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FROBENIUS STRUCTURE AND THE BECK–CHEVALLEY
CONDITION FOR ALGEBRAIC WEAK FACTORIZATION SYSTEMS

WIJNAND VAN WOERKOM AND BENNO VAN DEN BERG

Abstract. If a locally cartesian closed category carries a weak factorization system,
then the left maps are stable under pullback along right maps if and only if the right
maps are closed under pushforward along right maps. In this paper we state and prove
an analogous result for algebraic weak factorization systems. These algebraic weak
factorization systems are an explicit variant of the more traditional weak factorization
systems in that the factorization and the lifts are part of the structure of an algebraic
weak factorization system and are not merely required to exist. Our work has been
motivated by the categorical semantics of type theory, where the closure of right maps
under pushforward provides a useful tool for modelling dependent function types. We
illustrate our ideas using split fibrations of groupoids, which are the backbone of the
groupoid model of Hofmann and Streicher.

1. Introduction

In this paper we contribute to the theory of algebraic weak factorization systems (or
awfs, for short). The notion of an awfs is due to Garner [Gar09], building on earlier
ideas by Grandis and Tholen [GT06]. The notion of an awfs is a refinement of the well-
known notion of a weak factorization system (wfs), which has become quite important
in homotopy theory and category theory. In particular, Quillen’s influential notion of
a model category involves two weak factorization systems which interact in a suitable
manner [Hir03].

The notion of an algebraic weak factorization system can be seen as a more explicit
version of the more familiar notion of a wfs. To explain this, recall that for morphisms
f, g in a category C, we say that f has the right lifting property against g and g the left
lifting property against f , denoted f ⋔ g, if for any solid commutative square

• •

• •
g f
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in C there exists a dotted lift as shown. For a class of maps A in a category C we write:

A⋔ = {f : (∀g ∈ A) g ⋔ f},
⋔A = {g : (∀f ∈ A) g ⋔ f}.

A wfs on a category C consists of a pair (L,R) of classes of maps in C, such that the
following two axioms are satisfied:

1. Any map in C factors as a map in L followed by a map in R.

2. ⋔R = L and L⋔ = R.

The theory of awfs is more “explicit” in that when we are given an awfs, we will have
explicit witnesses for the truth of axioms (1) and (2): that is, for an awfs both the
factorization in (1) as well as the lift in (2) can be obtained in an explicit manner and are
not just assumed to exist. As a result, the theory of algebraic weak factorization systems
has a number of advantages over the usual theory:

1. Due to its explicit nature, it is more constructive than the usual theory.

2. In an awfs, the coalgebras are closed under colimits and the algebras under limits,
in an appropriate sense.

3. They can be used to describe situations that are not wfs, because algebras and
coalgebras need not be closed under retracts. For example, split Grothendieck
fibrations are the algebras for a monad in an awfs, while not being closed under
retracts.

For the purposes of this paper, points (1) and (3) are the important ones. Indeed, we feel
that point (1) has recently become especially important due to the influence of homotopy
type theory [HoTT23]. Here, type theory refers to formal systems, like the Calculus of
Constructions or Martin-Löf’s intuitionistic type theory, which are both constructive
foundations for mathematics and functional programming languages. Recent developments
have amply demonstrated how ideas from homotopy theory and higher category theory are
highly relevant to type theory. In particular, Voevodsky has shown how one can exploit
the Kan–Quillen model structure on simplicial sets to construct a model of type theory
which validates principles like his Univalence Axiom [KL21].

This paper focuses on an important aspect of model constructions like those of Vo-
evodsky which make use of Quillen’s model categories to obtain models of type theory:
how they model Π-types. Π-types, or dependent function types, are arguably the most
important type former in type theory and the argument for why these model categories
model them is basically always as follows. The underlying category is a presheaf category
and hence locally cartesian closed: this means that pullback functors have right adjoints,
which we will call pushforward functors. To show that we have a model of Π-types, we
need that pushforward functors along R-maps (fibrations) preserve R-maps (fibrations); we
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refer to this as the pushforward property. Using general facts about adjoints, this property
is equivalent to the pullback functors along R-maps preserving L-maps. We will refer to
the latter property as the Frobenius property. The Frobenius property is often easier to
check than the pushforward property; for instance, the Frobenius property will hold in a
model category if it is right proper and the cofibrations are stable under pullback.

The main contribution of this paper is to find suitable analogues of these statements
for algebraic weak factorization systems. That is, we will formulate appropriate forms
of the statement that algebras are closed under pushforward along algebras and the
Frobenius property for awfs, and we will prove that these are equivalent. In order to
model type theory, one needs suitably “stable” versions of both the pushforward and the
Frobenius property. This amounts to requiring an additional property, a version of the
well-known Beck–Chevalley condition, and we will also formulate an appropriate version
of the Beck–Chevalley conditions for awfs. In order to do so, we use the definition of an
awfs that was given in recent work of John Bourke [Bou23], who makes extensive use of
the language of double categories.

We start this paper by giving this definition of an awfs in terms of double categories
in Section 2. In Section 3 we will formulate the pushforward and Frobenius property for an
awfs and prove their equivalence; in order to do so, we will recast the usual equivalence as
a statement about an adjunction between two slice wfs. It turns out that this formulation
can be rather straightforwardly generalised to awfs and in this form, it follows fairly
directly from the work on Bourke and Garner [BG16]. In Section 4 we illustrate these
ideas on our running example, an awfs on groupoids in which the right class is formed
by split fibrations of groupoids. These maps are precisely the maps which interpret the
dependent types in the groupoid model of Hofmann and Streicher [HS98], which was
a fundamental contribution to the development of Homotopy Type Theory. In Section
5 we state the Beck–Chevalley condition for awfs, and also verify it for our running
example. In Section 6 we consider various natural strengthenings of the Frobenius and
Beck–Chevalley conditions, and we will find that most, but not all of them are satisfied in
our running example. Finally, in Section 7, we show how one could use our framework
to obtain models of type theory with dependent function types, as well as other type
formers, such as identity and dependent sum types. This is again applied to groupoids,
thus recovering the groupoid model of Hofmann and Streicher.

This paper is based on the MSc thesis of the first author, which was supervised by the
second author [vW21].

2. Preliminaries

We begin by recalling some definitions and results that underlie our work. We will often
work in the context of some (small) ambient category C which is (sufficiently) locally
cartesian closed, and write C1 for its set (or class) of morphisms.

2.1. Weak factorization systems. Of central importance will be the notion of lifting.
Given two subsets J,K ⊆ C1 we write J ⋔ K when for all f ∈ J, g ∈ K every commutative
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square (u, v) : f // g has a lift ϕ : cod f // dom g which makes both of the induced
triangles commute:

• •

• • .

f g

u

v

ϕ (1)

Given J ⊆ C1 we define ⋔J = {f ∈ C1 | {f} ⋔ J} and J⋔ = {f ∈ C1 | J ⋔ {f}}. For a pair
L,R ⊆ C1 we can now ask whether the following axioms hold:

1. Axiom of lifting : L = ⋔R and R = L⋔.

2. Axiom of factorization: Every morphism f ∈ C1 admits a factorization f = r.l with
l ∈ L and r ∈ R.

2.2. Definition. A pair (L,R) of subsets of C1 is a weak factorization system (wfs) if it
satisfies the axioms of lifting and factorization, and a pre-wfs if it only satisfies the axiom
of lifting.

In the context of a (pre-)wfs (L,R) the maps in L and R are referred to as left and
right maps, respectively.

2.3. Categorical lifting operations. As an intermediate step towards the definition
of awfs we discuss a categorical version of lifting, which is phrased with respect to functors
with codomain Ar(C), where Ar(C) denotes the familiar category of arrows of C. First
some remarks on notation. We use the name of the domain of a functor J // Ar(C)
also to refer to the functor itself. Furthermore, following [BG16, Bou23], given a functor
J // Ar(C) we use bold type to denote an element f ∈ J , and italic type for the
corresponding image f of f under J . Similarly, we use double letters for morphisms in J :
given object f and g in J , a map f // g will usually be written uv and the image of this
map under J will be (u, v) : f // g.

The idea of a category of maps is formalised as a functor J //Ar(C); indeed, we think
of J as consisting of a category of structured morphisms in C and structure-preserving
maps between those. There is a notion of lifting of categories of maps, which is a more
structured version of the one we saw in Section 2.1, as it asks for a specific and coherent
choice of lifts.

