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PSEUDOGROUPOIDS AND COMMUTATORS

GEORGE JANELIDZE AND M.CRISTINA PEDICCHIO

ABSTRACT. We develop a new approach to Commutator theory based on the theory of
internal categorical structures, especially of so called pseudogroupoids. It is motivated by
our previous work on internal categories and groupoids in congruence modular varieties.

0. Introduction

The purpose of this paper is to develop a new approach to commutator theory.

Since J. D. H. Smith [S] introduced the notion of commutator for a pair of congruences
in a congruence permutable (=Mal’tsev) variety of universal algebras, there were many
attempts to extend this notion to more general varieties and to simplify it. Accordingly,
the important work of J. Hagemann and C. Hermann [HH] and of H. P. Gumm [G] has to
be mentioned. The conclusion, also well supported by R. Freese and R. McKenzie [FMK],
seems to be that the right level of generality in Commutator theory is the level of congru-
ence modular varieties, where various possible definitions coincide and the commutator
has “all nice properties”. However there are various interesting investigations in non
modular cases (see [K], P. Lipparini [L1], [L2] and references there).

Our viewpoint in this paper is that commutator theory should be based on the theory
of internal categorical structures, this approach is motivated by the description of internal
categories and groupoids in congruence modular varieties obtained in [JP]. In fact we use
a new categorical structure which we call a pseudogroupoid — in contrast to pregroupoids
(in the sense of A. Kock [Ko]) used in [P1] and [P2]; in the case of Mal’tsev varieties our
approach is equivalent to the one developed in [P1].

Once the pseudogroupoids are introduced, the definition of the commutator becomes
very simple.

The commutator [α, β] of congruences α and β on an algebra A is

[α, β] =
{
(x, y) ∈ A× A|η(x) = η(y)

}
, (0.1)

where η is the canonical homomorphism from A to the free pseudogroupoid on the span

A/α A�� �� A/β. (0.2)
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This definition has a powerful conclusion: all properties of commutators are just the
properties of the free-forgetful adjunction

(
Spans
in C

) free ��


 Internal

pseudogroupoids
in C


 ,

forgetful
�� (0.3)

where C is a ground variety.
On the other hand the notion of a pseudogroupoids is quite natural: as we explain in

the Section 3 below it was “almost” introduced by J. D. H. Smith [S], and then again by
E. W. Kiss [Ki].

The paper is organized as follows:

Introduction

1. Rectangles and diamonds

2. Double equivalence relations

3. Pseudogroupoids

4. Free internal and algebraic pseudogroupoids

5. The commutator

6. Kiss, Gumm, Lipparini and abelianizable varieties

7. Abelian algebras and abelianization

8. Two characterizations of congruence modular varieties

In the first four sections we are trying to describe the language of internal categorical
structures and to show that they are really needed and even unexplicitly used all the time
in Commutator theory — although the commutator itself is introduced only in the fifth
section, first for spans in general categories, and then for congruences on an algebra, in
fact via (0.1).

Our notion of commutator coincides with the “usual” one for congruence modular
varieties, but seems to be useful also for the larger classes of varieties which we call Kiss,
Gumm and Lipparini varieties since their definitions were suggested by the results of
these authors. Even the largest class which we consider — the class of “abelianizable”
varieties admits the “fundamental theorem on abelian algebras” and a good description
of the largest commutator (i.e. [∇A,∇A], where ∇A = A × A is the largest congruence
on an algebra A). In the last section we show that a Kiss variety is congruence modular
if (and only if) the commutator is preserved by surjective images, and deduce from the
results of P. Lipparini [L1] that a Gumm variety is congruence modular if and only if the
commutator is distributive (by “image” we mean the image in the categorical sense).
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Since our commutator generalizes the “modular” one, it also generalizes the ordinary
commutator for normal subgroups (and also [K,K ′] = KK ′ +K ′K for ideals in a ring),
however we give a simple direct proof — in order to show again that our generalization
is very natural.

We would like to propose the following further questions and problems to be investi-
gated:

1. Find out more about the relationship between the geometrical language of
H. P. Gumm [G] and the categorical language.

2. What is the relationship with other known commutators in non-modular cases? (see
also [KS])

3. Further development of commutator theory in general categories (we have intro-
duced here only the definition and the very first properties — see Proposition 5.4).

4. Using the commutator investigate various congruence identities in the non-modular
case and generalize them from varieties to exact, regular and possibly more general
categories.

5. Further development of the theory of central extension [JK] in the case of pairs
of varieties of the form (C, Abelian algebras in C), and extension of Homological
methods of J. D. H. Smith [S] and J. Furtado-Coelho [F-C].

In the paper we use without proofs:

• elementary properties of limits, colimits, adjoint functors — much less that given in
S. MacLane’s book [ML];

• some motivations from [JP] — so we are asking our readers to read at least the
introduction of that paper;

• some results in Commutator theory — either well known, or proved by E. W. Kiss [Ki],
or by P. Lipparini [L1].

1. Rectangles and diamonds

Let C be a variety of universal algebras and α, β congruences on an algebra A in C.
The composition αβ is defined as

αβ =
{
(a, b) ∈ A× A|∃x : aαxβb

}
, (1.1)

and so αβ = βα can be expressed as

(∃x : aαxβb) �� �� (∃y : aβyαb). (1.2)
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This tells us that it is useful to work with four-tuples (a, x, y, b) for which

a
β

α

y

α ,

x
β

b

(1.3)

i.e. aαxβb and aβyαb. The picture (1.3) will be called an α-β-rectangle; H. P. Gumm [G]
also says that (a, x, y, b) is an α-β-parallelogram, and E. W. Kiss [Ki] says that (ax, yb)
is an α-β-rectangle.

An internal graph G =

G1

d ��
c

�� G0 (1.4)

in C consists of two algebras G0 and G1 in C and two homomorphisms d and c from G1

to G0. The elements of G0 are called objects, or points, and the elements of G1 are called
morphisms, or arrows (of G); if g ∈ G1 and d(g) = u, c(g) = v , then we write g : u ��v .

If G is an internal graph in C and

A = G1

α =
{
(f, g) ∈ G1|d(f) = d(g)

}
,

β =
{
(g, h) ∈ G1|c(g) = c(h)

}
,

(1.5)

then an α-β-rectangle

f
β

α

k

α

g
β

h

(1.6)

becomes a “G-diamond”

·

·
f

���������

g
���

��
��

��
·

k

���������

h����
��

��
�

·

(1.7)

— as in [JP]. Note that in this case A/α and A/β are canonically isomorphic to subal-
gebras in G0, which is a useless additional condition on α and β. In order to avoid that
condition we replace internal graphs by (internal) spans.

A span S =

S0 S1
π�� π′

�� S ′
0 (1.8)
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in C consists of three algebras S0, S
′
0 and S1 in C, and two homomorphisms π : S1

��S0

and π′ : S1
��S ′

0 ; if g ∈ S1 and π(g) = u, π′(g) = v, we again write g : u ��v .
Now instead of (1.5) we just say: given an algebra A in C and congruences α and β

on A, we obtain the span

A/α A�� �� A/β (1.9)

of the canonical homomorphisms — and again an α-β-rectangle (1.6) is the same as an
S-diamond (1.7).

Let S be an arbitrary span in C. The set of all S-diamonds will be denoted by S4,
and for x ∈ S4 sometimes we will write x =

x11

		��������

x21 

�
��

��
��

�

x12

����������

x22����
��

��
��

,

(1.10)

or just

x =

(
x11 x12

x21 x22

)
(1.11)

which suggest to consider the diagram

S1
π′

��

π





S ′
0 S1

π′
��

π




S0 S4

π11

����������
π12

����������

π21����
��

��
��

π22 ���
��

��
��

� S0

S1

π

��

π′
�� S ′

0 S1
π′

��

π

��

(1.12)

where πij(x) = xij. Note that this is a diagram in C since S4 obviously is a subalgebra
in S4

1 = S1 × S1 × S1 × S1 and the maps πij are homomorphisms. Moreover the diagram
(1.12) represents S4 as the limits of

S1
π′

��

π





S ′
0 S1

π′
��

π




S0 S0

.

S1

π

��

π′
�� S ′

0 S1

π

��

π′
��

(1.13)
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Another way to present S4 as a limit is to form the pullbacks

S2
π2 ��

π1





S1

π




,

S ′
2

π′
2 ��

π′
1





S1

π′




,

S1 π
�� S0 S1

π′
�� S0

(1.14)

and then the diagram

S1 S ′
2

π′
1��

π′
2 �� S1

S2

π1

��

π2





S4
��

��

��





S2

π1

��

π2





,

S1 S ′
2π′

1

��
π′
2

�� S1

(1.15)

which presents S4 as the limit of

S1 S ′
2

π′
1��

π′
2 �� S1

S2

π1

��

π2





S2

π1

��

π2





.

S1 S ′
2π′

1

��
π′
2

�� S1

(1.16)

Since we decided to write the elements of S4 as diamonds, it is convenient to write the
elements of S2 as vertical diagrams

��





and the elements of S ′
2 as horizontal diagrams

�� ;��
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in this notation the diagram (1.15) can be described (in term of elements) as

x11 x11✲ x12✛�π′
1�� � π′

2 �� x12

x11
✻

x21

❄

�
π1

��

�

π2





�
�

�x11 ✒�❅
❅

❅
x12

❅
❅

❅x21 ❘✠�
�

�
x22

���

�

��

� ��

�





x12
✻

x22

❄

�
π1

��

�

π2





.

x21 x21✲ x22✛�
π′
1

�� �
π′
2

�� x22

(1.17)

There is also a convenient matrix notation:

x11 (x11, x12)
��� � �� x12

(
x11

x21

)�

��

�





(
x11 x12

x21 x22

)
���

�

��

� ��

�





(
x12

x22

)�

��

�





;

x21 (x21, x22)
��� � �� x22

(1.18)

it simplifies (1.17) just as (1.11) simplifies (1.10).

2. Double equivalence relations

Let G be an internal graph in a category C with finite limits; just as in the case of a
variety, G consists of two objects G0 and G1 in C and two morphisms d and c from G1

to G0. Such an internal graph G is said to be a relation if d and c are jointly monic, i.e.
the morphism 〈d, c〉 : G1

��G0 ×G0 is a monomorphism. Let us also recall

2.1. Definition. An internal graph G is said to be an (internal) equivalence relation if
it is a relation and is

(a) reflexive, i.e. there exists a morphism e : G0
��G1 with de = 1G0 = ce;

(b) symmetric, i.e. there exists a morphism i : G1
��G1 with di = c and ci = d;
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(c) transitive, i.e. there exists a morphism m : G1 ×G0 G1
��G1 , where G1 ×G0 G1 is

constructed as the pullback

G1 ×G0 G1
p2 ��

p1





G1

c




,

G1 d
�� G0

(2.1)

such that dm = dp2 and cm = cp1.

