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SKEW MONOIDAL STRUCTURES ON ACTEGORIES

PAVLA PROCHÁZKOVÁ

Abstract. We present a construction of skew monoidal structures from strong actions.
We prove that the existence of a certain adjoint allows one to equip the actegory with a
skew monoidal structure and that this adjunction becomes monoidal. This construction
provides a unifying framework for the description of several examples of skew monoidal
categories. We also demonstrate how braidings on the original monoidal category of a
given action induce braidings on the resulting skew monoidal structure on the actegory
and describe sufficient conditions for closedness of the resulting skew monoidal structure.

1. Introduction

Skew monoidal categories are a generalization of monoidal categories, where we remove the
requirement that the constraint morphisms be invertible and specify certain orientations
of those. An example of a structure of this kind appeared first, at least to the knowledge
of the author, in the work of Altenkirch, Chapman and Uustalu in 2010 [ACU10] (and
later in a reworked version [ACU15]). Their paper concerns relative monads, which can
be regarded as a generalization of monads from endofunctors to functors of more general
form C ! D. For a fixed functor 𝐽 : C ! D, we speak of relative monads on the functor
𝐽 or simply 𝐽-relative monads. As monads can be regarded as monoids in the category
of endofunctors, so can 𝐽-relative monads be regarded as monoids in a skew monoidal
structure on the functor category [C,D] with tensor 𝐺 ◁ 𝐹 = Lan𝐽𝐺 ◦ 𝐹 (assuming that
the left Kan extensions exist).

Another class of examples which motivated introduction of these structures comes
from the study of bialgebras, or more generally bialgebroids, for which the base ring need
not be commutative. Szlachányi observed that bialgebroids give rise to these generalized
monoidal structures and introduced the name skew monoidal category in [Szl12]. In fact,
he shows that bialgebroids can be fully characterized by closed skew monoidal structures.
In the case of bialgebras, the tensor is defined as 𝑋 ⊗ 𝐵 ⊗ 𝑌 , where 𝐵 is the bialgebra1.
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© Pavla Procházková, 2025. Permission to copy for private use granted.

1The tensor induced by bialgebroids is similar, just requiring more subtlety.
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The main focus of this paper is to study skew monoidal structures arising on actegories.
The term actegory refers to a category A, which has some (skew) monoidal category V
acting on it. We prove that given a strong action (−) ∗ (−) : V×A ! A, the existence of
an adjoint to the functor (−) ∗ 𝐽 : V ! A, obtained by fixing an object 𝐽 in A, suffices
to equip the actegory with a skew monoidal structure.

This result provides a unifying framework for many of the existing examples of skew
monoidal categories. We see that the structure on functor categories defined via Kan
extensions as well as all structures induced by bialgebras can be seen to arise in this
way. Furthermore, it allows for a more conceptual treatment of several notions on skew
monoidal categories, including braidings and closedness.

The paper is structured in the following way. In Section (2), we recall the definition of
a skew monoidal category and introduce strong actions of categories. Section (3) contains
the statement and proof of the main result of the paper, which provides a construction
of a skew monoidal structure on an actegory given that a certain adjunction exists. In
Section (4), we show that this adjunction is monoidal with respect to the (skew) monoidal
structure of the acting category V and the newly defined tensor on the actegory A.

Section (5) is dedicated to describing examples of skew monoidal categories, which
can be seen as arising from Theorem (3.1). We give an account of existing examples of
skew monoidal categories, which fit under the framework of (3.1) – these comprise the
examples on functor categories of [ACU15] and examples of monoidal tensors warped by
an oplax monoidal monad (or monoidal comonad), which include examples arising from
bialgebras.

In Section (6), we investigate braidings on the skew monoidal structure induced by
actions. Starting with an action of a braided monoidal category, we prove that there is an
induced braiding on the skew monoidal structure in the sense of Bourke and Lack [BL20].
These authors define braidings on a left skew monoidal category as isomorphisms of form
(𝑃◁ 𝐴)◁𝐵 ! (𝑃◁𝐵)◁ 𝐴. One can also consider isomorphisms 𝐴◁ (𝐵◁𝑃) ! 𝐵◁ (𝐴◁𝑃).
In fact, considering different variations of Theorem (3.1), we can obtain either of those
versions of a braiding on both left and right skew monoidal categories.

In Section (7), we explore sufficient conditions for the skew monoidal structures in-
duced by actions to be left or right closed.

Related work.The idea that certain (skew) monoidal actions give rise to skew monoidal
structures on the actegory has already been explored by Szlachányi in [Szl17]. That paper
treats cases where the action ∗ has the property that for any object 𝐴 in the actegory
A, the induced functor (−) ∗ 𝐴 has a right adjoint. We call these actegories closed.
Proposition 6.1 of [ibid.] presents a construction of a skew monoidal structure from the
data of a closed actegory, which is a result closely related to the main theorem of this
thesis. However, our Theorem (3.1) is more general. The connection with Szlachányi’s
result is discussed in more detail in Remark (3.5)

The main theorem in this paper also seems to be closely related to a result presented
at the CT in 2018 by Philip Saville as a part of a joint work with Marcelo Fiore. In
their setting, one assumes a skew action ∗ : A × V ! A and a strong adjunction
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𝐹 ⊣ 𝑈 : V ! A. Then, 𝐴 ∗𝑈𝐵 defines a left skew monoidal tensor on A with unit 𝐹𝐼.

2. Preliminary definitions

2.1. Skew monoidal categories.

2.2. Definition. A left skew monoidal category is given by a category A together with
a product ⊗ : A ×A ! A, unit 𝐼 ∈ A and three natural families of morphisms

(𝐴 ⊗ 𝐵) ⊗ 𝐶 𝛾𝐴,𝐵,𝐶
−−−! 𝐴 ⊗ (𝐵 ⊗ 𝐶) (associator)

𝐼 ⊗ 𝐴
𝜆𝐴−! 𝐴 (left unitor)

𝐴
𝜌𝐴−! 𝐴 ⊗ 𝐼 (right unitor)

satisfying the following five axioms:

(𝐴 ⊗ (𝐵 ⊗ 𝐶)) ⊗ 𝐷

((𝐴 ⊗ 𝐵) ⊗ 𝐶) ⊗ 𝐷 𝐴 ⊗ ((𝐵 ⊗ 𝐶) ⊗ 𝐷)

(𝐴 ⊗ 𝐵) ⊗ (𝐶 ⊗ 𝐷) 𝐴 ⊗ (𝐵 ⊗ (𝐶 ⊗ 𝐷))

𝛾𝐴,𝐵⊗𝐶,𝐷𝛾𝐴,𝐵,𝐶⊗𝐷

𝛾𝐴⊗𝐵,𝐶,𝐷 𝐴⊗𝛾𝐵,𝐶,𝐷

𝛾𝐴,𝐵,𝐶⊗𝐷

(LSkM1)

𝐴 ⊗ 𝐵

(𝐴 ⊗ 𝐵) ⊗ 𝐼 𝐴 ⊗ (𝐵 ⊗ 𝐼)

𝜌𝐴⊗𝐵 𝐴⊗𝜌𝐵

𝛾𝐴,𝐵,𝐼

(LSkM2)

(𝐼 ⊗ 𝐴) ⊗ 𝐵 𝐼 ⊗ (𝐴 ⊗ 𝐵)

𝐴 ⊗ 𝐵

𝛾𝐼,𝐴,𝐵

𝜆𝐴⊗𝐵 𝜆𝐴⊗𝐵
(LSkM3)

𝐼 ⊗ 𝐼

𝐼 𝐼

𝜆𝐼𝜌𝐼 (LSkM4)

(𝐴 ⊗ 𝐼) ⊗ 𝐵 𝐴 ⊗ (𝐼 ⊗ 𝐵)

𝐴 ⊗ 𝐵 𝐴 ⊗ 𝐵

𝛾𝐴,𝐼,𝐵

𝜌𝐴⊗𝐵 𝐴⊗𝜆𝐵 (LSkM5)

By reversing all arrows in the definition above, we obtain the definition of a right skew
monoidal category.
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2.3. Remark. When generalizing the definition of a monoidal category by removing
invertibility, one could also consider different orientations of the constraint morphisms
and adjust the five axioms accordingly.

The particular orientations of left/right skew monoidal categories provide several nice
properties. These structures are self dual in the sense that if (A, ⊗, 𝐽) is a left skew
monoidal category, then (Aop, ⊗rev, 𝐽) with 𝐴 ⊗rev 𝐵 ··= 𝐵 ⊗ 𝐴 is also a left skew monoidal
category.

In a skew monoidal category, tensoring with the unit constitutes a co/monad. Namely
in a left skew monoidal category (A, ⊗, 𝐽), the functor (−) ⊗ 𝐽 is a monad on A. By self-
duality, the functor 𝐽 ⊗ (−) is then a comonad.

2.4. Strong actions of categories. Situations in which we have a monoidal category
acting on another category in a “monoidal way” (namely with invertible constraints) have
been studied for a long time. A comprehensive treatment can be found for instance in
[CG22]. The notion of a skew monoidal category suggest the study of actions of a skew
monoidal category which are skew in the sense that the constraints are generally not
isomorphisms. This setting has been explored for instance by Szlachányi in [Szl17].

Actions generally considered in this paper are in some sense a hybrid of these two
notions. We will not make use of the invertibility of the constraint morphisms of the
acting category, which allows us to consider skew monoidal categories. However, we will
exploit the invertibility of the comparison morphisms of the action. This leads to the
following notion, which we call a strong action.

2.5. Definition. Let (V, ⊗, 𝐼, 𝑎, ℓ, 𝑟) be a left skew monoidal category and A an ordi-
nary category. A strong (left) action of V on A is defined as a bifunctor

V ×A ! A
(𝑋, 𝐴) 7! 𝑋 ∗ 𝐴

together with two natural families of isomorphisms

(𝑋 ⊗ 𝑌 ) ∗ 𝐴
𝑚

𝑋,𝑌

𝐴−−−! 𝑋 ∗ (𝑌 ∗ 𝐴) (multiplicator)

𝐼 ∗ 𝐴 𝑢𝐴−! 𝐴 (unitor)

such that ∗ is compatible with the skew monoidal structure of V, i.e. the following coher-
ence axioms are satisfied

(𝑋 ⊗ (𝑌 ⊗ 𝑍)) ∗ 𝐴

((𝑋 ⊗ 𝑌 ) ⊗ 𝑍) ∗ 𝐴 𝑋 ∗ ((𝑌 ⊗ 𝑍) ∗ 𝐴)

(𝑋 ⊗ 𝑌 ) ∗ (𝑍 ∗ 𝐴) 𝑋 ∗ (𝑌 ∗ (𝑍 ∗ 𝐴))

𝑚
𝑋,𝑌⊗𝑍
𝐴𝑎𝑋,𝑌 ,𝑍∗𝐴

𝑚
𝑋⊗𝑌,𝑍

𝐴
𝑋∗𝑚𝑌,𝑍

𝐴

𝑚
𝑋,𝑌

𝑍∗𝐴

(LAct1)
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(𝐼 ⊗ 𝑋) ∗ 𝐴 𝐼 ∗ (𝑋 ∗ 𝐴)

𝑋 ∗ 𝐴

𝑚
𝐼,𝑋

𝐴

ℓ𝑋∗𝐴 𝑢𝑋∗𝐴
(LAct2)

𝑋 ∗ 𝐴 𝑋 ∗ 𝐴

(𝑋 ⊗ 𝐼) ∗ 𝐴 𝑋 ∗ (𝐼 ∗ 𝐴)

𝑟𝑋∗𝐴 𝑋∗𝑢𝐴

𝑚
𝑋,𝐼

𝐴

(LAct3)

We say that (A, ∗, 𝑚, 𝑢) is a strong (left) V-action, or simply that A is a strong (left)
V-actegory.

2.6. Remark. Similarly, we can define a strong left action of a right skew monoidal
category – here, we can consider multiplicator of form 𝑋 ∗ (𝑌 ∗ 𝐴) ! (𝑋 ⊗ 𝑌 ) ∗ 𝐴 and
unitor of form 𝐴 ! 𝐼 ∗ 𝐴 and define the corresponding action axioms by reversing the
arrows in (LAct1), (LAct2) and (LAct3).