2.4. Definition. Let J ,K be functors over Ar(C), then a (J ,K)-lifting operation ϕ
assigns to each f ∈ J , g ∈ K, and lifting problem (u, v) : f // g, a solution ϕf ,g(u, v) as
in (1). This choice is required to respect morphisms of J and K, in the sense that if wx :
f ′ //f in J , (u, v) : f //g, and yz : g //g′ in K, then y.ϕf ,g(u, v).x = ϕf ′,g′(w.u.y, x.v.z):

• • • • • •

=

• • • • • • .

u

v

gff ′ g′

x

y

ϕf ,g

w

z

f ′ g′

y.u.w

z.v.x

ϕf ′,g′
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Given J //Ar(C), we can define a category J ⋔ //Ar(C). The objects of J ⋔ are
pairs (f, ϕ) with f a morphism in C and ϕ a (J , f)-lifting operation (where f is considered
a functor f : 1 // Ar(C)), and a morphism (u, v) : (f, ϕ) // (g, ψ) is a commutative
square (u, v) : f // g that respects the lifting operations. The category ⋔J over Ar(C) is
defined analogously, and these assignments give rise to an adjunction:

(Cat/Ar(C))op Cat/Ar(C) .
⋔(−)

(−)⋔

⊣ (2)

For categories J ,K over Ar(C), any (J ,K)-lifting operation ϕ gives rise to two functors
ϕl : J // ⋔K and ϕr : K // J ⋔, which are each other’s transpose according to (2).

This notion of lifting can be further expanded to a double categorical notion, and it is
in those terms that awfs can be conveniently defined, so we now specify what we mean
by a double category.

2.5. Double categories. A double category C can be succinctly defined as an internal
category in Cat. This amounts to the following data, satisfying the usual axioms of a
category:

C0 C1 C1 ×C0 C1 .c
id

s

t

More specifically, a double category C consists of a category C0 of objects and a category
C1 of arrows, with operations id, s, t, c for identity arrow assignment, source, target, and
composition operations, respectively. A double category has two types of morphisms:
There are the morphisms of C0, called the horizontal morphisms of C; and the objects
of C1, called the vertical morphisms of C. The morphisms of C1 are called squares of
C. There is an associated notion of double functor, and so we have a category Dbl of
double categories, with evident projections (−)0, (−)1 : Dbl //Cat. There is a functor
Sq : Cat //Dbl sending a category C to its double category of squares Sq(C). Its object
category (Sq(C))0 is C itself, and its arrow category (Sq(C))1 is the familiar category
Ar(C), whose objects are the arrows of C and whose morphisms are commutative squares
in C. Note that the Ar operation can be considered as a (2-)functor Cat //Cat.

Of particular interest in the context of awfs are double functors of the form J //Sq(C)
(which we will, as before, refer to simply as J). Often, this double functor will be such that
J0 is the identity and J1 is faithful. Following [BG16, Bou23], we refer to these as concrete.
Note that a concrete double functor J // Sq(C) equips morphisms of C with a structure,
via its arrow component J1 //Ar(C). The double functoriality of this assignment provides
a composition operation for this structure, and ensures all identity arrows are assigned a
structure.

By internalising the definition of natural transformations the category Dbl can be
made a 2-category. Spelling this out, a double natural transformation α : F ⇒ G between
double functors F,G : C // D is a functor α : C0

// D1 subject to various conditions.
This means that, by virtue of how we defined horizontal and vertical morphisms, a
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double natural transformation would assign to each object of C a vertical morphism of
D. However, a second candidate for the 2-cells of Dbl is given by first transposing the
double categories and functors involved. This is a type of duality for double categories in
which the sets of vertical and horizontal arrows are switched. We thus obtain a notion of
double natural transformation which assigns to each object of C a horizontal morphism of
D. Following [BG16], we will consider Dbl as a 2-category by taking the latter of these
two options for the 2-cells.

2.6. Algebraic weak factorization systems. An awfs is a significantly more
structured object than a wfs, and at first sight their definitions appear quite distinct,
because awfs are usually defined in terms of an interacting monad-comonad pair, making
no explicit mention of liftings as in diagram (1). However, it was recently shown in [Bou23]
that awfs admit an equivalent definition—there called lifting awfs for distinction—very
much akin to Definition 2.2 of wfs. In this definition of awfs, the role of the subclasses
L,R ⊆ C1 in the definition of a wfs are played by double functors L,R // Sq(C) over the
double category Sq(C) of squares in C.

A lifting operation for a pair of double functors J,K //Sq(C) is one for their underlying
functors over Ar(C), satisfying a further coherence condition with respect to composition
in J and K.

2.7. Definition. Let J,K // Sq(C); a (J,K)-lifting operation ϕ is a (J1,K1)-lifting
operation which respects composition in J andK, in the sense that given vertical composable
morphisms f , f ′ in J, and g,g′ in K, as well as a lifting problem (u, v) : f.f ′ // g.g′, we
have ϕf ,g′(ϕf ′,g.g′(u, v.f), ϕf .f ′,g(g

′.u, v)) = ϕf .f ′,g.g′(u, v):

• • • •

• • =

• • • • .

f ′

f

g′

g

f.f ′ g.g′

u

v

u

v

ϕf .f ′,g.g′ϕf ,g′ (3)

Given J //Sq(C) we can define a double category J⋔⋔ //Ar(C). Its vertical morphisms
are pairs (f, ϕ) where f is a morphism in C and ϕ is a (J, f)-lifting operation (where f is
considered a double functor f : 2v

// Sq(C), with 2v denoting the free double category on
a vertical arrow), and where vertical composition is performed according to (3). Squares
of J⋔⋔ are commutative squares of C that respect the lifting operations. Similarly there is a
double category ⋔⋔J over Ar(C), and these assignments give rise to an adjunction:

(Dbl/Sq(C))op Dbl/Sq(C) .
⋔⋔(−)

(−)⋔⋔

⊣ (4)

Given double categories J,K over Sq(C), any (J,K)-lifting operation ϕ gives rise to
two double functors ϕl : J // ⋔⋔K and ϕr : K // J⋔⋔ over Sq(C), which are each other’s
transpose according to (4).
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We now have the definitions in place to recall [Bou23, Definition 3] of a lifting awfs.
Given two double functors L, R over Sq(C) with a (J,K)-lifting operation ϕ we can phrase
two axioms:

1. Axiom of lifting : The induced double functors ϕl and ϕr are invertible.

2. Axiom of factorization: Every morphism f ∈ C1 admits a bi-universal factorization
f = r.l for vertical maps l ∈ L and r ∈ R.

The axiom of factorization will not play a big role in our work so we will not discuss it
further; the reader is referred to [Bou23] for more details.

2.8. Definition. A triple (L, ϕ,R) of double functors L,R over Sq(C) with an (L,R)-
lifting operation ϕ is an algebraic weak factorization system (awfs) if it satisfies the axioms
of lifting and of factorization, and a pre-awfs if it only satisfies the axiom of lifting.

We will often leave the reference to the lifting operation associated with an awfs
implicit, and simply refer to the pair (L,R) of double categories as the awfs.

3. The Frobenius property

When C is locally cartesian closed, every morphism f : A // B ∈ C1 is exponentiable,
meaning there is an adjunction f ∗ : C/B // C/A ⊣ f∗ of pullback and pushforward along
f , respectively. A Frobenius property of a wfs can be phrased with respect to these
adjunctions, and one of the primary objectives of this work is to develop an algebraic
version of this property, which we do in this section. We start by discussing the Frobenius
property of a wfs in Section 3.1, and then define an analogous version of this property for
an awfs in Section 3.8.

3.1. The Frobenius property for a WFS. The Frobenius property of a wfs (L,R)
is commonly phrased as the statement that “L is stable under pullback along R” (see
e.g. [GS17, Definition 2.3]). Closely related to this is the statement that “R is closed
under pushforward along itself,” to which we will refer as the pushforward property of
(L,R). To find suitable analogs for awfs we will work with equivalent rephrasings of these
conditions, and we begin by introducing these.

Consider a wfs (L,R); to say that L is stable under pullback along R means that for
any right map f : A // B ∈ R and any left map g with codomain B, the pullback of g
along f is again a left map, as illustrated in the diagram on the left below:

• •

• • • •

A B , A B .

f◦g
⌟

f∗(b.g)

g

f∗g
⌟

g f∗b
⌟

b

f f
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In a sense, this is to require that the action of the pullback functor f ∗ on objects (of the
slice category C/B) preserves left maps. We will instead require that the action of f ∗

on arrows (of C/B) preserves left maps. Recall that an arrow of C/B is a pair (g, b) of
composable morphisms in C such that b has codomain B. In this context, the action of f ∗

on arrows produces an arrow f ∗(g, b) of C/A which we (abusively) denote by (f ◦g, f ∗b), as
illustrated on the right above. When confusion is unlikely to arise we will simply write
f ∗g instead of f ◦g. When we say that the arrow component of f ∗ preserves left maps we
mean that g ∈ L implies f ◦g ∈ L, for any such g.