2.2. Remark.

(a) It is often convenient to consider an equivalence relation as a special case of an
(internal) groupoid, i.e. to describe it as a system (G0, G1, d, c, e,m, i), where e,m, i
(as in Definition 2.1) are however uniquely determined by d and c since 〈d, c〉 is a
monomorphism;

(b) if C is a variety of universal algebras, then the internal equivalence relations in C

are the same as “congruences”.

Let Eq(C) be the category of equivalence relations in C; a morphism f : G ��G′ in
Eq(C) is a diagram

G1

d ��
c

��

f1




G0

f0




G′
1

d′ ��

c′
�� G′

0

(2.2)

in which d′f1 = f0d and c′f1 = f0c.
It is easy to see that since C has finite limits, Eq(C) also has finite limits. Therefore

we can consider the equivalence relations in Eq(C) — we will call them double equivalence
relations in C. A double equivalence relation D in C can also be described as a diagram

D4

q′1 ��

q′2
��

q2




q1




D2

p2




p1




D′

2

p′1 ��

p′2
�� D1

(2.3)

in which

p′1q1 = p1q
′
1, p′2q1 = p1q

′
2

p′1q2 = p2q
′
1, p′2q2 = p2q

′
2,

(2.4)

and each pair of parallel arrows forms an equivalence relation.
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The identities (2.4) are equivalent to the commutativity of the diagram

D1 D′
2

p′1��
p′2 �� D1

D2

p1

��

p2





D4

q′1��

q1

��

q′2
��

q2




D2

p1

��

p2




D1 D′

2p′1
��

p′2
�� D1

(2.5)

clearly similar to (1.15). Moreover, it is easy to check that any span S in C determines,
via (1.15), a double equivalence relation in C which we will denote by Eq(S).

By the analogy with ordinary (internal) equivalence relations we introduce

2.3. Definition. A double equivalence relation in C is said to be effective if it is of the
form Eq(S) for some span S in C.

If C is a variety of universal algebras (or, more generally, an exact category) then
every equivalence relation in C is effective, i.e. is of the form Eq(ϕ) =

X ×Y X
pr1 ��
pr2

�� X (2.6)

for some ϕ : X ��Y in C. The situation with double equivalence relations is much
more complicated: in some sense commutator theory is a theory of noneffective double
equivalence relations. This viewpoint is suggested by the results of [JP] and the following

2.4. Example. Let G = (G0, G1, d, c, e,m, i, ) be an internal groupoid in C. Recall that
it is a diagram in C of the form

G1 ×G0 G1
m �� G1

i

�� c ��
d ��

G0e�� (2.7)

in which de = 1G0 = ce, dm = dp2, cm = cp1, di = c, ci = d (where G1 ×G0 G1 together
with the projections p1 and p2 is constructed as in 2.1), and the following diagrams
commute:

G1 ×G0 G1 ×G0 G1
m×1 ��

1×m




G1 ×G0 G1

m




,

G1 ×G0 G1 m
�� G1

(2.8)

G1
〈1,ed〉 ��

〈ec,1〉


 																					

																					 G1 ×G0 G1

m




,

G1 ×G0 G1 m
�� G1

(2.9)
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G1
〈1,i〉 ��

〈i,1〉




ec

��																					

ed
��																					 G1 ×G0 G1

m




.

G1 ×G0 G1 m
�� G1

(2.10)

If C is a variety of universal algebras, we will use the same notation as in the Section
1 (and as for the ordinary groupoids), i.e. write g : u ��v if g ∈ G1 and d(g) = u,
c(g) = v, and also

m(f, g) = fg, e(u) = 1u, i(g) = g−1. (2.11)

The diagrams (2.8), (2.9) and (2.10) express the associativity, the right and left unit law,
and the right and left inverse law respectively.

A diamond (1.7) in G is said to be commutative if fg−1 = kh−1. The set Comm(G)
of all commutative diamonds form a subalgebra in G4 which can be defined as any of the
following two pullbacks:

Comm(G) ��





G2

m(1×i)




Comm(G) ��





G′
2

m(i×1)




G2

m(1×i)
�� G1 G′

2 m(i×1)
�� G1

(2.12)

and therefore it is a well defined (sub-) double equivalence relation (of Eq(S), where

S = (G0 G1
d�� c ��G0 ) is the underlying span of G), also in the case of an abstract

category C with pullbacks.
It is easy to see that the following conditions are equivalent:

(a) the double equivalence relation determined by Comm(G) is effective;

(b) Comm(G) = G4;

(c) G is a relation.

3. Pseudogroupoids

For a given diamond (1.7) in a groupoid G let us write

m(f, g, k, h) = fg−1h; (3.1)

in particular

m(f, g, fg−1h, h) = fg−1h. (3.2)

So m(f, g, k, h) does not depend on k; the reason why we involve k in the notation is
that we are going to generalize the notion of groupoid in such a way that the composition
above will be defined only if such a k does exist.
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3.1. Definition. A pseudogroupoid is a pair (S,m) in which S is a span and
m : S4

��S1 a map written as

m

(
f k
g h

)
= m(f, g, k, h), (3.3)

with:

(a) m(f, g, k, h) is parallel to k, i.e. πm(f, g, k, h) = π(k) (= π(h)) and π′m(f, g, k, h) =
π′(k) (= π′(f));

(b) m(f, g, k, h) does not depend on k, i.e. m(f, g, k, h) = m(f, g, k′, h) if both sides are
defined;

(c) if f = g then m(f, g, k, h) = h;

(d) if g = h then m(f, g, k, h) = f ;

(e) m(m(x1, x2, y, x3), x4, t, x5) = m(x1, x2, t,m(x3, x4, z, x5)) for every diagram in S of
the form

· ·t��

x5



z

����
��

��
��

��
��

��
��

�

·
x1

��

x2
���

��
��

��
·

· ·x3

��

y

���

���������������
x4

���������

(3.4)

This definition can be “internalized via Yoneda”, i.e. we have an obvious notion of
internal pseudogroupoid in an abstract category C with finite limits.

For, given a span S and an object C in C, we construct the span homC(C, S) =

homC(C, S0) homC(C, S1)
homC(C,π)�� homC(C,π′) ��homC(C, S

′
0) (3.5)

(in Sets). In this span (homC(C, S))4 can be identified with homC(C, S4) and we introduce

3.2. Definition. An internal pseudogroupoid in a category C with finite limits is a pair
(S,m) in which S is a span in C and m : S4

��S1 (where S4 is the limit of (1.13)) a
morphism in C such that (homC(C, S), homC(C,m)) is a pseudogroupoid for every object
C in C.

Note that if C is a variety of universal algebras, then an internal pseudogroupoid in C

is just a pair (S,m) in which S is a span in C and m : S4
��S1 a homomorphism (i.e.

a morphism in C) making (S,m) a pseudogroupoid (in Sets).
Consider examples:
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3.3. Example. Any groupoid G can be considered as a pseudogroupoid (S,m) in which
S is the span

G0 G1
d�� c �� G0 (3.6)

and m is defined by (3.1). All the conditions of Definition 3.1 clearly hold; in particular
(c), (d) and (e) become

gg−1h = h, fg−1g = f (3.7)

and

(x1x
−1
2 x3)x

−1
4 x5 = x1x

−1
2 (x3x

−1
4 x5) (3.8)

respectively — which tells us that they play the roles of “Mal’tsev identities” and asso-
ciativity.

Similarly any internal groupoid in a category C (with finite limits) determines an
internal pseudogroupoid in C.

3.4. Example. A pregroupoid is a pair (S, l) in which S is a span and l : S3
��S1 ,

where

S3 =
{
(f, g, h) ∈ S1 × S1 × S1|π(f) = π(g), π′(g) = π′(h)

}
, (3.9)

is a map with:

(a) πl(f, g, h) = π(h) and π′l(f, g, h) = π′(f);

(b) if f = g then l(f, g, h) = h;

(c) if g = h then l(f, g, h) = f ;

(d) l(l(x1, x2, x3), x4, x5) = l(x1, x2, l(x3, x4, x5)) for every diagram in S of the form

· ·x1�� x2 �� · ·x3�� x4 ��· ·x5�� . (3.10)

We immediately see that this is a special case of a pseudogroupoid: just put

m(f, g, k, h, ) = l(f, g, h). (3.11)

Conversely, if for every diagram in S of the form

· ·f�� g �� · ·h�� (3.12)

there exists k in S1 with π(k) = π(h) and π′(k) = π′(f), then (3.11) can be used as
the definition of l in terms of m. Thus (S, l) � ��(S,m) (where m is as in (3.11)) is an
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isomorphism between the category of pregroupoids and the category of pseudogroupoids
in which every diagram (3.12) can be completed as above.

Again, the same can be repeated in the “internal context”. The internal pregroupoids
were introduced by A. Kock [Ko], and then used in [P1] to develop Commutator theory in
Mal’tsev categories. Note that the notion of pregroupoid is clearly “between” the notions
of groupoid and of pseudogroupoid: if G is a groupoid, we replace (3.1) by

l(f, g, h) = fg−1h (3.13)

and this clearly defines a pregroupoid.

3.5. Example. If S is a relation, i.e. the map 〈π, π′〉 : S1
��S0 × S ′

0 is injective, then
S has a unique pseudogroupoid structure; it is defined by

m(f, g, k, h) = k. (3.14)

In the internal context this can be written as

m = π12 : S4
��S1 , (3.15)

where π12 is as in (1.12).

3.6. Example. Any pseudogroupoid (S,m) has an opposite (=dual) pseudogroupoid
(S,m)op = (Sop,mop), in which the opposite span Sop is

S ′
0 S1

π′
�� π ��S0, (3.16)

and mop is defined by

m(f, g, k, h) = mop(h, g, k, f) (3.17)

— or

m = mop〈π22, π21, π12, π11〉 (3.18)

in the internal context.
Clearly this notion of opposite contains the notions of opposite groupoid and opposite

(=inverse) relation.

3.7. Example. Recall that a variety C of universal algebras is said to be congruence
modular if, for every C in C, the lattice Cong(C) of congruences on C is modular. Let A
be an algebra in a congruences modular variety C and α, β congruences on A. The modular
commutator (we take this expression from the title of [Ki]; it is just the commutator in
the common sense) [α, β] is defined by

[α, β] =
{
(a, b) ∈ A× A|((a, a), (a, b)) ∈ ∆α,β

}
(3.19)
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where ∆α,β is the congruence on α generated by all{(
(a, a), (b, b)

)|(a, b) ∈ β
}
. (3.20)

A four variable term q is said to be a Kiss difference term (E. W. Kiss [Ki] says “a
4-difference term”) if

q(x, y, x, y) = x, q(x, x, y, y) = y (3.21)

are identities in C and (
q(a, b, c, d), q(a, b, c′, d)

) ∈ [α, β] (3.22)

whenever

(
a c
b d

)
,

(
a c′

b d

)
∈ S4 — where S is the span (1.9).