We will also consider strong right actions of a left skew monoidal category V on A,
which comprise a bifunctor

A ×V ! A
(𝐴, 𝑋) 7! 𝐴 ∗ 𝑋

and for any 𝑋,𝑌 in V and 𝐴 in A a multiplicator morphism (𝐴 ∗ 𝑋) ∗ 𝑌 ! 𝐴 ∗ (𝑋 ⊗ 𝑌 )
and a unitor morphism 𝐴 ! 𝐴 ∗ 𝐼 and three axioms analogous to (LAct1), (LAct2) and
(LAct3).

Analogously, we may also define a strong right action of a right skew monoidal category.

2.7. Remark. If we take V to be monoidal in (2.5), we recover the usual notion of a
monoidal action of V on A as defined for instance in [CG22].

3. Skew monoidal structures arising from actions

Given an object 𝐽 in A, let us denote by 𝐽∗ the functor V ! A defined as 𝐽∗𝑋 ··= 𝑋 ∗ 𝐽
for 𝑋 ∈ V.

3.1. Theorem. Let V = (V, ⊗, 𝐼, 𝑎, ℓ, 𝑟) be a left skew monoidal category and (A, ∗, 𝑚, 𝑢)
a strong left V-action. Suppose there exists an object 𝐽 ∈ A such that 𝐽∗ has a left adjoint
𝐽! ⊣ 𝐽∗.

Then there is a left skew monoidal structure (A,◁, 𝐽, 𝛾, 𝜆, 𝜌) on A defined in the
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following way. For any 𝐴, 𝐵, 𝐶 ∈ A, we put 𝐴 ◁ 𝐵 ··= 𝐽!𝐴 ∗ 𝐵

𝛾𝐴,𝐵,𝐶 ··= 𝐽!(𝐽!𝐴 ∗ 𝐵) ∗ 𝐶 𝛾𝐴,𝐵∗𝐶
−−−−! (𝐽!𝐴 ⊗ 𝐽!𝐵) ∗ 𝐶

𝑚
𝐽!𝐴,𝐽!𝐵

𝐶−−−−−! 𝐽!𝐴 ∗ (𝐽!𝐵 ∗ 𝐶)

𝜆𝐴 ··= 𝐽!𝐽 ∗ 𝐴
𝐽!𝑢

−1
𝐽

∗𝐴
−−−−! 𝐽!(𝐼 ∗ 𝐽) ∗ 𝐴

𝜖𝐼∗𝐴−−! 𝐼 ∗ 𝐴 𝑢𝐴−! 𝐴

𝜌𝐴 ··= 𝐴
𝜂𝐴−! 𝐽!𝐴 ∗ 𝐽

where 𝜂 is the unit of 𝐽! ⊣ 𝐽∗ and 𝛾𝐴,𝐵 is the adjoint transpose of
(
𝑚
𝐽!𝐴,𝐽!𝐵

𝐽

)−1 ◦ (𝐽!𝐴 ∗ 𝜂𝐵):

𝐽!𝐴 ∗ 𝐵 𝐽!𝐴∗𝜂𝐵−−−−! 𝐽!𝐴 ∗ (𝐽!𝐵 ∗ 𝐽)
(
𝑚

𝐽!𝐴,𝐽!𝐵

𝐽

)−1
−−−−−−−! (𝐽!𝐴 ⊗ 𝐽!𝐵) ∗ 𝐽

𝐽! ⊣ 𝐽∗
𝛾𝐴,𝐵 : 𝐽!(𝐽!𝐴 ∗ 𝐵) ! 𝐽!𝐴 ⊗ 𝐽!𝐵

3.2. Remark. Morphisms of the form 𝐽!(𝐽!𝐴 ∗ 𝐵) ! 𝐽!𝐴 ⊗ 𝐽!𝐵 are sometimes referred
to as a fusion map. Observe that the construction of the fusion map 𝛾 defined in the
theorem can be easily generalized, if instead of 𝐽!𝐴 we consider arbitrary objects of V.

𝑋 ∗ 𝐵 𝑋∗𝜂𝐵−−−! 𝑋 ∗ (𝐽!𝐵 ∗ 𝐽)
(
𝑚

𝑋,𝐽!𝐵

𝐽

)−1
−−−−−−! (𝑋 ⊗ 𝐽!𝐵) ∗ 𝐽

𝐽! ⊣ 𝐽∗
𝜍𝑋,𝐵 : 𝐽!(𝑋 ∗ 𝐵) ! 𝑋 ⊗ 𝐽!𝐵

The map 𝜍 is called a strength. Morphism families of this form play an important role in
the definition of functors between V-actegories [Szl17, Definition 2.7].

A useful observation is that the definition of 𝜍 (or 𝛾) via adjoint transposition entails
the two following equations.

𝐽!(𝑋 ∗ 𝐵) 𝑋 ⊗ 𝐽!𝐵

𝐽!(𝑋 ∗ (𝐽!𝐵 ∗ 𝐽)) 𝐽!((𝑋 ⊗ 𝐽!𝐵) ∗ 𝐽)

𝜍𝑋,𝐵

𝐽! (𝑋∗𝜂𝐵)

𝐽!

(
𝑚

𝑋,𝐽!𝐵

𝐽

)−1
𝜖𝑋⊗𝐽!𝐵 (AT*)

𝑋 ∗ 𝐵 𝐽!(𝑋 ∗ 𝐵) ∗ 𝐽

𝑋 ∗ (𝐽!𝐵 ∗ 𝐽) (𝑋 ⊗ 𝐽!𝐵) ∗ 𝐽

𝜂𝑋∗𝐵

𝑋∗𝜂𝐵 𝜍𝑋,𝐵∗𝐽

(
𝑚

𝑋,𝐽!𝐵

𝐽

)−1
(AT)
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Proof. (LSkM1) The first axiom transcribes to:

𝐽!(𝐽!𝐴 ∗ (𝐽!𝐵 ∗ 𝐶)) ∗ 𝐷

𝐽!(𝐽!(𝐽!𝐴 ∗ 𝐵) ∗ 𝐶) ∗ 𝐷 𝐽!𝐴 ∗ 𝐽!(𝐽!𝐵 ∗ 𝐶) ∗ 𝐷

𝐽!(𝐽!𝐴 ∗ 𝐵) ∗ (𝐽!𝐶 ∗ 𝐷) 𝐽!𝐴 ∗ (𝐽!𝐵 ∗ (𝐽!𝐶 ∗ 𝐷))

𝛾𝐴,𝐽!𝐵∗𝐶,𝐷𝐽!𝛾𝐴,𝐵,𝐶∗𝐷

𝛾𝐽!𝐴∗𝐵,𝐶,𝐷 𝐽!𝐴∗𝛾𝐵,𝐶,𝐷

𝛾𝐴,𝐵,𝐽!𝐶∗𝐷

If we write out the associator maps 𝛾 as they are defined, then among others, vertices
𝐽!((𝐽!𝐴⊗𝐽!𝐵)∗𝐶)∗𝐷 and (𝐽!𝐴⊗(𝐽!𝐵⊗𝐽!𝐶))∗𝐷 appear. Notice that these can be connected
via the strength 𝜍𝐽!𝐴⊗𝐽!𝐵,𝐶 ∗ 𝐷. After expanding the diagram, using the definition of 𝛾,
the diagram looks as follows.

𝐽!(𝐽!𝐴 ∗ (𝐽!𝐵 ∗ 𝐶)) ∗ 𝐷 (𝐽!𝐴 ⊗ 𝐽!(𝐽!𝐵 ∗ 𝐶)) ∗ 𝐷 𝐽!𝐴 ∗ (𝐽!(𝐽!𝐵 ∗ 𝐶) ∗ 𝐷)

𝐽!((𝐽!𝐴 ⊗ 𝐽!𝐵) ∗ 𝐶) ∗ 𝐷 (𝐽!𝐴 ⊗ (𝐽!𝐵 ⊗ 𝐽!𝐶)) ∗ 𝐷 𝐽!𝐴 ∗ ((𝐽!𝐵 ⊗ 𝐽!𝐶) ∗ 𝐷)

𝐽!(𝐽!(𝐽!𝐴 ∗ 𝐵) ∗ 𝐶) ∗ 𝐷 ((𝐽!𝐴 ⊗ 𝐽!𝐵) ⊗ 𝐽!𝐶) ∗ 𝐷 𝐽!𝐴 ∗ (𝐽!𝐵 ∗ (𝐽!𝐶 ∗ 𝐷))

(𝐽!(𝐽!𝐴 ∗ 𝐵) ⊗ 𝐽!𝐶) ∗ 𝐷 𝐽!(𝐽!𝐴 ∗ 𝐵) ∗ (𝐽!𝐶 ∗ 𝐷) (𝐽!𝐴 ⊗ 𝐽!𝐵) ∗ (𝐽!𝐶 ∗ 𝐷)

𝛾𝐴,𝐽!𝐵∗𝐶∗𝐷

(𝐽!𝐴⊗𝛾𝐵,𝐶 )∗𝐷

𝑚
𝐽!𝐴,𝐽! (𝐽!𝐵∗𝐶 )
𝐷

𝐽!𝑚
𝐽!𝐴,𝐽!𝐵

𝐶
∗𝐷

𝜍𝐽!𝐴⊗𝐽!𝐵,𝐶∗𝐷 𝑎𝐽!𝐴,𝐽!𝐵,𝐽!𝐶
∗𝐷

𝑚
𝐽!𝐴,𝐽!𝐵⊗𝐽!𝐶
𝐷

𝐽!𝐴∗(𝛾𝐵,𝐶∗𝐷)

𝐽! (𝛾𝐴,𝐵∗𝐶)∗𝐷

𝛾𝐽!𝐴∗𝐵,𝐶∗𝐷
𝑚

𝐽!𝐴⊗𝐽!𝐵,𝐽!𝐶
𝐷

𝐽!𝐴∗𝑚
𝐽!𝐵,𝐽!𝐶

𝐷

(𝛾𝐴,𝐵⊗𝐽!𝐶)∗𝐷

𝑚
𝐽! (𝐽!𝐴∗𝐵) ,𝐽!𝐶
𝐷

𝑚
𝐽!𝐴,𝐽!𝐵

𝐽!𝐶∗𝐷

𝛾𝐴,𝐵∗(𝐽!𝐶∗𝐷)

Naturality of 𝑚 ensures commutativity of the upper right square and the square at
the bottom. The pentagon on the right is an instance of (LAct1). It hence remains to
deal with the square and the pentagon on the left.

For the square, it suffices to show that the following commutes.

𝐽!(𝐽!(𝐽!𝐴 ∗ 𝐵) ∗ 𝐶) 𝐽!(𝐽!𝐴 ∗ 𝐵) ⊗ 𝐽!𝐶

𝐽!((𝐽!𝐴 ⊗ 𝐽!𝐵) ∗ 𝐶) (𝐽!𝐴 ⊗ 𝐽!𝐵) ⊗ 𝐽!𝐶

𝛾𝐽!𝐴∗𝐵,𝐶

𝛾𝐴,𝐵⊗𝐽!𝐶𝐽! (𝛾𝐴,𝐵∗𝐶)

𝜍𝐽!𝐴⊗𝐽!𝐵,𝐶

Now, we can take the adjoint transpose of this square. This gives us the following diagram,
which can be filled in to form two squares commuting because of naturality of 𝑚 and
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functoriality of ∗.

𝐽!(𝐽!𝐴 ∗ 𝐵) ∗ 𝐶 𝐽!(𝐽!𝐴 ∗ 𝐵) ∗ (𝐽!𝐶 ∗ 𝐽) (𝐽!(𝐽!𝐴 ∗ 𝐵) ⊗ 𝐽!𝐶) ∗ 𝐽

(𝐽!𝐴 ⊗ 𝐽!𝐵) ∗ 𝐶 (𝐽!𝐴 ⊗ 𝐽!𝐵) ∗ (𝐽!𝐶 ∗ 𝐽) ((𝐽!𝐴 ⊗ 𝐽!𝐵) ⊗ 𝐽!𝐶) ∗ 𝐽

𝐽! (𝐽!𝐴∗𝐵)∗𝜂𝐶
(
𝑚

𝐽! (𝐽!𝐴∗𝐵) ,𝐽!𝐶
𝐽

)−1
(𝛾𝐴,𝐵⊗𝐽!𝐶)∗𝐽𝛾𝐴,𝐵∗𝐶

(𝐽!𝐴⊗𝐽!𝐵)∗𝜂𝐶 (
𝑚

𝐽!𝐴⊗𝐽!𝐵,𝐽!𝐶
𝐽

)−1
𝛾𝐴,𝐵∗(𝐽!𝐶∗𝐽)

For the remaining pentagon, it is enough to show that the following commutes.