To state this succinctly we use the notion of slicing for classes of maps. Given a
subclass J ⊆ C1 and an object A ∈ C, we have a slice category C/A, and define a subclass
J/A ⊆ (C/A)1 of morphisms in C/A by J/A = {(f, a) ∈ (C/A)1 | f ∈ J}. Now we can say
that the action on arrows of a pullback functor f ∗ : C/B // C/A preserves left maps when
(g, b) ∈ L/B implies f ∗(g, b) ∈ L/A, i.e. when f ∗(L/B) ⊆ L/A.

3.2. Definition. Let (L,R) be a wfs on C and f : A //B an exponentiable morphism
in C, then f has the Frobenius property if f ∗(L/B) ⊆ L/A, and it has the pushforward
property if f∗(R/A) ⊆ R/B. We say that (L,R) has the Frobenius (pushforward) property
if every map in R has the Frobenius (pushforward) property.

3.2.1. Equivalence with conventional phrasing. We now show that this definition
of the Frobenius property is indeed equivalent to its conventional phrasing. To do this, we
rely on the fact that both classes of a wfs are closed under isomorphisms, and that the
right class is closed under pullbacks, both of which are well-known consequences of the
axiom of lifting of wfs.

3.3. Proposition. Let (L,R) be a wfs on a category C; then (L,R) satisfies the Frobenius
property if and only if L is stable under pullback along R.

Proof. For left-to-right, consider a right map f : A //B and a left map g with codomain
B. We then have (g, 1) in L/B and so we get a left map f ◦g ∈ L as on the left below:

• • • • • •

• • • • •

A A B , A B .

f∗g

i

f◦g g

j

ε∗bg f◦g g

∼

f∗1 1

1 εb

f∗b b

1 f f

∼

(5)

There is an induced isomorphism (i, f ∗1) : f ◦g ∼= f ∗g and so we indeed have that f ∗g ∈ L
as desired. For the other direction, assume that L is stable under pullback along R. We
consider a right map f : A // B and a morphism (g, b) ∈ L/B, as on the right of (5).
Letting ε denote the counit of f! ⊣ f ∗, we have that εb ∈ R because R is closed under
pullbacks and f ∈ R. Therefore, it follows by assumption that ε∗bg ∈ L, and thus by the
induced isomorphism (j, 1) : ε∗bg

∼= f ◦g that f ◦g ∈ L as desired.
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Similarly, we have the following result for the pushforward property.

3.4. Proposition. Let (L,R) be a wfs on a category C; then (L,R) satisfies the push-
forward property if and only if R is stable under pushforward along R.

This statement is a bit cumbersome to prove directly. Instead, we will first establish a
useful equivalence between the Frobenius and pushforward properties, as this will then
allow us to derive Proposition 3.4 from Proposition 3.3.

3.4.1. Correspondence between pullback and pushforward. The pushforward
property is relevant in the context of modelling type theory with wfs [AW09]. The
idea is to interpret types as the right maps in a wfs, and the dependent product using
the pushforward functors, so then it is necessary that the right class is closed under
pushforward. It can be difficult to show that a particular wfs has the pushforward
property. Instead, one can show that it has the Frobenius property, which tends to be a bit
easier and is equivalent to the pushforward property. We now show that this equivalence
follows readily from two well-known results on wfs.

Firstly, we recall that wfs can be constructed by slicing.

3.5. Proposition. Let (L,R) be a wfs on C and A ∈ C an object, then (L/A,R/A) is a
wfs on C/A.

Secondly, we recall that wfs can be related along adjunctions, in the sense that a left
adjoint preserves left maps if and only if its right adjoint preserves right maps.

3.6. Proposition. Let F ⊣ G : D //C be an adjunction, (L,R) a wfs on C, and (L′, R′)
a wfs on D, then F (L) ⊆ L′ if and only if G(R′) ⊆ R.

Putting these together, we obtain the aforementioned equivalence.

3.7. Theorem. Let (L,R) be a wfs on C and f : A //B an exponentiable morphism
in C, then f has the Frobenius property if and only if it has the pushforward property.

Proof. By Proposition 3.5 there are slice wfs (L/A,R/A) and (L/B,R/B) on C/A
and C/B, respectively. Furthermore, by assumption that f is exponentiable, there is an
adjunction f ∗ ⊣ f∗ : C/A // C/B of pullback and pushforward along f . Proposition 3.6
thus tells us that f ∗(L/B) ⊆ L/A if and only if f∗(R/A) ⊆ R/B, as desired.

A similar equivalence holds for the conventional phrasing of the Frobenius and push-
forward properties: given a wfs (L,R), L is stable under pullback along R iff R is stable
under pushforward along itself; see e.g. [GS17, Proposition 2.4].1 It should be noted that
this version, in contrast with Theorem 3.7, does not seem to hold “point-wise.” In other
words, fixing a map f : A //B, it does not seem to hold in general that the action of f ∗

on objects preserves L maps if and only if the action of f∗ on objects preserves R maps
(even if we assumed in addition that f ∈ R).

We can now give a simple proof of Proposition 3.4.

1The equivalence of (i) and (ii) in [GS17, Proposition 2.4] does not depend on freeness of the wfs.
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Proof of Proposition 3.4. For awfs (L,R) we have the following string of equivalences:

(L,R) has the pushforward property iff (L,R) has the Frobenius property

iff L is stable under pullback along R

iff R is stable under pushforward along R,

by Theorem 3.7, Proposition 3.3, and [GS17, Proposition 2.4], respectively.

Propositions 3.3 and 3.4 show that our “arrow versions” of the Frobenius and push-
forward properties indeed coincides with the usual “object versions” that are used in the
literature. The reason we opt for the arrow versions is that they are readily adapted to
awfs, as the next section shows.

3.8. The Frobenius property for AWFS. The Frobenius property of a morphism
f : A //B with respect to a wfs (L,R) states that (the action on arrows of) its pullback
functor f ∗ preserves left maps, i.e., the restriction of (f ∗)1 : (C/B)1 // (C/A)1 to L/B
should land in L/A. This can be expressed diagrammatically as the requirement that
there exists a (necessarily unique) filler as on the left below:

L/B L/A R/A R/B

(C/B)1 (C/A)1 , (C/A)1 (C/B)1 .
(f∗)1 (f∗)1

(6)

The diagram on the right above corresponds to the pushforward property of f . There are
evident analogs of these diagrams for an awfs (L,R). To phrase them we first need an
analog of slicing for double categories of maps:

3.9. Definition. Given a double functor J // Sq(C) and an object A ∈ C we define the
slice double functor J/A // Sq(C/A) by the following pullback of double functors:

J/A J

Sq(C/A) Sq(C) .Sq(dom)

⌟

Here dom : C/A // C denotes the forgetful functor that sends a morphism to its domain.

Note that the definition of the slice J/A ⊆ (C/A)1 that we used for classes of maps
can similarly be seen as the pullback of J ⊆ C1 along dom1 : (C/A)1 // C1, which shows
that Definition 3.9 is just the double categorical version of the slicing operation that we
used with wfs. Similarly, we now have a double categorical version of Definition 3.2:
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3.10. Definition. Let (L,R) be an awfs on a category C, and f : A //B an exponen-
tiable morphism in C. A Frobenius structure on f for (L,R) is a double functor f∗ that
fits into a commutative diagram as on the left below:

L/B L/A R/A R/B

Sq(C/B) Sq(C/A) , Sq(C/A) Sq(C/B) .
Sq(f∗)

f∗

Sq(f∗)

f∗

(7)

Similarly, a pushforward structure on f is a double functor f∗ as on the right above. A
Frobenius (pushforward) structure for (L,R) is an assignment of a Frobenius (pushforward)
structure to every vertical morphism f ∈ R.

Note the similarity between the diagrams in (6) and (7). Both phrase the requirement
that the pullback functor f ∗ preserves left maps; however, in line with the view of an awfs
as a more structured analog of a wfs, we have that (6) is a property of f whereas (7) is
additional structure, because the Frobenius structure f∗ needs to produce a specific witness
for the L-membership of the pullback. Moreover, this assignment should respect the
squares and vertical composition of left maps, which is encoded as the double functoriality
of f∗.

