function Spaces in Cls

An object X in a category with finite products is exponential if X×− has a right adjoint.
In a well-fibred topological construct D this notion can be characterized as follows: X
is exponential in D iff for each D-object Y the set HomD(X,Y ) can be supplied with
the structure of a D-object - a function space or a power object Y X- such that for any
D-object Z and any function f : X × Z → Y the following conditions are equivalent:
(i) f : X × Z → Y is a D-morphism
(ii) f ∗ : Z → Y X defined by f ∗(z)(x) = f(x, z) is a D-morphism
It is well known [13], [14] that in the setting of a topological construct D, an object
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X is exponential in D iff X × − preserves final episinks. Moreover small fibredness
of D ensures that this is equivalent to the condition that X ×− preserves quotients and
coproducts. A well fibred topological construct D is said to be cartesian closed (or to have
function spaces) if every object is exponential. In view of the previous characterization,
we investigate the interaction of products and final episinks in the setting of Cls. An even
better compatibility of initial and final constructions is achieved in a quasitopos extension.
Such an extension, i.p. a quasitopos hull will be constructed in the forthcoming paper [9].

2.1. Proposition. In Cls arbitrary products of quotients are quotients.

Proof. Let Xi
fi→ Yi be a quotient in Cls for any i ∈ I.

Let f =
∏

i∈I fi :
∏

i∈I Xi →
∏

i∈I Yi and G = f(H) where H is open and f -saturated
and H 	= ∏

i∈I Xi.
If K ⊆ I is such that H =

⋃
k∈K

pr−1
k (Hk) (Hk ⊆ Xk open and prk the k-th projection)

then each Hk is fk-saturated and so

G =
⋃
k∈K

pr−1
k (Gk)

with Gk = fk(Hk) for k ∈ K, is open in
∏

i∈I Yi

However, even finite products do not distribute over coproducts, as follows from the
next observation.

2.2. Proposition. If X is not indiscrete and D2 is the two point discrete space then
D2 ×X is not isomorphic to X + X.

Proof. If A 	= X,A 	= ∅ and A is open then {0} × A is not open in D2 ×X.

2.3. Corollary. The class of exponential objects in Cls coincides with the class of in-
discrete spaces.

2.4. Corollary. If D is a topological subconstruct of Cls which is finitely productive in
Cls and differs from the class of indiscrete spaces, then D is not cartesian closed.

Because of the previous negative result we will investigate cartesian closed supercon-
structs of Cls in which Cls is finitely productive. In order to construct such extensions the
next result on function spaces in Cls will be very useful.

2.5. Definition. For closure spaces (X,α) and (Y, β) we consider the closure structure
η on C(X,Y ) generated by the basic open sets

{ΓV |V ∈ β}
where ΓV = {f ∈ C(X,Y )|f(X) ⊆ V }
2.6. Proposition. If M ⊆ C(X,Y ) is a subset endowed with a closure structure µ such
that the evaluation map ev: X × (M,µ) → Y is continuous, then the following conditions
hold:
(i) η|M � µ (i.e. 1M : (M,µ) → (M, η|M) is continuous)
(ii) ev: X × (M, η|M) → Y is continuous
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Proof. (i) Let V ∈ β then

ev−1(V ) = A×M ∪X ×G

with A ∈ α and G ∈ µ.
Either A = X and then ΓV ∩M = M or A 	= X and then ΓV ∩M = G.
(ii) Analogous.

Propositions 2.1 and 2.6 show that Cls is a type of category as considered in [3]. In
some sense it resembles Unif, the construct of uniform spaces and uniformly continuous
maps. It follows that the general construction as presented in 4.3 of [3] is applicable to
Cls. This is developed in the next section.

3. A Cartesian Closed Extension of Cls

In this paragraph a cartesian closed topological construct L is constructed in which Cls is
a finitely productive full subconstruct. L is a so called CCT extension.

3.1. Construction. [3] Objects of L are triples (X,A, α) where X is a set, A is a cover
of X such that

A′ ⊆ A,A ∈ A ⇒ A′ ∈ A
and α is a closure on X which is A-final in the sense that ((A,α|A) → (X,α))A∈A is final
in Cls.
The members of A are called generating sets. A morphism in L,

f : (X,A, α) → (Y,B, β)

is a function that is continuous (with respect to (X,α) and (Y, β)) and preserves the gen-
erating sets: A ∈ A ⇒ f(A) ∈ B.
Sometimes we denote a triple (X,A, α) simply by its underlying set X. Cls is fully em-
bedded in L by identifying (X,α) with (X,P(X), α).