𝐽!(𝐽!𝐴 ∗ (𝐽!𝐵 ∗ 𝐶)) 𝐽!𝐴 ⊗ 𝐽!(𝐽!𝐵 ∗ 𝐶)

𝐽!𝐴 ⊗ (𝐽!𝐵 ⊗ 𝐽!𝐶)

𝐽!((𝐽!𝐴 ⊗ 𝐽!𝐵) ∗ 𝐶) (𝐽!𝐴 ⊗ 𝐽!𝐵) ⊗ 𝐽!𝐶

𝛾𝐴,𝐽!𝐵∗𝐶

𝐽!𝑚
𝐽!𝐴,𝐽!𝐵

𝐶

𝐽!𝐴⊗𝛾𝐵,𝐶

𝑎𝐽!𝐴,𝐽!𝐵,𝐽!𝐶

𝜍𝐽!𝐴⊗𝐽!𝐵,𝐶

After transposing, we get

𝐽!𝐴 ∗ (𝐽!𝐵 ∗ 𝐶) 𝐽!𝐴 ∗ (𝐽!(𝐽!𝐵 ∗ 𝐶) ∗ 𝐽) (𝐽!𝐴 ⊗ 𝐽!(𝐽!𝐵 ∗ 𝐶)) ∗ 𝐽

(𝐽!𝐴 ⊗ (𝐽!𝐵 ⊗ 𝐽!𝐶)) ∗ 𝐽

(𝐽!𝐴 ⊗ 𝐽!𝐵) ∗ 𝐶 (𝐽!𝐴 ⊗ 𝐽!𝐵) ∗ (𝐽!𝐶 ∗ 𝐽) ((𝐽!𝐴 ⊗ 𝐽!𝐵) ⊗ 𝐽!𝐶) ∗ 𝐽

𝑚
𝐽!𝐴,𝐽!𝐵

𝐶

𝐽!𝐴∗𝜂𝐽!𝐵∗𝐶
(
𝑚

𝐽!𝐴,𝐽! (𝐽!𝐵∗𝐶 )
𝐽

)−1
(𝐽!𝐴⊗𝛾𝐵,𝐶 )∗𝐽

𝑎𝐽!𝐴,𝐽!𝐵,𝐽!𝐶
∗𝐽

(𝐽!𝐴⊗𝐽!𝐵)∗𝜂𝐶 (
𝑚

𝐽!𝐴⊗𝐽!𝐵,𝐽!𝐶
𝐽

)−1
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which can be filled in as

𝐽!𝐴 ∗ (𝐽!𝐵 ∗ 𝐶) 𝐽!𝐴 ∗ (𝐽!(𝐽!𝐵 ∗ 𝐶) ∗ 𝐽) (𝐽!𝐴 ⊗ 𝐽!(𝐽!𝐵 ∗ 𝐶)) ∗ 𝐽

𝐽!𝐴 ∗ ((𝐽!𝐵 ⊗ 𝐽!𝐶) ∗ 𝐽) (𝐽!𝐴 ⊗ (𝐽!𝐵 ⊗ 𝐽!𝐶)) ∗ 𝐽

𝐽!𝐴 ∗ (𝐽!𝐵 ∗ (𝐽!𝐶 ∗ 𝐽))

(𝐽!𝐴 ⊗ 𝐽!𝐵) ∗ 𝐶 (𝐽!𝐴 ⊗ 𝐽!𝐵) ∗ (𝐽!𝐶 ∗ 𝐽) ((𝐽!𝐴 ⊗ 𝐽!𝐵) ⊗ 𝐽!𝐶) ∗ 𝐽

𝑚
𝐽!𝐴,𝐽!𝐵

𝐶

𝐽!𝐴∗𝜂𝐽!𝐵∗𝐶
(
𝑚

𝐽!𝐴,𝐽! (𝐽!𝐵∗𝐶 )
𝐽

)−1

(𝐽!𝐴⊗𝛾𝐵,𝐶 )∗𝐽

𝑎𝐽!𝐴,𝐽!𝐵,𝐽!𝐶
∗𝐽

(𝐽!𝐴⊗𝐽!𝐵)∗𝜂𝐶

(
𝑚

𝐽!𝐴⊗𝐽!𝐵,𝐽!𝐶
𝐽

)−1

𝐽!𝐴∗(𝛾𝐵,𝐶∗𝐽) (
𝑚

𝐽!𝐴,𝐽!𝐵⊗𝐽!𝐶
𝐽

)−1
𝐽!𝐴∗(𝐽!𝐵∗𝜂𝑐)

𝐽!𝐴∗
(
𝑚

𝐽!𝐵,𝐽!𝐶

𝐽

)−1

(
𝑚

𝐽!𝐴,𝐽!𝐵

𝐽!𝐶∗𝐽

)−1

The pentagon is an instance of LAct1, the upper right square and the lower left square
commute as 𝑚 is natural. Notice that the upper left square can be obtained by applying
𝐽!𝐴 ∗ (−) to the equation (AT) where 𝑋 ··= 𝐽!𝐵 and 𝐵 ··= 𝐶. This concludes the proof of
the first axiom.

(LSkM2) becomes

𝐽!𝐴 ∗ 𝐵

𝐽!(𝐽!𝐴 ∗ 𝐵) ∗ 𝐽 𝐽!𝐴 ∗ (𝐽!𝐵 ∗ 𝐽)

𝜂𝐽!𝐴∗𝐵 𝐽!𝐴∗𝜂𝐵

𝛾𝐴,𝐵,𝐽

which can be written out as

𝐽!𝐴 ∗ 𝐵

𝐽!(𝐽!𝐴 ∗ 𝐵) ∗ 𝐽 𝐽!𝐴 ∗ (𝐽!𝐵 ∗ 𝐽)

(𝐽!𝐴 ⊗ 𝐽!𝐵) ∗ 𝐽

𝜂𝐽!𝐴∗𝐵 𝐽!𝐴∗𝜂𝐵

𝛾𝐴,𝐵∗𝐽 𝑚
𝐽!𝐴,𝐽!𝐵

𝐽

Observe that this is an instance of (AT).
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(LSkM3) transcribes to

𝐽!(𝐽!𝐽 ∗ 𝐴) ∗ 𝐵 𝐽!𝐽 ∗ (𝐽!𝐴 ∗ 𝐵)

𝐽!𝐴 ∗ 𝐵

𝛾𝐽,𝐴,𝐵

𝐽!𝜆𝐴∗𝐵 𝜆𝐽!𝐴∗𝐵

After expanding this, we get

𝐽!(𝐽!𝐽 ∗ 𝐴) ∗ 𝐵 (𝐽!𝐽 ⊗ 𝐽!𝐴) ∗ 𝐵 𝐽!𝐽 ∗ (𝐽!𝐴 ∗ 𝐵)

𝐽!(𝐽!(𝐼 ∗ 𝐽) ∗ 𝐴) ∗ 𝐵 (𝐽!(𝐼 ∗ 𝐽) ⊗ 𝐽!𝐴) ∗ 𝐵 𝐽!(𝐼 ∗ 𝐽) ∗ (𝐽!𝐴 ∗ 𝐵)

𝐽!(𝐼 ∗ 𝐴) ∗ 𝐵 (𝐼 ⊗ 𝐽!𝐴) ∗ 𝐵 𝐼 ∗ (𝐽!𝐴 ∗ 𝐵)

𝐽!𝐴 ∗ 𝐵

𝛾𝐽,𝐴∗𝐵

𝐽! (𝐽!𝑢−1𝐽 ∗𝐴)∗𝐵

𝐽! (𝜖𝐼∗𝐴)∗𝐵

𝐽!𝑢𝐴∗𝐵

(𝐽!𝑢−1𝐽 ⊗𝐽!𝐴)∗𝐵

(𝜖𝐼⊗𝐽!𝐴)∗𝐵

𝐽!𝑢
−1
𝐽

∗(𝐽!𝐴∗𝐵)

𝜖𝐼∗(𝐽!𝐴∗𝐵)

𝑢𝐽!𝐴∗𝐵

𝑚
𝐽!𝐽,𝐽!𝐴

𝐵

𝑚
𝐽! (𝐼∗𝐽 ) ,𝐽!𝐴
𝐵

𝑚
𝐼,𝐽!𝐴

𝐵

ℓ𝐽!𝐴
∗𝐵

The triangle is an instance of (LAct2) and the squares on the right side commute because
𝑚 is natural. It suffices to deal with the following diagram.

𝐽!(𝐽!𝐽 ∗ 𝐴) 𝐽!𝐽 ⊗ 𝐽!𝐴

𝐽!(𝐼 ∗ 𝐽) ⊗ 𝐽!𝐴

𝐼 ⊗ 𝐽!𝐴

𝐽!𝐴 𝐽!𝐴

𝐽!𝜆𝐴

𝛾𝐽,𝐴

𝐽!𝑢
−1
𝐽

⊗𝐽!𝐴

𝜖𝐼⊗𝐽!𝐴

ℓ𝐽!𝐴
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Under transposing, it becomes

𝐽!𝐽 ∗ 𝐴 𝐽!𝐽 ∗ (𝐽!𝐴 ∗ 𝐽) (𝐽!𝐽 ⊗ 𝐽!𝐴) ∗ 𝐽

(𝐽!(𝐼 ∗ 𝐽) ⊗ 𝐽!𝐴) ∗ 𝐽

(𝐼 ⊗ 𝐽!𝐴) ∗ 𝐽

𝐴 𝐽!𝐴 ∗ 𝐽

𝜆𝐴

𝐽!𝐽∗𝜂𝐴
(
𝑚

𝐽!𝐽,𝐽!𝐴

𝐽

)−1
(𝐽!𝑢−1𝐽 ⊗𝐽!𝐴)∗𝐽

(𝜖𝐼⊗𝐽!𝐴)∗𝐽

ℓ𝐽!𝐴
∗𝐽

𝜂𝐴

If we fill in other maps we have, we obtain

𝐽!𝐽 ∗ 𝐴 𝐽!𝐽 ∗ (𝐽!𝐴 ∗ 𝐽) (𝐽!𝐽 ⊗ 𝐽!𝐴) ∗ 𝐽

𝐽!(𝐼 ∗ 𝐽) ∗ 𝐴 𝐽!(𝐼 ∗ 𝐽) ∗ (𝐽!𝐴 ∗ 𝐽) (𝐽!(𝐼 ∗ 𝐽) ⊗ 𝐽!𝐴) ∗ 𝐽

𝐼 ∗ 𝐴 𝐼 ∗ (𝐽!𝐴 ∗ 𝐽) (𝐼 ⊗ 𝐽!𝐴) ∗ 𝐽

𝐴 𝐽!𝐴 ∗ 𝐽

𝐽!𝐽∗𝜂𝐴

𝐽!𝑢
−1
𝐽

∗𝐴

𝜖𝐼∗𝐴

𝑢𝐴

(𝐽!𝑢−1𝐽 ⊗𝐽!𝐴)∗𝐽

(𝜖𝐼⊗𝐽!𝐴)∗𝐽

𝐽!𝑢
−1
𝐽

∗(𝐽!𝐴∗𝐽)

𝜖𝐼∗(𝐽!𝐴∗𝐽)

ℓ𝐽!𝐴
∗𝐽

(
𝑚

𝐽!𝐽,𝐽!𝐴

𝐽

)−1

(
𝑚

𝐽! (𝐼∗𝐽 ) ,𝐽!𝐴
𝐽

)−1

(
𝑚

𝐼,𝐽!𝐴

𝐽

)−1

𝜂𝐴

𝐽! (𝐼∗𝐽)∗𝜂𝐴

𝐼∗𝜂𝐴

𝑢𝐽!𝐴∗𝐽

In this diagram, the triangle is LAct2 and commutativity of all the squares follows from
naturality of the involved morphism families and functoriality of ∗.

(LSkM4) now looks as

𝐽 𝐽

𝐽!𝐽 ∗ 𝐽 𝐽!(𝐼 ∗ 𝐽) ∗ 𝐽 𝐼 ∗ 𝐽

𝜂𝐽

𝐽!𝑢
−1
𝐽

∗𝐽 𝜖𝐼∗𝐽

𝑢𝐽

This diagram can be seen to commute because of naturality of 𝜂 and one of the triangle
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identities of 𝐽! ⊣ 𝐽∗, as demonstrated in the following.