Among other things E. W. Kiss [Ki] proves that every congruence modular variety
has such a term q, and that [α, β] = ∆A(= {(a, a)|a ∈ A}) if and only if the following
conditions hold:

(a) the map m : S4 −→ S1 = A defined by

m

(
a c
b d

)
= q(a, b, c, d) (3.23)

is a homomorphism;

(b) q(a, b, c, d) = q(a, b, c′, d) whenever

(
a c
b d

)
and

(
a c′

b d

)
are in S4.

As follows from Lemma 3.8 below, in our language that criterion for [α, β] = ∆A simply
says: [α, β] = ∆A if and only if (3.23) defines a pseudogroupoid structure on S.

3.8. Lemma. Let C be a variety of universal algebras, q a four variable term in C sat-
isfying (3.21), S a span in C and m : S4

��S1 a homomorphism satisfying Definition
3.1(b) and (3.23). Then (S,m) is an internal pseudogroupoid in C.

Proof. We have to show that (S,m) satisfies the conditions of Definition 3.1.

3.1(a):

πm(f, g, k, h) = π
(
q(f, g, k, h)

)
= q

(
π(f), π(g), π(k), π(h)

)
=

= q
(
π(f), π(f), π(k), π(k)

)
= π(k);

π′m(f, g, k, h) = π′(q(f, g, k, h)) =

= q
(
π′(f), π′(g), π′(k), π′(h)

)
=

= q
(
π′(k), π′(g), π′(k), π′(g)

)
= π′(k).
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3.1(c): if

(
f k
g h

)
∈ S4 has f = g, then k is parallel to h, and we have m(f, g, k, h) =

m(f, f, h, h) = q(f, f, h, h) = h.

3.1(d): if

(
f k
g h

)
∈ S4 has g = h, then k is parallel to f , and we have m(f, g, k, h) =

m(f, g, f, g) = q(f, g, f, g) = f .

3.1(e):

m
(
m(x1, x2, y, x3), x4, t, x5

)
=

= m
(
m(x1, x2, y, x3),m(x4, x4, x4, x4),m(x1, x2, t, z),m(x4, x4, x5, x5)

)
=

= q
(
m(x1, x2, y, x3),m(x4, x4, x4, x4),m(x1, x2, t, z),m(x4, x4, x5, x5)

)
=

= m
(
q(x1, x4, x1, x4), q(x2, x4, x2, x4), q(y, x4, t, x5), q(x3, x4, z, x5)

)
=

= m
(
x1, x2,m(y, x4, t, x5),m(x3, x4, z, x5)

)
=

= m
(
x1, x2, t,m(x3, x4, z, x5)

)
.

Now we are going to show that a pseudogroupoid can be described as a span equipped
with an appropriate set of “commutative diamonds ”. We use the set-theoretic context
just for simplicity — in fact everything can be repeated in the internal context as we will
see.

First we need

3.9. Lemma. Given a diamond (1.7) in a pseudogroupoid, the following conditions are
equivalent:

(a) m(f, g, k, h) = k;

(b) m(g, f, h, k) = h;

(c) m(h, k, g, f) = g;

(d) m(k, h, f, g) = f .

Proof. Since we deal with an arbitrary diamond in an arbitrary pseudogroupoid, it
suffices to prove (a)⇒(b). If (a) holds, then using 3.1(e) for

· ·h��

h


k

����
��

��
��

��
��

��
��

�

·
g

��

f ���
��

��
��

·

· ·
f

��

g

���

���������������
g

���������

(3.24)
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we obtain

m(g, f, h, k) = m
(
g, f, h,m(f, g, k, h)

)
=

= m
(
m(g, f, g, f), g, h, h

)
=

= m(g, g, h, h) = h.

This lemma suggests to introduce

3.10. Definition. A diamond (1.7) in a pseudogroupoid is said to be commutative if it
satisfies the equivalent conditions of Lemma 3.9.

Consider the diagram

Comm(S,m)
inclusion

��












S4
����







S2







,

S ′
2

���� S1

(3.25)

where Comm(S,m) is the set of commutative diamonds in a pseudogroupoid (S,m), and
the square is the effective double equivalence relation Eq(S). This diagram determines a
sub-double equivalence relation of Eq(S) — just as in the case of groupoids considered
in 2.4. The proof is straightforward; however it is good to see how the “associativity”
condition 3.1(e) helps to prove the transitivity of

Comm(S,m)
����S2 (3.26)

and

Comm(S,m)
����S ′

2 . (3.27)

Since (3.26) and (3.27) are dual to each other, let us consider only (3.26). The tran-

sitivity of (3.26) means that the commutativity of

(
f k
g h

)
and

(
k j
h i

)
implies the com-

mutativity of

(
f j
g i

)
, i.e.

(
m(f, g, k, h) = k,m(k, h, j, i) = j

)
��m(f, g, j, i) = j. (3.28)
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We have j = m(k, h, j, i) = m(m(f, g, k, h), h, j, i) = m(f, g, j,m(h, h, i, i)) = m(f, g, j, i)
as desired; here 3.1(e) was applied to

· ·j��

i


j

����
��

��
��

��
��

��
��

�

·
f

��

g
���

��
��

��
· .

· ·
h

��

k

���

���������������

h

���������

(3.29)

Note that, again just as in 2.4, Comm(S,m) determines an effective double equivalence
relation if and only if S is a relation. In other words it determines a thin double equivalence
relation in the sense of

3.11. Definition. A double equivalence relation D is said to be thin if it satisfies the
following condition:

Let D4 =

D1 D′
2

p′1��
p′2 �� D1

D2

p1

��

p2





D4

q′1��

q1

��

q′2
��

q2




D2

p1

��

p2




D1 D′

2p′1
��

p′2
�� D1

(3.30)

be the limit of the diagram (2.5) with removed D4, and i : D4
��D4 the canonical in-

jection; let α, β, γ be any three out of four canonical maps D4
��D1 . Then for every

x ∈ D4 there exists a unique y ∈ D4 such that x and i(y) have the same images under
α, β, γ.

This in fact gives an alternative (equivalent) definition of a pseudogroupoid:

3.12. Theorem. Let S be a span and C a subset of S4 such that

C
����







S2






S ′

2
���� S1

(3.31)

is a thin sub-double equivalence relation of Eq(S). Then there exists a unique pseu-
dogroupoid structure m : S4

��S1 on S with Comm(S,m) = C.
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Proof. The assertion that (3.31) is thin means that for every diamond

(
f k
g h

)
in S there

exists a unique k′ ∈ S1 such that

(
f k′

g h

)
is in C — and so we must havem(f, g, k, h) = k′,

which proves the uniqueness of m (provided it exists). On the other hand if we define m
in this way, the conditions (a)–(e) of Definition 3.1 are satisfied:

3.1(a) and 3.1(b) hold by the definition of m.

3.1(c): m(f, g, k, h) = m(f, f, h, h) by f = g and 3.1(b), and m(f, f, h, h) = h since(
f h
f h

)
is in C because C

����S ′
2 is reflexive.

3.1(d): m(f, g, k, h) = m(f, g, f, g) by g = h and 3.1(b), and m(f, g, f, g) = f since(
f f
g g

)
is in C because C

����S2 is reflexive.

3.1(e): Given a diagram (3.4), we have to show that

(
m(x1, x2, y, x3) t′

x4 x5

)
∈ C ��

(
x1 t′

x2 m(x3, x4, z, x5)

)
∈ C (3.32)

(where t′ is an arrow parallel to t). That is, we have to show that

(
x1 y′

x2 x3

)
,

(
y′ t′

x4 x5

)
,

(
x3 z′

x4 x5

)
∈ C ��

(
x1 t′

x2 z′

)
∈ C. (3.33)

We have:

1◦ . Since C
����S ′

2 is symmetric and

(
x3 z′

x4 x5

)
is in C,

(
x4 x5

x3 z′

)
also is in C.

2◦ . Since C
����S ′

2 is transitive and

(
y′ t′

x4 x5

)
,

(
x4 x5

x3 z′

)
are in C,

(
y′ t′

x3 z′

)
is in C.

3◦ . Since C
����S2 is transitive and

(
x1 y′

x2 x3

)
,

(
y′ t′

x3 z′

)
are in C,

(
x1 t′

x2 z′

)
is in C

as desired.

3.13. Remark. If S is a span in a variety C of universal algebras and C a subalgebra
in S4 as in Theorem 3.12, then the corresponding m : S4

��S1 is a homomorphism and
so we obtain an internal pseudogroupoid structure in C.

Theorem 3.12 (+ Remark 3.13) suggests to consider the following example of the
situation — in the original work of J. D. H. Smith [S] — where the notion of pseudogroupoid
(in fact pregroupoid) was almost introduced.
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3.14. Example. The Section 2.1 “Centrality in general” in [S] begins by:

“For this section, let T be any variety, not necessarily Mal’tsev.

211 Definition. Let A be a T -algebra, let β, γ be congruences on A, and
let (γ|β) be a congruence on β. Then γ is said to centralizeβ by means of the
centralizing congruence (γ|β) iff the following conditions are satisfied:

(C0): (x, y)(γ|β)(x′, y′) ��xγx′ .

(C1): ∀(x, y) ∈ β, π◦ : (x, y)(γ|β) ��xγ ; (x′, y′) � ��x′ bijects.

(C2): The following three conditions are satisfied:

(RR): ∀(x, y) ∈ γ, (x, x)(γ|β)(y, y).
(RS): (x, y)(γ|β)(x′, y′) ��(y, x)(γ|β)(y′, x′).
(RT): (x, y)(γ|β)(x′, y′) and

(y, z)(γ|β)(y′, z′) ��(x, z)(γ|β)(x′, z′).

Conditions (RR), (RS) and (RT) respectively are known as respect for the re-
flexivity, symmetry, and transitivity of β. (C2) is called respect for equivalence.

Intuitively, one thinks of the relation (x, y)(γ|β)(x′, y′) as a parallelogram

·y �� ��
γ ·y′

.”

·x
������

β
����

�� ��
γ ·

������ β

����

x′

Let us translate this in our language. First we note that T plays the same role as our C

which now is supposed to be an arbitrary variety of universal algebras. Since the definition
above begins with congruences β, γ (instead of our α, β in (1.9)), we take S to be the
span

A/β A�� ��A/γ (3.34)

(in C) instead of (1.9). Then β and γ are the same as our S2
����S1 and S ′

2
����S1

respectively. Since (γ|β) is a congruence on β, i.e. on S2, let us write it as (γ|β) =
C

����S2 . Since C is a subalgebra in S2 × S2, the condition (C0) says that C is a
subalgebra in S4; together with (C2) this says that C determines a sub-double equivalence
relation of Eq(S) (in particular (RR), (RS), and (RT) are just reflexivity, symmetry, and
transitivity of C

����S ′
2 ). Accordingly the parallelogram above corresponds to

·

·
y

���������

x
���

��
��

��
·

y′
���������

x′����
��

��
� ∈ C.