3.11. Remark. In the context of viewing an awfs as an interacting monad-comonad pair
(L,R), it follows from [BG16, Proposition 2] that a Frobenius structure on f makes f ∗ an
oplax morphism of slice awfs (L/B,R/B) // (L/A,R/A), while a pushforward structure
on f makes f∗ a lax morphism of slice awfs (L/A,R/A) // (L/B,R/B).

3.11.1. Correspondence between pullback and pushforward. An argument
that is very similar to the proof of Theorem 3.7 shows that Frobenius and pushforward
structures are in bijection with each other. It relies on the same two ingredients: slice
awfs, and change of base along an adjunction. Both of these ingredients were established
in [BG16], and are phrased as follows.

3.12. Proposition. Let (L,R) be an awfs on C and A ∈ C an object, then there is a
slice awfs (L/A,R/A) on C/A.

Proof. The slice awfs is obtained as the injective (or projective) lift of (L,R) along the
forgetful functor dom : C/A // C; see [BG16, Section 4.5] for more details.

3.13. Proposition. Let F ⊣ G : D // C be an adjunction, (L,R) an awfs on C, and
(L′,R′) an awfs on D, then there is a bijection between lifts F and G as in:

L L′ R′ R

Sq(C) Sq(D) , Sq(D) Sq(C) .

F

Sq(F )

G

Sq(G)

Proof. This is a straightforward consequence of [BG16, Proposition 21].
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Putting these together, we obtain an algebraic analog of Theorem 3.7:

3.14. Theorem. Let (L,R) be an awfs on C and f : A //B an exponentiable morphism
in C, then there is a bijection between Frobenius and pushforward structures on f .

Proof. By Proposition 3.12 there are slice awfs (L/A,R/A) and (L/B,R/B) on C/A
and C/B, respectively. Furthermore, by assumption that f is exponentiable, there is an
adjunction f ∗ ⊣ f∗ of pullback and pushforward along f . Proposition 3.13 thus tells us that
there is a bijection between lifts f∗ : L/B //L/A of Sq(f ∗), and lifts f∗ : R/A //R/B of
Sq(f∗), as desired.

We mention that Theorem 3.14 could be phrased slightly more generally. An awfs is
cofibrantly generated by a double category J //Sq(C) if R ∼= J⋔⋔ over Sq(C). The reasoning
in the proof of Theorem 3.14 shows that for an awfs which is cofibrantly generated by
J the pushforward structures on f are in bijection with lifts f∗ : J/B // L/A of Sq(f ∗).
Since any awfs is cofibrantly generated by its left class, this can be seen as a more general
statement. Furthermore, neither the definition of a Frobenius/pushforward structure nor
the proof of Theorem 3.14 rely on the axiom of factorization of an awfs, which means
they apply more generally to pre-awfs.

4. An example of reflections and fibrations

To exemplify our definitions we will use the awfs of split reflections and split fibrations.
This awfs is also discussed by [GL23, Bou23]; some of the explanations below are based
on those works, and the reader is referred there for additional details.

A split reflection is a functor G : D //C paired with a left inverse F : C //D such that
F ⊣ G with identity counit. The unit of such an adjunction is necessarily unique, so that
the split reflection is actually already fully specified by (G,F ) (see [BG16, Section 4.2]).
Split reflections can be given categorical structure by considering commutative squares of
functors that also commute with their left adjoints. More specifically, a morphism between
split reflections (G,F, η) //(G′, F ′, η′) is a commutative square of functors (U, V ) : G //G′

such that also U.F = F ′.V :
• •

• • .

U

G G′F

V

F ′⊣ ⊣

This is sufficient to ensure that (U, V ) also commutes with the units, in the sense
that V ◦ η = η′ ◦ V , where ◦ denotes horizontal composition. This gives a functor
SplRef(Cat) //Ar(Cat) : (G,F ) 7→ G that forgets the left adjoint. Together with the
usual composition operation on adjunctions, it can be made the arrow component of a
concrete double functor SplRef(Cat) // Sq(Cat).

A fibration is called split if it comes equipped with a specified cleavage (i.e. a choice of
cartesian lifts) that preserves identities and compositions on the nose. A morphism of split
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fibrations is a commutative square that also commutes with the splitting. This yields a cat-
egory SplFib(Cat) together with a (faithful) forgetful functor SplFib(Cat) //Ar(Cat).
Split fibrations can be composed, by composing the splittings, and so this forgetful functor
fits into a concrete double category SplFib(Cat) // Sq(Cat).

The pair (SplRef(Cat), SplFib(Cat)) form an awfs on Cat (see e.g. [Bou23, Ex-
ample 4] for a proof of this). This awfs does not seem to admit a Frobenius structure,
however, and so we will instead consider reflections and fibrations of groupoids. By taking
the injective (or, equivalently, the projective) lift of (SplRef(Cat), SplFib(Cat)) along
the inclusion Gpd //Cat we obtain the awfs (SplRef(Gpd), SplFib(Gpd)) of split
reflections and split fibrations of groupoids. This awfs does admit a Frobenius structure,
as the proposition below shows, which extends [GL23, Proposition 5.3].

Before we proceed we fix some notation. Note that a split fibration of groupoids
P : A // B is also an opfibration. More specifically, for an object a ∈ A, any morphism
f : Pa // b in B has a cocartesian lift along P , which we denote by f : a // f!a, that is
obtained as the inverse of the chosen cartesian lift of f−1 at a:

a f!a

Pa b .
f

f

Note that this notation is imprecise, since the lift f also depends on a. Each morphism
f : b // b′ ∈ B thus induces a functor f! : A(b) //A(b′), where A(b) denotes the preimage
category under P , sending an element a ∈ A(b) to the codomain of f .

4.1. Proposition. (SplRef(Gpd), SplFib(Gpd)) admits a Frobenius structure.

Proof. We show that a split fibration of groupoids P : A // B has a lift P∗ as in:

SplRef(Gpd)/B SplRef(Gpd)/A

Sq(Gpd/B) Sq(Gpd/A) .

P∗

Sq(P ∗)

To this end, consider a split reflection L ⊣ R with unit η as on the left below; the goal is
to construct a corresponding split reflection G ⊣ P ∗R:

A×B D D

A×B C C

A B ,
P

U

R

P ∗UF

P ∗RG L

πC

a (Uηc)!a

Uc URLc ,

Uηc

Uηc

a1 F (a1, c1)

a2 F (a2, c2) .

Uηc1

x F (x,y)

Uηc2

(8)
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To achieve this we first define an auxiliary functor F : A×B C //A, which is defined on
objects by F (a, c) = (Uηc)!a, and on an arrow (x, y) : (a1, c1) // (a2, c2) by the universal
property of the cocartesian lift of Uηc1 ; see the illustration on the right above. We can
now define G by (a, c) 7→ (F (a, c), Lc), i.e. G = F ×B L.πC. Lastly, we need a unit
θ : 1 ⇒ P ∗R.G, for which we take θ(a,c) = (Uηc, ηc) : (a, c) // (F (a, c), RLc). We omit the
straightforward verification that (G,P ∗R) is indeed a split reflection.

Next we should check that P∗ preserves morphisms of split reflections; to this end, we
consider such a morphism (X, Y ) : (L′, R′) // (L,R) as drawn below:

A×B F A×B D F D

A×B E A ×B C E C

A A B B .

P ∗X

P ∗R′ P ∗R

X

R′ RG′

P ∗Y

P ∗U ′F ′

G

P ∗UF

L′

Y

U ′

L

U

1 P 1

We should show G.P ∗Y = P ∗X.G′, for which it suffices to prove F.P ∗Y = F ′ because:

G.P ∗Y = (F ×B L.πC).P
∗Y P ∗X.G′ = (πA ×B X.πF).G

′

= F.P ∗Y ×B L.πC.P
∗Y = πA.G

′ ×B X.πF .G
′

= F.P ∗Y ×B X.L
′.πE , = F ′ ×B X.L

′.πE .

Note that we have Y ◦ η′ = η ◦ Y and U ′ = U.Y by assumption, from which it follows that
for any e ∈ E we have UηY e = U ′η′e. From this it is straightforward to derive F.P ∗Y = F ′,
and we leave the details to the reader.