𝐽

𝐽!𝐽 ∗ 𝐽 𝐼 ∗ 𝐽 𝐽

𝐽!(𝐼 ∗ 𝐽) ∗ 𝐽 𝐼 ∗ 𝐽

𝜂𝐽
𝑢−1
𝐽

𝐽!𝑢
−1
𝐽

∗𝐽 𝜂𝐼∗𝐽

𝜖𝐼∗𝐽

𝑢𝐽

(LSkM5) The fifth axiom transcribes as

𝐽!𝐴 ∗ 𝐵 𝐽!𝐴 ∗ 𝐵

𝐽!(𝐽!𝐴 ∗ 𝐽) ∗ 𝐵 𝐽!𝐴 ∗ (𝐽!𝐽 ∗ 𝐵)

𝐽!𝜂𝐴∗𝐵

𝛾𝐴,𝐽,𝐵

𝐽!𝐴∗𝜆𝐵

This diagram can be filled in as follows.

𝐽!(𝐽!𝐴 ∗ 𝐽) ∗ 𝐵 (𝐽!𝐴 ⊗ 𝐽!𝐽) ∗ 𝐵 𝐽!𝐴 ∗ (𝐽!𝐽 ∗ 𝐵)

(𝐽!𝐴 ⊗ 𝐽!(𝐼 ∗ 𝐽)) ∗ 𝐵 𝐽!𝐴 ∗ (𝐽!(𝐼 ∗ 𝐽) ∗ 𝐵)

(𝐽!𝐴 ⊗ 𝐼) ∗ 𝐵 𝐽!𝐴 ∗ (𝐼 ∗ 𝐵)

𝐽!𝐴 ∗ 𝐵 𝐽!𝐴 ∗ 𝐵 𝐽!𝐴 ∗ 𝐵

𝛾𝐴,𝐽∗𝐵

𝐽!𝜂𝐴∗𝐵

(𝐽!𝐴⊗𝐽!𝑢−1𝐽 )∗𝐵

(𝐽!𝐴⊗𝜖𝐼 )∗𝐵

𝐽!𝐴∗(𝐽!𝑢−1𝐽 ∗𝐵)

𝐽!𝐴∗(𝜖𝐼∗𝐵)

𝑚
𝐽!𝐴,𝐽!𝐽

𝐵

𝑚
𝐽!𝐴,𝐽! (𝐼∗𝐽 )
𝐵

𝐽!𝐴∗𝑢𝐵𝑟𝐽!𝐴
∗𝐵

𝑚
𝐽!𝐴,𝐼

𝐵

The lower right square is LAct3 and the other squares on the right commute because of
naturality of 𝑚. The remaining pentagon

𝐽!𝐴 𝐽!𝐴

𝐽!𝐴 ⊗ 𝐼

𝐽!𝐴 ⊗ 𝐽!(𝐼 ∗ 𝐽)

𝐽!(𝐽!𝐴 ∗ 𝐽) 𝐽!𝐴 ⊗ 𝐽!𝐽

𝐽!𝜂𝐴

𝛾𝐴,𝐽

𝑟𝐽!𝐴

𝐽!𝐴⊗𝐽!𝑢−1𝐽

𝐽!𝐴⊗𝜖𝐼
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becomes the following under transposing

𝐴 (𝐽!𝐴) ∗ 𝐽

(𝐽!𝐴 ⊗ 𝐼) ∗ 𝐽

(𝐽!𝐴 ⊗ 𝐽!(𝐼 ∗ 𝐽)) ∗ 𝐽

𝐽!𝐴 ∗ 𝐽 𝐽!𝐴 ∗ (𝐽!𝐽 ∗ 𝐽) (𝐽!𝐴 ⊗ 𝐽!𝐽) ∗ 𝐽

𝜂𝐴

𝜂𝐴

𝑟𝐽!𝐴
∗𝐽

(𝐽!𝐴⊗𝐽!𝑢−1𝐽 )∗𝐽

(𝐽!𝐴⊗𝜖𝐼 )∗𝐽

𝐽!𝐴∗𝜂𝐽 (
𝑚

𝐽!𝐴,𝐽!𝐵

𝐽

)−1
After filling in additional morphisms, we get

𝐽!𝐴 ∗ 𝐽 𝐽!𝐴 ∗ (𝐽!𝐽 ∗ 𝐽) (𝐽!𝐴 ⊗ 𝐽!𝐽) ∗ 𝐽

𝐽!𝐴 ∗ (𝐽!(𝐼 ∗ 𝐽) ∗ 𝐽) (𝐽!𝐴 ⊗ 𝐽!(𝐼 ∗ 𝐽)) ∗ 𝐽

𝐽!𝐴 ∗ (𝐼 ∗ 𝐽)

(𝐽!𝐴 ⊗ 𝐼) ∗ 𝐽 (𝐽!𝐴 ⊗ 𝐼) ∗ 𝐽

𝐽!𝐴∗𝜂𝐽

𝑟𝐽!𝐴
∗𝐽

𝐽!𝐴∗𝑢−1𝐽

(
𝑚

𝐽!𝐴,𝐽!𝐽

𝐽

)−1

(
𝑚

𝐽!𝐴,𝐽! (𝐼∗𝐽 )
𝐽

)−1

(
𝑚

𝐽!𝐴,𝐼

𝐽

)−1

𝐽!𝐴∗(𝐽!𝑢−1𝐽 ∗𝐽)

𝐽!𝐴∗(𝜖𝐼∗𝐽)

(𝐽!𝐴⊗𝐽!𝑢−1𝐽 )∗𝐽

(𝐽!𝐴⊗𝜖𝐼 )∗𝐽

𝑚
𝐽!𝐴,𝐼

𝐽

Here the triangle on the lower right is LAct3, commutativity of the squares on the right
follows from naturality of 𝑚. The upper left square can be recognized to be the axiom
(LSkM4).

3.3. Remark. Note that in the proof of the theorem above, we did not make use of the
coherence axioms of the skew monoidal category V. Furthermore, observe that the proof
does not directly depend on the orientations of the constraint morphisms of V. If we
reverse 𝑎, ℓ or 𝑟 and adjust the strong action axioms correspondingly, we would still be
able to prove the statement of (3.1) – in the proof, we do not take adjoint transposes of
𝑎, ℓ and 𝑟. Hence, we could start with a strong action of a right skew monoidal category
V.2

2Note that the theorem could be applied even for a strong V-action, where V would have a different
combination of the orientations of the constraint morphisms 𝑎, ℓ, 𝑟. That is, ifV would be a generalization
of a monoidal category with noninvertible constraint morphisms (with any orientations) and five axioms
obtained by adjusting MacLane’s five axioms for monoidal categories to given orientations of 𝑎, ℓ, 𝑟.
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3.4. Remark. In (3.1), we started with a left action and assumed the existence of a left
adjoint of the functor 𝐽∗. We could also consider right actions or the existence of a right
adjoint to the action induced functor. In all cases, we would still obtain a skew monoidal
structure on the actegory via an analogous construction.

Let us denote, for an object 𝐽 in A, by 𝐽∗ the functor induced by a left action

𝐽∗ : V ! A, 𝑋 7! 𝑋 ∗ 𝐽

and by 𝐽∗ the functor induced by a right action

𝐽∗ : V ! A, 𝑋 7! 𝐽 ∗ 𝑋

We will also use the following notation for functors adjoint to those

𝐽! ⊣ 𝐽∗, 𝐽∗ ⊣ 𝐽#, 𝐽! ⊣ 𝐽∗, 𝐽∗ ⊣ 𝐽#

Under this convention, we can summarize the possible variations of (3.1) in the table
(1).

Left adjoint Right adjoint

Left action
𝐽!𝐴 ∗ 𝐵 𝐽#𝐴 ∗ 𝐵

left skew monoidal right skew monoidal

Right action
𝐴 ∗ 𝐽 !𝐵 𝐴 ∗ 𝐽#𝐵

right skew monoidal left skew monoidal

Table 1: Variations of Theorem (3.1). The first row in each cell shows how the skew-tensor
𝐴 ◁ 𝐵 is defined, the second row tell what kind of skew monoidal structure is obtained
this way.

3.5. Remark. A result closely related to (3.1) was proved by Szlachányi in Proposition
6.1. of [Szl17]. He assumes that V is a symmetric monoidal closed category with all small
limits and colimits and proves that if A is a tensored V-category, then for every 𝑅 in A,
there is a skew monoidal structure on A with unit 𝑅.

Section 2.2. of that paper demonstrates that tensored V-categories are equivalent to
V-actegories A such that for any 𝐴 in A the functor (−) ∗𝐴 : V ! A has a right adjoint.
Under this correspondence, Szlachányi’s induced skew monoidal structure coincides with
the structure defined as in our main result (or rather as in one of the variants described
in Table (1)).

Theorem (3.1) can be therefore seen as a generalization of Szlachányi’s result, since
it allows actegories in which only one object 𝐽 in A gives rise to a functor (−) ∗ 𝐽 with
an adjoint. This generalization is important to capture the example on functor categories
(see Example (5.2)) or examples of structures arising from warping by an opmonoidal
monad (see Example (5.3)).
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3.6. Remark. In the assumptions of Theorem (3.1), we start by fixing an object 𝐽 and
ask for the induced functor 𝐽∗ to have an adjoint. In the case that V is monoidal,
this assumption can be reformulated in such a way that there is no need to fix an object.
Instead, we may consider adjunctions 𝐿 ⊣ 𝑅 : V ! A and require that a certain condition
be satisfied. This approach was suggested to the author by Nathanael Arkor.

Let (V, ⊗, 𝐼) be a monoidal category and A a V-actegory. Because V is monoidal,
it can be seen as a strong V-actegory (even monoidal actegory). Suppose we have an
adjunction

A V
𝐿

𝑅

⊣

where 𝑅 is a strong morphism of V-actegories, i.e. it is equipped with an isomorphism

𝑅(𝑋 ⊗ 𝑌 ) �−! 𝑋 ∗ 𝑅𝑌

Now, if we set 𝐽 ··= 𝑅𝐼, we have for any 𝑋 in V

𝑅𝑋 � 𝑅(𝑋 ⊗ 𝐼) � 𝑋 ∗ 𝑅𝐼 = 𝑋 ∗ 𝐽 = 𝐽∗𝑋

Hence, we may apply Theorem (3.1) and define a left skew monoidal structure on A
by setting

𝐴 ◁ 𝐵 ··= 𝐿𝐴 ∗ 𝐵.
In fact, one can observe that if V is a monoidal category, every strong morphism

𝑅 : V ! A of V-actegories is up to isomorphism of form (−) ∗ 𝐽 for some 𝐽 in A.
(This follows from the fact that V is the free strong V-actegory on 1.) Therefore, the
assumption that there exists an adjunction 𝐿 ⊣ 𝑅 : V ! A such that 𝑅 is a strong
morphism of V-actegories is indeed equivalent to the assumption that there exists an
object 𝐽 in A such that (−) ∗ 𝐽 has a left adjoint.

4. Monoidality of 𝐽! ⊣ 𝐽∗
4.1. Proposition. The adjunction 𝐽! ⊣ 𝐽∗ as in (3.1) is monoidal with respect to ◁ and
⊗.
Proof.Given an adjunction between monoidal categories, the left adjoint is oplax monoidal
if and only if the right adjoint is lax monoidal. A similar statement holds for skew monoidal
structures, as it is also an instance of a doctrinal adjunction [Kell74, Theorem 1.2]. Hence,
it is enough to show that 𝐽∗ is a lax monoidal functor.

We can define the following structure morphisms

𝜙𝑋,𝑌 : 𝐽∗𝑋 ◁ 𝐽∗𝑌
𝜖𝑋∗𝐽∗𝑌−−−−! 𝑋 ∗ 𝐽∗𝑌

(
𝑚

𝑋,𝑌

𝐽

)−1
−−−−−! 𝐽∗(𝑋 ⊗ 𝑌 )

𝜄 : 𝐽
𝑢−1
𝐽−−! 𝐽∗𝐼
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Associativity. We need to show that the following diagram commutes.