·

(3.35)
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The condition (C1) translates now as

· ·

·∀

y
���������

x
���

��
��

��
·

x′����
��

��
� ∃! y′ ·

y
���������

x
���

��
��

��
·

y′
���������

x′����
��

��
�

,

· ·

(3.36)

i.e. it says that for every (y, x, x′) ∈ S3 (see (3.9)) there exists a unique y′ with (3.35).
That is, it says that C is thin and, moreover, the corresponding (internal) pseudogroupoid
is a pregroupoid.

Summarizing, we can simply say that γ centralizes β by means of (γ|β) in the sense
of J. D. H. Smith [S] if and only if they form (as above) an internal pregroupoid.

4. Free internal and algebraic pseudogroupoids

The category P (C) of internal pseudogroupoids in a variety C of universal algebras has
“all standard properties” plus the existence of the commutative triangle

P (C)
forgetful �� S(C)

,

R(C)

inclusion

����������� inclusion

�����������

(4.1)

where S(C) is the category of spans in C and R(C) the category of (“homomorphic”)
relations in C; the left hand inclusion comes from Example 3.5, which says that every
relation has a unique pseudogroupoid structure.

A morphism ϕ : (S,m) ��(T, n) in P (C) can be displayed as in S(C), i.e. as

S0

ϕ0





S1
πs�� π′

s ��

ϕ1





S ′
0

ϕ′
0




;

T0 T1πT

��
π′

T

�� T ′
0

(4.2)

if ϕ0, ϕ
′
0, ϕ1 are inclusions we will say that(S,m) is a subpseudogroupoid in (T, n) and

write (S,m) � (T, n).
The set of subpseudogroupoids in (T, n) forms a complete lattice which we will denote

by Sub(T, n). For any subset X in T1 the subpseudogroupoid 〈X〉(T,n) generated by X
is defined as the smallest subpseudogroupoid (S,m) in (T, n) with X ⊂ T1. It is often
convenient to write

〈X〉(T,n) = 〈X〉 (4.3)
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and identify this pseudogroupoid, as well as other elements in Sub(T, n) with the corre-
sponding subsets in T1 — as one usually does in Universal Algebra.

Of course there is a standard procedure to construct 〈X〉 as the union of

X = 〈X〉0 ⊂ 〈X〉1 ⊂ 〈X〉2 ⊂ . . . , (4.4)

where 〈X〉i+1 is the subalgebra in 〈X〉 generated by{
n(f, g, k, h) | f, g, k, h ∈ 〈X〉iand

(
f k
g h

)
∈ T4

}
(4.5)

for i = 0, 1, 2, . . . . In particular 〈X〉 is “as large as X”, i.e.

cardX � card 〈X〉 � max{cardX, cardΩ, ℵ0}, (4.6)

where Ω is the set of operators in the signature of C.
Any morphism ϕ : (S,m) ��(T, n) has an image ϕ(S,m) ∈ Sub(T, n). However in

general it is not simply the set-theoretic image ϕ1(S1) ⊂ T1, but

ϕ(S,m) = 〈ϕ1(S1)〉. (4.7)

Any X ⊂ T1 determines a relation Rel(X) ⊂ T0 × T ′
0 by

Rel(X) =
{
(t, t′) ∈ T0 × T ′

0 | ∃x ∈ X, πT (x) = t, π′
T (x) = t′

}
, (4.8)

in particular so does T1 itself and we will write

Rel(T, n) = Rel(T ) = Rel(T1), (4.9)

and similarly for spans.

4.1. Proposition.

(a) The category P (C) is complete and cocomplete;

(b) the forgetful functor P (C) ��S(C) has a left adjoint F : S(C) ��P (C) such that
the diagram

S(C) F ��

Rel ����
��

��
��

�
P (C)

Rel�����
��

��
��

R(C)

(4.10)

commute.

Proof. The completeness is obvious, and the cocompleteness and existence of the left
adjoint follows from the completeness, (4.6), and (4.7) (although it is also a special case
of a well known results for so-called essentially algebraic theories). The commutativity of
(4.10) (up to an isomorphism) follows from the commutativity of (4.1) which consists of
the right adjoints of the functors involved in (4.10).
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Note also that since the diagram

P (C)
forgetful ��

( )op





S(C)

( )op




P (C)

forgetful
��S(C)

(4.11)

commutes (see Example 3.6), so does (up to a canonical isomorphism) also the diagram

S(C) F ��

( )op





P (C)

( )op





.

S(C)
F

�� P (C)

(4.12)

Given a span S in C, we will write

F (S) = (S",m) (4.13)

and S"=

S0 S"1
π�

�� π′�
��S ′

0 (4.14)

— since we can take

S"0 = S0, (S
")′0 = S ′

0 (4.15)

as follows from Proposition 4.1(b). The canonical morphism S ��S" will be written as

S1

π

����
��

��
��

η=ηS





π′

���
��

��
��

S0 S ′
0

S"1

π�

��







 π′�

���������

(4.16)

In the pseudogroupoid F (S) we have

〈η(S1)〉 = S"1 (4.17)

and so

S"1 =
∞⋃
n=0

〈η(S1)〉n (4.18)

It might happen that 〈η(S1)〉n+1 = 〈η(S1)〉n for some n, and then also S"1 = 〈η(S1)〉n,
but if this is the case for every span S in C, then we could say that C has the dimension
dim(C) � n — and dim(C) = ∞ if there is no such n. However we “understand” only the
cases dim(C) = 0 and dim(C) = ∞. In order to describe the first of them we introduce
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4.2. Definition. An internal pseudogroupoid (S,m) in a variety C is said to be alge-
braic if C has a four variable term q such that

m(f, g, k, h) = q(f, g, k, h) (4.19)

for every S-diamond

(
f k
g h

)
. We will also say that (S,m) is q-algebraic.

We are going to use the free algebras in C; the free algebra on a set {x1, . . . , xn} will
be denoted by C(x1, . . . , xn).

Consider the span D=

C(s1, s2) C(x11, x21, x12, x22)
π�� π′

��C(t1, t2) (4.20)

in C in which

t1

s1

x11

		��������

x21 

�
��

��
��

� s2

x12

����������

x22����
��

��
��

t2

(4.21)

is a diamond, i.e. π and π′ are defined by π(xij) = sj and π′(xij) = ti respectively. This
span could be called the generic diamond in C; it has the following obvious universal
property.

4.3. Proposition. For every span S in C and every S-diamond x, there exists a unique
morphism D ��S in S(C) which sends the diamond (4.21) to x.

In other words there is a canonical bijection

S4 ≈ homS(C)(D, S), (4.22)

and of course in the case C = Sets, (4.21) is just the picture of D.

Using the universal property of D we will prove the following theorem which gives
various equivalent conditions for dim(C) = 0:

4.4. Theorem.

(a) For a given four variable term q in a variety C the following conditions are equiva-
lent:

(a1) every internal pseudogroupoid in C is q-algebraic;
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(a2) the term q considered as an element in D1 = C(x11, x21, x12, x22) via
q = q(x11, x21, x12, x22) satisfies

ηD(q) = m
(
ηD(x11), ηD(x21), ηD(x12), ηD(x22)

)
; (4.23)

(a3) the identities (3.21) (recall they are q(x, y, x, y) = x and q(x, x, y, y) = y) hold,
and for every diagram of the form

·

·
f

���������

g
���

��
��

��
·k

���������

k′
���������

h����
��

��
�

·

(4.24)

in any span S in C we have

ηS
(
q(f, g, k, h)

)
= ηS

(
q(f, g, k′, h)

)
. (4.25)

(b) For a given variety C the following conditions are equivalent:

(b1) dim(C) = 0;

(b2) the homomorphism ηS : S1
��S"1 is surjective for every span S in C;

(b3) for every span S in C and every S-diamond

(
f k
g h

)
there exists k′ ∈ S1 with

ηS(k
′) = m (ηS(f), ηS(g), ηS(k), ηS(h));

(b4) the homomorphism ηD : D1
��D"

1 (where D is the span (4.20) as above) is
surjective;

(b5) C has a four variable term q satisfying the equivalent conditions (a1)–(a3).

Proof. In order to prove (a) we will prove (a1)⇔(a2), and (a1)⇔(a3).

(a1)⇒(a2). Since the pseudogroupoid F (D) = (D",m) must be q-algebraic, we have

m
(
ηD(x11), ηD(x21), ηD(x12), ηD(x22)

)
=

= q
(
ηD(x11), ηD(x21), ηD(x12), ηD(x22)

)
=

= ηD

(
q(x11, x21, x12, x22)

)
= ηD(q).
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(a2)⇒(a1). Given a pseudogroupoid (S,m) and an S-diamond

(
f k
g h

)
, we take ϕ :

D ��S with (
ϕ1(x11) ϕ1(x12)
ϕ1(x21) ϕ1(x22)

)
=

(
f k
g h

)
, (4.26)

which does exist by Proposition 4.3. Denoting the morphism F (D) ��(S,m) induced
by ϕ by ψ, we obtain

q(f, g, k, h) = q
(
ϕ1(x11), ϕ1(x21), ϕ1(x12), ϕ1(x22)

)
=

= ϕ1

(
q(x11, x21, x12, x22)

)
= ψ1ηD

(
q(x11, x21, x12, x22)

)
=

= ψ1

(
m

(
ηD(x11), ηD(x21), ηD(x12), ηD(x22)

))
=

= m
(
ψ1ηD(x11), ψ1ηD(x21), ψ1ηD(x12), ψ1ηD(x22)

)
=

= m
(
ϕ1(x11), ϕ1(x21), ϕ1(x12), ϕ1(x22)

)
= m(f, g, k, h),

and so (S,m) is q-algebraic.
(a1)⇒(a3). In order to prove the identity q(x, y, x, y) = x consider the span

1 C(x, y)�� C(x, y), (4.27)

where 1 is a one element algebra. This is a relation in C and therefore an internal

pseudogroupoid. Applying (4.19) to the diamond

(
x x
y y

)
we obtain

q(x, y, x, y) = m(x, y, x, y) = x,

and since q(x, y, x, y) = x holds in the free algebra C(x, y), it is an identity in C.

Similarly, using the diamond

(
x y
x y

)
in

C(x, y) C(x, y) ��1 (4.28)

we obtain q(x, x, y, y) = y.
For (4.25) we have

ηS
(
q(f, g, k, h)

)
= q

(
ηS(f), ηS(g), ηS(k), ηS(h)

)
=

= m
(
ηS(f), ηS(g), ηS(k), ηS(h)

)
=

= m
(
ηS(f), ηS(g), ηS(k

′), ηS(h)
)
=

= q
(
ηS(f), ηS(g), ηS(k

′), ηS(h)
)
= ηS

(
q(f, g, k′, h)

)
,

i.e. (4.24) immediately follows from 3.1(b).
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(a3)⇒(a1): For a given diamond

(
f k
g h

)
in a pseudogroupoid (S,m) in C, the iden-

tities (3.21) give π
(
q(f, g, k, h)

)
= π(h), π′(q(f, g, k, h)) = π′(f), and then(

f q(f, g, k, h)
g h

)
= q

((
f f
g g

)
,

(
g g
g g

)
,

(
f k
g h

)
,

(
g h
g h

))
, (4.29)

and so we have

m(f, g, k, h) = m
(
f, g, q(f, g, k, h), h

)
=

= m

(
q

((
f f
g g

)
,

(
g g
g g

)
,

(
f k
g h

)
,

(
g h
g h

)))
=

= q
(
m(f, g, f, g),m(g, g, g, g),m(f, g, k, h),m(g, g, h, h)

)
=

= q
(
f, g,m(f, g, k, h), h

)
.

