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BARR-COEXACTNESS FOR METRIC COMPACT HAUSDORFF
SPACES

MARCO ABBADINI AND DIRK HOFMANN

Abstract. A metric compact Hausdorff space is a Lawvere metric space equipped
with a compatible compact Hausdorff topology (which does not need to be the induced
topology). These spaces maintain many important features of compact metric spaces,
but the resulting category is much better behaved.

In the category of separated metric compact Hausdorff spaces, we characterise the regular
monomorphisms as the embeddings and the epimorphisms as the surjective morphisms.
Moreover, we show that epimorphisms out of an object X can be encoded internally
to X by their kernel metrics, which are characterised as the continuous metrics below
the metric on X. Finally, as the main result, we prove that its dual category has an
algebraic flavour: it is Barr-exact. While we show that it cannot be a variety of finitary
algebras, it remains open whether it is an infinitary variety.
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1. Introduction

Since the early work of Pontrjagin [Pon34] and Stone [Sto36], it is known that the duals of
many categories of topology have an algebraic flavour: the category of compact Hausdorff
Abelian groups is dually equivalent to the category of Abelian groups, and the category of
Boolean spaces (particular compact Hausdorff spaces) is dually equivalent to the category
of Boolean algebras. Extending the latter fact, Duskin [Dus69] observed that, besides the
well-known fact that the category CH of compact Hausdorff spaces and continuous maps
is monadic over Set [Man69], also its dual category CHop is monadic over Set. From a
more concrete perspective, it is essentially shown in [Gel41] that CHop is equivalent to the
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category of commutative C∗-algebras and homomorphisms, and this category is indeed
monadic over Set with respect to the unit ball functor, as shown in [Neg71]. We also recall
that, by the work of Stone [Sto38] and Priestley [Pri70, Pri72], the category of Priestley
spaces (Boolean spaces with a compatible partial order) and continuous monotone maps is
dually equivalent to the category of distributive lattices and homomorphisms and therefore
its dual category is also a variety. Somewhat surprisingly, a similar investigation for
related structures such as Nachbin’s compact ordered spaces [Nac65] was carried out only
recently. In [HNN18] it is shown that the dual of the category PosCH of compact ordered
spaces and continuous monotone maps is a quasivariety, and in [Abb19, AR20] it is finally
shown that PosCHop is also exact, and hence a variety. In this paper we extend this line
of research to include also metric structures.

Without doubt, the class of compact metric spaces (those metric spaces whose induced
topology is compact) is an important class of metric spaces; however, together with non-
expansive maps, this class forms a poorly behaved category. Firstly, we cannot even form
the coproduct of two singleton spaces, a shortcoming we can easily overcome by allowing
the distance∞. This modification allows us also to consider the sup-metric on an infinite
product, which is indeed the product metric. However, in general, the product metric does
not induce the product topology and is therefore not necessarily compact. For instance,
for the two-element space 2 = {0, 1} with distance 1 between 0 and 1, in 2N the distance
between two different points is also 1 and therefore, while the topological power 2N is
compact, the topology induced by the metric is discrete and hence non-compact. We
take this discrepancy as a motivation to consider not only metric spaces with an induced
compact (Hausdorff) topology but rather equipped with a compatible compact Hausdorff
topology.

This notion is also inspired by Nachbin’s definition of a compact ordered space (see
[Nac65] and also [Tho09]), where a compact Hausdorff space is equipped with a compatible
order relation. In fact, ordered sets can be seen as a special case of metric structures once
one drops the symmetry axiom from the definition of a metric space. Accordingly, to
include also the ordered case in our investigation, we consider here metric spaces in a
more general sense: a metric d on a set X is a map d : X × X → [0,∞] which is only
required to satisfy

d(x, x) = 0 and d(x, z) ≤ d(x, y) + d(y, z)

for all x, y, z ∈ X. These two axioms are analogous to the reflexivity and the transitivity
conditions of a preorder. Under this analogy, the metric counterpart of anti-symmetry
requires that, for all x, y ∈ X, d(x, y) = 0 = d(y, x) implies x = y; a metric space (X, d)
where d has this property is called separated. Let us note that the analogy between metric
and order structures can be made more precise in the setting of enriched categories. For
instance, the transitivity condition of a preorder and the triangular inequality of a metric
space can be both seen as an instance of the composition law of a category; similarly,
reflexivity and the condition d(x, x) = 0 correspond to the identity law of a category; see
[Law73] for details.
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In this paper we are interested in the category of compact Hausdorff spaces equipped
with a compatible separated metric (called separated metric compact Hausdorff spaces
here, see Section 2 for details) and continuous non-expansive maps. This category consti-
tutes a natural common roof for the category of compact ordered spaces and continuous
monotone maps as well as the category of compact metric spaces and non-expansive maps.
Moreover, it has more pleasant properties than the latter one as it is, for instance, com-
plete and cocomplete (see [Tho09]). Various properties and constructions of compact
metric spaces and of compact ordered spaces can be naturally extended to this category.
For instance, every metric compatible with some compact Hausdorff topology is Cauchy
complete (see [HR18]), and [HN20] introduces a Hausdorff functor on this category com-
bining naturally the Hausdorff metric and the Vietoris topology. We also point out that
this type of spaces proved to be useful in an extension of Stone-type dualities and of the
notion of continuous lattice to metric structures (see [GH13, HN18, HN23]).

Motivated by the corresponding results for compact Hausdorff spaces and compact
ordered spaces, in this note we investigate the algebraic character of the dual of the
category MetCHsep of separated metric compact Hausdorff spaces and continuous non-
expansive maps. We recall (see [Bor94], for instance) that a category C is regular whenever
C is finitely complete, has pushouts of kernel pairs and regular epimorphisms are pullback-
stable. Moreover, C is Barr-exact whenever it is regular and every internal equivalence
relation is effective, i.e., a kernel pair. Being Barr-exact expresses an algebraic trait:
for example, every variety of (possibly infinitary) algebras is Barr-exact; on the other
hand, the category of topological spaces and continuous maps is not. Barr-exactness
distinguishes varieties from quasivarieties and can be seen as a categorical way to express
the property of being “closed under quotients of congruences”. The main result of this
paper states that the category MetCHsep is Barr-coexact, that is, MetCHop

sep is Barr-exact.
Since MetCHsep is known to be complete and cocomplete, to obtain this result we show
that

• the regular monomorphisms and the epimorphisms in MetCHsep are precisely the
embeddings and the surjective morphisms, respectively (Section 3),

• embeddings are stable under pushouts (Section 4), and

• equivalence corelations are effective (Section 5).

2. Separated metric compact Hausdorff spaces

We recall from the introduction that, in this paper, a metric is a map d : X×X → [0,∞]
such that, for all x, y, z ∈ X,

d(x, x) = 0 and d(x, z) ≤ d(x, y) + d(y, z).

We say that d is separated if, for all x, y ∈ X, d(x, y) = 0 = d(y, x) implies x = y.
We introduce the main objects of interest: separated metric compact Hausdorff spaces.
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2.1. Definition. [HR18] A (separated) metric compact Hausdorff space X is a compact
Hausdorff space X together with a (separated) metric d : X×X → [0,∞] that is continuous
with respect to the upper topology of [0,∞].

We recall that the open subsets of the upper topology on [0,∞] are generated by
the sets ]u,∞]; hence, the non-empty closed subsets of [0,∞] are of the form [0, u], with
u ∈ [0,∞]. Throughout this paper we will often make use of the fact that, with respect
to the upper topology, every non-empty compact subset of [0,∞] has a smallest element.
The space [0,∞] with the upper topology should be seen as the metric counterpart of
the Sierpiński space {0, 1} with {1} closed. Accordingly, the notion of a separated metric
compact Hausdorff space is the metric counterpart of Nachbin’s compact ordered spaces.
A more general approach to ordered and metric (and other) topological structures is given
in [Tho09], see Remark 2.3.

The continuity with respect to the upper topology of [0,∞] of a map f : X → [0,∞],
with X a topological space, is also known as lower semicontinuity of f (for instance, see
[Bou98, IV.6.2]), and is equivalently described by the pointwise formula (for x0 ∈ X)

f(x0) ≤ lim inf
x→x0

f(x)

(or, equivalently, f(x0) = lim infx→x0 f(x)). Thus, the compatibility between the metric
and the topology in Definition 2.1 amounts to the requirement that for all x0, y0 ∈ X we
have

d(x0, y0) ≤ lim inf
x→x0
y→y0

d(x, y).

