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ON SATURATED CLASSES OF MORPHISMS
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Transmitted by Aurelio Carboni

ABSTRACT. The term “saturated,” referring to a class of morphisms in a category, is
used in the literature for two nonequivalent concepts. We make precise the relationship
between these two concepts and show that the class of equivalences associated with any
monad is saturated in both senses.

Introduction

In [1], we drew attention to the fact that the concept of “saturation” of a class of mor-
phisms appears in the literature with two different meanings. In [1], [2], and [3], the
saturation of a class of morphisms S in a category denotes the double orthogonal S⊥⊥

in the sense of Freyd–Kelly [8]. On the other hand, in the book by Gabriel–Zisman [9]
and in subsequent articles such as [4], the saturation of a class of morphisms S in a cate-
gory C consists of the morphisms rendered invertible by the canonical functor from C to
the category of fractions C[S−1].

In the present paper we show that, although the two concepts do not coincide in
general, the saturation of a class of morphisms S in the first sense contains the saturation
of S in the second sense. We also prove that the class of equivalences associated with any
monad is saturated in both senses. In fact, whenever a functor F has a right adjoint, the
class of morphisms rendered invertible by F is saturated in both senses.

1. Terminology

Most of the following terminology is taken from [2], [3], [6], [8], and [9]. For any functor
F : C → D between two given categories, we define

S(F ) = {morphisms f in C such that Ff is invertible}, (1.1)

and say that morphisms in S(F ) are F -equivalences.
A morphism f :A → B and an object X in a category C are called orthogonal , as

in [8], if the function
C(f,X): C(B,X) → C(A,X)
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is bijective. For a class of morphisms S (resp. a class of objects D), we denote by S⊥ the
class of objects orthogonal to every f in S (resp. by D⊥ the class of morphisms orthogonal
to all X in D). Objects in S⊥ were called left closed for S in [4], [5], or in [9, I.4]. We
call S⊥⊥ the internal saturation of S, and say that S is internally saturated if S⊥⊥ = S.
Observe that every class of the form D⊥ is internally saturated, since D⊥⊥⊥ = D⊥.

Given a class of morphisms S in a category C, let C[S−1] denote the category of fractions
of C with respect to S (see [9]). There is a canonical functor FS: C → C[S−1] such that
FSf is invertible for every f in S and, if a functor F : C → D renders all the morphisms
in S invertible, then there is a unique functor G: C[S−1] → D such that GFS = F .

The external saturation Ŝ of a class S of morphisms is the class of all morphisms
rendered invertible by the canonical functor FS: C → C[S−1]. Thus, according to (1.1),

Ŝ = S(FS). (1.2)

The class S is said to be externally saturated if S = Ŝ. We find that this language is
justified by the fact that this kind of saturation is not intrinsic in the category C, as
internal saturation is.

The universal property of the category of fractions implies the following, which was
already pointed out in [4, Proposition 1.1].

1.1. Proposition. A class of morphisms S in a category is externally saturated if and
only if S = S(F ) for some functor F .

For any functor K:A → C between two given categories, the shape category ShK of K
has the same objects as C, and morphisms in ShK from X to Y are natural transformations

C(Y,K−) −→ C(X,K−).

There is a canonical functor DK : C → ShK which is the identity on objects and is defined
as DKf = C(f,K−) on morphisms. Additional information about shape categories can
be found e.g. in [6], [7]. This concept is relevant in our context, since S⊥⊥ is precisely the
inverse image under DK of the invertible morphisms in ShK when K is the full embedding
of S⊥ into C. In other words, using the notation (1.1),

S⊥⊥ = S(DK), (1.3)

where K:S⊥ ↪→ C is the full embedding. (By a standard abuse of terminology, we often
denote by the same symbol a class of objects and the full subcategory with these objects.)

2. Comparing internal and external saturation

2.1. Theorem. If a class S of morphisms in a category is internally saturated, then it
is externally saturated.

Proof. If S is internally saturated, then S = S⊥⊥ = S(DK), as pointed out in (1.3).
Hence, by Proposition 1.1, S is externally saturated.
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The converse of Theorem 2.1 does not hold, as the following two examples illustrate.

2.2. Example. Let A be the category of Abelian groups and T :A → A the functor
taking each object of A to its torsion subgroup. Then S(T ) is externally saturated but
not internally saturated. Indeed, consider the zero morphism z:Z → 0, which satisfies
{z}⊥ = {0} and therefore {z}⊥⊥ is the class of all morphisms in A. Since z is in S(T ),
we have {z}⊥⊥ ⊆ S(T )⊥⊥, so S(T )⊥⊥ is the class of all morphisms in A, which is strictly
larger than S(T ).

2.3. Example. Let C be the multiplicative monoid of the integers Z, viewed as a cat-
egory with a single object. Let p be any prime, and Let Z(p) denote the multiplicative
monoid of the rationals whose denominator is not divisible by p in their reduced form.
Then Z(p) is isomorphic to the category of fractions C[S−1], where S is the set of inte-
gers not divisible by p. Thus, S is externally saturated. However, S is not internally
saturated. In fact, any category with a single object has only two internally saturated
classes of morphisms; namely, the class of all morphisms and the class of the invertible
morphisms.

Although they do not coincide in general, the two saturations are related as follows.
This result implies of course Theorem 2.1.

2.4. Theorem. Let S be any class of morphisms in a category C. Then

(a) S ⊆ Ŝ ⊆ S⊥⊥;

(b) (Ŝ)⊥ = S⊥.

Proof. Let K denote the full embedding S⊥ ↪→ C. The canonical functor DK : C → ShK

renders all the morphisms in S invertible, and hence it factors through the canonical
functor FS: C → C[S−1]. This implies that S(FS) ⊆ S(DK), so part (a) follows from (1.2)
and (1.3). Then we also obtain

S⊥⊥⊥ ⊆ (Ŝ)⊥ ⊆ S⊥,

and, since S⊥⊥⊥ = S⊥, we infer (b).

In some cases, the two concepts of saturation coincide. The following situation is
especially relevant.

2.5. Theorem. If a functor F has a right adjoint, then S(F ) is both internally and
externally saturated.

Proof. If G is right adjoint to F , then [2, Lemma 1.2] and [2, Theorem 1.3] say that
S(F ) = S(GF ) = D(G)⊥, where D(G) denotes the class of objects which are isomorphic
to GX for some X. Hence, S(F ) is internally saturated, and it is also externally saturated
by Proposition 1.1.
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Recall from [10, Ch. VI] that, if (T, η, µ) is any monad (also called a triple), then
T = GF for some pair of adjoint functors G, F , which are not uniquely determined in
general. By [2, Theorem 1.3], we then have S(T ) = S(F ). Therefore, we obtain the
following.

2.6. Corollary. If (T, η, µ) is any monad, then S(T ) is both internally and externally
saturated.

This applies e.g. to the case when F is a localization; that is, F : C → D is left adjoint
to the embedding K of some full subcategory D into C. The functor T = KF is then
part of an idempotent monad. The class S(F ) admits a calculus of left fractions and
the canonical functor from C to C[S(F )−1] has a right adjoint. Moreover, the category
of fractions C[S(F )−1], the shape category ShK , and the Kleisli category of KF are
isomorphic, and they are equivalent to D; see [5, § 2], [6, Corollary 2.3], and [9, I.4].
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