On the other hand

ηS

(
q
(
f, g,m(f, g, k, h), h

))
= ηS

(
q(f, g, k, h)

)
by (4.25), and we obtain

ηS
(
m(f, g, k, h)

)
= ηS

(
q(f, g, k, h)

)
.

Since (S,m) is an internal pseudogroupoid, ηS is a (split) monomorphism by a general
property of adjoint functors. Therefore we conclude m(f, g, k, h) = q(f, g, k, h) as desired.

(b): The conditions (b1), (b2) and (b3) are clearly equivalent, and (b2) implies (b4).
Therefore it suffices to prove (b4)⇒(b5) and (b5)⇒(b3).

(b4)⇒(b5). Since ηD is surjective, there exists q ∈ D1 satisfying (4.23). This means
that there exists a four variable term q satisfying (a2).

(b5)⇒(b3): If we take k′ = q(f, g, k, h), then

ηS(k
′) = ηS

(
q(f, g, k, h)

)
=

= q
(
ηS(f), ηS(g), ηS(k), ηS(h)

)
=

= m
(
ηS(f), ηS(g), ηS(k), ηS(h)

)
— by (4.19).

4.5. Example. Recall that a three variable term p in a variety C is said to be a Mal’tsev
term if

p(x, y, y) = x, p(x, x, y) = y (4.30)

are identities in C. If such a term does exist, C is said to be a Mal’tsev variety (=“con-
gruence permutable” variety). In this case the four variable term q defined as

q(x, y, t, z) = p(x, y, z) (4.31)
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trivially satisfies 4.4(a3) and so dim(C) = 0.
The formula (4.31) should be compared with the formula (3.11) in Example 3.4. In

the Mal’tsev case every diagram (3.12) can be completed as

·

·
f

���������

g
���

��
��

��
·

p(f,g,h)
���������

h����
��

��
�

·

(4.32)

since π
(
p(f, g, h)

)
= p

(
π(f), π(g), π(h)

)
= p

(
π(f), π(f), π(h)

)
= π(h) and π′(p(f, g, h)) =

p
(
π′(f), π′(g), π′(h)

)
= p

(
π′(f), π′(g), π′(g)

)
= π′(f) — and therefore the pseudogroupoids

are the same as the pregroupoids (this property is in fact equivalent to C being Mal’tsev).
In the “pregroupoid version” of Theorem 4.4 we would have

l(f, g, h) = p(f, g, h) (4.33)

instead of (4.19).
Note that the equivalence (a1)⇔(a3) in Theorem 4.4 gives the following characteriza-

tion of Mal’tsev varieties: C is a Mal’tsev variety if and only if it has a three variable term
p such that every internal pseudogroupoid in C is q-algebraic with q defined by (4.31).

Since most of varieties studied in classical Algebra are Mal’tsev varieties, let us also
point out the following:

(a) If C is a variety of groups, possibly with an additional algebraic structure (say rings,
modules, algebras) then we can take p(x, y, z) = xy−1z and so in every internal
pseudogroupoid (=pregroupoid) (S,m) in C we have

m(f, g, k, h) = fg−1h, (4.34)

or

m(f, g, k, h) = f − g + h (4.35)

if the notation is additive.

(b) More generally, if we have the quasigroup structure instead of the group structure,
then

m(f, g, k, h) =
(
f/(g\g)) · (g\h), (4.36)

where ·, /, \ are the multiplication, the right division, and the left division respec-
tively.
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4.6. Example. Suppose that C has a two variable term u, written as u(x, y) = xy, such
that

(xy)y = xy, xy = yx, xx = x (4.37)

are identities in C. Then every internal pseudogroupoid in C is a relation. Indeed, if f and
g are parallel arrows (i.e. π(f) = π(g) and π′(f) = π′(g)) in an internal pseudogroupoid
(S,m) in C, then the third identity in (4.37) tells us that every arrow obtained from f
and g by u (and its iterations) is also parallel to f and g, and

f = m(fg, fg, f, f) = m(fg, gf, ff, ff) =

= m(f, g, f, f)m(g, f, f, f) = hg,

where h = m(f, g, f, f), and then

fg = (hg)g = hg = f

— and similarly gf = g, which gives f = fg = gf = g.
From this and (3.14) we conclude that every internal pseudogroupoid in C is q-algebraic

with

q(x, y, t, z) = t; (4.38)

in particular dim(C) = 0.
This of course applies to semilattices (with u(x, y) = x

∧
y or u(x, y) = x

∨
y), again

possibly with an additional structure: lattices, Boolean and Heyting algebras and many
other related varieties (although Boolean and Heyting algebras at the same time form
Mal’tsev varieties!)

Now consider an example of dim(C) = ∞:

4.7. Example. Let A be a monoid and C the variety of A-sets. The monoid ring Z[A]
being an A-module is an internal abelian group in C and so the span S =

1 Z[A]�� �� 1 (4.39)

with the usual m(f, g, k, h) = f − g + h is an internal pseudogroupoid in C. Since A is a
subset in Z[A] we can consider the sequence (4.4) for X = A. Clearly 〈X〉n+1 �= 〈X〉n for
each n = 0, 1, 2, . . . and so dim(C) = ∞. In particular dim(Sets) = ∞.

5. The commutator

Let us recall the notion of subobject.
Let C be a category and A an object in C.
If u : U ��A and v : V ��A are monomorphisms then we write (U, u) � (V, v) if

there exists a morphism ω : U ��V with vω = u; note that in this case ω is a uniquely
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determined monomorphism. We say that (U, u) is equivalent to (V, v) if (U, u) � (V, v)
and (V, v) � (U, u); in this case the ω above is an isomorphism. The equivalence class of
(U, u) written as 〈U, u〉 is called a subobject in A. The collection of all subobjects in A
will be denoted by Sub(A); it has the induced partial order �, so that 〈U, u〉 � 〈V, v〉 if
and only if (U, u) � (V, v).

Recall the following

5.1. Definition. A category C is said to be finitely well-complete if it has

(a) finite limits;

(b) all (even large) limits of diagrams which are collections of monomorphisms with the
same codomain.

If C is finitely well-complete, then each Sub(A) is a (possibly large) complete lattice,
and each morphism ϕ : A ��B induces the adjoint pair

Sub(A)
ϕ� ��

Sub(B),
ϕ�

�� (5.1)

where the right adjoint ϕ" sends 〈V, v〉 to the class of the pullback (=“inverse image”) of
v along ϕ, and ϕ" defined as the left adjoint of ϕ" is called the direct image (i.e. ϕ"〈U, u〉
is called the direct image of 〈U, u〉). Furthermore, each Sub(A×A) contains the complete
Λ-subsemilattice ER(A) of (internal) equivalence relations on A; the elements of ER(A)
are the classes 〈E, e〉, where e : E ��A× A is an equivalence relation (see Definition
2.1). And again ϕ : A ��B induces an adjunction

ER(A)
ϕ# ��

ER(B)
ϕ#

�� (5.2)

such that the diagram

Sub(A× A)
⋃

Sub(B ×B)
(ϕ×ϕ)���

⋃
ER(A) ER(B)

ϕ#
��

(5.3)

commutes.
Recall also that every morphism ϕ : A ��B determines an equivalence relation

Eq(ϕ) on A (see (2.6)).

5.2. Definition. Let C be a finitely well-complete category and

S = (S0 S1
π�� π′

��S ′
0 )
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a span in C. The commutator [S] of S is a congruence on S1 defined as the intersection

[S] = Λ
ϕ∈ΦS

Eq(ϕ1) (5.4)

where ΦS is the collection of all morphisms from S to the underlying spans of pseu-
dogroupoids.

In particular

[S] = ∆S1 (5.5)

if S has an internal pseudogroupoid structure.

Note also that if ϕ = ϕ′′ϕ′ (in C) then Eq(ϕ′) � Eq(ϕ), and this gives

5.3. Proposition. If the forgetful functor P (C) ��S(C) has a left adjoint written as
S � ��(S",m) and η is as in (4.16) then

[S] = Eq(η); (5.6)

in particular, if C is a variety of universal algebras, then

[S] =
{
(x, y) ∈ S1 × S1|η(x) = η(y)

}
. (5.7)

This proposition tells us that the properties of commutators, at least in the case of
a variety of universal algebras should be deduced from the properties of the adjunction
S(C)

��
P (C)�� . However some of them can be obtained directly from the Definition 5.2

without the existence of the left adjoint of the forgetful functor P (C) ��S(C).

5.4. Proposition. Let C be a finitely well-complete category, and

S = (S0 S1
π�� π′

��S ′
0) a span in C. Then:

(a) For every morphism χ : S ��T in S(C),

[S] � χ#
1 [T ], χ1#[S] � [T ]; (5.8)

in particular, if S1 = T1 and χ1 = 1S1, then

[S] � [T ] (5.9)

(b) [Sop] = [S].

(c) [S] � Eq(π) ∧ Eq(π′).
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Proof.

(a) For every ϕ ∈ ΦT we have

ϕχ ∈ ΦS (5.10)

and

Eq(ϕ1χ1) = χ#
1 Eq(ϕ1) (5.11)

since the diagram

S1 ×(ϕ1χ1,ϕ1χ1) S1





�� T1 ×(ϕ1,ϕ1) T1




S1 × S1 χ1×χ1

�� T1 × T1

(5.12)

is obviously a pullback. From (5.11) we obtain [S] � χ#
1 Eq(ϕ1) and, since χ#

1

preserves intersections, this gives the first inequality of (5.8). The second one is
then obvious since χ1# is the left adjoint of χ#

1 .

(b) Follows from the facts that (since the diagram (4.11) commutes) the correspondence
(ϕ : S ��P ) � ��(ϕop : Sop ��P op) determines a bijection ΦS

��ΦSop , and ob-
viously Eq(ϕ1) = Eq(ϕop1 ) for every ϕ ∈ ΦS.

(c) Consider the commutative diagram

S0

1S0





S1
π��

〈π,π′〉




π′
�� S ′

0

1S′
0




;

S0 S0 × S ′
0pr1

��
pr2

�� S ′
0

(5.13)

its bottom line being a product diagram is a relation and therefore an internal
pseudogroupoid in C.