Every classical metric space whose induced topology is compact can be viewed as
a separated metric compact Hausdorff space. More generally, every separated metric
space whose induced symmetric topology is compact can be viewed as a separated metric
compact Hausdorff space (see [HR18]). Here we recall from [Fla97] that the topology
symmetrically induced by a metric d : X ×X → [0,∞] is generated by the right and left
open balls (with x0 ∈ X and u ∈ [0,∞])

Br(x0, u) := {x ∈ X | d(x0, x) < u} and Bl(x0, u) := {x ∈ X | d(x, x0) < u}.

This topology is also generated by the symmetric open balls

B(x0, u) := Br(x0, u) ∩Bl(x0, u) = {x ∈ X | d(x0, x) < u and d(x, x0) < u},

with x0 ∈ X and u ∈ [0,∞] (see [Fla97, Theorem 4.8]).
Next, we provide an example of a metric space whose induced topology is not compact,

but which admits a natural compatible compact Hausdorff topology.

2.2. Example. The interval [0,∞] becomes a separated metric space with the metric d
defined by d(u, v) = max(v − u, 0) (see [Law73]). This metric induces the topology on
[0,∞] generated by the symmetric open balls (with u ∈ [0,∞] and ε > 0)

{v ∈ [0,∞] | d(u, v) < ε and d(v, u) < ε}.
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We emphasise that this topology on [0,∞] is not compact, basically because ∞ is an
isolated point. However, we may consider the Lawson topology [GHK+03] on [0,∞] which
is generated by the basic open subsets [0, u[ and ]u,∞], with u ∈ [0,∞]. With respect
to this topology, the interval [0,∞] is a compact Hausdorff space, and together with the
metric d it becomes a separated metric compact Hausdorff space.

2.3. Remark. The definition of a metric compact Hausdorff space was pulled out of the
hat in Definition 2.1. However, it is not an arbitrary condition, but rather the specialisa-
tion to the metric setting of a more general notion. To explain the rationale behind it, the
starting point is the observation made in [Tho09] that the ultrafilter monad on Set can
be naturally extended to a monad on the category of preordered sets and monotone maps
and on the category of (Lawvere) metric spaces and non-expansive maps, respectively.
In the preordered case, the algebras for this monad are precisely Nachbin’s preordered
compact Hausdorff spaces [Nac65], and therefore the algebras in the metric case consti-
tute a natural metric counterpart to preordered compact Hausdorff spaces. It is shown in
[HR18] that this algebraic description is equivalent to the condition in Definition 2.1.

2.4. Definition. A map f : X → X ′ between metric spaces (X, d) and (X ′, d′) is called
non-expansive if d′(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X. We denote the category of sepa-
rated metric compact Hausdorff spaces and non-expansive continuous maps by MetCHsep.

Below we collect some important properties of MetCHsep; for more details we refer to
[Tho09, GH13, HR18, HN20].

2.5. Theorem. The canonical forgetful functor MetCH→ CH from the category of metric
compact Hausdorff spaces and continuous non-expansive maps to CH is topological. The
full subcategory MetCHsep of MetCH is reflective and therefore is complete and cocomplete.
In particular:

1. The limit of a diagram D : I→ MetCHsep is given by the limit (pi : X → D(i))i∈I in
CH equipped with the sup-metric

d(x, y) = sup
i∈I

di(pi(x), pi(y)), (x, y ∈ X),

where di denotes the metric of the space D(i).

2. The coproduct X = X1 + X2 of metric compact Hausdorff spaces X1 and X2 with
metrics d1 and d2 is their disjoint union equipped with the coproduct topology and
the coproduct metric, i.e., the metric d defined by

d(x, y) =


d1(x, y) if x, y ∈ X1,

d2(x, y) if x, y ∈ X2,

∞ otherwise.

An embedding in MetCHsep is an injective morphism such that the metric on the domain
is the restriction of the metric on the codomain.
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2.6. Theorem. In the category MetCHsep, the pair

({surjective morphisms}, {embeddings})

is an orthogonal factorisation system.

In Section 4 we will show that, in MetCHsep, the surjective morphisms are precisely
the epimorphisms and the embeddings are precisely the regular monomorphisms (see
Propositions 4.5 and 4.6).

2.7. Remark. [Compact ordered spaces as separated metric compact Hausdorff spaces]
We recall from [Nac65] that a compact ordered space (also called compact pospace or
Nachbin space) consists of a compact space X together with a partial order ≤ on X so
that the set {(x, y) ∈ X×X | x ≤ y} is closed in X×X; such a space X is automatically
Hausdorff. The category of compact ordered spaces and monotone and continuous maps
is denoted by PosCH.

Every compact ordered space X can be thought of as a separated metric compact
Hausdorff space with the same compact Hausdorff space and the metric

d(x, y) :=

{
0 if x ≤ y,

∞ otherwise.

In fact, compact ordered spaces can be identified with the separated metric compact
Hausdorff spaces whose metric takes values in {0,∞}. Since every map between com-
pact ordered spaces is monotone if and only if it is non-expansive with respect to the
corresponding metrics, we obtain a fully faithful functor

PosCH −→ MetCHsep.

This functor has a right adjoint which leaves maps unchanged and sends a separated
metric compact Hausdorff space X (with metric d) to the compact ordered space X with
the same topology and the partial order given by

x ≤ y whenever d(x, y) = 0.

In particular, we conclude that PosCH is closed in MetCHsep under colimits, and it is easy
to see that PosCH is closed in under limits, too. The unit interval [0, 1] is a cogenerator
in PosCH and PosCH is well-powered; therefore, the Special Adjoint Functor Theorem
guarantees that PosCH→ MetCHsep has also a left adjoint.

PosCH MetCHsep
⊥

⊥
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2.8. Remark. [Symmetrisation] Every metric space X with metric d can be symmetrised
by putting ds(x, y) := max{d(x, y), d(y, x)} (see [Law73]). This metric is compatible with
the topology: if d : X ×X → [0,∞] is continuous, then so is ds : X ×X → [0,∞], since
the map

max: [0,∞]× [0,∞] −→ [0,∞]

is continuous with respect to the upper topology. In fact, this construction defines a right
adjoint to the full embedding

MetCHsep,sym −→ MetCHsep

of the category MetCHsep,sym of symmetric separated metric compact Hausdorff spaces and
continuous non-expansive maps into MetCHsep. Similarly to Remark 2.7, we conclude that
the category MetCHsep,sym is closed under limits and colimits in MetCHsep. Therefore the
inclusion functor MetCHsep,sym → MetCHsep has also a left adjoint by the Adjoint Functor
Theorem (the verification of the solution set condition is trivial).

Below we briefly indicate an example where metric compact Hausdorff spaces played
a crucial role.

2.9. Example. It is well-known that every classical metric space with compact induced
topology is Cauchy complete. However, to infer Cauchy completeness of a metric space
it suffices to show that there is a compatible compact Hausdorff topology, that is, the
metric space is part of a metric compact Hausdorff space. To give a trivial example,
consider an arbitrary product of classical metric spaces with compact induced topology.
The product metric does not in general induce a compact topology; however, this metric
is Cauchy complete because the product topology is compact Hausdorff and compatible.
Less trivially, for every metric space (X, d), the space UX of all ultrafilters on X equipped
with the metric

h(U ,V) = sup
(A∈U , B∈V)

inf
(x∈A, y∈B)

d(x, y)

is Cauchy complete because the Zariski topology on UX (which is independent of d) is
compatible with the metric h (see [HR18]).

In a metric compact Hausdorff space, the compatibility between the metric and the
topology is weaker than the one when considering the topology induced by the metric.
Roughly speaking, in the latter case open balls are open and, consequently, closed balls
are closed, whereby in a metric compact Hausdorff space closed balls are closed, but open
balls need not be open. For example, take any compact Hausdorff space with the discrete
metric, which assigns distance 1 to each pair of distinct points. Every singleton is an
“open ball” of radius 1

2
, but it might fail to be open. The following result makes this

relationship more precise.

2.10. Proposition. Let d be a separated metric on a compact Hausdorff space X. Then
d symmetrically induces the topology of X if and only if the map d : X × X −→ [0,∞]
is continuous with respect to the lower topology on [0,∞]. This condition, if (X, d) is a
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separated metric compact Hausdorff space and d does not attain the value∞, is equivalent
to the continuity of d with respect to the Euclidean topology on [0,∞[.

