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PERFECT MAPS ARE EXPONENTIABLE - CATEGORICALLY

GÜNTHER RICHTER AND WALTER THOLEN

ABSTRACT. A categorical proof of the statement given by the title is provided, in
generalization of a result for topological spaces proved recently by Clementino, Hofmann
and Tholen.

1. Introduction

Using convergence structures, recently the authors of [CHT] established the fibred version
of the fact that compact Hausdorff spaces are exponentiable in the category Top of
topological spaces, by proving:

Theorem. Every perfect map of topological spaces is exponentiable in Top.

Here perfect means proper (=stably closed, [B]) and separated [J], while a map f : X → Y
is exponentiable if it is an exponentiable object in the fibred category Top/Y of spaces
over Y ; equivalently, if the change-of-base functor

f ∗ : Top/Y → Top/X

has a right adjoint [N]. The proof of the Theorem in [CHT] is based on a characterization
of exponentiable maps in terms of ultrafilter convergence, which on the one hand gives
an explicit description of the exponential structures involved (i.e., of the right adjoint of
f ∗), but which on the other hand makes extensive use of the Axiom of Choice.

In this note we give an entirely constructive and general proof of the Theorem, in
the sense that no Choice is used and that the argumentation is purely categorical, based
on techniques developed in [CGT] and [T]. However, the result proved is also somewhat
weaker than that of [CHT], in the sense that we show only preservation of quotient maps
by the change-of-base functor, which then implies the existence of a right adjoint via
Freyd’s Adjoint Functor Theorem. At the end of the paper we discuss applications of the
Theorem to some categories other than Top.
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2. The categorical theorem

2.1. We work in a finitely-complete category X with a proper, pullback-stable factor-
ization system (E ,M), as in [DG1], [DT], [CGT]. Referring to (isomorphism classes of)
M-morphisms into an object X as subobjects of X, for every morphism f : X → Y we
therefore have the image/inverse-image adjunction

f(−) � f−1(−) : subY → subX,

with subX = (M/X)/ ∼=. Stability means that in any pullback diagram

X T

Y S

✲
p

✲
q

❄
h

❄
g

(1)

with g ∈ E also its pullback h along p must lie in E . Equivalently, the Beck-Chevalley
Property (BCP) holds true:

g−1(p(a)) = q(h−1(a))

for all a ∈ subX.

2.2. In addition, we fix a pullback-stable subclass

F0 ⊆ M
which contains all isomorphisms and is closed under composition. Subobjects in F0 are
referred to as closed subobjects. A morphism f : X → Y is closed if f(−) maps closed
subobjects to closed subobjects. (Since F0 is closed under composition, closed subobjects
are given by closed morphisms in M.) If every pullback of f is closed, then f is a proper
morphism. The morphism f is separated if the diagonal map

δf = < 1X , 1X >: X → X ×Y X

into its kernel pair is closed (as a morphism, or as a subobject). A perfect morphism is
by definition both proper and separated.

An object X is compact (Hausdorff) if the morphism X → 1 to the terminal object of
X is proper (separated, respectively); equivalently: if every projection X × Z → Z (the
diagonal map δX : X → X × X, resp.) is closed.

A quotient map is a morphism f : X → Y in E with the property that a subobject b
in Y is closed whenever f−1(b) is closed.

Note that all notions defined in 2.2 depend on the parameter F0. Whenever there is
need to emphasize this dependency, we augment these notions by the prefix F0. We also
note that, denoting by F the class of closed morphisms in X , we have F0 = F ∩M, and
the notions defined here coincide with the ones given in [T] (except that there for proper
morphisms the object term “compact” was used as well).
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2.3. The fibres of a morphism f : X → Y are given by the pullback diagrams

X Y

f−1y 1

f−1(y)

✲
f

✲

❄ ❄
y

(2)

Proper morphisms are, by definition, closed and have compact fibres (see [T], Cor.3.4(3)),
while the converse proposition fails in general (see [CGT], Remark 5.14). We say that in
X properness is fibre-determined if every closed morphism with compact fibres is proper.
(Actually, we shall use this property only if the morphism in question is also in E and
separated. Note that the fibres of a separated morphism are Hausdorff, since separatedness
is, like properness, stable under pullback.)

Recall that the object 1 is said to be E-projective if for every morphism f : X → Y in
E every point y : 1 → Y factors as f · x = y.