Therefore it determines an element ϕ in ΦS (with ϕ1 = 〈π, π′〉). Hence

[S] � Eq(ϕ1) = Eq〈π, π′〉 = Eq(π) ∧ Eq(π′).
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If C is a variety of universal algebras with dim(C) = 0 then the free pseudogroupoid
F (S) = (S",m) on a span S in C can be described as S" =

S0 S1/[S]π�
�� π′�

��S ′
0 (5.14)

with m defined by q (i.e. by (4.19)), where q is as in Theorem 4.4. From this and Lemma
3.8 we obtain the following

5.5. Theorem. Let S be a span in a variety C with dim(C) = 0, and q any four variable
term in C satisfying the equivalent conditions of Theorem 4.4. Then [S] is the smallest
congruence on S1 such that :

(a) the composition

S4

q|S4 ��S1
��S1/[S] (5.15)

of the restriction of q on S4 ⊂ S1 × S1 × S1 × S1 and the canonical homomorphism
S1

��S1/[S] is a homomorphism;

(b) (q(f, g, k, h), q(f, g, k′, h)) ∈ [S] for every diagram of the form (4.24) in S.

5.6. Corollary. Let S be a span in a Mal’tsev variety C and p any Mal’tsev term in
C. Then [S] is the smallest congruence on S1 such that the composition

S3

p|S3 ��S1
��S1/[S] (5.16)

of the restriction of p on S3 ⊂ S1 × S1 × S1 (see (3.9)) and the canonical homomorphism
S1

��S1/[S] is a homomorphism.

Consider two principal examples:

5.7. Example. Let C be any variety of groups with p defined as in 4.5(a) and S a span
in C. Let K and K ′ be the kernels

K =
{
x ∈ S1|π(x) = 1

}
,

K ′ =
{
x ∈ S1|π′(x) = 1

}
.

(5.17)

Since K and K ′ are normal subgroups in S1, so is their (ordinary) commutator [K,K ′].
We claim that

[S] = [K,K ′], (5.18)

i.e. [S] is the congruence on S1 corresponding to the normal subgroup [K,K ′]. In order
to prove this we have to show that [K,K ′] is the smallest normal subgroup H in S1 such
that

f1f2(g1g2)
−1h1h2H = f1g

−1
1 h1f2g

−1
2 h2H (5.19)
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for every (f1, g1, h1), (f2, g2, h2) ∈ S3.
Note that (5.19) is equivalent to

f2g
−1
2 g−1

1 h1H = g−1
1 h1f2g

−1
2 H (5.20)

and therefore to

[f2g
−1
2 , g−1

1 h1] ∈ H. (5.21)

Since π(f2) = π(g2) and π′(g1) = π′(h1), we know that f2g
−1
2 is in K and g−1

1 h1 is in K ′.
Therefore (5.21) holds for H = [K,K ′].

Conversely, suppose that H satisfies (5.21). If k is an element in K and k′ in K ′, then
we can take (f1, g1, h1) = (1, 1, k′), (f2, g2, h2) = (k, 1, 1) — and (5.21) gives [k, k′] ∈ H.
That is [K,K ′] is contained in H.

5.8. Example. Let C be a variety of rings (not necessarily associative, with or without
identity) with p defined by p(x, y, z) = x − y + z and S a span in C. Let K,K ′ be the
kernels

K =
{
x ∈ S1|π(x) = 0

}
,

K ′ =
{
x ∈ S1|π′(x) = 0

}
.

(5.22)

We claim that

[S] = KK ′ +K ′K, (5.23)

i.e. [S] is the congruence on S1 corresponding to the ideal KK ′ +K ′K. In order to prove
that we have to show that KK ′ +K ′K is the smallest ideal I is S1 such that

f1 + f2 − (g1 + g2) + (h1 + h2) + I = f1 − g1 + h1 + f2 − g2 + h2 + I (5.24)

and

f1f2 − g1g2 + h1h2 + I = (f1 − g1 + h1)(f2 − g2 + h2) + I (5.25)

for every (f1, g1, h1), (f2, g2, h2) ∈ S3. However since the addition is commutative, (5.24)
holds trivially, and we have to consider only (5.25).

Note that (5.25) is equivalent to

−g1g2 + I = −f1g2 + f1h2 − g1f2 + g1g2 − g1h2 + h1f2 − h1g2 + I, (5.26)

which itself is equivalent to

(f1 − g1)(g2 − h2) + (g1 − h1)(f2 − g2) ∈ I. (5.27)

Since π(fi) = π(gi) and π′(gi) = π′(hi) we know that fi − gi is in K and gi − hi in
K ′(i = 1, 2). Therefore (5.27) holds for I = KK ′ +K ′K.
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Conversely, suppose that I satisfies (5.27). If k is an element in K and k′ in K ′, then
we can take (f1, g1, h1) = (k, 0, 0), (f2, g2, h2) = (k′, k′, 0) — and (5.27) gives kk′ ∈ I;
or, we can take (f1, g1, h1) = (k′, k′, 0), (f2, g2, h2) = (k, 0, 0) — and (5.27) gives k′k ∈ I.
That is KK ′ +K ′K is contained in I.

These two examples together with Example 3.7 suggest to define the commutator [α, β]
of two congruences α and β on an algebra A in a variety C as

[α, β] = [S], (5.28)

where S = (A/α A�� ��A/β) is the span (1.9); then we get the following:

5.9. Theorem. Let C be a congruence modular variety of universal algebras. Then:

(a) If q is a Kiss difference term in C, then every internal pseudogroupoid in C is
q-algebraic; in particular dim(C) = 0.

(b) The commutator [α, β], of congruences α and β on any algebra A in C, defined by
(5.28) coincides with the modular (i.e. “ordinary”) commutator [α, β] defined by
(3.19).

Proof.

(a) Let (S,m) be an arbitrary internal pseudogroupoid in C and α = Eq(π), β = Eq(π′)
the corresponding congruences on S1; let γ be their modular commutator. Since the
set C ⊂ S4 of commutative S-diamonds forms an (internal) sub-double equivalence
relation of Eq(S), it contains ∆α,β. Therefore by (3.19) we conclude

(x, y) ∈ γ ��

(
x x
x y

)
∈ C �� x = m(x, x, x, y) �� x = y,

i.e. γ = ∆S1 . Together with (3.22) this tells us that

q(f, g, k, h) = q(f, g, k′, h) (5.29)

for every diagram of the form (4.24). Since this is true for all pseudogroupoids, and
in particular for the free ones, the pair (C, q) satisfies the condition 4.4(a3) — which
proves (a).

(b) Given an algebra A in C and congruences α and β on A consider the span

A/α A/[α, β]�� ��A/β , (5.30)

where [α, β] is the modular commutator of α and β. Denoting the canonical homo-

morphism A �� A/[α, β] by ϕ, we can rewrite (5.30) as

(
A/[α, β]

)
/ϕ#α A/[α, β]�� ��

(
A/[α, β]

)
/ϕ#β (5.31)
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and for the modular commutator [ϕ#α, ϕ#β] we have

[ϕ#α, ϕ#β] = ∆A/[α,β], (5.32)

as follows from [G, Corollary 6.17]. Hence, from the remark at the end of Exam-
ple 3.7 we conclude that the span (5.30) has a (unique) internal pseudogroupoid
structure.

By the universal property of the free internal pseudogroupoid we then conclude that
the modular commutator [α, β] contains the one defined by (5.28).

In order to prove the converse we have to prove that

(a, b) ∈ [α, β] ��ηS(a) = ηS(b) , (5.33)

where S = (A/α A�� ��A/β) as above.

Let Cα,β be the set of potentially commutative S-diamonds, i.e. those S-diamonds(
f k
g h

)
for which

(
ηS(f) ηS(k)
ηS(g) ηS(h)

)
(5.34)

is a commutative diamond in the free internal pseudogroupoid F (S). Then clearly
Cα,β determines an (internal) sub-double equivalence relation of Eq(S) and so ∆α,β ⊂
Cα,β. Hence if (a, b) is in [α, β], then

(
a a
a b

)
is in Cα,β and so

ηS(a) = q(ηS(a), ηS(a), ηS(a), ηS(b)) = ηS(b).

5.10. Remark.

(a) If we assume the existence of a left adjoint to the forgetful functor P (C) �� S(C) ,

then (5.6) can be used as the definition of the commutator; in this situation C does
not need to be finitely well-complete, but we still need the finite limits. If in addition
C has coequalizers of effective equivalence relations, then every commutator [S] can
be written as [α, β] for appropriate effective equivalence relations α and β. For,

given a span S = (S0 S1
π�� π′

��S ′
0) in C, we construct the new span S̃ =

S1/Eq(π) S1
�� �� S1/Eq(π′), (5.35)

and it is easy to see that the free internal pseudogroupoid F (S̃) satisfies the universal
property as need for F (S); therefore

[S] = [Eq(π),Eq(π′)]. (5.36)
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More generally, for every morphism χ = (χ0, χ1, χ
′
0): S �� T in S(C) in which

S1 = T1, χ1 = 1S1 , and χ0 and χ′
0 are monomorphisms (which gives S4 = T4), we

have

[S] = [T ] (5.37)

(b) The “new” approach to commutators described in (a) easily gives all properties
listed in Proposition 5.4.

If we replace [S] by [α, β], they should be written as (we omit here (5.8)):

(α1 � α2, β1 � β2) �� [α1, β1] � [α2, β2], (5.38)

[α, β] = [β, α], (5.39)

[α, β] � α ∧ β. (5.40)

(c) In the proof of 5.9(b), we used the important property (5.32) of the modular com-
mutator. Does this property hold for our commutator also in non-modular cases?
We know only two simple cases: the trivial case where all commutators are trivial
(for example for C = Sets), and the case of a variety C with dim(C) = 0, where
(5.32) follows from (5.5) and is equivalent to the isomorphism

FF ≈ F (5.41)

for the free functor F : S(C) �� P (C).

(d) Let α, β be congruences on an algebra A in an arbitrary variety C and Cα,β the
algebra of potentially commutative diamonds as in the proof of 5.9(b). From (5.7)
we conclude

[α, β] =

{
(a, b) ∈ A× A|

(
a a
a b

)
∈ Cα,β

}
, (5.42)

which is similar to (3.19) (in which

(
a a
a b

)
was written as ((a, a), (a, b)) since ∆α,β

was considered as a congruence on α. Another known formula for the modular
commutator mentioned in [Ki] is

[α, β] =
{
(a, b) ∈ A× A|∃c ∈ A,

(
(a, c), (b, c)

) ∈ ∆α,β

}
, (5.43)



Theory and Applications of Categories, Vol. 8, No. 15 444

and again, we can replace it in the general case by

[α, β] =

{
(a, b) ∈ A× A|∃c ∈ A,

(
a b
c c

)
∈ Cα,β

}
. (5.44)

One might notice that (5.43) and (5.44) would better agree with (3.19) and (5.42)

respectively if we replace

(
a b
c c

)
by

(
c a
c b

)
(and ((a, c), (b, c)) by ((c, c), (a, b)));

these modified formulas would also be true of course.