(𝐽∗𝑋 ◁ 𝐽∗𝑌 ) ◁ 𝐽∗𝑍 𝐽∗𝑋 ◁ (𝐽∗𝑌 ◁ 𝐽∗𝑍) 𝐽∗𝑋 ◁ 𝐽∗(𝑌 ⊗ 𝑍)

𝐽∗(𝑋 ⊗ 𝑌 ) ◁ 𝐽∗𝑍 𝐽∗((𝑋 ⊗ 𝑌 ) ⊗ 𝑍) 𝐽∗(𝑋 ⊗ (𝑌 ⊗ 𝑍))

𝛾𝐽∗𝑋,𝐽∗𝑌,𝐽∗𝑍

𝜙𝑋,𝑌◁𝐽∗𝑍

𝐽∗𝑋◁𝜙𝑌,𝑍

𝜙𝑋,𝑌⊗𝑍

𝜙𝑋⊗𝑌,𝑍 𝐽∗𝑎𝑋,𝑌 ,𝑍

After expanding the diagram and filling it in, we get the following.

𝐽!(𝐽!𝐽∗𝑋 ∗ 𝐽∗𝑌 ) ∗ 𝐽∗𝑍 𝐽!(𝑋 ∗ 𝐽∗𝑌 ) ∗ 𝐽∗𝑍 𝐽!𝐽∗(𝑋 ⊗ 𝑌 ) ∗ 𝐽∗𝑍

(𝐽!𝐽∗𝑋 ⊗ 𝐽!𝐽∗𝑌 ) ∗ 𝐽∗𝑍 (𝑋 ⊗ 𝐽!𝐽∗𝑌 ) ∗ 𝐽∗𝑍

𝐽!𝐽∗𝑋 ∗ (𝐽!𝐽∗𝑌 ∗ 𝐽∗𝑍) 𝑋 ∗ (𝐽!𝐽∗𝑌 ∗ 𝐽∗𝑍) (𝑋 ⊗ 𝑌 ) ∗ 𝐽∗𝑍

𝐽!𝐽∗𝑋 ∗ (𝑌 ∗ 𝐽∗𝑍) 𝑋 ∗ (𝑌 ∗ 𝐽∗𝑍) 𝐽∗((𝑋 ⊗ 𝑌 ) ⊗ 𝑍)

𝐽!𝐽∗𝑋 ∗ 𝐽∗(𝑌 ⊗ 𝑍) 𝑋 ∗ 𝐽∗(𝑌 ⊗ 𝑍) 𝐽∗(𝑋 ⊗ (𝑌 ⊗ 𝑍))

𝐽! (𝜖𝑋∗𝐽∗𝑌 )∗𝐽∗𝑍

𝛾𝐽∗𝑋,𝐽∗𝑌∗𝐽∗𝑍

𝐽!

(
𝑚

𝑋,𝑌

𝐽

)−1
∗𝐽∗𝑍

𝜍𝑋,𝐽∗𝑌∗𝐽∗𝑍

𝜖𝑋⊗𝑌∗𝐽∗𝑍(𝜖𝑋⊗𝐽!𝐽∗𝑌 )∗𝐽∗𝑍

𝑚
𝐽!𝐽∗𝑋,𝐽!𝐽∗𝑌
𝐽∗𝑍

(𝑋⊗𝜖𝑌 )∗𝐽∗𝑍

𝜖𝑋∗(𝐽!𝐽∗𝑌∗𝐽∗𝑍)

𝐽!𝐽∗𝑋∗(𝜖𝑌∗𝐽∗𝑍)

𝑚
𝑋,𝐽!𝐽∗𝑌
𝐽∗𝑍

𝑋∗(𝜖𝑌∗𝐽∗𝑍)
(
𝑚

𝑋⊗𝑌,𝑍

𝐽

)−1
𝜖𝑋∗(𝑌∗𝐽∗𝑍)

𝐽!𝐽∗𝑋∗
(
𝑚
𝑌,𝑍

𝐽

)−1

(
𝑚

𝑋,𝑌

𝐽∗𝑍

)−1

𝑋∗
(
𝑚
𝑌,𝑍

𝐽

)−1
𝐽∗𝑎𝑋,𝑌 ,𝑍

𝜖𝑋∗𝐽∗ (𝑌⊗𝑍) (
𝑚

𝑋,𝑌⊗𝑍
𝐽

)−1
The pentagon is an instance of the axiom LAct1. All remaining squares, except for the
upper right one obviously commute because of naturality (in the upper left square, we
identify 𝛾𝐽∗𝑋,𝐽∗𝑌 with 𝜍𝐽!𝐽∗𝑋,𝐽∗𝑌 ).

For the remaining part of the diagram, it is enough to show that the following com-
mutes.

𝐽!(𝑋 ∗ 𝐽∗𝑌 ) 𝑋 ⊗ 𝐽!𝐽∗𝑌

𝐽!𝐽∗(𝑋 ⊗ 𝑌 ) 𝑋 ⊗ 𝑌

𝜍𝑋,𝐽∗𝑌

𝐽!

(
𝑚

𝑋,𝑌

𝐽

)−1
𝑋⊗𝜖𝑌

𝜖𝑋⊗𝑌
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After transposing it, we get the following

𝑋 ∗ 𝐽∗𝑌 𝑋 ∗ (𝐽!𝐽∗𝑌 ∗ 𝐽) (𝑋 ⊗ 𝐽!𝐽∗𝑌 ) ∗ 𝐽

𝐽∗(𝑋 ⊗ 𝑌 ) (𝑋 ⊗ 𝑌 ) ∗ 𝐽

𝑋∗𝜂𝐽∗𝑌

(
𝑚

𝑋,𝑌

𝐽

)−1
(
𝑚

𝑋,𝐽!𝐽∗𝑌
𝐽

)−1

(𝑋⊗𝜖𝑌 )∗𝐽

Now, we can apply the triangle identity of 𝐽! ⊣ 𝐽∗ to obtain the following diagram, which
commutes because of naturality.

𝑋 ∗ 𝐽∗𝑌 𝑋 ∗ (𝐽!𝐽∗𝑌 ∗ 𝐽) (𝑋 ⊗ 𝐽!𝐽∗𝑌 ) ∗ 𝐽

𝑋 ∗ 𝐽∗𝑌 (𝑋 ⊗ 𝑌 ) ∗ 𝐽

𝑋∗𝜂𝐽∗𝑌
(
𝑚

𝑋,𝐽!𝐽∗𝑌
𝐽

)−1

𝑋∗(𝜖𝑌∗𝐽) (𝑋⊗𝜖𝑌 )∗𝐽

(
𝑚

𝑋,𝑌

𝐽

)−1
Unitality. For left unitality, we need

𝐽 ◁ 𝐽∗𝑋 𝐽∗𝐼 ◁ 𝐽∗𝑋

𝐽∗𝑋 𝐽∗(𝐼 ⊗ 𝑋)

𝜄◁𝐽∗𝑋

𝜆𝐽∗𝑋 𝜙𝐼,𝑋

𝐽∗ℓ𝑋

This amounts to the following diagram, where the lower triangle is an instance of (LAct2).

𝐽 ◁ 𝐽∗𝑋 𝐽∗𝐼 ◁ 𝐽∗𝑋

𝐽!𝐽∗𝐼 ∗ 𝐽∗𝑋

𝐼 ∗ 𝐽∗𝑋 𝐼 ∗ 𝐽∗𝑋

𝐽∗𝑋 𝐽∗(𝐼 ⊗ 𝑋)

𝐽!𝑢
−1
𝐽

∗𝐽∗𝑋

𝐽!𝑢
−1
𝐽

∗𝐽∗𝑋

𝜖𝐼∗𝐽∗𝑋

𝜖𝐼∗𝐽∗𝑋

𝑢𝐽∗𝑋

ℓ𝑋∗𝐽

(
𝑚

𝐼,𝑋

𝐽

)−1

The right unitality condition states that the following commutes.

𝐽∗𝑋 ◁ 𝐽 𝐽∗𝑋 ◁ 𝐽∗𝐼

𝐽∗𝑋 𝐽∗(𝑋 ⊗ 𝐼)

𝐽∗𝑋◁𝜄

𝜌𝐽∗𝑋 𝜙𝑋,𝐼

𝐽∗𝑟𝑋
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We obtain the following, where the triangle is an instance of (LAct3)

𝐽!𝐽∗𝑋 ∗ 𝐽 𝐽!𝐽∗𝑋 ∗ 𝐽∗𝐼

𝐽∗𝑋 𝑋 ∗ 𝐽∗𝐼

𝐽∗(𝑋 ⊗ 𝐼)

𝐽!𝐽∗𝑋∗𝑢−1𝐽

𝜌𝐽∗𝑋 𝜖𝑋∗𝐽∗𝐼

(
𝑚

𝑋,𝐼

𝐽

)−1𝑋∗𝑢−1
𝐽

𝐽∗𝑟𝑋

Using the triangle identity of the adjunction 𝐽! ⊣ 𝐽∗, we get the following, which commutes
because of naturality

𝐽∗𝑋 𝐽!𝐽∗𝑋 ∗ 𝐽 𝐽!𝐽∗𝑋 ∗ 𝐽∗𝐼

𝐽∗𝑋 𝑋 ∗ 𝐽∗𝐼

𝜖𝑋∗𝐽

𝐽!𝐽∗𝑋∗𝑢−1𝐽𝜂𝐽∗𝑋

𝜖𝑋∗𝐽∗𝐼

𝑋∗𝑢−1
𝐽

4.2. Remark.Again, it can be observed that the proof above does not rely on the specific
orientations of 𝑎, ℓ and 𝑟 and thus applies even when V is other then left skew monoidal.

4.3. Remark. The oplax monoidal structure on the left adjoint 𝐽! is the following

𝜙𝐴,𝐵 : 𝐽!(𝐴 ◁ 𝐵) = 𝐽!(𝐽!𝐴 ∗ 𝐵) 𝛾𝐴,𝐵
−−! 𝐽!𝐴 ⊗ 𝐽!𝐵

𝜄̂ : 𝐽!𝐽
𝐽!𝑢

−1
𝐽−−−! 𝐽!(𝐼 ∗ 𝐽)

𝜖𝐼−! 𝐼

Observe that the structure maps appear in the definitions of the associator and the left
unitor in (3.1), i.e. 𝛾𝐴,𝐵,𝐶 = 𝜙𝐴,𝐵 ∗𝐶 and 𝜆𝐴 is 𝜄̂ ∗ 𝐴 postcomposed by 𝑢𝐴. Namely, we see
that the question of when the associator and the left unitor are invertible is closely related
to the question of when the left adjoint 𝐽! is strong monoidal. The precise relationship is
captured in the following proposition.

4.4. Proposition. Let (A,◁, 𝐽) be a left skew monoidal category defined as in (3.1).

(i) If the left adjoint 𝐽! is strong monoidal, then the associator and the left unitor are
invertible.

(ii) If the fusion morphism 𝛾𝐴,𝐵 for any 𝐴, 𝐵 and 𝜖𝐼 are invertible, 𝐽! is strong monoidal.



1300 PAVLA PROCHÁZKOVÁ

5. Examples

5.1. Example.Any monoidal category (V, ⊗, 𝐼) can be regarded as a strongV-actegory.
If we fix the unit object 𝐼, the action-induced functor will be 𝐼∗ = (−) ⊗ 𝐼 � id. It has an
obvious left adjoint 𝐼! = id and hence we may apply Theorem (3.1). This way, we get a
tensor 𝐼!𝐴 ⊗ 𝐵 = 𝐴 ⊗ 𝐵 and recover the original monoidal structure (V, ⊗, 𝐼).

5.2. Example. The category [D,D] of endofunctors on a category D has a strict
monoidal structure given by composition. This is no longer true if we consider a gen-
eral functor category [C,D]. However, [D,D] acts on [C,D] by postcomposition:

[D,D] × [C,D] ! [C,D]
(𝑋, 𝐹) 7! 𝑋 ◦ 𝐹

Fix 𝐽 : C ! D. If we assume C, D and 𝐽 are “nice enough”3, then left Kan extensions
of arbitrary functors 𝐹 : C ! D along 𝐽 exist, hence we have an adjunction

[C,D] [D,D]

Lan𝐽

𝐽∗

⊣

This gives rise to a left skew monoidal structure on [C,D] with tensor 𝐺◁𝐹 = Lan𝐽𝐺 ◦𝐹.
This example appeared first in [ACU10], where the authors study relative monads. If

left Kan extensions along a functor 𝐽 exist, and are furthermore pointwise, then 𝐽-relative
monads can be characterized precisely as monoids in this skew monoidal structure.