Proof. If the topology on X is symmetrically induced by the metric d, then, for every
u ∈ [0,∞], the set

{(x, y) ∈ X ×X | d(x, y) < u} =
⋃

z, u1+u2≤u

Bl(z, u1)×Br(z, u2)

is open in X × X. Hence, d : X × X → [0,∞] is continuous with respect to the lower
topology on [0,∞]. Conversely, assume now that the metric is continuous with respect to
the lower topology on [0,∞]. Since d is separated, the topology induced by d is Hausdorff.
Moreover, by continuity of d, the sets

{y ∈ X | d(x, y) < u} and {y ∈ X | d(y, x) < u}

are open also in the given compact Hausdorff topology, and hence the two topologies
coincide.

The last part of the statement follows from the fact that a map into [0,∞[ is continuous
with respect to the Euclidean topology if and only if it is continuous with respect to the
lower and the upper topology.

2.11. Remark. Proposition 2.10 is a generalisation of the following well-known fact. If
a partial order on a compact Hausdorff space X is open in X ×X, then it is also closed
and, moreover, the topology of X is generated by the sets ↓x and ↑x, with x ∈ X (see
also [Nac65, Theorem 5]).

3. Quotient objects and continuous submetrics

In this paper we will study equivalence relations in MetCHop
sep by looking at their duals in

MetCHsep, which are particular epimorphisms. In this section we prepare the ground by
giving a description of surjective morphisms in MetCHsep (= epimorphisms by Proposi-
tion 4.6 below) which is similar to the presentation of surjections out of a set by equivalence
relations.

We let Q(X) denote the class of surjective morphisms of separated metric compact
Hausdorff spaces with domain X. We consider Q(X) as the full subcategory of the coslice
category X ↓ MetCHsep of objects of MetCHsep under X. Since surjective morphisms are
epimorphisms in MetCHsep, the category Q(X) is actually a preordered class:

f ≤ g ⇐⇒
X

Y Z.

f g

∃h
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3.1. Remark. Since the pair ({surjective morphisms}, {embeddings}) is an orthogonal
factorisation system on MetCHsep, Q(X) is a coreflective full subcategory of X ↓ MetCHsep:
the coreflector assigns to a morphism the surjective component in its factorization.

3.2. Definition. [Quotient object] By identifying elements in the same equivalence class,
from Q(X) we obtain a partially ordered class (in fact, a set) Q̃(X), whose elements we
call quotient objects of X. With a little abuse of notation, we take the liberty to refer to
an element of Q̃(X) just with one of its representatives.

Our next goal is to encode quotient objects of X internally on X.

3.3. Remark. Encodings similar to those that we are seeking already appear for similar
categories. For example, by [Eng89, The Alexandroff Theorem 3.2.11]1, in the category CH
of compact Hausdorff spaces and continuous functions, a surjective morphism f : X ↠ Y
is encoded by the equivalence relation ∼f := {(x, y) ∈ X × X | f(x) = f(y)}; the
equivalence relation ∼f is closed, and, in fact, there is a bijection between equivalence
classes of surjective morphisms of compact Hausdorff spaces with domain X and closed
equivalence relations on X. There are also analogous versions for Boolean spaces, namely
Boolean relations2 [GH09, Lemma 1, Chapter 37], for Priestley spaces, namely lattice
preorders [CLP91, Definition 2.3]3, and for Nachbin’s compact ordered spaces [AR20,
Lemma 11].

We encode a quotient object f : X ↠ Y of X ∈ MetCHsep via a certain (possibly
non-separated) metric κf on X, as follows.

3.4. Definition. [Kernel metric] For a morphism f : X → Y in MetCHsep, we call kernel
metric of f the initial metric structure (also called Cartesian lifting) on the compact
Hausdorff space X with respect to the continuous map f and the metric on Y ; explicitly,
the function κf : X ×X → [0,∞] defined by

κf (x1, x2) := dY (f(x1), f(x2)).

We note that, being the structure of a metric compact Hausdorff space, κf is continuous
with respect to the upper topology on [0,∞].

Definition 3.4 will be relevant especially for f surjective. The idea is that a surjective
morphism f can be completely recovered from κf (up to an isomorphism). In order to
establish an inverse for the assignment that maps f to its kernel metric κf , we investigate
the properties satisfied by kernel metrics: these properties are precisely being a continuous
metric below the given metric (Theorem 3.8).

1The reader is warned that, in [Eng89], by ‘compact space’ is meant what we here call a compact
Hausdorff space.

2Sometimes called Boolean equivalences.
3Lattice preorders are also called Priestley quasiorders ([Sch02, Definition 3.5]), or compatible qua-

siorders.
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3.5. Definition. [Continuous submetric] Let X be a separated metric compact Hausdorff
space with metric d. A continuous submetric γ on X is a (not necessarily separated)
continuous metric γ : X ×X → [0,∞] with respect to the upper topology of [0,∞] which
is below the given metric d, i.e., for all x, y ∈ X, γ(x, y) ≤ d(x, y).

By construction, for every f : X → Y in MetCHsep, κf is a submetric of the metric of
X.

3.6. Remark. We shall now see how one recovers a surjective morphism f from its
kernel metric κf . Let (X, d) be a separated metric compact Hausdorff space and let γ
be a continuous submetric on X. Then take the separation-reflection X/∼γ of X with
respect to γ (for instance, see [HN20]). We recall that X/∼γ is the quotient of X with
respect to the equivalence relation ∼γ defined by

x ∼γ y ⇐⇒ γ(x, y) = γ(y, x) = 0;

the topology is the quotient topology, and the metric is dX/∼γ ([x], [y]) = γ(x, y). Since
γ is below d, the projection function pγ : X ↠ X/∼γ is non-expansive: dX/∼γ ([x], [y]) =
γ(x, y) ≤ d(x, y). Moreover, it is continuous since X/∼γ has the quotient topology. Thus,
the function pγ : X ↠ X/∼γ is a surjective morphism in MetCHsep.

3.7. Definition. For X a separated metric compact Hausdorff space, we let S(X) denote
the set of continuous submetrics on X. We equip S(X) with the pointwise partial order,
i.e. γ1 ≤ γ2 whenever, for all x, y ∈ X, γ1(x, y) ≤ γ2(x, y).

3.8. Theorem. The assignments

Q(X) −→ S(X), S(X) −→ Q(X)(
f : X ↠ Y

)
7−→ κf γ 7−→

(
pγ : X ↠ X/∼γ

)
form a dual equivalence. Therefore the posets Q̃(X) and S(X) are dually isomorphic.

Proof. First we observe that, for all f : X ↠ Y ∈ Q(X) and γ ∈ S(X), one has

κf ≤ γ ⇐⇒
(
pγ : X ↠ X/∼γ

)
≤ f,

that is, the two maps above form a dual adjunction. Clearly, for each γ ∈ S(X), the
kernel metric of pγ : X ↠ X/∼γ is γ. For every f : X ↠ Y , the canonical function
εf : X/∼γ → Y is an embedding because, for all x, y ∈ X, we have

d([x], [y]) = κf (x, y) = dY (f(x), f(y)) = dY (εf ([x]), εf ([y])).

Therefore, εf is an isomorphism.
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4. Coregularity for separated metric compact Hausdorff spaces

The purpose of this section is to prove that the category MetCHsep is coregular, i.e., that
MetCHop

sep is regular. Recall from Section 2 that one of the conditions of coregularity is
that regular monomorphisms are preserved under pushouts. For this reason, we start
by describing pushouts of embeddings; later on we will prove that the embeddings are
precisely the regular monomorphisms.

4.1. Proposition. [Description of a pushout along an embedding] Let i : A ↪→ X be an
embedding and f : A→ B a morphism in MetCHsep. Denoting with ιB : B ↪→ B +X and
ιX : X ↪→ B+X the coproduct maps, the following describes a continuous submetric γ on
B +X:

1. For b, b′ ∈ B,
γ(ιB(b), ιB(b

′)) = dB(b, b
′).

2. For x, x′ ∈ X,

γ(ιX(x), ιX(x
′))

= min

{
dX(x, x

′), inf
a,a′∈A

(
dX(x, i(a)) + dB(f(a), f(a

′)) + dX(i(a
′), x′)

)}
.