All these suggest that in the modular case

∆α,β = Cα,β (5.45)

— not just ∆α,β ⊂ Cα,β as we observed in the proof of 5.9(b). In fact this is true: if(
a c
b d

)
is in Cα,β, then η(q(a, b, c, d)) = η(c), i.e. (q(a, b, c, d), c) ∈ [α, β] and then(

a c
b d

)
= ((a, b), (c, d)) is in ∆α,β by [Ki, Theorem 3.8(ii)]. That is, (5.45) easily

follows from the results of [Ki] and Theorem 5.9.

(e) It is of course well known that the modular commutator in the cases of groups and
rings becomes the ordinary one as described in the examples 5.7 and 5.8 respectively.
However our purpose in those examples was to show that such description can be
easily deduced directly from our definition of the commutator.

6. Kiss, Gumm, Lipparini, and abelianizable varieties

In this section C denotes an arbitrary variety of universal algebras, A an algebra in C, α
and β congruences on A, and [α, β] their commutator defined by (5.28) (see also (5.7));
∇A = A× A will denote the largest congruence on A.

6.1. Definition. A variety C is said to be a

(a) Kiss variety if it has a four variable term q with

q(a, b, a, b) = a, q(a, a, b, b) = b,(
q(a, b, c, d), q(a, b, c′, d)

) ∈ [α, β]
(6.1)

for every a, b, c, c′, d ∈ A ∈ C and congruences α, β on A with

·

·
a

���������

b ���
��

��
��

·
c

���������

c′
���������

d����
��

��
�

·

(6.2)

in A/α A�� ��A/β (i.e. with aαb, cαd, c′αd, aβc, aβc′, bβd);
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(b) Gumm variety if it has a three variable term p with

p(a, b, b) = a,
(
p(a, a, b), b

) ∈ [α, α] (6.3)

for every a, b ∈ A ∈ C and congruence α on A with aαb;

(c) Lipparini variety if it has a three variable term p with(
p(a, b, b), a

)
,
(
p(a, a, b), b

) ∈ [α, α] (6.4)

for every a, b, A, α as in (b);

(d) abelianizable variety if it has a three variable term p with(
p(a, b, b), a

)
,
(
p(a, a, b), b

) ∈ [∇A,∇A] (6.5)

for every a, b,∈ A ∈ C.

Of course C is a Kiss variety if and only if it satisfies the equivalent conditions (b1)–(b5)
of Theorem 4.4, i.e. if and only if dim(C) = 0.

In particular we can say that C is a Kiss variety if and only if every internal pseu-
dogroupoid in C is q-algebraic — and we can take the same q as in 6.1(a). It turns out
that each of the types of varieties introduced in Definition 6.1 can be described as a variety
in which certain internal pseudogroupoids are algebraic.

6.2. Theorem. A variety in C is a

(a) Gumm variety if and only if it has a four variable term q such that every internal

pseudogroupoid (S,m) = (S0 S1
π�� π′

��S0,m)in C with

Eq(π) � Eq(π′) (6.6)

is q-algebraic;

(b) Lipparini variety if and only if it has a four variable term q such that every internal
pseudogroupoid (S,m) in C with

Eq(π) = Eq(π′) (6.7)

is q-algebraic;

(c) abelianizable variety if and only if it has a four variable term q such that every
internal pseudogroupoid (S,m) in C with

Eq(π) = ∇S1 = Eq(π′) (6.8)

is q-algebraic.
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Proof. We have to reconsider the proof of (a3)⇒(a1) of Theorem 4.4. In fact the argu-
ments used there prove the following (stronger) assertion:

(6) Let q be a four variable term in C and (S,m) an internal pseudogroupoid in C such
that q(f, g, f, g) = f , q(f, f, g, g) = g, (q(f, g, k, h), q(f, g, k′, h)) ∈ [S] for every diagram
of the form (4.24) in S. Then (S,m) is q-algebraic.

We will use this in the proofs of (a), (b) and (c).

(a) Let C be a Gumm variety, and (S,m) an internal pseudogroupoid in C satisfying
(6.6). We define q by the usual formula (4.31) (although now p is just a three
variable term satisfying (6.3)), and we have

q(f, g, f, g) = p(f, g, g) = f,

q(f, g, k, h) = p(f, g, h) = q(f, g, k′, h),

where f, g, k, k′, h are as in (6). So in order to prove that (S,m) is q-algebraic, we
need to prove only q(f, f, g, g) = g, i.e. p(f, f, g) = g.

Since (S,m) is an internal pseudogroupoid, we have [S] = ∆S1 (see (5.5)), after that
Eq(π) � Eq(π′) gives

[
Eq(π),Eq(π)

]
�

[
Eq(π),Eq(π′)

]
= [S] = ∆S1 ,

and since (p(f, f, g), g) ∈ [Eq(π),Eq(π)] by (6.3), we obtain p(f, f, g) = g.

Conversely, suppose that C has a four variable term q such that every internal
pseudogroupoid (S,m) in C satisfying (6.6) is q-algebraic. We define p by

p(x, y, z) = q(x, y, x, z) (6.9)

and we have to prove (6.3).

Since the span

A A ��1 (6.10)

is a relation, it has an internal pseudogroupoid structure; moreover, that pseudo-

groupoid satisfies (6.6) and so is q-algebraic. Since

(
a b
a b

)
is a diamond in the span

(6.10), we obtain

p(a, b, b) = q(a, b, a, b) = m(a, b, a, b) = a.

The span S =

A/α A�� �� A/α (6.11)
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might not have an internal pseudogroupoid structure, but we can consider the free
internal pseudogroupoid F (S) which still satisfies (6.6) since F (S)op = F (Sop) =

F (S), and since

(
a a
a b

)
is a diamond in (6.11) we have

ηS
(
p(a, a, b)

)
= p

(
ηS(a), ηS(a), ηS(b)

)
=

= q
(
ηS(a), ηS(a), ηS(a), ηS(b)

)
=

= m
(
ηS(a), ηS(a), ηS(a), ηS(b)

)
=

= m
(
ηS(a), ηS(a), ηS(b), ηS(b)

)
= ηS(b),

i.e. (p(a, a, b), b) ∈ [α, α].

(b) Let C be a Lipparini variety and (S,m) an internal pseudogroupoid in C satisfying
(6.7). We define q by (4.31) again and we have q(f, g, k, h) = q(f, g, k′, h) as above.
Since again [Eq(π),Eq(π)] = ∆S1 , (6.4) gives

q(f, g, f, g) = p(f, g, g) = f,

q(f, f, g, g) = p(f, f, g) = g,

and so (S,m) is q-algebraic by (6).

Conversely, suppose C has a four variable term q such that every internal pseu-
dogroupoid (S,m) in C satisfying (6.7) is q-algebraic. We define p by (6.9) again
and using the span (6.11) we obtain

ηS
(
p(a, b, b)

)
= p(ηS(a), ηS(b), ηS(b)) =

= q
(
ηS(a), ηS(b), ηS(a), ηS(b)

)
=

= m
(
ηS(a), ηS(b), ηS(a), ηS(b)

)
= ηS(a),

ηS(p(a, a, b)) = ηS(b) (as in the proof of (c) above), i.e. we obtain (6.4).

The proof (c) is again similar.

6.3. Remark.

(a) As we see from the proof, we could add “with q defined by q(x, y, t, z) = p(x, y, z),
where p is as in the definition” to any of the conditions (a), (b), (c) of Theorem 6.2;
in particular we could take q to be independent of the third variable. However if
we require q to be independent of the third variable in the definition of Kiss variety,
then we obtain the definition of Mal’tsev variety.

(b) Let M
∼

, CM
∼

, K
∼
, G
∼
, L
∼
, A
∼
, and V

∼
be the collections of Mal’tsev, congruence modular,

Kiss, Gumm, Lipparini, abelianizable, and all varieties respectively. Then clearly

M
∼

⊂ CM
∼

⊂ K
∼

⊂ G
∼
⊂ L

∼
⊂ A

∼
⊂ V

∼
(6.12)
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and each inclusion seems to be strict. In particular: M
∼

�= CM
∼

is well known;

the variety considered in Example 4.6 (and also, say, the variety of commutative
idempotent semigroups) is in K

∼
, but not in CM

∼
; we do not know how to prove

K
∼

�= G
∼
, and G

∼
�= L

∼
, although we think K

∼
�= G

∼
should be related to Problem 3.11

in [Ki]1, and G
∼
�= L

∼
should follow from the results of [L1]; Example 7.5 below shows

that L
∼
�= A

∼
; the category of sets is in V

∼
but not in A

∼
, and so A

∼
�= V

∼
.

In addition, let N
∼

be the collection of varieties in which any algebra A is neutral,

that is

[α, β] = α ∧ β (6.13)

for every two congruences α and β on A. Consider the intersections of N
∼

with the

“classes” involved in (6.12). The classes N
∼
∩M

∼
and N

∼
∩ CM

∼
are well known and

important: a variety is said to be arithmetical if it belongs to N
∼
∩M

∼
; a variety C is in

N
∼
∩CM

∼
if and only if it is congruence distributive, i.e. the lattice ER(A) = Cong(a)

of congruences on A is distributive for every algebra A in C. The other intersections
are just N

∼
since N

∼
⊂ K

∼
(with q defined by (4.38)). Note that N

∼
∩CM

∼
�= N

∼
by 4.6.

(c) The conditions on p used in 6.1(b)–(d) say that it is an F -G-difference term in the
sense of [L1] for certain F and G, and so various results of [L1] can be applied to
what we call Gumm, Lipparini, and abelianizable varieties.

Let (S,m) be an internal pseudogroupoid (in a variety C) satisfying (6.6). Then

for every (f, g, h) ∈ S3,

(
f f
g h

)
is an S-diamond, and therefore (S,m) is an internal

pregroupoid. Together with Remark 6.3(a) this suggests to introduce

6.4. Definition. Let p be a three variable term in a variety C. An internal pregroupoid
(S, l) in C is said to be p-algebraic if (4.33) holds (i.e. l(f, g, h) = p(f, g, h)) for every
(f, g, h) ∈ S3.

— and rewrite Theorem 6.2 as

6.5. Theorem. A variety C is a

(a) Gumm variety if and only if it has a three variable term p such that every internal
pregroupoid in C satisfying (6.6) is p-algebraic;

(b) Lipparini variety if and only if it has a three variable term p such that every internal
pregroupoid in C satisfying (6.7) is p-algebraic;

1Lipparini gave a surprising solution of the Kiss’s problem, which translated in our language implies
K∼ = G∼.
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(c) abelianizable variety if and only if it has a three variable term p such that every
internal pregroupoid in C satisfying (6.8) is p-algebraic.

Instead of Theorem 5.5 we have

6.6. Theorem. Let p be a three variable term in a variety C and S a span in C such
that one of the following conditions hold:

(i) C is a Gumm variety and S satisfies (6.6);

(ii) C is a Lipparini variety and S satisfies (6.7);

(iii) C is an abelianizable variety and S satisfies (6.8).