Clearly L is a topological construct. If (X
fi→ (Xi,Ai, αi))i∈I is a structured source then

the unique initial lift in L is (X,A, α) where A = {P ⊆ X|fi(P ) ∈ Ai ∀i ∈ I} is the
collection of generating sets and α is final in Cls for ((A,α′|A) → X)A∈A with α′ the initial

Cls-structure for the source (X
fi→ (Xi, αi))i∈I .

If ((Xi,Ai, αi)
fi→ X)i∈I is a structured sink then the unique final lift is (X,A, α) where

A consists of all possible subsets of fi(A) with i ∈ I and A ∈ Ai and all singletons and α

is the final structure in Cls for ((Xi, αi)
fi→ X)i∈I .

It is easily seen that Cls is finally dense and therefore bireflectively embedded in L.
By the general theorem in [3] L is cartesian closed. Next we give the explicit description
of the Hom-objects.

Let (X,A, α) and (Y,B, β) be L-objects.
Let ρ be the closure generated by the basic open sets {Γ(A, V )|A ∈ A, V ∈ β} where
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Γ(A, V ) = {f ∈ Hom(X,Y )|f(A) ⊆ V }.
LetM = {M ⊆ Hom(X,Y )|ev(A×M) ∈ B and ev:(A,α)×(M,ρ|M) → (Y, β) continuous
for every A ∈ A}.
Finally let σ be the closure structure on Hom(X,Y ) which is final in Cls for ((M,ρ|M) →
Hom(X,Y ))M∈M.
Then (Hom(X,Y ),M, σ) is the powerobject of X and Y in L.

4. The Cartesian Closed Hull of Cls

We first recall the definitions of CCT hull, multimorphism, strictly dense subcategory,
power-closed collection and the construction of the CCT- hull presented by J. Adámek,
J. Reiterman and G.E. Strecker. Then we use this method to construct the CCT hull of
Cls.

4.1. Definition. [15] A cartesian closed topological construct B is called a cartesian
closed topological hull (CCT hull) of a construct A if B is a finally dense extension of A
with the property that any finally dense embedding of A into a cartesian closed topological
construct can be uniquely extended to B.

4.2. Definition. [4] Let K be a construct and let H,K be K-objects and X a set. A
function h : X ×H → K is called a multimorphism if for each x ∈ X, h(x,−) : H → K
defined by h(x,−)(y) = h(x, y) is a morphism.

4.3. Definition. [4] Let K be a construct with quotients and finite products. A full
subcategory H of K is said to be strictly dense in K provided that :

1. for each object K ∈ K there exists a productively final sink (Hi
hi→ K)i∈I with Hi ∈ H,

i.e., a final sink such that for each L ∈ K the sink (Hi × L
hi×1L→ K × L)i∈I is final

as well.

2. H is well-fibred, closed under quotients, and has productive quotients (i.e., for each
quotient e : A → B with A ∈ H, we have B ∈ H and e× 1H : A×H → B ×H is a
quotient for each H ∈ H).

Since the category Cls has productive quotients (2.1), it is strictly dense in itself.

4.4. Definition. [4] Let K be a construct with quotients and finite products and let
H be strictly dense in K. A collection A of H-objects (A,α) with A ⊆ X is said to be
power-closed in X provided that A contains each H-object (A0, α0) with A0 ⊆ X with the
following property:
Given a multimorphism h : X × H → K with H ∈ H and K ∈ K such that for each
(A,α) ∈ A the restriction h|A : (A,α) × H → K is a morphism, then the restriction
h|A0 : (A0, α0) ×H → K is also a morphism.
We denote by PCH(K) the category of power-closed collections in H. Objects are pairs
(X,A), where X is a set and A is a power-closed collection of H-objects in X. Morphisms
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f : (X,A) → (Y,B) are functions from X to Y such that for each (A,α) ∈ A the final
object of the restriction fA : (A,α) → f(A) is in B.
If H=K then we simply write PC(K).

4.5. Theorem. [4] Any concrete category K which has quotients and finite products that
are preserved by the forgetful functor, and which has a strictly dense subcategory H, has
a CCT hull. Moreover, this hull is precisely the category of power-closed collections in H.

Later in our main theorem 4.10 we will apply the previous result and in order to do
so we will now define a functor on a suitable full subconstruct L∗ of L towards PC(Cls).