3. For b ∈ B and x ∈ X,

γ(ιB(b), ιX(x)) = inf
a∈A

(
dB(b, f(a)) + dX(i(a), x)

)
,

γ(ιX(x), ιX(x)) = inf
a∈A

(
dX(x, i(a)) + dB(f(a), b)

)
.

Moreover, the quotient (B+X)/∼γ (with the obvious maps) is the pushout of the diagram
B ← A ↪→ X.

Proof. For x ∈ X, b ∈ B and a ∈ A, we write x for ιX(x), b for ιB(b), and a for i(a) and
ιX(i(a)).

A case analysis shows immediately that γ is below dB+X . To prove continuity of
γ : (B+X)× (B+X)→ [0,∞] with respect to the upper topology of [0,∞], it is enough
to prove that it is continuous over each of its four pieces B×B, B×X, X×B and X×X.
It is clear that γ is continuous over B×B. We show continuity of B×X; the other cases
are similar. The function

B ×X −→ [0,∞]

(b, x) 7−→ inf
a∈A

(
dB(b, f(a)) + dX(a, x)

)
can be written as the composite of the following two functions

B ×X −→ [0,∞]A inf : [0,∞]A −→ [0,∞]

(b, x) 7−→
(
a 7→ dB(b, f(a)) + dX(a, x)

)
f 7−→ inf

a∈A
f(a),
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where [0,∞]A is the exponential in the category of topological spaces, which is the set
of continuous functions from A to [0,∞] equipped with the compact-open topology, and
which exists because A is a compact Hausdorff space (see [EH01], for instance). The first
function is continuous because it is the transpose of the function

A×B ×X −→ [0,∞]

(a, b, x) 7−→ dB(b, f(a)) + dX(a, x),

which is continuous because dB, dX , f , and +: [0,∞]2 → [0,∞] are continuous. The
function inf : [0,∞]A → [0,∞] is continuous because, for every u ∈ [0,∞], we have

inf−1(]u,∞]) = {φ ∈ [0,∞]A | inf φ > u} by definition of inf
= {φ ∈ [0,∞]A | ∃v > u s.t. inf φ ≥ v} since φ[A] is compact

=
⋃
v>u

{φ ∈ [0,∞]A | φ[A] ⊆ ]v,∞]},

and this set is open in [0,∞]A. Hence, their composite B ×X → [0,∞] is continuous, as
desired.

Let us now prove that γ is a metric.
It is immediate that for all z ∈ B +X we have γ(z, z) = 0.
We now prove by cases that γ satisfies the triangle inequality.
Clearly, for all b, b′, b′′ ∈ B, we have

γ(b, b′′) = dB(b, b
′′) ≤ dB(b, b

′) + dB(b
′, b′′) = γ(b, b′) + γ(b′, b′′),

proving a case of the triangle inequality.
Let x, x′, x′′ ∈ X, and let us prove γ(x, x′′) ≤ γ(x, x′) + γ(x′, x′′). We have

γ(x, x′′) = min

{
dX(x, x

′), inf
a,a′∈A

(
dX(x, a) + dB(f(a), f(a

′)) + dX(a
′, x′′)

)}
≤ dX(x, x

′′)

≤ dX(x, x
′) + dX(x

′, x′′).

Moreover, for all a0, a′0 ∈ A, we have

γ(x, x′′) = min

{
dX(x, x

′), inf
a,a′∈A

(
dX(x, a) + dB(f(a), f(a

′)) + dX(a
′, x′′)

)}
≤ dX(x, a0) + dB(f(a0), f(a

′
0)) + dX(a

′
0, x

′′)

≤ dX(x, a0) + dB(f(a0), f(a
′
0)) + dX(a

′
0, x

′) + dX(x
′, x′′).

Moreover, for all a1, a′1 ∈ A, we have

γ(x, x′′) = min

{
dX(x, x

′), inf
a,a′∈A

(
dX(x, a) + dB(f(a), f(a

′)) + dX(a
′, x′′)

)}
≤ dX(x, a1) + dB(f(a1), f(a

′
1)) + dX(a

′
1, x

′′)

≤ dX(x, x
′) + dX(x

′, a1) + dB(f(a1), f(a
′
1)) + dX(a

′
1, x

′′).
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Moreover, for all a0, a′0, a1, a′1 ∈ A we have

γ(x, x′′)

= min

{
dX(x, x

′), inf
a,a′∈A

(
dX(x, a) + dB(f(a), f(a

′)) + dX(a
′, x′′)

)}
≤ dX(x, a0) + dB(f(a0), f(a

′
1)) + dX(a

′
1, x

′′)

≤ dX(x, a0) + dB(f(a0), f(a
′
0)) + dB(f(a

′
0), f(a1)) + dB(f(a1), f(a

′
1)) + dX(a

′
1, x

′′)

≤ dX(x, a0) + dB(f(a0), f(a
′
0)) + dX(a

′
0, a1) + dB(f(a1), f(a

′
1)) + dX(a

′
1, x

′′)

≤ dX(x, a0) + dB(f(a0), f(a
′
0)) + dX(a

′
0, x

′) + dX(x
′, a1) + dB(f(a1), f(a

′
1)) + dX(a

′
1, x

′′).

Therefore, putting the four previous displays together, we obtain

γ(x, x′′)

≤ min
{
dX(x, x

′) + dX(x
′, x′′),

inf
a0,a′0∈A

(
dX(x, a0) + dB(f(a0), f(a

′
0)) + dX(a

′
0, x

′) + dX(x
′, x′′)

)
,

inf
a1,a′1∈A

(
dX(x, x

′) + dX(x
′, a1) + dB(f(a1), f(a

′
1)) + dX(a

′
1, x

′′)
)
,

inf
a0,a′0,a1,a

′
1∈A

(
dX(x, a0) + dB(f(a0), f(a

′
0)) + dX(a

′
0, x

′) + dX(x
′, a1)+

dB(f(a1), f(a
′
1)) + dX(a

′
1, x

′′)
)}

= min

{
dX(x, x

′), inf
a0,a′0∈A

(
dX(x, a0) + dB(f(a0), f(a

′
0)) + dX(a

′
0, x

′)
)}

+min

{
dX(x

′, x′′), inf
a1,a′1∈A

(
dX(x

′, a1) + dB(f(a1), f(a
′
1)) + dX(a

′
1, x

′′)
)}

= γ(x, x′) + γ(x′, x′′),

proving another case of the triangle inequality.
Let x ∈ X and b, b′ ∈ B, and let us prove γ(x, b′) ≤ γ(x, b) + γ(b, b′). We have

γ(x, b′) = inf
a∈A

(
dX(x, a) + dB(f(a), b

′)
)

≤ inf
a∈A

(
dX(x, a) + dB(f(a), b) + dB(b, b

′)
)

=

(
inf
a∈A

(
dX(x, a) + dB(f(a), b)

))
+ dB(b, b

′)

= γ(x, b) + γ(b, b′).

This proves another case of the triangle inequality. Similarly, one proves γ(b′, x) ≤
γ(b′, b) + γ(b, x).
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Now, let x, x′ ∈ X and b ∈ B, and let us prove γ(x, b) ≤ γ(x, x′) + γ(x′, b). For all
a1 ∈ A we have

γ(x, b) = inf
a∈A

(
dX(x, a) + dB(f(a), b)

)
≤ dX(x, a1) + dB(f(a1), b)

≤ dX(x, x
′) + dX(x

′, a1) + dB(f(a), b).

Moreover, for all a0, a′0, a1 ∈ A, we have

γ(x, b) = inf
a∈A

(
dX(x, a) + dB(f(a), b)

)
≤ dX(x, a0) + dB(f(a0), b)

≤ dX(x, a0) + dB(f(a0), f(a
′
0)) + dB(f(a

′
0), f(a1)) + dB(f(a1), b)

≤ dX(x, a0) + dB(f(a0), f(a
′
0)) + dA(a

′
0, a1) + dB(f(a1), b)

= dX(x, a0) + dB(f(a0), f(a
′
0)) + dX(a

′
0, a1) + dB(f(a1), b)

≤ dX(x, a0) + dB(f(a0), f(a
′
0)) + dX(a

′
0, x

′) + dX(x
′, a1) + dB(f(a1), b).