Lastly, we should check that P∗ respects vertical composition. To this end, we consider
the situation sketched below:

A×B E E A ×B E

A ×B D D

A×B C C A ×B C

A B A .
P P

πC

πD

πE πE

UP ∗UF

F ′

P ∗UF ′′

P ∗(R.R′)G′′

P ∗RG

P ∗R′G′

R

πC

L

R′L′

On the left we have the composition of the pullbacks G′.G ⊣ P ∗R.P ∗R′, and on the right
the pullback of the composition G′′ ⊣ P ∗(R.R′). It suffices to show that G′′ = G′.G
because the unit of a split reflection is unique. In turn, this follows once we establish
F ′.G = F ′′, because then we have

G′.G = (F ′ ×B L
′.πD).G = F ′.G×B L

′.πD.G = F ′′ ×B L
′.L.πC = G′′.
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To show that F ′.G = F ′′ on objects we consider (a, c) ∈ A×B C. We denote the unit
of the composite adjunction L′L ⊣ RR′ by θ = (R ◦ η′ ◦ L).η. We have:

F ′′(a, c) = (Uθc)!a (def. of F ′′)

= (URη′Lc.Uηc)!a (def. of θ)

= (URη′Lc)!(Uηc)!a (as P is split)

= F ′(F (a, c), Lc) (def. of F ′)

= F ′G(a, c). (def. of G)

For morphisms we consider (x, y) : (a1, c1) // (a2, c2), and show that F ′(G(x, y)) is equal
to F ′′(x, y) by using the uniqueness property of F ′′(x, y) and a diagram chase:

a1 a2

F (a1, c1) F (a2, c2)

F ′′(a1, c1) F ′′(a2, c2) .

x

Uηc1

Uθc1

Uηc2

Uθc2
F (x,y)

URη′Lc1
URη′Lc2

F ′(G(x,y))

More specifically, we have:

F ′(G(x, y)).Uθc1 = F ′(G(x, y)).URη′Lc1 .Uηc1 (as P is split)

= URη′Lc2 .F (x, y).Uηc1 (by def. of F ′)

= URη′Lc2 .Uηc2 .x (by def. of F )

= Uθc2 .x. (as P is split)

5. The Beck–Chevalley condition

Ultimately we are interested in constructing models of type theory using the right adjoint
method for splitting comprehension categories, as used in [GL23]. In order for this method
to work the right maps should satisfy a number of stability conditions, as outlined in [Lar18,
Chapter 2]. The stability condition for Π-types is ensured by a Beck–Chevalley condition
(cf. Proposition 7.5) which we phrase in this section.

We will work up to the Beck–Chevalley condition of a Frobenius structure of an awfs
by first considering a simpler case in Section 5.1 where the double categories of the awfs
are freely obtained from ordinary categories. Then, in Section 5.8, we phrase the double
categorical version of the Beck–Chevalley condition, and show that the Frobenius structure
of our running-example awfs satisfies this condition.



FROBENIUS STRUCTURE AND THE BECK–CHEVALLEY CONDITION FOR AWFS 191

5.1. The categorical case. The functor (−)1 : Dbl // Cat that sends a double
category to its category of vertical arrows has a left adjoint [vdBF22, Proposition 2.3].
This means that we can consider the following special case of the definition of pre-awfs
with a Frobenius structure, phrased in terms of ordinary categories and the adjunction (2).

5.2. Definition. A lifting structure (J , ϕ,K) on a category C consists of two functors
J ,K //Ar(C) with a (J ,K)-lifting operation ϕ. This structure is closed if both of the
induced functors ϕl : J // ⋔K and ϕr : K // J ⋔ are invertible.

We get similar definitions of slicing and Frobenius structures for this case.

5.3. Definition. Given a functor J //Ar(C) and an object A ∈ C we define the slice
functor J /A //Ar(C/A) as the pullback of J along Ar(dom) : Ar(C/A) //Ar(C).

5.4. Definition. Let (J , ϕ,K) be a lifting structure on C, and f : A //B an exponen-
tiable morphism in C, then a Frobenius structure on f for (J, ϕ,K) is a functor f∗ that fits
into a commutative diagram as on the left below:

J /B J /A K/A K/B

Ar(C/B) Ar(C/A) , Ar(C/A) Ar(C/B) .
Ar(f∗)

f∗

Ar(f∗)

f∗

(9)

Similarly, a pushforward structure on f is a functor f∗ as on the right above. A Frobe-
nius (pushforward) structure for (J , ϕ,K) is an assignment of a Frobenius (pushforward)
structure to every f ∈ K.

As in the double categorical case, Frobenius and pushforward structures are in bijection.
Furthermore, given an awfs (L, ϕ,R) with a Frobenius structure, an application of (−)1
yields a lifting structure (L1, ϕ,R1) in the sense of Definition 5.2 (that need not be closed),
with a Frobenius structure. As before, we may omit reference to the lifting operation ϕ.

Now, consider two functors J ,K //Ar(C) that are part of a closed lifting structure
(J , ϕ,K) with a Frobenius structure. We will consider the stability conditions outlined
in [Lar18, Chapter 2] for this case. These relate to the coherence axioms of type theory
with respect to substitution. Under the interpretation of types as the right maps of an
awfs, and substitution as pullbacks, this translates to a condition on the pushforward
structure of the awfs with respect to morphisms of right maps whose underlying square
in the ambient category C is a pullback square.

More specifically, we consider f ,g,h ∈ K such that g and h are composable, and a
morphism uv : f // g whose underlying square in C is a pullback square:

•

A C • •

B D , B .

f g

h

u

v

⌟

f∗u∗h v∗g∗h

β−1
h (10)
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This gives composite parallel adjunctions u!f
∗ ⊣ f∗u∗ and g∗v! ⊣ v∗g∗:

C/B ⊥ C/A ⊥ C/C , C/B ⊥ C/D ⊥ C/C .

f∗

f∗

u!

u∗

v!

v∗

g∗

g∗

(11)

These induce a mateship correspondence between natural transformations with signatures
u!f

∗ ⇒ g∗v! and v
∗g∗ ⇒ f∗u

∗. There is a canonical map α : u!f
∗ ⇒ g∗v! (itself obtained

as a mate of the identity natural transformation g!u! = v!f!) of which the component αw

at an object w in C/B is given as follows:

•

• A C

• B D .

f g

u

v

⌟

w

f∗w

⌟

g∗v!w
αw

We denote the mate of α with signature v∗g∗ ⇒ f∗u
∗ by β. These transformations α and β

exist regardless of whether (u, v) is a pullback, but when it is they are both isomorphisms;
see e.g. [HR24, Lemma 3.5]. We call β the Beck–Chevalley isomorphism.

In the setup of the left diagram of (10), we thus get a triangle pictured as the right
diagram of (10). When (J , ϕ,K) is a closed lifting structure, the right class is always closed
under pullbacks, and so if it comes with a Frobenius structure then the morphisms f∗u

∗h
and v∗g∗h have K-structure. What we would need for the interpretation of type-theoretic
dependent products is that (β−1

h , 1) underlies a morphism of K maps. The goal of this
section is to precisely state this condition, and to show it is equivalent to a condition that
is easier to check in practice. To do this we follow the approach of the statement and
proof of [GS17, Proposition 6.7].

The first step will be to generalize to the case where h is not an object but an arrow of
C/C, i.e. we consider (h, w) ∈ K/C:

•

• • •

A C • •

B D , B .

f g

w

u

v

⌟

f∗u∗w v∗g∗w

β−1
w

h

f∗u∗h v∗g∗h

β−1
w.h

(12)

The square (β−1
w.h, β

−1
w ) on the right above is the component Ar(β−1)(h,w) of the natural

transformation Ar(β−1) : Ar(f∗u
∗) ⇒ Ar(v∗g∗). For a closed lifting structure (J , ϕ,K)
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an isomorphism in Ar(C) underlies a morphism of J or K maps if and only if its inverse
does, so we will focus on β instead of β−1. To state what it means for Ar(β)(h,w) to
underlie a morphism of K maps we use the following definition.

5.5. Definition. Let F,G : J //K be lifts of F,G : C //D for some J //Ar(C) and
K //Ar(D), and µ : F ⇒ G a natural transformation. We say that µ : F ⇒ G is a lift
of µ if K ◦ µ = Ar(µ) ◦ J , meaning its components are over those of µ:

J K

Ar(C) Ar(D) .

Ar(F )

Ar(G)

F

G

Ar(µ)

µ

Note that a composition functor like u! : C/A // C/C always lifts to a functor
u! : J /A // J /C : (f , a) 7→ (f , u.a). Since (J , ϕ,K) has a Frobenius structure, we thus
obtain lifts u!f

∗ and g∗v! as on the left of:

J /B J /C K/C K/B

Ar(C/B) Ar(C/C) , Ar(C/C) Ar(C/B) .

u!f
∗

Ar(u!f
∗)

v∗g∗

Ar(v∗g∗)

Ar(g∗v!) Ar(f∗u∗)

f∗u∗g∗v!