4.6. Definition. Let L∗ be the full subconstruct of L whose objects are the L-objects
(X,A, α) that satisfy the following condition:
If B ⊆ X /∈ A, then there exists a set Z ⊆ X and U ∈ α with: Z ∩U = ∅, B ∩Z 	= ∅ and
B \ Z 	⊆ U , such that: ∀A ∈ A : A ∩ Z 	= ∅ ⇒ A \ Z ⊆ U

First we define the correspondence for the objects.

4.7. Proposition. For each object (X,A, α) of L∗ the collection of closure spaces CX =
{(A, β)|A ∈ A, β � α|A} is power-closed.
Proof. Let (X0, α0) be a closure space with X0 ⊆ X and (X0, α0) /∈ CX , then we have
to prove that there exists a multimorphism h : X ×H → K with H,K ∈ Cls, such that
the restrictions h|A : (A, β) ×H → K are continuous for all (A, β) in CX and such that
h|X0 : (X0, α0) ×H → K is not continuous.
(X0, α0) /∈ CX means: α0 	� α|X0 or X0 /∈ A.
1. If α0 is not finer than α|X0 , there exists a B ∈ α such that B ∩X0 /∈ α0. Set

h : X ×H → S2 : (x, h) →
{

1 if (x, h) ∈ B ×H
0 if (x, h) /∈ B ×H

with S2 the Sierpinski space and H an arbitrary closure space. It follows immediately that
for (A, β) ∈ CX the restriction h|A : (A, β) × H → S2 is continuous and the restriction
h|X0 : (X0, α0) ×H → S2 is not continuous.
2. If X0 /∈ A, then since (X,A, α) ∈ L∗, the following holds: ∃Z ⊆ X, ∃U ∈ α with
Z ∩U = ∅, X0 ∩Z 	= ∅ and X0 \Z 	⊆ U such that ∀A ∈ A : A∩Z 	= ∅ implies A \Z ⊆ U .
Take a closure space H that has a non-trivial open set V . Set h = 1Z×V ∪U×H : X ×H →
S2. Then h is clearly a multimorphism and h|−1

A ({1}) = (A ∩ Z) × V ∪ (U ∩A) ×H. We
know that for (A, β) ∈ CX either A ∩ Z = ∅, or A \ Z ⊆ U .
If A ∩ Z = ∅ , then h|−1

A ({1}) = (U ∩ A) ×H and this is clearly open in (A, β) ×H.
If A\Z ⊆ U , then h|−1

A ({1}) = A×V ∪(U ∩A)×H and this is open in (A, β)×H. Hence,
for all (A, β) ∈ CX the restriction h|A : (A, β)×H → S2 is continuous. Since X0 ∩Z 	= ∅,
and X0 \ Z 	⊆ U we have that h|−1

X0
({1}) = (X0 ∩ Z) × V ∪ (U ∩X0) ×H is not open in

(X0, α0) ×H. Therefore the restriction h|X0 : (X0, α0) ×H → S2 is not continuous.

Next we prove that the correspondence on the objects is bijective.

4.8. Proposition. If C is a power-closed collection of Cls-objects in a set X then C = CX

for a unique (X,A, α) ∈ L∗.
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Proof. Let C be a power-closed collection of Cls-objects in X. Consider (X,A, α) where
A = {A ⊆ X : (A, β) ∈ C for some β} and α the final structure determined by the sink of

inclusion maps ((A, β)
i→ X)(A,β)∈C.

We will first prove that (A,α|A) ∈ C for each A ∈ A.
If A ∈ A, then by definition of A there exists a closure structure β on A such that
(A, β) ∈ C. Let h : X × H → K be a multimorphism such that for each (A′, β′) the
restriction h|A′ : (A′, β′) ×H → K is continuous. For V ⊆ K open, set U =

⋃{x ∈ X :
{x}×H ⊆ h−1(V )}. Since for each (A′, β′) ∈ C the restriction of h is continuous, h|−1

A′ (V )
has the form (U ∩ A′) ×H ∪ A′ ×WA′ with U ∩ A′ ∈ β′ and WA′ ⊆ H open. Since α is

final for the sink ((A′, β′) i→ X)(A′,β′)∈C, this implies that U ∈ α.
Since (A, β) ∈ C we have that h|−1

A (V ) has the form (U ∩A)×H ∪A×WA with WA ⊆ H
open. From the preceding, it follows that h|−1

A (V ) is open in (A,αA) ×H, and thus the
restriction h|A : (A,αA) × H → K is continuous too. Since h and V were arbitrary, it
follows that (A,αA) ∈ C. This implies that C = CX .
It remains to be proved that (X,A, α) is an object of L∗.