2.4. We list a few properties to be used in the proof of 2.5 below; proofs may be found
in [T]:

(1) every monomorphism is separated, and separated morphisms are closed under com-
position and stable under pullback;

(2) if a composite g · f is separated, so is f ;

(3) every morphism representing a closed subobject is proper, and proper morphisms are
closed under composition and stable under pullback;

(4) if a composite g · f is proper with g separated, then also f is proper.

In the general setting of 2.1, 2.2 we are now able to prove:

2.5. Theorem. Let the terminal object of X be E-projective, and let properness in X
be fibre-determined. Then the pullback of a quotient map along any perfect morphism is
again a quotient map.

Proof. We consider the pullback diagram (1) with p perfect and g a quotient map. In
order to show that h is a quotient map as well, we consider a ∈ subX with h−1(a) ∈ subY
closed and must show that a is closed.

Step 1: As a pullback of p the morphism q is closed, so that

q(h−1(a)) = g−1(p(a))

is closed, whence p(a) is closed by hypothesis on g. Hence, in the commutative diagram
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A p(A)

h−1(A) g−1p(A)

X T

Y S

h

h−1(a) g−1(p(a))

g′

✲
p′

❄

h′

❄

✲
q′�

�
��✒

�
�

��✒

a
�

�
��✒

p(a)

�
�

��✒

✲
p ❄

g

✲
q

❄

(3)

all diagonal morphisms but a are known to be closed. By 2.4(3), (4) it now suffices to
show that p′ is proper, since then the properness of
(∗) p(a) · p′ = p · a
and the separatedness of p give closedness of a. In order to show properness of p′ we use
the hypothesis that this property is fibre-determined in X . (We note that p′ is in E and
separated, which follows from (∗) and properties 2.4(1), (2).)

Step 2: In order to show that the morphism p′ is closed, we consider any b ∈ subA closed
and form the commutative diagram

B p(B)

h−1(B) g−1(p(B))

A p(A)

h−1(A) g−1(p(A))

h′

(h′)−1(b) (g′)−1(p′(b))

g′′

✲
p′′

❄

h′′

❄

✲
q′′�

�
��✒

�
�

��✒

b
�

�
��✒

p′(b)

�
�

��✒

✲
p′ ❄

g′

✲
q′

❄

(4)

We note that q′ is closed, in fact proper, since

q · h−1(a) = g−1(p(a)) · q′

has this property (by 2.4(3),(4)). Furthermore, g′ is a quotient map, as a pullback of g
along the closed subobject p(a); indeed, for any c ∈ subp(A) with (g′)−1(c) closed also

g−1(p(a)) · (g′)−1(c) = g−1(p(a) · c)
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is closed, which implies closedness of p(a) · c and then of c.
Using BCP again, we conclude that

q′((h′)−1(b)) = (g′)−1(p′(b))

is closed, whence also p′(b) is closed.

Step 3: We must still show that p′ has compact fibres. But any point z : 1 → p(A)
factors as z = g′ ·w, with w : 1 → f−1(p(A)), by E-projectivity of 1, and we can form the
commutative diagram

(p′)−1z 1

(q′)−1w 1

A p(A)

h−1(A) g−1(p(A))

h′

✲
❄

h∗

❄

✲
�

�
��✒

�
�

��✒

�
�

��✒

z

�
�

��✒w

✲
p′ ❄

g′

✲
q′

❄

(5)

Its front face is a pullback diagram since the back-, top- and bottom-faces are pullback
diagrams. Hence h∗ is an isomorphism, so that with the compact fibre (q′)−1w of the
proper morphism q′ also (p′)−1z is compact.

2.6. If, in the setting of 2.1, we are given a closure operator c (in the sense of [DG1], [DT],
[CGT]), then we may choose for F0 the class of c-closed subobjects, which is pullback-
stable, and also closed under composition if c is weakly hereditary. Furthermore, if c
is idempotent, “c-preserving” of [CGT] becomes “closed” in this paper’s terminology,
while “proper”, “separated”, “perfect” read as “c-compact”, “c-Hausdorff”, “c-perfect”
in [CGT], respectively. Writing “c-quotient” instead of “(F0-)quotient”, we deduce from
2.5:

2.7. Corollary. For an idempotent and weakly hereditary closure operator c, let c-
properness be fibre-determined in X , and assume the terminal object to be E-projective.
Then the pullback of a c-quotient map along any c-perfect morphism is again a c-quotient
map.
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3. Examples

3.1. (Topological spaces). An application of 2.5 to the category Top of topological
spaces with its (surjective, embedding)-factorization structure and the usual notion of
closure gives a choice-free proof of:

Pullbacks of quotient maps along perfect maps are quotient maps.