Ar(α)

β

Ar(β)

α

(13)

Applying [BG16, Proposition 21] (restricted to categories) with respect to the adjunc-
tions in (11) we obtain corresponding lifts v∗g∗ and f∗u

∗ as on the right above. The
condition that the square (βw.h, βw) is a morphism of K maps is now expressed by requiring
the existence of a lift β as depicted on the right above. Note that, since the lifting structure
(J , ϕ,K) is closed, the existence of this lift is not additional structure but is instead just a
property of β. In sum, we have the following definition.

5.6. Definition. A Frobenius structure for a closed structure (J , ϕ,K) satisfies the
Beck–Chevalley condition when for every uv : f // g in K overlying a pullback square
(u, v), the Beck–Chevalley isomorphism β lifts to a transformation β : v∗g∗ ⇒ f∗u

∗.

Rather than lifting β we may lift its mate α, as the following proposition shows. This
can be useful in practice because the definition of α is simpler.

5.7. Proposition. For a closed lifting structure (J , ϕ,K) with a Frobenius structure, the
Beck–Chevalley isomorphism β lifts in the sense of (13) iff its mate α does.

Proof. By [GS17, Proposition 5.8] and the fact that the lifting structure is closed.
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For future reference we expand on what it means for α to lift in the sense of Propo-
sition 5.7. Considering the pullback square (u, v) in (12) and (w, b) ∈ Ar(C/B), the
component Ar(α)(w,b) is given by the square (αb.w, αb) : u!f

∗(w, b) // g∗v!(w, b):

• • •

• • •

B A C

D .

f∗b g∗(v.b)

u

f∗w

αb

g∗w

αb.w

f

b

w

v g

(14)

If, in addition, (w, b) ∈ J /B then f ∗w and g∗w underlie J maps f∗w and g∗w, and α
should produce a J morphism α(w,b) : f

∗w // g∗w lying over (αb.w, αb).

5.8. The double categorical case. Next, we phrase an analogous version of Defini-
tion 5.6 for a pair of double categories. More specifically, we consider the scenario in which
(12) underlies a square uv : f // g in R for an awfs (L,R) with a Frobenius structure.
To start, we define lifts of double natural transformations.

5.9. Definition. Let F,G : J //K be lifts of F,G : C //D for some J // Sq(C) and
K // Sq(D), and µ : F ⇒ G a natural transformation. We say that µ : F ⇒ G is a lift
of µ if K ◦ µ = Sq(µ) ◦ J:

J K

Sq(C) Sq(D) .

Sq(F )

Sq(G)

F

G

Sq(µ)

µ

Note that a composition functor such as u! : C/A // C/C in fact lifts to a double
functor u! : L/A // L/C, as the assignment (f , a) 7→ (f , u.a) (trivially) preserves vertical
composition. Using the Frobenius structure of (L,R) and [BG16, Proposition 21] we thus
obtains lifts u!f

∗ and g∗v! as on the left below:

J/B J/C K/C K/B

Sq(C/C) Sq(C/B) , Sq(C/C) Sq(C/B) .

g∗v!

u!f
∗

Sq(u!f
∗)

Sq(g∗v!)

v∗g∗

f∗u∗

Sq(v∗g∗)

Sq(f∗u∗)

Sq(β)

β

Sq(α)

α

(15)
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Another application of [BG16, Proposition 21] lets us transpose the lifts u!f
∗ and g∗v!

to lifts v∗g∗ and f∗u
∗, as on the right above. Now we can phrase the Beck–Chevalley

condition for double categories completely analogously to that for categories.

5.10. Definition. A Frobenius structure for an awfs (L,R) satisfies the Beck–Chevalley
condition when for every square uv : f // g of R lying over a pullback square (u, v) the
Beck–Chevalley isomorphism β lifts to a transformation β : v∗g∗ ⇒ f∗u

∗.

As before, lifting β in this way can be done by lifting α, which is easier in practice.

5.11. Proposition. For an awfs (L,R) with a Frobenius structure, the Beck–Chevalley
isomorphism β lifts in the sense of (15) iff its mate α does.

Proof. Immediate from [BG16, Proposition 21].

In fact, as we will now show, for concrete double functors Definition 5.9 reduces to
Definition 5.5. In particular, this means that to check whether a Frobenius structure
for an awfs (L, ϕ,R) satisfies the Beck–Chevalley condition, it suffices to check that its
corresponding Frobenius structure for the lifting structure (J1, ϕ,K1), obtained by an
application of (−)1 : Dbl //Cat, satisfies the Beck–Chevalley condition.

5.12. Lemma. Let J // Sq(C) and K // Sq(D) be concrete double functors, and F,G :
J //K lifts of F,G : C //D; then lifts of µ : F //G to F ⇒ G are in bijection with its
lifts to F1 ⇒ G1:

J K J1 K1

Sq(C) Sq(D) , Ar(C) Ar(D) .

G

F

Sq(F )

Sq(G)

F1

G1

Ar(F )

Ar(G)

Ar(µ)

µ

Sq(µ)

µ

Proof. By spelling out the definitions.

5.13. Lemma. For an awfs (L,R) and an object A ∈ C the double functors L/A and
R/A are concrete.

Proof. The double functors J⋔⋔ and ⋔⋔J are always concrete for any J, and so, by the
axiom of lifting of awfs, so are L and R. Furthermore, slicing preserves concreteness.

5.14. Proposition. A Frobenius structure for an awfs (L, ϕ,R) satisfies the Beck–
Chevalley condition when its associated Frobenius structure for (L1, ϕ,R1) does.

Proof. By Lemmas 5.12 and 5.13.
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Lastly, we show that our running example from Section 4 satisfies this condition.

5.15. Proposition.The Frobenius structure for the awfs (SplRef(Gpd), SplFib(Gpd))
of Proposition 4.1 satisfies the Beck–Chevalley condition.

Proof. Consider split fibrations P : A //B and Q : C //D of groupoids, and a pullback
square (X, Y ) : P //Q that commutes with their splittings, which means that for any
morphism f in B we have Xf = Y f . By Proposition 5.14 it suffices to show that the
induced transformation α : X!P

∗ ⇒ Q∗Y! has a lift α as on the left of:

SplRef(Gpd)/B SplRef(Gpd)/C

Ar(Cat/B) Ar(Cat/C) ,

X!P
∗

Q∗Y!

Ar(X!P
∗)

Ar(Q∗Y!)

α

Ar(α)

F A×B F C ×D F

E A×B E C ×D E

B A C

D .

P X

QY

U

L R

F P ∗U

G P ∗R Q∗RG′

Q∗(Y.U)F ′

αU

αU.RπF

πE

In other words, the square (αU.R, αU ), as on the right above, should be a morphism of split
reflections: αU.R.G = G′.αU . Note that

αU.R.G = (X.πA ×D πF).G G′.αU = (F ′ ×D L.πE).αU

= X.πA.G×D πF .G = F ′.αU ×D L.πE .αU

= X.F ×D L.πE , = F ′.αU ×D L.πE ,

so that we are done if X.F = F ′.αU (where αU = X.πE ×D πE).
To show equality on objects we consider (a, e) ∈ A×B E . Note that XUηe = Y Uηe by

assumption and so X((Uηe)!a) = (Y Uηe)!(Xa). We therefore have

XF (a, e) = X((Uηe)!a) = (Y Uηe)!(Xa) = F ′(Xa, e) = F ′αU(a, e).

Similarly, given a morphism (x, y) : (a1, e1) // (a2, e2) in A×B E , we have

(XF (x, y)).Y Uηe1 = (XF (x, y)).XUηe1 = XUηe2 .Xx = Y Uηe2 .Xx,

so that XF (x, y) = F ′αU(x, y) follows from the uniqueness property of F ′(Xx, y).

6. Other properties of Frobenius structures

In Section 3 we defined a notion of Frobenius structure for awfs, and in Section 5 we
looked at a property of such structures which we will need in Section 7 where we discuss
modelling type theory. Before we continue, we will briefly consider some other properties
of Frobenius structures (which we will not need for modelling type theory).
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6.1. Adjoint Frobenius structures. A property of a wfs (L,R) that is sometimes
considered in the literature is called the strong Frobenius property; see e.g. [Lar18,
Definition B.6.2] and [vdBF22, Proposition 5.2]. Recall that the Frobenius property for
a wfs (L,R) is usually defined as the statement that L is closed under pullback along
R. If, in addition, L comes with a notion of structure preserving squares of L maps, then
the Frobenius property can be strengthened to demand that the pullback squares of L
maps along R maps are structure preserving. We argue that this strengthened Frobenius
property can be understood in terms of the notion of natural transformation lifting of
Definition 5.5.