By combining the two displayed inequalities above, we get

γ(x, b)

≤ min
{

inf
a1∈A

(
dX(x, x

′) + dX(x
′, a1) + dB(f(a1), b)

)
,

inf
a0,a′0,a1∈A

(
dX(x, a0) + dB(f(a0), f(a

′
0)) + dX(a

′
0, x

′) + dX(x
′, a1) + dB(f(a1), b)

)}
= min

{
dX(x, x

′), inf
a0,a′0∈A

(
dX(x, a0) + dB(f(a0), f(a

′
0)) + dX(a

′
0, x

′)
)}

+ inf
a1∈A

(
dX(x

′, a1) + dB(f(a1), b)
)

= γ(x, x′) + γ(x′, b).

This proves another case of the triangle inequality. Similarly, one proves γ(b, x) ≤
γ(b, x′) + γ(x′, x).

Now, let x, x′ ∈ X and b ∈ B, and let us prove γ(x, x′) ≤ γ(x, b) + γ(b, x′). For all
a0, a

′
0 ∈ A we have

γ(x, x′) = min

{
dX(x, x

′), inf
a,a′∈A

(
dX(x, a) + dB(f(a), f(a

′)) + dX(a
′, x′)

)}
≤ dX(x, a0) + dB(f(a0), f(a

′
0)) + dX(a

′
0, x

′)

≤ dX(x, a0) + dB(f(a0), b) + dB(b, f(a
′
0)) + dX(a

′
0, x

′).
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Therefore,

γ(x, x′) ≤ inf
a0,a′0∈A

(
dX(x, a0) + dB(f(a0), b) + dB(b, f(a

′
0)) + dX(a

′
0, x

′)
)

= inf
a0∈A

(
dX(x, a0) + dB(f(a0), b)

)
+ inf

a′0∈A

(
dB(b, f(a

′
0)) + dX(a

′
0, x

′)
)

= γ(x, b) + γ(b, x′).

This proves another case of the triangle inequality.
Finally, let x ∈ X and b, b′ ∈ B, and let us prove γ(b, b′) ≤ γ(b, x) + γ(x, b′). For all

a0, a
′
0 ∈ A we have

γ(b, b′) = dB(b, b
′)

≤ dB(b, f(a0)) + dB(f(a0), f(a
′
0)) + dB(f(a

′
0), b

′)

≤ dB(b, f(a0)) + dA(a0, a
′
0) + dB(f(a

′
0), b

′)

= dB(b, f(a0)) + dX(a0, a
′
0) + dB(f(a

′
0), b

′)

≤ dB(b, f(a0)) + dX(a0, x) + dX(x, a
′
0) + dB(f(a

′
0), b

′).

Therefore,

γ(b, b′) ≤ inf
a0,a′0∈A

(
dB(b, f(a0)) + dX(a0, x) + dX(x, a

′
0) + dB(f(a

′
0), b

′)
)

= inf
a0∈A

(dB(b, f(a0)) + dX(a0, x)) + inf
a′0∈A

(
dX(x, a

′
0) + dB(f(a0), b

′)
)

= γ(b, x) + γ(x, b′).

This proves the last case of the triangle inequality.
This proves that γ is a continuous submetric on B +X.
We now have a diagram

A X

B (B +X)/∼.

i

f

We prove that it is a pushout. The square commutes since, by (3), for all a ∈ A

γ(f(a), a) = γ(a, f(a)) = 0.

Let us prove the universal property. Let

A X

B Y

i

f g

j
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be a commutative square. Let γ′ be the continuous submetric on B+X associated to the
canonical morphism B+X → Y . By Theorem 3.8 and Remark 3.1, it is enough to prove
γ ≥ γ′.

Since j is non-expansive, for all b, b′ ∈ B we have

γ′(b, b′) = dY (j(b), j(b
′)) ≤ dB(b, b

′) = γ(b, b′).

Let x, x′ ∈ X. Since g is non-expansive, we have

dY (g(x), g(x
′)) ≤ dX(x, x

′).

Moreover, for all a, a′ ∈ A, we have

dY (g(x), g(x
′))

≤ dY (g(x), jf(a)) + dY (jf(a), jf(a
′)) + dY (jf(a

′), g(x′)) (by the triangle ineq.)
= dY (g(x), g(a)) + dY (jf(a), jf(a

′)) + dY (g(a
′), g(x′)) (since j ◦ f = g ◦ i)

≤ dX(x, a) + dB(f(a), f(b)) + dX(a
′, x′),

where the last inequality holds since g and j are non-expansive. Thus,

γ′(x, x′) = dY (g(x), g(x
′))

≤ min

{
dX(x, x

′), inf
a,a′∈A

(
dX(x, a) + dB(f(a), f(a

′)) + dX(a
′, x′)

)}
= γ(x, x′).

Let b ∈ B and x ∈ X. For all a ∈ A we have

dY (j(b), g(x))

≤ dY (j(b), jf(a)) + dY (g(a), g(x)) (by triangle ineq. and since j ◦ f = g ◦ i)
≤ dB(b, f(a)) + dX(a, x),

and, similarly,

dY (g(x), j(b))

≤ dY (g(x), g(a)) + dY (jf(a), j(b)) (by triangle ineq. and since g ◦ i = j ◦ f)
≤ dX(x, (a)) + dB(f(a), b),

Therefore,

γ′(b, x) = dY (j(b), g(x)) = inf
a∈A

(
dB(b, f(a)) + dX(a, x)

)
= γ(b, x),

γ′(x, b) = dY (g(x), j(b)) = inf
a∈A

(
dX(x, a) + dB(f(a), b)

)
= γ(x, b).
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4.2. Corollary. In MetCHsep, the pushout of an embedding along any morphism is an
embedding.

We specialise Proposition 4.1 to the case of a pushout of two embeddings.

4.3. Corollary. [of Proposition 4.1] Consider embeddings f0 : X ↪→ Y0 and f1 : X ↪→ Y1

in MetCHsep and their pushout as displayed below.

X Y1

Y0 P

f1

f0 λ1

λ0

⌜

For all i, j ∈ {0, 1}, u ∈ Yi and v ∈ Yj,

dP (λi(u), λj(v)) =

{
dYi

(u, v) if i = j,

infx∈X
(
dYi

(u, fi(x)) + dYj
(fj(x), v)

)
if i ̸= j.

It is known that, in a regular category, any pullback square consisting entirely of regu-
lar epimorphisms is also a pushout square. This follows from (the dual of) the main result
of [Rin72] (cf. also [FS90, §1.565] or [CKP93, Remark 5.3]). Since we are aiming to show
that MetCHsep is coregular (and that embeddings coincide with regular monomorphisms),
the following result should not come as a surprise.

4.4. Lemma. A pushout square in MetCHsep consisting entirely of embeddings is also a
pullback.

Proof. Let us give names to the morphisms in the pushout square.

X Y1

Y0 P

f1

f0 λ1

λ0

⌜

Assume we have y0 ∈ Y0 and y1 ∈ Y1 with λ0(y0) = λ1(y1). We prove that there is (a
necessarily unique) x ∈ X such that y0 = f0(x) and y1 = f1(x). By Corollary 4.3,

0 = dP (λ0(y0), λ1(y1)) = inf
x∈X

(
dY0(y0, f0(x)) + dY1(f1(x), y1)

)
.

The set
C := {dY0(y0, f0(x)) + dY1(f1(x), y1) | x ∈ X}

is compact in [0,∞] with respect to the upper topology because it is the image of the
compact space X under the continuous function

X −→ [0,∞]

x 7−→ dY0(y0, f0(x)) + dY1(f1(x), y1).
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Since C is compact and inf C = 0, we have 0 ∈ C, and hence there is x ∈ X such that
dY0(y0, f0(x))+dY1(f1(x), y1) = 0, and hence dY0(y0, f0(x)) = dY1(f1(x), y1) = 0. Similarly,
there is x′ ∈ X such that dY1(y1, f1(x

′)) = dY0(f0(x
′), y0) = 0. Therefore,

dY0(f0(x
′), f0(x)) ≤ dY0(f0(x

′), y0) + dY0(y0, f0(x)) = 0,

and hence dX(x
′, x) = 0 since f0 is an embedding. Similarly, one shows dX(x, x

′) = 0.
Therefore, since X is separated, x = x′. Thus, we have also dY1(y1, f1(x)) = 0 and
dY0(f0(x), y0) = 0, and by separation we get y0 = f0(x) and y1 = f1(x). So, the square is
a pullback in Set, and in MetCHsep, too, since all maps are embeddings.