Then [S] is the smallest congruence on S1 such that:

(a) (p(f, g, g), f) ∈ [S] if π(f) = π(g) and (p(g, h, h), h) ∈ [S] if π′(g) = π′(h) (of course
(p(f, g, g), f) ∈ [S] can be omitted in the case (i));

(b) the composition

S3 S1

p|S3�� ��S1/[S] (6.14)

of the restriction of p on S3 ⊂ S1 × S1 × S1 and the canonical homomorphism
S1

��S1/[S] is a homomorphism.

6.7. Remark. If p was a Mal’tsev term, then 6.6(a) can be omitted, which agree with
Corollary 5.6. If C is, say, a variety of semilattices (see Example 4.6) and (S,m) satisfies
(6.8) then we can take any three variable term as p, for example p(x, y, z) = x ∧ y ∧ z; in
this case 6.6(a) is relevant, but 6.6(b) can be omitted!

7. Abelian algebras and abelianization

Let (S,m) be an internal pseudogroupoid in a category C with finite limits, in which S
has the form

1 A�� ��1 , (7.1)

where 1 is a terminal object and A an arbitrary object in C. Of course such a pseu-
dogroupoid is a pregroupoid and in fact simply an internal herd, i.e. an object A together
with a morphism

l : A× A× A ��A (7.2)

satisfying the identities

l(x, y, y) = x, l(x, x, y) = y,

l
(
l(x1, x2, x3), x4, x5

)
= l

(
x1, x2, l(x3, x4, x5)

) (7.3)
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(written “in terms of elements”) as in 3.4. Here m and l are related by (3.11) and we will
write

(S,m) = (A, l). (7.4)

Let us recall from [FMK, Definition 5.4]:

7.1. Definition. An algebra A in a variety C is said to be affine, if C has a three
variable term p and A has an abelian group structure such that

(a) p(a, b, c) = a− b+ c for all a, b, c ∈ A

(b) t(a1 − b1 + c1, . . . , an − bn + cn) = t(a1, . . . , an) − t(b1, . . . , bn) + t(c1, . . . , cn) for
each n variable (n = 0, 1, . . . ) term t in C and a1, . . . , an, b1, . . . , bn, c1, . . . , cn ∈ A.

From this definition we easily conclude

7.2. Proposition. An algebra A in a variety C is affine if and only if C has a three
variable term p such that the formula

l(a, b, c) = p(a, b, c) (7.5)

(just the special case of (4.33)!) defines an internal herd structure on A.

Following the usual terminology we introduce

7.3. Definition. An algebra A in a variety C is said to be abelian if [∇A,∇A] = ∆A.

The following theorem generalizes the “fundamental theorem on abelian algebras”:

7.4. Theorem.

(a) Every affine algebra in any variety is abelian;

(b) every abelian algebra in an abelianizable variety is affine with p as in 6.1(d).

Proof.

(a) follows from Proposition 7.2 and the fact that [S] = ∆S1 for every internal pseu-
dogroupoid (S,m).

(b) follows from Theorem 6.5(c) and Proposition 7.2 (we fix any element e in A and
define a+b = p(a, e, b); the commutativity of + follows from 7.1(b) applied to t = p).
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For a given algebra A in a variety C and congruences α and β on A we consider again
the span S = (A/α A�� ��A/β )(see (1.9)) and define

Mα,β = the subalgebra of S4 generated by all(
a a
a′ a′

)
and

(
b b′

b b′

)
with aαa′and bβb′

(7.6)

That is, our Mα,β is the same M(α, β) in [FMK, Definition 3.2(1) and Proposition
3.3(1)] and [L1, 1.1], and clearly

Mα,β ⊂ ∆α,β ⊂ Cα,β (7.7)

(see also Remark 5.10(d), where the relationship between ∆α,β and Cα,β is discussed).
According [FMK] and [L1] we say that α centralizes β modulo a congruence γ on A if(

a c
b d

)
∈ Mα,β and aγc implies bγd (7.8)

(we do not need to consider here the well known relationship between this notion and
the one introduced in [S] see Example 3.14); we also write C(α, β; γ) in this case. The
smallest congruence γ with this property is denoted by C(α, β).

This C(α, β) is one of “several commutators” in [FMK], which coincide in the case of
a congruence modular variety; in [L1] C(α, β) is written as [α, β] (which we will not do in
this paper!) and used as the commutator. Since Mα,β ⊂ Cα,β and our commutator [α, β]
obviously satisfies (7.8), we have

C(α, β) � [α, β]. (7.9)

In particular this tells us that if a variety has a weak difference term in the sense of
[L1, Definition 2.1], i.e. satisfies the condition similar to 6.1(c) but with C(α, α) instead of
[α, α], then it is a Lipparini variety and so Theorem 7.4 above extends the corresponding
result (namely 5.9(i)⇔(ii) of [L1]).

Consider

7.5. Example. Let C be a variety determined by a binary operator written (x, y) � ��xy
and a 0-ary operator 1 with a set of identities including

1x = x = x1 (7.10)

If (G, l) is an internal herd in C, then

a · b = l(a, 1, b) (7.11)

defines a group structure on G with the identity 1 and

(ab) · (cd) = (a · c)(b · d) (7.12)
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(since l must be a homomorphism) for all a, b, c, d in G. It is well known that this gives

a · b = ab = b · a (7.13)

for all a, b in G, and so (G, ·) = (G with (x, y) � ��xy ) is an abelian group.
Such a C might not be abelianizable. For example the variety of all monoids is not,

since there the free internal pseudogroupoid on a span (7.1) is just

1 K(A)�� ��1 (7.14)

where K(A) is the Grothendieck group of A.
So let us require a new identity, say

u = v, (7.15)

where u and v are one variable terms. In the case of monoids (7.15) would be equivalent
to

xn = xm (7.16)

for some n and m, and the same argument with the Grothendieck group tells us that C

is abelianizable if and only if n �= m. Furthermore, all abelian algebras are trivial if and
only if |n−m| = 1.

This gives many varieties which are abelianizable but not Lipparini varieties (in par-
ticular they do not have a weak difference term in the sense of [L1]). For, we fix any
identity (7.15) with, say n > m > 0 in the corresponding identity (7.16), and consider an
algebra A in which

ab =

{
b if a = 1,

a if a �= 1;
(7.17)

clearly such A satisfies the identity above. Let α be the congruence on A defined by

α =
{
(1, 1)

} ∪
((
A\{1}) × (

A\{1})). (7.18)

We claim that the span S = A/α A�� ��A/α has an internal pseudogroupoid struc-
ture: just note that S4 satisfies (7.17) and any pseudogroupoid structure (in Set)
m : S4

��S1 = A with m(1) = 1 is a homomorphism. Therefore [α, α] = ∆A and it is
easy to see that there is no p satisfying (6.4) for all such A.

Consider the adjunction

(Groups)
abelianization ��

(Abelian groups)
inclusion

�� (7.19)
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The abelianization functor can be described as

G � ��G/[G,G] = G/[∇G,∇G] , (7.20)

and [G,G] can be described as the smallest normal subgroup in G such that the compo-
sition

G×G
(x,y) �→xy �� G �� G/[G,G] (7.21)

is a homomorphism — or, equivalently the composition

G×G×G
(x,y,z) �→xy−1z�� G �� G/[G,G] (7.22)

is a homomorphism, which is a special case of Theorem 6.6 of course.
In general, Theorem 6.6 describes the abelianization functor involved in the adjunction

C








abelianization:A �→A/[∇A,∇A] ��


 Abelian

Algebras
in C




inclusion
��







=




Affine
algebras

in C




(Internal herds in C)







.

(
Spans S in C

with S0 = 1 = S ′
0

)
free ��

(
Internal pseudogroupoids

(S,m) in C with S0 = 1 = S ′
0

)
forgetful

��

(7.23)

That is, “the abelianizable varieties admit a good abelianization!”

8. Two characterizations of congruence modular varieties

The purpose of this section is to prove

8.1. Theorem.

(a) A Kiss variety C is congruence modular if and only if the commutator in C is
preserved by surjective images, i.e. for any surjective homomorphism ϕ : A ��A′

in C and congruences α, β on A,

ϕ#[α, β] = [ϕ#α, ϕ#β]. (8.1)

(b) A Gumm variety C is congruence modular if and only if the commutator in C is
distributive, i.e.

[α1 ∨ α2, β] = [α1, β] ∨ [α2, β] (8.2)

for any algebra A in C and congruences α1, α2, β on A.
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Proof. Both (8.1) and (8.2) in the modular case are well known. So we need to prove
only the “if” parts in (a) and (b).

(a) It is well known that a variety C is congruence modular if and only if it satisfies the
following

Shifting Lemma. For any algebra A in C and congruences α, β, γ on A with
α ∧ β � γ,

(a, b) ∈ γ ��(c, d) ∈ γ (8.3)

for every diamond

(
a c
b d

)
in the span S = (A/α A�� ��A/β ).

In order to prove that (8.1) implies the Shifting lemma we take ϕ : A �� A′ to

be the canonical homomorphism A �� A/γ . We have

[ϕ#α, ϕ#β] = ϕ#[α, β] � ϕ#(α ∧ β) � ϕ#γ = ∆A′ .

On the other hand if

(
a c
b d

)
is a diamond in S with (a, b) ∈ γ, then since

(
q(a, b, c, d), c

) ∈ α ∧ β � γ

(where q is as in 6.1(a)) and ϕ(a) = ϕ(b) we obtain

η
(
ϕ(c)

)
= η

(
ϕ
(
q(a, b, c, d)

))
=

= q
(
ηϕ(a), ηϕ(b), ηϕ(c), ηϕ(d)

)
=

= q
(
ηϕ(a), ηϕ(a), ηϕ(c), ηϕ(d)

)
=

= m
(
ηϕ(a), ηϕ(a), ηϕ(c), ηϕ(d)

)
=

= m
(
ηϕ(a), ηϕ(a), ηϕ(d), ηϕ(d)

)
= ηϕ(d),

and so (ϕ(c), ϕ(d)) ∈ [ϕ#α, ϕ#β]; here η and m were as in Proposition 5.3, but
using for the span

A′/ϕ#α A′�� ��A′/ϕ#β (8.4)

Since (ϕ(c), ϕ(d)) ∈ [ϕ#α, ϕ#β] = ∆A′ , we obtain ϕ(c) = ϕ(d), i.e. (c, d) is in γ as
desired.

(b) is just a special case of [L1, Theorem 3.2(i)].
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8.2. Remark.

(a) If ϕ is the canonical homomorphism A ��A/[α, β] then (8.1) holds in any Kiss
variety C (see Remark 5.10(c)).

(b) As we see from the proof it suffices to require (8.1) in the case [ϕ#α, ϕ#β] = ∆A′ .
On the other hand (8.2) can be replaced by the stronger condition of infinite dis-
tributivity since it holds in congruence modular varieties.
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