To see this, consider an awfs (L,R) and an exponentiable morphism f : A //B with
a Frobenius structure f . A vertical morphism (g, b) of L/B then gives rise to a pullback
square as depicted below, where ε is the counit of f! ⊣ f ∗:

• •

• •

A B .

f∗b b

f

εb

gf∗g

εb.g

⌟

⌟

As mentioned previously, the functor f! has a lift f! : L/A // L/B : (h, a) 7→ (h, f.a),
and so the demand that (εb.g, εb) underlies a square f∗g // g in L can be phrased as the
requirement that ε has a lift ε : f!f

∗ // 1 in the sense of Definition 5.9. What is called the
strong Frobenius property in the literature can then be seen as the special case of this
where b = 1B and f ∗b = 1A.

6.2. Definition. A strong Frobenius structure (f∗, ε) on a morphism f : A //B with
respect to an awfs (L,R) is a Frobenius structure for f together with a lift ε : f!f

∗ // 1
of the counit of f! ⊣ f ∗. A strong Frobenius structure for an awfs (L,R) is an assignment
of a strong Frobenius structures to every vertical map f of R.

Thinking of the strong Frobenius property in this way shows that it has an evident
counterpart, which is the requirement that the unit η of f! ⊣ f ∗ lifts to η : 1 // f∗f!.
Together, these lifts could then be further required to satisfy the triangle identities, so
that f! ⊣ f∗. Of course, using the reasoning behind Theorem 3.14 we can also transpose f∗

and f! to obtain a pushforward structure f∗ : R/A // R/B and (by abuse of notation) a
pullback functor f∗ : R/B // R/A. These can then be subjected to similar conditions,
asking for a lifted adjunction f∗ ⊣ f∗. In sum, we have the following definition.

6.3. Definition. An adjoint Frobenius structure (f∗,η, ε) on a morphism f : A // B
with respect to an awfs (L,R) is a Frobenius structure on f together with lifts η and ε
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of the unit and counit of f! ⊣ f ∗ giving an adjunction f! ⊣ f∗ as on the left of:

L/B L/A R/A R/B

Sq(C/B) Sq(C/A) , Sq(C/A) Sq(C/B) .

f∗

f!

f∗

f∗

Sq(f∗)

Sq(f!)

Sq(f∗)

Sq(f∗)

⊣ ⊣

⊣ ⊣

Similarly, an adjoint pushforward structure (f∗, η̄, ε̄) on f is a pushforward structure on f
with lifts η̄ and ε̄ of the unit and counit of f ∗ ⊣ f∗ such that f∗ ⊣ f∗.

6.4. Proposition. For an exponentiable map f : A //B in C and an awfs (L,R) there
is a bijection between adjoint Frobenius and pushforward structures on f .

Proof. The units and counits of f! ⊣ f ∗ ⊣ f∗ are mates [HR24, Lemma 3.1], and so—due
to how the various lifts of f!, f

∗, and f∗ are constructed—their lifts are in bijective
correspondence by [BG16, Proposition 21]. The triangle equalities do not add any extra
requirements because the projections L1,R1

//Ar(C) are faithful.

The Frobenius structures we constructed for our running example appears to be strong,
but not adjoint.

6.5. Proposition. The Frobenius structure of (SplRef(Gpd), SplFib(Gpd)) is strong.

Proof. We expand on Proposition 4.1 by showing that the Frobenius structure P∗ of a
split fibration P : A // B of groupoids comes with the required lift. We consider:

A×B D D

A×B C C

A B ,

εU.R

P ∗R RG

εU

F P ∗U

L

U

P

and note that it is immediate from G = F ×B L.πC that εU.R.G = L.εU , as desired.

The requirement that the unit θ : 1 // P ∗P! lifts seems to be quite a bit stronger for
this case, and indeed it does not appear to hold. To see why, consider the situation:

D A×B D D

C A×B C C

A A B .

θU.R

R P ∗R RL

θU

U

G

P ∗P!UF

L

P!U

1 P
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To have a lift of θ : 1 //P ∗P! we would need that G.θU = θU.R.L, which would follow from
F.θU = U.R.L. However, this is asking that for any c ∈ C we have URLc = (PUηc)!Uc,
and this is not guaranteed. To make this true we would need further requirements of our
fibration. For example, it seems that the statement would hold for a discrete fibration P ,
as then we would have PUηc = Uηc.

6.6. Pseudofunctorial Frobenius structures. As is well-known, the assignment
f 7→ f ∗ that sends a morphism f : A // B to its pullback functor f ∗ : A // B is
pseudofunctorial, which is to say that it preserves units and compositions, but only up
to coherent isomorphisms. More specifically, for any identity morphism 1A in a category
C with pullbacks we have a functor 1∗A : C/A // C/A and an isomorphism δ : 1∗A

∼= 1C/A.
Similarly, for composable morphisms f : A //B and g : B //C we have an isomorphism
γ : g∗.f ∗ ∼= (f.g)∗.

Now, suppose that we have a Frobenius structure for an awfs (L,R), so that any right
map f of the awfs is assigned a Frobenius structure f∗. In particular, any identity map
1A is assigned the structure of a right map 1A by the identity functor of R, and thus there
is a Frobenius structure 1∗

A : L/A // L/A. It is therefore natural to ask whether there is
a lift of the isomorphism δ : 1∗A

∼= 1C/A to δ : 1∗
A
∼= 1L/A, as depicted on the left below:

L/A L/A

Sq(C/A) Sq(C/A) ,

1

1∗
A

1

Sq(1∗A)

δ

Sq(δ)

L/C L/A

L/B

Sq(C/B)

Sq(C/C) Sq(C/A) .

(f .g)∗

g∗ f∗

Sq(f∗)Sq(g∗)

Sq((f.g)∗)

γ

Sq(γ)

Similarly, given composable right maps f : A //B and g : B //C, the Frobenius structure
gives parallel double functors (f .g)∗ and f∗.g∗ : L/C //L/A, and we can ask whether the
coherence isomorphism γ : (f.g)∗ ∼= g∗.f ∗ lifts to γ : f∗.g∗ ∼= (f .g)∗, as depicted on the
right above. In other words, we can ask whether the pseudofunctoriality of f 7→ f ∗ lifts to
that of the assignment f 7→ f∗, and this gives rise to the following definition.

6.7. Definition. A Frobenius structure of an awfs (L,R) is pseudofunctorial if the
assignment f 7→ f∗ of a right map f to its Frobenius structure f∗ is pseudofunctorial, and
such that its coherence isomorphisms are lifts of those of f 7→ f ∗.

Again, we can check that our running example satisfies this condition.

6.8. Proposition. The Frobenius structure of (SplRef(Gpd), SplFib(Gpd)) is pseudo-
functorial.

Proof. The requirement that the coherence isomorphism δ lifts in this way is a particular
instance of Proposition 6.5. To check whether γ lifts, we consider composable split
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fibrations of groupoids P : A // B and Q : E //A, and a split reflection L ⊣ R as in:

E ×B D E ×A (A×B D) A×B D D

E ×B C E ×A (A×B C) A×B C C

E E A B .

(P.Q)∗R

γU.R

Q∗P ∗R P ∗R RG′′

(P.Q)∗UF ′′

G′

γU

Q∗P ∗UF ′

G

P ∗UF

L

U

1 Q P

The goal is now to show that G′′.γU = γU.R.G
′. Similarly as in the other proofs, we can do

this by showing F ′′.γU = F ′ because:

G′′.γU = (F ′′ ×B L.πC).γU γU.R.G
′ = (Q∗P ∗(U.R)×B πD.πA×BD).G

′

= F ′′.γU ×B L.πC.γU = Q∗P ∗(U.R).G′ ×B πD.πA×BD.G
′

= F ′′.γU ×B L.πC.πA×BC, = F ′ ×B L.πC.πA×BC.