Proposition 2.3. of [ACU15] shows that monads on D restrict to 𝐽-relative monads.
Under certain conditions, one can also go the other way. The authors define the notion
of well behavedness conditions for 𝐽 [ibid., Definition 4.1.]. These conditions ensure that
the constraint maps of the induced skew monoidal structure are invertible. In Theorem
4.6 it is shown that given a well behaved 𝐽, 𝐽-relative monads extend to ordinary monads
on D. These results are a special instance of (4.1) and the discussion in (4.3). The result
in Proposition 2.3. follows from the fact that 𝐽∗ is lax monoidal. If 𝐽 is well behaved, 𝐽!
is strong monoidal, so it sends monoids to monoids, which gives Theorem 4.6.

5.3. Example. Let 𝑇 be an opmonoidal monad on a monoidal category (V, ⊗, 𝐼). Op-
monoidal structures on a monad allow one to lift the monoidal structure of V to the
category of 𝑇-algebras V𝑇 [Moer02]. This allows us to define a monoidal action of V𝑇 on
V given first by applying the forgetful functor 𝑈𝑇 in the first component and then using
the tensor of V.

V𝑇 ×V 𝑈𝑇×V
−−−−! V ×V ! V

((𝐴, 𝑎), 𝐵) 7! (𝐴, 𝐵) 7! 𝐴 ⊗ 𝐵

3E. g. if C is small, D is cocomplete and 𝐽 is arbitrary [Bor94, Theorem 3.7.2]
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The unit 𝐼 of V gives rise to a functor

V𝑇 𝐼∗−! V
(𝐴, 𝑎) 7! 𝐴 ⊗ 𝐼 � 𝐴

In fact 𝐼∗ � 𝑈𝑇 , hence we have the adjunction

V V𝑇

𝐹𝑇

𝐼∗�𝑈𝑇

⊣

Therefore, in accordance with Theorem (3.1), we obtain a left skew monoidal structure
on V by defining 𝐴 ◁ 𝐵 ··= 𝑈𝑇𝐹𝑇 𝐴 ⊗ 𝐵. Since 𝑈𝐹 � 𝑇 , we may write

𝐴 ◁ 𝐵 = 𝑇𝐴 ⊗ 𝐵.

Note that similar results hold for the dual notion of monoidal comonads.

5.4. Remark. The fact that an opmonoidal monad 𝑇 on a monoidal category (V, ⊗, 𝐼)
gives rise to a skew monoidal structure with tensor 𝑇𝑋 ⊗ 𝑌 has been known and used for
a long time. It is an instance of a construction of a skew monoidal structure from a skew
warping [LS12].

On a left skew monoidal category (V, ⊗, 𝐼), a skew warping consists of an endofunctor
𝑇 : V ! V, an object 𝐾 ∈ V and three (natural families of) morphisms:

𝑣𝑋,𝑌 : 𝑇 (𝑇𝑋 ⊗ 𝑌 ) ! 𝑇𝑋 ⊗ 𝑇𝑌
𝑣0 : 𝑇𝐾 ! 𝐼

𝑘𝑋 : 𝑋 ! 𝑇𝑋 ⊗ 𝐾

satisfying five axioms.
The data of a skew warping closely resemble the data, which are used to define the

skew monoidal structure in Theorem (3.1). In fact, the theorem always gives rise to a
slightly more general notion of a skew warping, which appeared in [LS15]. For a (skew)
left action ∗ : V × A ! A, a left skew warping riding the action consists of a functor
𝑇 : A ! V, an object 𝐾 ∈ A and three (natural families of) morphisms

𝑣𝐴,𝐵 : 𝑇 (𝑇𝐴 ∗ 𝐵) ! 𝑇𝐴 ⊗ 𝑇𝐵
𝑣0 : 𝑇𝐾 ! 𝐼

𝑘𝐴 : 𝐴! 𝑇𝐴 ∗ 𝐾

satisfying five axioms. This notion is in fact a special instance of a skew warping on a
skew bicategory in the sense of [LS14]. Under the notation of Theorem (3.1), we get a
skew warping riding the given action if we set 𝑇 = 𝐽!, 𝐾 = 𝐽, 𝑣𝐴,𝐵 = 𝛾𝐴,𝐵, 𝑣0 = 𝜖𝐼 ◦ 𝐽𝑢−1𝐽
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and 𝑘𝐴 = 𝜂𝐴. The five axioms of a skew warping riding an action will then essentially
coincide with the five axioms of a left skew monoidal category.

Conversely, any skew warping riding an action gives rise to a skew monoidal structure
on the actegory via a construction analogous to the one of Theorem (3.1) (see [LS15]).
This means another way to approach the proof of the statement in (3.1) is to show that
the appropriate data constitute a skew warping riding the action. However, to check that
the five axioms for skew warping riding an action in the sense of [LS15] are satisfied is
essentially the same as showing that the five axioms for a skew monoidal category hold
true, so this approach would not offer any simplification.

5.5. Example. An elementary example can be given on Set, if we consider a monoid
(𝑀,+, 0). Because 𝑀 is both a monoid and a comonoid object in Set, the functor 𝑀 × (−)
has a structure of an opmonoidal monad. Hence, we may equip Set with a left skew
monoidal structure with tensor 𝐴 ⊗𝑀 𝐵 = 𝑀 × 𝐴 × 𝐵 and unit 1. Constraint maps are
given element-wise as

𝑀 × (𝑀 × 𝐴 × 𝐵) × 𝐶 𝛾𝐴,𝐵,𝐶
−−−! 𝑀 × 𝐴 × (𝑀 × 𝐵 × 𝐶)

(𝑛, (𝑚, 𝑎, 𝑏), 𝑐) 7! (𝑚 + 𝑛, 𝑎, (𝑛, 𝑏, 𝑐))

𝑀 × 1 × 𝐵 𝜆𝐵−! 𝐵

(𝑚, ∗, 𝑏) 7! 𝑏

𝐴
𝜌𝐴−! 𝑀 × 𝐴 × 1

𝑎 7! (0, 𝑎, ∗)

In this example, it is easy to characterize when exactly the associator is invertible.
This is precisely when (𝑚, 𝑛) 7! (𝑚 + 𝑛, 𝑚) is a bijection. If 𝑀 is a group, it is the case. If
(𝑚, 𝑛) 7! (𝑚+𝑛, 𝑚) is invertible, then for any 𝑚 ∈ 𝑀, there has to exist a pair (𝑚, 𝑛) such
that (𝑚, 𝑛) 7! (0, 𝑚). This means that 𝑚+ 𝑛 = 0 and hence (𝑚, 𝑛+𝑚) 7! (𝑚+ 𝑛+𝑚, 𝑚) =
(𝑚, 𝑚). At the same time (𝑚, 0) 7! (𝑚, 𝑚). Hence 𝑛 + 𝑚 = 0. Therefore 𝛼 is invertible
if and only if 𝑀 is a group. It is easy to see that the unit constraints are not invertible
unless 𝑀 is trivial.

5.6. Example. This example closely follows [BL20]. Let (V, ⊗, 𝐼) be a symmetric
monoidal category and 𝐵 a bialgebra in V. Similarly to the previous example4, we
may define a new tensor on V as 𝑋 ⊗𝐵 𝑌 = 𝑋 ⊗ 𝐵 ⊗ 𝑌 . Because of the algebra structure
(𝐵, 𝜇, 𝜂), the functor (−) ⊗ 𝐵 is a monad. The coalgebra structure (𝐵, 𝛿, 𝜖) ensures it
is opmonoidal. From the Theorem (3.1) we see that (V, ⊗𝐵, 𝐵) is a left skew monoidal
structure.

To understand what the constraint morphisms do in this example, it is convenient to
use string diagrams. Below, the associator and the unitors are shown.

4Note that the previous example is an instance of the bialgebra one.
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𝑋 𝐵 𝑌 𝐵 𝑍

𝑋 𝐵 𝑌 𝐵 𝑍

𝜇

𝛿

𝑋

𝜖

𝑋

𝐵 𝑋

𝜂

𝑋 𝐵

In this example, the associator is invertible if and only if the bialgebra 𝐵 is Hopf. The
unit constraints are invertible only when 𝐵 is trivial.

5.7. Example. Let V be a monoidal category, which has all copowers of the unit 𝑋 · 𝐼 ··=∑
𝑥∈𝑋 𝐼 (for 𝑋 ∈ Set) and such that the tensor preserves these copowers in the second

variable. We have a monoidal adjunction

Set V

(−)·𝐼

V(𝐼,−)

⊣

This adjunction then induces a monoidal comonad 𝐾 on V. The warped monoidal struc-
ture 𝐴 ⊗𝐾 𝐵 ··= 𝐴 ⊗ 𝐾𝐵 is characterized by the fact that

𝐴 ⊗𝐾 𝐵 ! 𝐶

V(𝐼, 𝐵) ! V(𝐴,𝐶)
5.8. Example. Consider VectK = (VectK, ⊗,K). We have the free-forgetful adjunction

Set VectK

𝐹=(−)·K

𝑈=VectK (K,−)

⊣

From this, we get a monoidal comonad 𝐹𝑈 = VectK(K,−) · K and we can define a skew
monoidal tensor 𝐴 ⊗K 𝐵 ··= 𝐴 ⊗ VectK(K, 𝐵) · K = 𝐴 ⊗ 𝐹𝑈𝐵.

Because we have VectK(𝐴 ⊗K 𝐵,𝐶) = VectK(𝐴 ⊗ 𝑈𝐵 · K, 𝐶) � Lin2(𝐴,𝑈𝐵 · K;𝐶), we
see that such maps correspond to functions linear in the first variable.

5.9. Example. Let us consider a category C with all small coproducts. There is a (left)
monoidal action of (Set,×, 1) on C given by the Set-copower [CG22, Example 3.2.7.]

⊗ : Set × C ! C
⟨𝑋, 𝑐⟩ 7! 𝑋 ⊗ 𝑐 ··=

∐
𝑥∈𝑋

𝑐

𝑋 ⊗ 𝑐 has the universal property

C(𝑋 ⊗ 𝑐, 𝑑) � Set(𝑋, C(𝑐, 𝑑)) (★)
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for any 𝑋 ∈ Set, 𝑐 ∈ C. Namely, fixing arbitrary 𝑗 ∈ C, 𝑗⊗ = (−) ⊗ 𝑗 has a right adjoint
𝑗# ··= C( 𝑗 ,−), so applying a variation of Theorem 3.1 yields a right skew monoidal
structure on C with tensor

𝑐 ◁⊗ 𝑑 ··= 𝑗#𝑐 ∗ 𝑑 =
∐
𝑓 : 𝑗!𝑐

𝑑

We could also use the universal property (★) as a defining property of 𝑋 ⊗ 𝑐. In this
case we can generalize Set to an arbitrary closed monoidal category V and talk about
V-copowered categories.

5.10. Example. If we dually consider C to be a category with all small products, we
can define a (left) monoidal action of Setop on C as follows [CG22, Example 3.2.8.].

⋔: Setop × C ! C
⟨𝑋, 𝑐⟩ 7! 𝑋 ⋔ 𝑐 ··=

∏
𝑥∈𝑋

𝑐

𝑋 ⋔ 𝑐 has the universal property

Setop(C(𝑑, 𝑐), 𝑋) � C(𝑑, 𝑋 ⋔ 𝑐) (†)

Hence, any 𝑗⋔ = (−) ⋔ 𝑗 has a left adjoint 𝑗! ··= C(−, 𝑗), so we can define a left skew
monoidal structure with tensor

𝑐 ◁⋔ 𝑑 ··= 𝑗!𝑐 ⋔ 𝑑 =
∏
𝑔:𝑐! 𝑗

𝑑

5.11. Example. [CG22, Example 3.2.9.] Suppose now that M and C are small cate-
gories. If M is a monoidal category, then we can define a monoidal structure on [M, Set]
by Day convolution. Then, we can also extend any monoidal action

M × C ! C
(𝑚, 𝑐) 7! 𝑚 • 𝑐

to a monoidal action of [M, Set] on [C, Set] called the Day convolaction given as

𝑀 ∗ 𝐶 ··=
∫ 𝑚∈M,𝑐∈C

C(𝑚 • 𝑐,−) × 𝑀𝑚 × 𝐶𝑐

with unit M( 𝑗 ,−).
For 𝐽 ∈ [C, Set] we have

𝐽∗𝑀 =

∫ 𝑚∈M,𝑐∈C
C(𝑚 • 𝑐,−) × 𝑀𝑚 × 𝐽𝑐
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If we denote by ⊗𝑑 the Day convolution tensor product on [M, Set], then the functor
(−) ⊗𝑑 𝐺 for a fixed 𝐺 ∈ [M, Set] has a right adjoint [Lor23, Remark 6.2.4.] of form

𝐹 7!