4.5. Proposition. A morphism in MetCHsep is a regular monomorphism if and only if
it is an embedding.

Proof. A regular mono in MetCHsep is in particular a regular mono of compact Hausdorff
spaces and of metric spaces (since the forgetful functors are right adjoint and hence
preserve limits), which implies that it is an embedding.

Conversely, let i : X ↪→ Y be an embedding. By Corollary 4.2, the pushout of i along
itself consists entirely of embeddings.

X Y1

Y0 P

i

i λ1

λ0

⌜

Thus, by Lemma 4.4 it is also a pullback. Hence, i is the equaliser of λ0 and λ1.

4.6. Proposition. A morphism in MetCHsep is an epimorphism if and only if it is sur-
jective.

Proof. Clearly, every surjection is an epimorphism. For the converse direction, let f
be an epimorphism, and consider its (surjection, embedding)-factorisation (Theorem 2.6)
f = i ◦ q. By Proposition 4.5, i is a regular mono. Since f is an epi, i is also an epi, and
therefore an isomorphism. Consequently, f is surjective.

The following is an immediate consequence of Corollary 4.2 and Proposition 4.5.

4.7. Corollary. In MetCHsep, the pushout of a regular monomorphism along any mor-
phism is a regular monomorphism.

Combining Theorems 2.5 and 2.6, Propositions 4.5 and 4.6 and Corollary 4.7, we
finally obtain the main result of the section.

4.8. Theorem. MetCHop
sep is a regular category.
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5. Barr-coexactness for separated metric compact Hausdorff spaces

In this section we show that the dual of the category MetCHsep is Barr-exact.
We refer to [Bor94] for the notion of an internal (equivalence) relation. We recall that

an equivalence relation is effective if it is a kernel pair. Equivalently (in a regular category
with coequaliser) if it is the kernel pair of its coequaliser. Moreover, a Barr-exact category
is a regular category where every equivalence relation is effective.

In this section, we provide a description of equivalence relations in the category
MetCHop

sep, and we exploit it to prove that MetCHop
sep is Barr-exact.

5.1. Notation. Given morphisms f0 : X → Y0 and f1 : X → Y1, the unique morphism
induced by the universal property of the product is denoted by ⟨f0, f1⟩ : X → Y0 × Y1.
Similarly, given morphisms f0 : X0 → Y and f1 : X1 → Y , the coproduct map is denoted
by

(
g0
g1

)
: X0 +X1 → Y .

Dualising the definition of an internal binary relation, for a separated metric compact
Hausdorff space X, we call a binary corelation on X a quotient object

(
q0
q1

)
: X+X ↠ S of

the separated metric compact Hausdorff space X +X. We recall from Theorem 2.5 that
X+X is the disjoint union of two copies of X equipped with the coproduct topology and
metric. A binary corelation on X is called respectively reflexive, symmetric, transitive
provided it satisfies the properties:

X +X

S X

(q0q1) (1X1X)

∃d

reflexivity

X +X

S S

(q0q1) (q1q0)

∃s

symmetry

X S

S P

q1

q0 λ1

λ0

⌜
=⇒

X +X

S P

(q0q1) (λ0◦q0λ1◦q1)

∃t

transitivity

An equivalence corelation is a reflexive symmetric transitive binary corelation. The key
observation is that, since quotient objects of X +X are in bijection with certain metrics
on X +X, equivalence corelations are more manageable than their duals.

5.2. Definition. Let X be a separated metric compact Hausdorff space. A binary con-
tinuous submetric on X is an element of S(X +X), i.e. a continuous metric on X +X
which is below the coproduct metric on X +X. Furthermore, we say it is reflexive (resp.
symmetric, transitive, equivalence) if the corresponding binary corelation on X (under
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the correspondence with Q̃(X +X) given by Theorem 3.8) is reflexive (resp. symmetric,
transitive, equivalence).

5.3. Notation. We denote the elements of X +X by (x, i), where x varies in X and i
varies in {0, 1}. Furthermore, i∗ stands for 1− i; for example, (x, 1∗) = (x, 0).

As we will prove, every equivalence continuous submetric γ on a separated metric
compact Hausdorff space X is obtained as follows: consider a closed subset Y of X and
let γ be the greatest metric on X +X that extends the coproduct metric of X +X and
that satisfies d((y, 0), (y, 1)) = γ((y, 1), (y, 0)) = 0 for every y ∈ Y .

5.4. Lemma. A binary continuous submetric γ on a separated metric compact Hausdorff
space X is reflexive if and only if, for all x, y ∈ X and i, j ∈ {0, 1},

dX(x, y) ≤ γ((x, i), (y, j)).

Proof. Let
(
q0
q1

)
: X+X ↠ S be the binary corelation associated with γ. By the definition

of a reflexive continuous submetric, γ is reflexive if and only if
(
q0
q1

)
: X +X ↠ S is below(

1X
1X

)
: X+X ↠ X in the poset Q̃(X+X). By Theorem 3.8, this is equivalent to κ(1X1X)

≤ γ.

Then, it suffices to note that, for all (x, i), (y, j) ∈ X +X,

κ(1X1X)
((x, i), (y, j)) = d(x, y).

5.5. Remark. Note that any reflexive continuous submetric γ on X satisfies, for all
x, y ∈ X and i ∈ {0, 1},

γ((x, i), (y, i)) = d(x, y).

Indeed, the inequality ≥ follows from Lemma 5.4, while the inequality ≤ holds because γ
is below the coproduct metric of X +X.

5.6. Lemma. A binary continuous submetric γ on a separated metric compact Hausdorff
space X is symmetric if and only if, for all x, y ∈ X and i, j ∈ {0, 1},

γ((x, i), (y, j)) = γ((x, i∗), (y, j∗)).

Proof. Let
(
q0
q1

)
: X+X ↠ S be the binary corelation associated with γ. By the definition

of a symmetric continuous submetric, γ is symmetric if and only if
(
q0
q1

)
: X + X ↠ S is

below
(
q1
q0

)
: X + X ↠ S in Q̃(X + X). By Theorem 3.8, this happens exactly when

κ(q1q0)
≤ γ. For all (x, i), (y, j) ∈ X +X, we have

κ(q1q0)
((x, i), (y, j)) = γ((x, i∗), (y, j∗)).

Therefore, the binary continuous submetric γ is symmetric if and only if, for all x, y ∈ X
and i, j ∈ {0, 1}, γ((x, i), (y, j)) ≤ γ((x, i∗), (y, j∗)). Now use the fact that the statement
with ≤ is equivalent to the statement with = (since i∗∗ = i).
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5.7. Lemma. A reflexive continuous submetric γ on a separated metric compact Hausdorff
space X is transitive if and only if, for all x, y ∈ X and i ∈ {0, 1},

γ((x, i), (y, i∗)) = inf
z∈X

(
γ((x, i), (z, i∗)) + γ((z, i), (y, i∗))

)
.

Proof. Let
(
q0
q1

)
: X + X ↠ S be the binary corelation associated with γ. To improve

readability, we write [x, i] instead of
(
q0
q1

)
(x, i). By definition of transitivity, the binary

continuous submetric γ is transitive if and only if, given a pushout square in MetCHsep as
in the left-hand diagram below, there is a morphism t : S → P such that the right-hand
diagram commutes.

X S

S P

q1

q0

λ1

λ0

⌜

X +X

S P

(q0q1) (λ0◦q0λ1◦q1)

t

By Theorem 3.8 and Remark 3.1, such a t exists precisely when

κ(λ0◦q0λ1◦q1)
≤ κ(q0q1)

,

i.e., when, for every (x, i), (y, j) ∈ X +X,

dP

((
λ0 ◦ q0
λ1 ◦ q1

)
(x, i),

(
λ0 ◦ q0
λ1 ◦ q1

)
(y, j)

)
≤ γ((x, i), (y, j)).

The former equals dP (λi([x, i]), λj([y, j])). Recall that γ is reflexive provided q0 and q1 are
both sections of a morphism d : S → X. In particular, q0 and q1 are regular monomor-
phisms in MetCHsep. Thus, by Corollary 4.3,

dP (λi([x, i]), λj([y, j])) =

{
γ(x, y) if i = j,

infz∈X
(
γ((x, i), (z, j)) + γ((z, i), (y, j))

)
if i ̸= j.

All told, we obtain a characterisation of equivalence continuous submetrics.