1. {x} ∈ A because each power-closed collection contains all singleton objects.

2. Given A ∈ A and A′ ⊆ A, then there exists a closure structure β such that (A, β) ∈
C. C is a power-closed collection, thus (A′, β|A′) ∈ C and hence A′ ∈ A.

3. It is clear from the definition of α that α is A-final.

4. We have to prove that for each B /∈ A, there exists a set Z ⊆ X and U ∈ α with
Z ∩ U = ∅, B ∩ Z 	= ∅, B \ Z 	⊆ U such that ∀A ∈ A : A ∩ Z 	= ∅ ⇒ A \ Z ⊆ U .
We know that there exists a multimorphism h : X × H → K whose restrictions
h|A : (A, β) × H → K are continuous for all (A, β) ∈ C and such that h|B :
(B,P(B)) ×H → K is not continuous. Therefore, there exists an open set V ∈ K
such that h|−1

A (V ) is open in (A, β) ×H for each (A, β) ∈ C and such that h|−1
B (V )

is not open in (B,P(B)) ×H.
As before set U =

⋃{x ∈ X : {x} × H ⊆ h−1(V )}. For each (A, β) ∈ C we
have h|−1

A (V ) = (U ∩ A) × H ∪ A × WA with U ∩ A ∈ β and WA ⊆ H open.

Since α is final for the sink ((A, β)
i→ X)(A,β)∈C, this implies that U ∈ α. Since

h is a multimorphism, we have: h|−1
{x}(V ) = {x} × Wx with Wx ⊆ H open. Now

h|−1
B (U) is not open, hence there exists a b ∈ B with Wb 	= H,Wb 	= ∅. Put

Z = {z ∈ X : Wz = Wb}. Then we have: Z ∩ U = ∅, B ∩ Z 	= ∅. Suppose that
B \Z ⊆ U , then: h|−1

B (V ) = (U ∩B)×H ∪B×Wb is open in (B,P(B))×H. This
is a contradiction. Thus we can conclude that B \ Z 	⊆ U .
Because h|−1

A (V ) has the form (U ∩A)×H ∪A×WA for each A ∈ A, it’s clear that
A ∩ Z 	= ∅ implies A \ Z ⊆ U .

The uniqueness of (X,A, α) follows immediately.
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4.9. Corollary. The category L∗ is isomorphic to the category PC(Cls) of power-closed
collections in Cls.

Proof. Let (X,A, α) and (X ′,A′, α′) be L∗-objects and f : X → X ′ be an L-morphism.
For (A, β) ∈ CX , let γ be the final Cls-structure for the sink fA : (A, β) → f(A). It follows
from the definition of an L-morphism that f(A) ∈ A′. Since (A, β) ∈ CX we have that
f ◦ i : (A, β) → (X ′, α′) with i the inclusion from (A, β) to (X,α) is continuous. The sink
fA : (A, β) → (f(A), γ) is final and i ◦ fA = f ◦ i is continuous, so we have that the inclu-
sion i : (f(A), γ) → (X,α) is continuous. This implies that (f(A), γ) ∈ CX′ . Therefore

the correspondence F : L∗ → PC(CLS) defined by F (X
f→ X ′) = (X,CX)

f→ (X ′,CX′) is
a functor. It follows from the two previous propositions that the functor F is bijective on
objects. It is a functor between constructs and thus it is faithful.
Take objects (X,A, α) and (X ′,A′, α′) in L∗ and let f : (X,CX) → (X ′,CX′) be a PC(CLS)-
morphism. It is easy to verify that f(A) ∈ A′ for each A ∈ A.
For each A ∈ A, set γA the final Cls-structure for the sink fA : (A,α|A) → f(A).
Then, since f is a PC(CLS)-morphism we have (f(A), γA) ∈ CX′ . Thus the inclusion

i : (f(A), γA) → (X ′, α′) is continuous for each A ∈ A. Since ((A,α|A)
i→ (X,α))A∈A is

final and f ◦ i = i ◦ fA is continuous for each A ∈ A, it follows that f : (X,α) → (X ′, α′)
is continuous. Consequently, the functor F is an isomorphism.

From 4.9 and 4.5 we have the following final result:

4.10. Theorem. L∗ is the CCT hull of Cls.
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[3] J. Adámek and J. Reiterman, Cartesian closed hull of the category of uniform spaces,
Topology Appl. 19 (1985), 261-276.
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