∫
𝑚∈M

[
𝐺𝑚, 𝐹 (𝑚 ⊗ −)

]
We can adjust this result to our action setting. For a fixed 𝐽 ∈ [C, Set], the functor

𝐽∗ ··= (−) ∗ 𝐽 has a right adjoint5 𝐽# defined as

𝐽#𝐶 ··=
∫
𝑐

[𝐽𝑐, 𝐶 (− • 𝑐)] .

Therefore, we can apply (3.1) to equip [C, Set] with a skew monoidal tensor

𝐶 ◁ 𝐷 ··= 𝐽#𝐶 ∗ 𝐷 =

∫ 𝑚∈M,𝑐∈C
C(𝑚 • 𝑐,−) × 𝐷𝑐 ×

∫
𝑑

Set(𝐽𝑑, 𝐶 (𝑚 • 𝑐))

6. Braidings on induced structures

The usual notion of a braiding on a monoidal category (V, ⊗, 𝐼) involves isomorphisms
indexed by pairs of objects: 𝑐𝑋,𝑌 : 𝑋 ⊗ 𝑌 ! 𝑌 ⊗ 𝑋. Generalizing the notion to the setting
of skew monoidal categories is not entirely straightforward. In [BL20], Bourke and Lack
suggest that on a skew monoidal category, braidings should involve isomorphisms indexed
by triples of objects, where one object acts as a “pivot”: 𝑠𝑃

𝐴,𝐵
: (𝑃◁ 𝐴)◁ 𝐵 ! (𝑃◁ 𝐵)◁ 𝐴.

In the case of a monoidal category, this notion of a braiding coincides with the usual one
[ibid., prop. 2.6].

However, there is a priori no reason why one should consider only braidings where the
pivot is on the left side. One could also define a braiding on a skew monoidal category
as 𝑠𝑃

𝐴,𝐵
: 𝐴 ◁ (𝐵 ◁ 𝑃) ! 𝐵 ◁ (𝐴 ◁ 𝑃). Note that if we take a left skew monoidal category

(A,◁, 𝐼) braided in the sense of [BL20], we will have a left skew monoidal category
(Aop,◁rev, 𝐼) with this alternative notion of a braiding. Both of these variants can also
be considered on right skew monoidal categories, which can be easily justified by looking
at these structures in an opposite category.

Therefore, we will introduce two variants of the definition of a braiding – a right
braiding (which corresponds to the braiding defined in [BL20]) and a left braiding.

6.1. Definition. A right braiding on a left skew monoidal category (A,◁, 𝐽, 𝛾, 𝜆, 𝜌)
consists of a natural isomorphism

𝑠𝑃𝐴,𝐵 : (𝑃 ◁ 𝐴) ◁ 𝐵 ! (𝑃 ◁ 𝐵) ◁ 𝐴

5Checking that this functor is indeed a right adjoint amounts to adjusting the proof of closedness of
the convolution tensor, which can be found for instance in [Lor23].
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satisfying the following four axioms:

((𝑃 ◁ 𝐴) ◁ 𝐵) ◁ 𝐶 ((𝑃 ◁ 𝐴) ◁ 𝐶) ◁ 𝐵 ((𝑃 ◁ 𝐶) ◁ 𝐴) ◁ 𝐵

((𝑃 ◁ 𝐵) ◁ 𝐴) ◁ 𝐶 ((𝑃 ◁ 𝐵) ◁ 𝐶) ◁ 𝐴 ((𝑃 ◁ 𝐶) ◁ 𝐵) ◁ 𝐴

𝑠𝑃◁𝐴
𝐵,𝐶

𝑠𝑃
𝐴,𝐶

◁𝐵

𝑠𝑃◁𝐶
𝐴,𝐵

𝑠𝑃
𝐴,𝐵

◁𝐶

𝑠𝑃◁𝐵
𝐴,𝐶

𝑠𝑃
𝐵,𝐶

◁𝐴

(RSkBr1)

((𝑃 ◁ 𝐵) ◁ 𝐴) ◁ 𝐶

((𝑃 ◁ 𝐴) ◁ 𝐵) ◁ 𝐶 ((𝑃 ◁ 𝐵) ◁ 𝐶) ◁ 𝐴

(𝑃 ◁ 𝐴) ◁ (𝐵 ◁ 𝐶) (𝑃 ◁ (𝐵 ◁ 𝐶)) ◁ 𝐴

𝑠𝑃◁𝐵
𝐴,𝐶

𝑠𝑃
𝐴,𝐵

◁𝐶

𝛾𝑃◁𝐴,𝐵,𝐶 𝛾𝑃,𝐵,𝐶◁𝐴

𝑠𝑃
𝐴,𝐵◁𝐶

(RSkBr2)

((𝑃 ◁ 𝐴) ◁ 𝐶) ◁ 𝐵

((𝑃 ◁ 𝐴) ◁ 𝐵) ◁ 𝐶 ((𝑃 ◁ 𝐶) ◁ 𝐴) ◁ 𝐵

(𝑃 ◁ (𝐴 ◁ 𝐵)) ◁ 𝐶 (𝑃 ◁ 𝐶) ◁ (𝐴 ◁ 𝐵)

𝑠𝑃
𝐴,𝐶

◁𝐵𝑠𝑃◁𝐴
𝐵,𝐶

𝛾𝑃,𝐴,𝐵◁𝐶 𝛾𝑃◁𝐶,𝐴,𝐵

𝑠𝑃
𝐴◁𝐵,𝐶

(RSkBr3)

((𝑃 ◁ 𝐴) ◁ 𝐵) ◁ 𝐶 (𝑃 ◁ (𝐴 ◁ 𝐵)) ◁ 𝐶 𝑃 ◁ ((𝐴 ◁ 𝐵) ◁ 𝐶)

((𝑃 ◁ 𝐴) ◁ 𝐶) ◁ 𝐵 (𝑃 ◁ (𝐴 ◁ 𝐶)) ◁ 𝐵 𝑃 ◁ ((𝐴 ◁ 𝐶) ◁ 𝐵)

𝛾𝑃,𝐴,𝐵◁𝐶 𝛾𝑃,𝐴◁𝐵,𝐶

𝑃◁𝑠𝐴
𝐵,𝐶

𝑠𝑃◁𝐴
𝐵,𝐶

𝛾𝑃,𝐴,𝐶◁𝐵 𝛾𝑃,𝐴◁𝐶,𝐵

(RSkBr4)
We say that 𝑠 is a right symmetry if

(𝑃 ◁ 𝐴) ◁ 𝐵 (𝑃 ◁ 𝐴) ◁ 𝐵

(𝑃 ◁ 𝐵) ◁ 𝐴

𝑠𝑃
𝐴,𝐵

𝑠𝑃
𝐵,𝐴
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Analogously, we define a left braiding on a left skew monoidal category as a family of
natural isomorphisms

𝑠𝑃𝐴,𝐵 : 𝐴 ◁ (𝐵 ◁ 𝑃) ! 𝐵 ◁ (𝐴 ◁ 𝑃)
satisfying four axioms corresponding to (RSkBr1) – (RSkBr4). Similarly, we say that
such 𝑠 is a left symmetry, if it is self-inverse in the sense that 𝑠𝑃

𝐵,𝐴
◦ 𝑠𝑃

𝐴,𝐵
= id𝐴◁(𝐵◁𝑃).

We can show that for skew monoidal structures arising from actions as in (3.1), usual
braidings on the acting monoidal category give rise to braidings on the induced skew
monoidal structure. In the following, we will consider a structure arising on a right
actegory from a right adjoint, as this setting corresponds to the setting of [BL20].

6.2. Proposition. Let (V, ⊗, 𝐼, 𝑎, ℓ, 𝑟, 𝑐) be a braided monoidal category and A a strong
right V-actegory. Suppose that 𝐽∗ has a right adjoint 𝐽# and let (A,◁, 𝐽, 𝛾, 𝜆, 𝜌) be the
left skew monoidal category constructed from a right action and a right adjoint as in (1).
Then the morphism family defined as the following composite

(𝑃 ◁ 𝐴) ◁ 𝐵 = (𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#𝐵 𝑃 ∗ (𝐽#𝐴 ⊗ 𝐽#𝐵)

(𝑃 ◁ 𝐵) ◁ 𝐴 = (𝑃 ∗ 𝐽#𝐵) ∗ 𝐽#𝐴 𝑃 ∗ (𝐽#𝐵 ⊗ 𝐽#𝐴)

𝑚
𝐽#𝐴,𝐽#𝐵

𝑃

𝑃∗𝑐
𝐽#𝐴,𝐽#𝐵

(
𝑚

𝐽#𝐵,𝐽#𝐴

𝑃

)−1
𝑠𝑃
𝐴,𝐵

is a right braiding on A.
Furthermore, if 𝑐 is a symmetry, then 𝑠 is a right symmetry.

Proof. The first axiom looks as

((𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#𝐵) ∗ 𝐽#𝐶 ((𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#𝐶) ∗ 𝐽#𝐵 ((𝑃 ∗ 𝐽#𝐶) ∗ 𝐽#𝐴) ∗ 𝐽#𝐵

((𝑃 ∗ 𝐽#𝐵) ∗ 𝐽#𝐴) ∗ 𝐽#𝐶 ((𝑃 ∗ 𝐽#𝐵) ∗ 𝐽#𝐶) ∗ 𝐽#𝐴 ((𝑃 ∗ 𝐽#𝐶) ∗ 𝐽#𝐵) ∗ 𝐽#𝐴

𝑠𝑃◁𝐴
𝐵,𝐶

𝑠𝑃
𝐴,𝐶

◁𝐵

𝑠𝑃◁𝐶
𝐴,𝐵

𝑠𝑃
𝐴,𝐵

◁𝐶

𝑠𝑃◁𝐵
𝐴,𝐶

𝑠𝑃
𝐵,𝐶

◁𝐴

After expanding using definitions of involved morphisms, we get the diagram 1. Here, all
inner pentagons are instances of (LAct1), all inner squares commute because of naturality
of the involved morphisms and the hexagons are instances of one of the hexagon identities
for 𝑐.
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(RSkBr2) translates to

((𝑃 ∗ 𝐽#𝐵) ∗ 𝐽#𝐴) ∗ 𝐽#𝐶

((𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#𝐵) ∗ 𝐽#𝐶 ((𝑃 ∗ 𝐽#𝐵) ∗ 𝐽#𝐶) ∗ 𝐽#𝐴

(𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#(𝐵 ∗ 𝐽#𝐶) (𝑃 ∗ 𝐽#(𝐵 ∗ 𝐽#𝐶)) ∗ 𝐽#𝐴

𝑠𝑃◁𝐵
𝐴,𝐶

𝑠𝑃
𝐴,𝐵

◁𝐶

𝛾𝑃◁𝐴,𝐵,𝐶 𝛾𝑃,𝐵,𝐶◁𝐴

𝑠𝑃
𝐴,𝐵◁𝐶

which can be expanded and filled in as (2). Here, the pentagons are again (LAct1), the
hexagon is an instance of an axiom for 𝑐 and the squares commute because of naturality.

The third axiom (RSkBr3) now follows from what has been shown already. Since 𝑐
is a braiding on V, we also have the inverse braiding 𝑐𝑋,𝑌 = 𝑐−1

𝑌,𝑋
. If we replace 𝑐 with 𝑐

in the definition in the statement of the proposition, we obtain a morphism family 𝑠̃ for
which (RSkBr2) holds as well. Observe that (RSkBr2) for 𝑠̃ is equivalent to (RSkBr3) for
𝑠.