5.8. Theorem. A binary continuous submetric γ on a separated metric compact Haus-
dorff space X is an equivalence continuous submetric if and only if, for all x, y ∈ X and
i, j ∈ {0, 1},

dX(x, y) ≤ γ((x, i), (y, j)) = γ((x, i∗), (y, j∗))

and
γ((x, i), (y, i∗)) = inf

z∈X

(
γ((x, i), (z, i∗)) + γ((z, i), (y, i∗))

)
.

Proof. By Lemmas 5.4, 5.6 and 5.7.
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5.9. Remark. MetCHop
sep is not a Mal’tsev category, since not every reflexive relation is

an equivalence relation. Indeed, the following is an example of a reflexive non-symmetric
binary continuous submetric on a one-point space {∗} (with d(∗, ∗) = 0):

γ((∗, 0), (∗, 0)) = γ((∗, 0), (∗, 1)) = γ((∗, 1), (∗, 1)) = 0 and γ((∗, 1), (∗, 0)) =∞.

This corresponds to the surjection {(∗, 0), (∗, 1)} → {a1, a2}, (∗, i) 7→ ai, where d(ai, aj)
is ∞ if i = 1 and j = 0, and 0 otherwise.

Dualising the definition of effective equivalence relations, an equivalence corelation(
q0
q1

)
: X + X ↠ S on a separated metric compact Hausdorff space X (and so the corre-

sponding equivalence continuous submetric) is effective if it coincides with the cokernel
pair of its equaliser, i.e. if the following is a pushout in MetCHsep

A X

X S,

i

i q1

q0

where i : A ↪→ X is the equaliser of q0, q1 : X ⇒ S in MetCHsep.

5.10. Notation. For a closed subspace A of a separated metric compact Hausdorff space
X, we define the map γA : (X + X) × (X × X) → [0,∞] by setting, for x, y ∈ X and
i ∈ {0, 1},

γA((x, i), (y, i)) := d(x, y),

γA((x, i), (y, i∗)) := inf
a∈A

(
d(x, a) + d(a, y)

)
.

5.11. Lemma. Let X be a separated metric compact Hausdorff space. The binary contin-
uous submetric on X associated with the pushout in MetCHsep of an embedding A ↪→ X
along itself is γA.

Proof. This is an immediate consequence of Corollary 4.3.

5.12. Lemma. Let γ be an equivalence continuous submetric on a separated metric com-
pact Hausdorff space X, and set

A := {a ∈ X | γ((a, 0), (a, 1)) = 0} = {a ∈ X | γ((a, 1), (a, 0)) = 0}.

Then γ is effective if and only if for all x, y ∈ X and i ∈ {0, 1}, we have

γ((x, i), (y, i∗)) = inf
a∈A

(
dX(x, a) + dX(a, y)

)
.
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Proof. Let us endow A with the induced topology and induced metric. Denoting by(
q0
q1

)
: X +X ↠ S the binary corelation on X associated with γ, we have

A = {a ∈ X | d(q0(a), q1(a)) = 0 = d(q1(a), q0(a))} = {a ∈ X | q0(a) = q1(a)}.

Therefore, the embedding A ↪→ X is the equaliser of q0, q1 : X ⇒ S in MetCHsep. Thus, γ
is effective if and only if the following is a pushout in MetCHsep.

A X

X S

q1

q0

In turn, by Lemma 5.11, this is equivalent to saying that γ = γA. By definition of γA, for
all x, y ∈ X and i ∈ {0, 1} we have

γA((x, i), (y, i)) = d(x, y),

and
γA((x, i), (y, i∗)) = inf

a∈A

(
d(x, a) + d(a, y)

)
.

By Remark 5.5, γ((x, i), (y, i)) = d(x, y). The desired fact follows.

5.13. Lemma. Let X be a compact Hausdorff space. Let ρ : X × X → [0,∞] be a con-
tinuous function with respect to the upper topology of [0,∞], and suppose that, for all
x, y ∈ X,

ρ(x, y) = inf
z∈X

(
ρ(x, z) + ρ(z, y)

)
.

Then, setting A := {x ∈ X | ρ(x, x) = 0}, we have, for all x, y ∈ X,

ρ(x, y) = inf
a∈A

(
ρ(x, a) + ρ(a, y)

)
.

Proof. By the triangle inequality, it is enough to prove the inequality ≥.
Fix x, y ∈ X, and let us prove ρ(x, y) ≥ infa∈A

(
ρ(x, a) + ρ(a, y)

)
.

If ρ(x, y) = ∞, the inequality is trivial. Let us then assume that ρ(x, y) < ∞. It is
enough to show that the set

{a ∈ A | ρ(x, y) = ρ(x, a) + ρ(a, y)} (1)

is non-empty; for this, by compactness of X, it is enough to prove that this set is a
codirected intersection of closed non-empty sets (see [Eng89, Theorem 3.1.1]).

Let V be the set of closed subsets of X, and, for each λ ∈ ]0,∞], set

Wλ := {K ∈ V | ∃u, v ∈ K. ρ(u, v) ≤ λ, ρ(x, u) + ρ(u, v) + ρ(v, y) = ρ(x, y)}.
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Let F be the set of finite closed covers of X, i.e. the set of finite subsets A of V such
that

⋃
A = X. For every A ∈ F and λ ∈ ]0,∞], we set

DA
λ :=

⋃
K∈A∩Wλ

K.

We now prove that the set {DA
λ | A ∈ F , λ ∈ ]0,∞]} is a codirected set of closed

non-empty sets whose intersection is (1).
For all A ∈ F and λ ∈ ]0,∞], the set DA

λ is closed because it is a finite union of closed
sets.

The set {DA
λ | A ∈ F , λ ∈ ]0,∞]} is codirected because D

{X}
∞ belongs to it and,

for all A,A′ ∈ F and λ, λ′ ∈ ]0,∞], setting Ā := {K ∩K ′ | K ∈ A, K ′ ∈ A′} and λ̄ :=
min{λ, λ′},

DĀ
λ̄ ⊆ DA

λ ∩DA′

λ′ .

We show that, for all A ∈ F and λ ∈ ]0,∞], the set DA
λ is non-empty. We denote with

♯S the cardinality of a set S. Pick any natural number l such that l
♯A > 1 and ρ(x,y)

l
♯A−1

≤ λ.
Having fixed x, y ∈ X, we can use non-emptiness of X, and so for all u, v ∈ X there
is z ∈ X such that ρ(u, v) = ρ(u, z) + ρ(z, v), i.e. the infimum in the hypothesis of the
lemma is a minimum. Thus, there are z1, . . . , zl ∈ X such that

ρ(x, y) = ρ(x, z1) + ρ(z1, z2) + · · ·+ ρ(zl−1, zl) + ρ(zl, y).

Since every zi belongs to some K ∈ A, we have
∑

K∈A ♯(K ∩ {z1, . . . , zl}) ≥ l. Therefore,
the average of ♯(K ∩{z1, . . . , zl}) for K ranging in A is greater than or equal to l

♯A . (The
average makes sense because, by non-emptiness of X, ♯A ≠ 0.) Therefore, there is K ∈ A
with ♯(K ∩ {z1, . . . , zl}) ≥ l

♯A . Let zi1 , . . . , zin (with i1 < · · · < in) be an enumeration of
the elements of K ∩ {z1, . . . , zl}. Note that n ≥ l

♯A > 1 and so n ≥ 2. We have

ρ(x, y) = ρ(x, z1) + ρ(z1, z2) + · · ·+ ρ(zl−1, zl) + ρ(zl, y)

≥ ρ(zi1 , zi2) + · · ·+ ρ(zin−1 , zin).

Therefore, the average of ρ(zij , zij) for j ranging in {1, . . . , n − 1} is less than or equal
to ρ(x,y)

n−1
. (The average makes sense since n ≥ 2 and so n − 1 ≥ 1.) Therefore, there is

j ∈ {1, . . . , n− 1} such that

ρ(zij , zij+1
) ≤ ρ(x, y)

n− 1
,

and so
ρ(zij , zij+1

) ≤ ρ(x, y)

n− 1
≤ ρ(x, y)

l
♯A − 1

≤ λ.

We have

ρ(x, y) ≤ ρ(x, zij) + ρ(zij , zij+1
) + ρ(zij+1

, y) by triangle inequality
≤ ρ(x, z1) + ρ(z1, z2) + · · ·+ ρ(zl−1, zl) + ρ(zl, y) by triangle inequality
= ρ(x, y),
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and hence
ρ(x, y) = ρ(x, zij) + ρ(zij , zij+1

) + ρ(zij+1
, y).