The equality F ′′.γU = F ′ is straightforward to derive from the fact that the cleavage of the
composed fibration P.Q is just the composition of the cleavages of P and Q. For example,
for an object (e, a, c) ∈ E ×A (A×B C), writing θ(a,c) = (Uηc, ηc) for the unit of G ⊣ P ∗R,
we have that

F ′(e, a, c) = ((P ∗U)θ(a,c))!e F ′′(γU(e, a, c)) = F ′′(e, c)

= (πA(Uηc, ηc))!e = (Uηc)!e.

= (Uηc)!e,

First taking the lift of Uηc along P and then along Q is the same as lifting it along the
composed fibration P.Q, and so we indeed have that F ′(e, a, c) = F ′′(γU (e, a, c)). Equality
on arrows is equally straightforward, and so we omit the details.

7. An algebraic model of type theory from groupoids

Comprehension categories are one of the categorical structures used to model various
forms of type theory. Substitution is modeled using pullbacks, and one difficulty with
this is that pullbacks are usually only associative up to isomorphism, wheras substitution
in type theory is strictly associative. So, in order to faithfully model type theory, the
comprehension category in question should be split. One way to do this is to use the right
adjoint of the forgetful functor SplFib // Fib. In [GL23, Theorem 2.6], Gambino and
Larrea give a coherence theorem for this method, by identifying pseudo-stability conditions
on a comprehension category that ensure that its splitting has strict interpretations of the
Σ-, Π, and Id-types of Martin-Löf type theory. Any awfs (L,R) induces a comprehension
category L⋔

1
//Ar(C), and conditions are identified in [GL23, Theorem 4.11] on (L,R)

that ensure that the coherence theorem can be applied to it. They then apply this to the
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category of groupoids by showing that the awfs of split reflections and split fibrations of
groupoids satisfies these conditions [GL23, Theorem 5.5].

An awfs (L,R) induces a second (closely related) comprehension category, namely
R1

// Ar(C), and our goal in this section is to reproduce the aforementioned results
in [GL23] for this second option—that is, to identify conditions on the awfs (L,R) that
ensure that the coherence theorem can be applied to R1

//Ar(C). (Note that there is a
functor R1

∼= (L⋔⋔)1 ↪→ L⋔
1 over Ar(C), which is generally not invertible; L⋔

1 corresponds
to the retract closure of R1.) We phrase these conditions and then show that the same
awfs used by Gambino and Larrea on Gpd satisfies our conditions. The majority of
the work needed for this has been done in Sections 3 through 5, and what remains is a
straightforward adaptation of the approach of [GL23]. Therefore, we only outline the
proofs, and the reader is referred to [GL23] for the remaining details.

7.1. Coherence for the comprehension category of right maps. As mentioned,
the forgetful functor of the right class of an awfs is always a comprehension category.

7.2. Proposition. If (L,R) is an awfs then R1
//Ar(C) is a comprehension category.

Proof. See [BG16, Proposition 8].

In fact, no further requirements on the awfs are needed to choose the Σ-types.

7.3. Proposition. The comprehension category R1
//Ar(C) associated with an awfs

admits a pseudo-stable choice of Σ-types.

Proof. The choice of Σ-types is given simply by the composition operation of R, which is
functorial and preserves pullback squares. The rest of the choices of structure are made as
in [GL23, Proposition 4.3] (and see [Lar18, Lemma 2.7.7]).

The Π-types are interpreted using a pushforward structure on the awfs, and the
Beck–Chevalley condition ensures this choice is pseudo-stable. Following terminology
of [Joy17] we introduce a shorthand for an awfs with this required structure.

7.4. Definition. A π-awfs is an awfs with a Frobenius structure satisfying the Beck–
Chevalley condition as in Definition 5.10.

7.5. Proposition. The comprehension category R1
//Ar(C) associated with a π-awfs

admits a pseudo-stable choice of Π-types.

Proof. Consider composable vertical morphisms g, f of R. As the awfs has a Frobenius
structure, f has a pushforward structure f∗ by Theorem 3.14. We can consider g as an
object (g, 1) ∈ R/(dom f) and apply f∗ to obtain f∗(g, 1) ∈ R/(cod f), whence f∗g gets
an R-structure which we denote by f∗g; this is the choice of Π-type for g and f . The
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Beck–Chevalley condition then ensures that the assignment Π : (g, f) 7→ f∗g is functorial:

• •
• • • •

• • Π7−→
• • • • .

• •

u

g
⌟

i
f∗α

f∗g

βi

f∗v∗i

w+

w∗h∗i h∗i
v

f

⌟
h

1 1 w

w

The outer rectangle on the right above is a pullback, and is a square of R because all three
of the squares comprising it are. The rest of the choices of structure are made as in [GL23,
Proposition 4.6] (and see [Lar18, Lemma 2.7.8]).

The idea for interpreting identity types using wfs originates from [AW09] and was
further developed in [vdBG12] by the introduction of the notion of stable functorial choice
of path objects. We adapt this definition to the right maps of an awfs as follows.

7.6. Definition. A functorial factorization of the diagonal on a category C is a functor
P = (r, ρ) : Ar(C) //Ar(C)×C Ar(C) such that ρf.rf = δf for any map f : A //B in
C, where δf : A //A×B A is the diagonal morphism. Such a factorization is called stable
if its right leg ρ preserves pullback squares.

7.7. Definition. A stable functorial choice of path objects (sfpo) on an awfs (L,R) is
a lift P of a stable functorial factorization of the diagonal P :

R1 L1 ×C R1

Ar(C) Ar(C)×C Ar(C) .

P

P

7.8. Proposition. The comprehension category R1
//Ar(C) associated with an awfs

with an sfpo admits a pseudo-stable choice of Id-types.

Proof. The choice of Id-type for an R map f is given by the right leg ρf of the sfpo
P = (r,ρ); this assignment is functorial and preserves cartesian morphisms by definition.
The rest of the choices of structure are made as in [GL23, Proposition 4.9].

We thus obtain the desired analog of [GL23, Theorem 4.11].

7.9. Theorem. A π-awfs with an sfpo induces a comprehension category with strictly
stable choices of Σ-, Π-, and Id-types.

Proof. By Propositions 7.3, 7.5, and 7.8 the comprehension category associated with
the awfs has pseudo stable choices of these types, and so its right adjoint splitting has
strictly stable choices by [GL23, Theorem 2.6].
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7.10. The groupoid model. Finally, we mention that our running example, the awfs
of split reflections and fibrations of groupoids, satisfies the conditions of Theorem 7.9.

7.11. Proposition. (SplRef(Gpd), SplFib(Gpd)) is a π-awfs with an sfpo.

Proof. It is a π-awfs by Propositions 4.1 and 5.15, and that it admits an sfpo follows
from a straightforward adaptation of [GL23, Proposition 3.5].

This gives us the following analog of [GL23, Theorem 5.5].

7.12. Theorem. The right adjoint splitting of SplRef(Gpd) //Ar(Gpd) yields a model
of dependent type theory with Σ-, Π-, and Id-types.

Proof. By Theorem 7.9 and Proposition 7.11.

8. Conclusion

In this paper we have formulated suitable versions of the pushforward and Frobenius
properties of algebraic weak factorization systems (awfs) and showed that these are
equivalent. In addition, we have formulated a Beck–Chevalley condition for awfs. We
have shown how these notions can be used to obtain models of type theory with dependent
function types, as illustrated by split fibrations of groupoids, the basis for the groupoid
model of Hofmann and Streicher [HS98].

In this way our work is similar to [Lar18, GL23], where the authors also show an
equivalence between a pushforward and a Frobenius property of an awfs, which is stated
and proven in [GS17]. However, their version differs from the one we propose here in
several ways. First of all, their version holds for awfs which are cofibrantly generated
by a category; we make no such assumption. Also, the works of [GS17, Lar18, GL23] use
an interpretation of type theory in which the dependent types are interpreted using the
algebras of the pointed endofunctor associated with an awfs, rather than the algebras of
the monad associated with an awfs. In that way their framework targets a different class
of examples and does not cover examples like split fibrations of groupoids.

In future work we hope to find more examples. In particular, we would like to show
how our ideas apply to the effective Kan fibrations from [vdBF22]. These are intended to
be a good constructive analogue of the Kan fibrations from simplicial homotopy theory
and to lead to a constructive account of Voevodsky’s model of homotopy type theory in
simplicial sets [KL21]. In [vdBG25] the second author has shown together with Freek
Geerligs how the effective Kan fibrations appear as the right class in an awfs, so our
current framework is the appropriate one for these maps.
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Joachim Kock, Universitat Autònoma de Barcelona: Joachim.Kock (at) uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
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Giuseppe Metere, Università degli Studi di Palermo: giuseppe.metere (at) unipa.it

Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
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