From this fact one derives with Freyd’s Adjoint Functor Theorem (using the Axiom
of Choice) Theorem A of [CHT]:

Perfect maps are exponentiable in Top.

If instead of F0 = {closed embeddings} we choose F0 = {open embeddings}, 2.5 still
yields an interesting but much easier and well-known statement:

Local homeomorphisms are exponentiable in Top.

3.2. (Partially ordered sets). Call a subset A of a poset X (up-)closed if x ≥ a ∈ A
always implies x ∈ A. Then, in the category PoSet of posets and monotone maps with its
(surjective,embedding)-factorization structure, closed maps f : X → Y are characterized
by the property that for all y2 ≥ f(x1) one finds x2 ≥ x1 with f(x2) = y2. Such
maps are already proper, so that every poset is compact, and trivially properness is
fibre-determined. Perfect maps have the additional property that f(x2) = f(x′

2) with
x2, x

′
2 ≥ x1 always implies x2 = x′

2. Theorem 2.5 confirms that pullbacks of quotient maps
along perfect maps are quotient maps. It is worth noting that in PoSet, like in Top,
our notion of quotient map assumes the usual meaning as a regular epimorphism of the
category. Indeed, for f : X → Y and y, y′ ∈ Y , let us write

y ≤f y′ :⇐⇒ ∃x, x′ ∈ X : x ≤ x′, f(x) = y, f(x′) = y′;

then f is a regular epimorphism precisely if the order of Y is the transitive hull of ≤f .
Such maps clearly have the property that B ⊆ Y is closed whenever f−1(B) ⊆ X is;
conversely, for y ≤ y′ in Y , one lets B be the up-closure of {y} with respect to the
transitive hull of ≤f and obtains that B must be closed.
We note that generally quotient maps are not stable under pullback along arbitrary mor-
phisms. Those f : X → Y that are stable have the property that ≤f is the order of Y ;
they are also known as biquotient maps (see [CH]). We note furthermore that we may also
order-dualize the result obtained from 2.5: pullbacks of quotient maps along local homeo-
morphisms are quotient maps; as in [CH], here we call f : X → Y a local homeomorphism
if for all y1 ≤ f(x2) there is exactly one x1 ≤ x2 with f(x1) = y1.

In essence, for both topological spaces and partially ordered sets, the chosen class F0

is able to identify important classes of exponentiable maps since it “contains” essential
information about the structures themselves, as is demonstrated negatively also by the
following example.
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3.3. (Pretopological spaces). A pretopological space may, like a topological space,
be defined as a set with a closure operation, except that this operation is not required to be
idempotent. Like in Top, there are therefore natural notions of closure and convergence
in the category PrTop. In contrast to Top though, a pretopological space in which
all ultrafilters converge is (F0-) compact (with F0 = {closed embeddings}), but not
conversely: see [DG2]. Exponentiable objects in PrTop were completely characterized in
[LS] as the finitely-generated pretopological spaces, a result which was generalized to all
quotient-reflective subcategories of PrTop in [R]. In particular, we see that compact and
separated objects in these categories are not exponentiable, in general.

We finally give an example showing that the crucial hypothesis of Theorem 2.5 (that
properness be fibre-determined) fails to be a necessary condition.

3.4. (Continuous maps). We consider the category Top2 (with 2 the two-element
chain), whose objects are continuous maps of topological spaces, and whose morphisms
(p, q) : h → g are given by commutative squares as in diagram (1) in Top. It inherits
the “pointwise” factorization structure from Top, and we may declare F0 to consist of
the pointwise closed embeddings, i.e., of those morphisms (p, q) for which both p and q
are closed embeddings. Then an arbitrary morphism (p, q) is closed (proper, separated,
a quotient map) if both p and q have the respective property in Top. Consequently,
pullbacks of quotient maps along perfect maps in Top2 are quotient maps. However,
properness is not fibre-determined in Top2, simply because the points of an object h in
Top2, given by the map h : Y → X in Top, are completely determined by the points of
Y . Hence, they will not describe all points of X, unless h is surjective. For example, for
every non-empty space X, the Top2-map from (∅ → X) into the terminal object is closed
and has compact fibres (since there are none), but fails to be proper.
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