Therefore, K ∈ Wλ. Thus, ∅ ̸= K ⊆ DA
λ , and hence DA

λ ̸= ∅.
We now prove ⋂

A∈F , λ∈]0,∞]

DA
λ = {a ∈ A | ρ(x, y) = ρ(x, a) + ρ(a, y)}. (2)

The inclusion ⊇ is immediate.
Let us prove the converse inclusion, i.e. ⊆. Let z ∈

⋂
A∈F , λ∈]0,∞] D

A
λ .

We first prove that ρ(x, y) = ρ(x, z)+ρ(z, y). By way of contradiction, suppose this is
not the case. Then, ρ(x, y) < ρ(x, z)+ρ(z, y) (since the inequality ≥ holds by the triangle
inequality). The function

f : X ×X −→ [0,∞]

(u, v) 7−→ ρ(x, u) + ρ(v, y)

is continuous with respect to the upper topology of [0,∞] because ρ is such. Since
f(z, z) = ρ(x, z) + ρ(z, y) > ρ(x, y), there is an open neighbourhood U of z such that,
for all u, v ∈ U , f(u, v) > ρ(x, y). Then, since X is a compact Hausdorff space, there are
closed subsets K and L of X such that z ∈ K ⊆ U , z /∈ L and K ∪ L = X. We have
K /∈ W∞ because for all u, v ∈ K we have ρ(x, u) + ρ(u, v) + ρ(v, y) = f(u, v) + ρ(u, v) ≥
f(u, v) > ρ(x, y). From K /∈ W∞ and z /∈ L we deduce z /∈ D

{K,L}
∞ , a contradiction.

Thus, ρ(x, y) = ρ(x, z) + ρ(z, y).
We now prove z ∈ A, i.e. ρ(z, z) = 0. By way of contradiction, suppose this is not the

case. Choose λ such that 0 < λ < ρ(z, z). Then, since ρ is continuous, there is an open
neighbourhood U of z such that ρ(u, v) > λ for all u, v ∈ U . Then, since X is compact
and Hausdorff, there are closed subsets K and L of X such that z ∈ K ⊆ U , z /∈ L and
K ∪ L = X. We have K /∈ Wλ since ρ(u, v) > λ for all u, v ∈ X. From K /∈ Wλ and
z /∈ L we deduce z /∈ D

{K,L}
λ , a contradiction.

By compactness,
⋂

A∈F , λ∈]0,∞] D
A
λ is non-empty and thus, by (2), there is a ∈ A such

that ρ(x, y) = ρ(x, a) + ρ(a, y).

5.14. Remark. Lemma 5.13 has the following corollary: given a closed idempotent en-
dorelation ≺ on a compact Hausdorff space X, for every x, y ∈ X with x ≺ y there is
a ∈ X such that x ≺ a ≺ a ≺ y. Indeed, it is enough to apply Lemma 5.13 to the
continuous function d : X ×X → [0,∞] defined by

d(x, y) =

{
0 if x ≺ y,
∞ otherwise.

5.15. Theorem. Every equivalence corelation in MetCHsep is effective.
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Proof. Let γ be an equivalence continuous submetric on X ∈ MetCHsep. For x, y ∈ X,
set ρ(x, y) := γ((x, 0), (y, 1)) (= γ((x, 1), (y, 0)), by Lemma 5.6). Set

A := {a ∈ X | ρ(a, a) = 0}.

In view of Lemma 5.12, we shall show that, for all x, y ∈ X,

ρ(x, y) = inf
a∈A

(
dX(x, a) + dX(a, y)

)
.

Here are some properties of ρ.

1. For all x, y ∈ X, d(x, y) ≤ ρ(x, y).

2. For all x, y, z ∈ X, ρ(x, y) ≤ d(x, z) + ρ(z, y).

3. For all x, y, z ∈ X, ρ(x, y) ≤ ρ(x, z) + d(z, y).

4. The function ρ : X ×X → [0,∞] is continuous with respect to the upper topology
of [0,∞].

5. For all x, y ∈ X, ρ(x, y) = infz∈X
(
ρ(x, z) + ρ(z, y)

)
.

Indeed, (1) follows from Lemma 5.4, (2) and (3) follow from the triangle inequality of γ
and the fact that γ is below the coproduct metric, (4) follows from the continuity of γ,
and (5) follows from Lemma 5.7 and the transitivity of γ.

Therefore, we can apply Lemma 5.13 to ρ and obtain

ρ(x, y) = inf
a∈A

(
ρ(x, a) + ρ(a, y)

)
.

Moreover, for all x ∈ X and a ∈ A, we have

ρ(x, a) ≤ d(x, a) + ρ(a, a) = d(x, a) ≤ ρ(x, a),

and hence ρ(x, a) = d(x, a); similarly, ρ(a, x) = d(a, x).
Therefore, for all x, y ∈ X,

ρ(x, y) = inf
a∈A

(
ρ(x, a) + ρ(a, y)

)
= inf

a∈A

(
d(x, a) + d(a, y)

)
.

Finally, from Theorems 4.8 and 5.15 we obtain the main result:

5.16. Theorem. MetCHsep is Barr-coexact.

Let us quickly point out that there is no hope for such a result to hold without
separation, as it is already visible in the preordered case.



222 MARCO ABBADINI AND DIRK HOFMANN

5.17. Example. [Preorders are not Barr-exact] In the category of preordered sets and
monotone functions, equivalence relations need not be effective. Indeed, the two maps
from a singleton {∗} to a two-element set {a, b} with a ≤ b and b ≤ a form an equivalence
corelation on {∗} which is not effective.

Theorem 5.16 shows an algebraic trait of the dual of MetCHsep. As a negative result, we
note that MetCHsep cannot be dually equivalent to a variety of finitary algebras, since, by
[HN23, Corollary 4.30], every finitely copresentable object in MetCHsep is finite. However,
the following remains open to us:

5.18. Question. Is the category MetCHsep dually equivalent to a (possibly many-sorted)
variety of (possibly infinitary) algebras?

Having shown that the complete category MetCHsep is coexact, this problem amounts
(see [Bor94, AR94]) to the question of whether MetCHsep has a regular cogenerating set
formed by regular injective objects.

6. The symmetric and the ordered cases

Let us end this paper with a few remarks about symmetric metrics and compact ordered
spaces. Recall from Remark 2.8 that MetCHsep,sym denotes the full subcategory of MetCHsep

defined by the symmetric objects (i.e. those satisfying d(x, y) = d(y, x)), and that the
inclusion functor MetCHsep,sym → MetCHsep has a right adjoint and a left adjoint. This,
together with the fact that MetCHsep is Barr-coexact (Theorem 5.16), implies immediately
the following result.

6.1. Theorem. The category MetCHsep,sym is Barr-coexact.

6.2. Remark. Building on the results of Section 3, it is easy to see that, in the symmetric
case, the class of equivalence classes of surjections going out from (X, dX) is in bijection
with the continuous symmetric submetrics on X.

6.3. Remark. The category CH of compact Hausdorff spaces, which can be identified
with the full subcategory of PosCH defined by the symmetric objects, is coMal’tsev (see
[BB04] for the definition of Mal’tsev category and the proof of [BW85, Theorem 1.11 of
Chapter 9]). One might then suspect that MetCHsep,sym is coMal’tsev too. However, this
is not the case: MetCHop

sep,sym is not a Mal’tsev category, as there are reflexive internal
relations in MetCHop

sep,sym that are neither symmetric nor transitive. An example is the
following: let X = {a, b} be a two-element discrete space, with metric d(a, b) = d(b, a) = 1
(and self-distances equal to 0). Consider the following binary continuous submetric γ on
X (i.e. a continuous metric below dX+X): self-distances are 0, and all other distances
are ∞, except for the distances from (a, 0) to (b, 1) and from (b, 1) to (a, 0) which are 1.
Comparing this to the “ordered” case, it seems that what breaks being Mal’tsev is the
possibility of having more than just two possible values for the distances.
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Recall also from Remark 2.7 that the inclusion PosCH ↪→ MetCHsep has both a right
and a left adjoint. This, together with the fact that MetCHsep is Barr-coexact (Theo-
rem 5.16), implies immediately the main result of [AR20]:

6.4. Theorem. The category PosCH is Barr-coexact.

While the proof in [AR20] uses Zorn’s lemma, here we have illustrated a choice-free
proof (thanks to a choice-free proof of Remark 5.14).
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