The fourth axiom (RSkBr4) is

((𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#𝐵) ∗ 𝐽#𝐶 (𝑃 ∗ 𝐽#(𝐴 ∗ 𝐽#𝐵)) ∗ 𝐽#𝐶 𝑃 ∗ 𝐽#((𝐴 ∗ 𝐽#𝐵) ∗ 𝐽#𝐶)

((𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#𝐶) ∗ 𝐽#𝐵 (𝑃 ∗ 𝐽#(𝐴 ∗ 𝐽#𝐶)) ∗ 𝐽#𝐵 𝑃 ∗ 𝐽#((𝐴 ∗ 𝐽#𝐶) ∗ 𝐽#𝐵)

𝛾𝑃,𝐴,𝐵◁𝐶 𝛾𝑃,𝐴◁𝐵,𝐶

𝑃◁𝑠𝐴
𝐵,𝐶

𝑠𝑃◁𝐴
𝐵,𝐶

𝛾𝑃,𝐴,𝐶◁𝐵 𝛾𝑃,𝐴◁𝐶,𝐵

which can be written out as (3). Here, the squares commute because of naturality and
the two pentagons on the left are instances of (LAct1). It remains to deal with the two
pentagons on the right. It suffices to show that the following commutes.

𝐽#(𝐴 ∗ 𝐽#𝐵) ⊗ 𝐽#𝐶 𝐽#((𝐴 ∗ 𝐽#𝐵) ∗ 𝐽#𝐶)

(𝐽#𝐴 ⊗ 𝐽#𝐵) ⊗ 𝐽#𝐶

𝐽#𝐴 ⊗ (𝐽#𝐵 ⊗ 𝐽#𝐶) 𝐽#(𝐴 ∗ (𝐽#𝐵 ⊗ 𝐽#𝐶))

𝑎
𝐽#𝐴,𝐽#𝐵,𝐽#𝐶

𝛾𝐴,𝐵⊗𝐽#𝐶

𝛾
𝐴∗𝐽#𝐵,𝐶

𝜍
𝐴,𝐽#𝐵⊗𝐽#𝐶

𝐽#𝑚
𝐽#𝐵,𝐽#𝐶

𝐴

where 𝜍𝐴,𝑌 is the right action and right adjoint version of the strength introduced in (3.2)
(namely 𝛾𝐴,𝐵 = 𝜍𝐴,𝐽#𝐵). Observe that this diagram is the right action and right adjoint
version of the pentagon which appears on page 1289 and whose commutativity is shown
as a part of the proof of theorem (3.1).
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To complete the proof of the statement, it remains to show that if 𝑐 is a symmetry,
the for every 𝑃, 𝐴, 𝐵 ∈ A, 𝑠𝑃

𝐵,𝐴
◦ 𝑠𝑃

𝐴,𝐵
= id. This immediately follows, as shown by the

diagram below.

(𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#𝐵 𝑃 ∗ (𝐽#𝐴 ⊗ 𝐽#𝐵)

𝑃 ∗ (𝐽#𝐵 ⊗ 𝐽#𝐴)

(𝑃 ∗ 𝐽#𝐵) ∗ 𝐽#𝐴

𝑃 ∗ (𝐽#𝐵 ⊗ 𝐽#𝐴)

(𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#𝐵 𝑃 ∗ (𝐽#𝐴 ⊗ 𝐽#𝐵)

𝑚
𝐽#𝐴,𝐽#𝐵

𝑃

𝑃∗𝑐
𝐽#𝐴,𝐽#𝐵

𝑃∗𝑐
𝐽#𝐵,𝐽#𝐴

(
𝑚

𝐽#𝐵,𝐽#𝐴

𝑃

)−1

𝑚
𝐽#𝐵,𝐽#𝐴

𝑃

𝑠𝑃
𝐴,𝐵

𝑠𝑃
𝐵,𝐴

(
𝑚

𝐽#𝐴,𝐽#𝐵

𝑃

)−1

id



1310
P
A
V
L
A

P
R
O
C
H
Á
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((𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#𝐵) ∗ 𝐽#𝐶 (𝑃 ∗ 𝐽#𝐴) ∗ (𝐽#𝐵 ⊗ 𝐽#𝐶) (𝑃 ∗ 𝐽#𝐴) ∗ (𝐽#𝐶 ⊗ 𝐽#𝐵) ((𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#𝐶) ∗ 𝐽#𝐵

(𝑃 ∗ (𝐽#𝐴 ⊗ 𝐽#𝐵)) ∗ 𝐽#𝐶 𝑃 ∗ (𝐽#𝐴 ⊗ (𝐽#𝐵 ⊗ 𝐽#𝐶)) 𝑃 ∗ (𝐽#𝐴 ⊗ (𝐽#𝐶 ⊗ 𝐽#𝐵)) (𝑃 ∗ (𝐽#𝐴 ⊗ 𝐽#𝐶)) ∗ 𝐽#𝐵

𝑃 ∗ ((𝐽#𝐴 ⊗ 𝐽#𝐵) ⊗ 𝐽#𝐶) 𝑃 ∗ ((𝐽#𝐴 ⊗ 𝐽#𝐶) ⊗ 𝐽#𝐵)

(𝑃 ∗ (𝐽#𝐵 ⊗ 𝐽#𝐴)) ∗ 𝐽#𝐶 (𝑃 ∗ (𝐽#𝐶 ⊗ 𝐽#𝐴)) ∗ 𝐽#𝐵

𝑃 ∗ ((𝐽#𝐵 ⊗ 𝐽#𝐴) ⊗ 𝐽#𝐶) 𝑃 ∗ ((𝐽#𝐶 ⊗ 𝐽#𝐴) ⊗ 𝐽#𝐵)

((𝑃 ∗ 𝐽#𝐵) ∗ 𝐽#𝐴) ∗ 𝐽#𝐶 ((𝑃 ∗ 𝐽#𝐶) ∗ 𝐽#𝐴) ∗ 𝐽#𝐵

𝑃 ∗ (𝐽#𝐵 ⊗ (𝐽#𝐴 ⊗ 𝐽#𝐶)) 𝑃 ∗ (𝐽#𝐶 ⊗ (𝐽#𝐴 ⊗ 𝐽#𝐵))

(𝑃 ∗ 𝐽#𝐵) ∗ (𝐽#𝐴 ⊗ 𝐽#𝐶) (𝑃 ∗ 𝐽#𝐶) ∗ (𝐽#𝐴 ⊗ 𝐽#𝐵)

𝑃 ∗ (𝐽#𝐵 ⊗ (𝐽#𝐶 ⊗ 𝐽#𝐴)) 𝑃 ∗ (𝐽#𝐶 ⊗ (𝐽#𝐵 ⊗ 𝐽#𝐴))

(𝑃 ∗ 𝐽#𝐵) ∗ (𝐽#𝐶 ⊗ 𝐽#𝐴) 𝑃 ∗ ((𝐽#𝐵 ⊗ 𝐽#𝐶) ⊗ 𝐽#𝐴) 𝑃 ∗ ((𝐽#𝐶 ⊗ 𝐽#𝐵) ⊗ 𝐽#𝐴) (𝑃 ∗ 𝐽#𝐶) ∗ (𝐽#𝐵 ⊗ 𝐽#𝐴)

((𝑃 ∗ 𝐽#𝐵) ∗ 𝐽#𝐶) ∗ 𝐽#𝐴 (𝑃 ∗ (𝐽#𝐵 ⊗ 𝐽#𝐶)) ∗ 𝐽#𝐴 (𝑃 ∗ (𝐽#𝐶 ⊗ 𝐽#𝐵)) ∗ 𝐽#𝐴 ((𝑃 ∗ 𝐽#𝐶) ∗ 𝐽#𝐵) ∗ 𝐽#𝐴

𝑚
𝐽#𝐵,𝐽#𝐶

𝑃∗𝐽#𝐴

𝑚
𝐽#𝐴,𝐽#𝐵

𝑃
∗𝐽#𝐶

(𝑃∗𝐽#𝐴)∗𝑐
𝐽#𝐵,𝐽#𝐶

𝑚
𝐽#𝐴,𝐽#𝐵⊗𝐽#𝐶

𝑃

(
𝑚

𝐽#𝐶,𝐽#𝐵

𝑃∗𝐽#𝐴

)−1

𝑚
𝐽#𝐴,𝐽#𝐶⊗𝐽#𝐵

𝑃
𝑚

𝐽#𝐴,𝐽#𝐶

𝑃
∗𝐽#𝐵

𝑚
𝐽#𝐴⊗𝐽#𝐵,𝐽#𝐶

𝑃(𝑃∗𝑐
𝐽#𝐴,𝐽#𝐵

)∗𝐽#𝐶 𝑃∗(𝐽#𝐴⊗𝑐
𝐽#𝐵,𝐽#𝐶

)

𝑃∗𝑐
𝐽#𝐴,𝐽#𝐵⊗𝐽#𝐶

𝑃∗𝑐
𝐽#𝐴,𝐽#𝐶⊗𝐽#𝐵

(
𝑚

𝐽#𝐴⊗𝐽#𝐶,𝐽#𝐵

𝑃

)−1
(𝑃∗𝑐

𝐽#𝐴,𝐽#𝐶
)∗𝐽#𝐵

𝑃∗𝑎
𝐽#𝐴,𝐽#𝐵,𝐽#𝐶

𝑃∗(𝑐
𝐽#𝐴,𝐽#𝐵

⊗𝐽#𝐶)

𝑃∗𝑎−1
𝐽#𝐴,𝐽#𝐶,𝐽#𝐵

𝑃∗(𝑐
𝐽#𝐴,𝐽#𝐶

⊗𝐽#𝐵)

𝑚
𝐽#𝐵⊗𝐽#𝐴,𝐽#𝐶

𝑃(
𝑚

𝐽#𝐵,𝐽#𝐴

𝑃

)−1
∗𝐽#𝐶

𝑚
𝐽#𝐶⊗𝐽#𝐴,𝐽#𝐵

𝑃 (
𝑚

𝐽#𝐶,𝐽#𝐴

𝑃

)−1
∗𝐽#𝐵

𝑃∗𝑎
𝐽#𝐵,𝐽#𝐴,𝐽#𝐶

𝑃∗𝑎
𝐽#𝐶,𝐽#𝐴,𝐽#𝐵

𝑚
𝐽#𝐴,𝐽#𝐶

𝑃∗𝐽#𝐵
𝑚

𝐽#𝐴,𝐽#𝐵

𝑃∗𝐽#𝐶

𝑃∗(𝐽#𝐵⊗𝑐
𝐽#𝐴,𝐽#𝐶

) 𝑃∗(𝐽#𝐶⊗𝑐
𝐽#𝐴,𝐽#𝐵

)
𝑚

𝐽#𝐵,𝐽#𝐴⊗𝐽#𝐶

𝑃

(𝑃∗𝐽#𝐵)∗𝑐
𝐽#𝐴,𝐽#𝐶

𝑚
𝐽#𝐶,𝐽#𝐴⊗𝐽#𝐵

𝑃

(𝑃∗𝐽#𝐶)∗𝑐
𝐽#𝐴,𝐽#𝐵

𝑚
𝐽#𝐵,𝐽#𝐶⊗𝐽#𝐴

𝑃

(
𝑚

𝐽#𝐶,𝐽#𝐴

𝑃∗𝐽#𝐵

)−1
𝑃∗𝑎−1

𝐽#𝐵,𝐽#𝐶,𝐽#𝐴

𝑃∗(𝑐
𝐽#𝐵,𝐽#𝐶

⊗𝐽#𝐴)

𝑃∗𝑎
𝐽#𝐶,𝐽#𝐵,𝐽#𝐴

(
𝑚

𝐽#𝐶,𝐽#𝐵⊗𝐽#𝐴

𝑃

)−1
(
𝑚

𝐽#𝐵,𝐽#𝐴

𝑃∗𝐽#𝐶

)−1

𝑚
𝐽#𝐵,𝐽#𝐶

𝑃
∗𝐽#𝐴

𝑚
𝐽#𝐵⊗𝐽#𝐶,𝐽#𝐴

𝑃

(𝑃∗𝑐
𝐽#𝐵,𝐽#𝐶

)∗𝐽#𝐴

𝑚
𝐽#𝐶⊗𝐽#𝐵,𝐽#𝐴

𝑃

(
𝑚

𝐽#𝐶,𝐽#𝐵

𝑃

)−1
∗𝐽#𝐴

(1)
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((𝑃 ∗ 𝐽#𝐵) ∗ 𝐽#𝐴) ∗ 𝐽#𝐶

(𝑃 ∗ (𝐽#𝐵 ⊗ 𝐽#𝐴)) ∗ 𝐽#𝐶 (𝑃 ∗ 𝐽#𝐵) ∗ (𝐽#𝐴 ⊗ 𝐽#𝐶)

𝑃 ∗ ((𝐽#𝐵 ⊗ 𝐽#𝐴) ⊗ 𝐽#𝐶) 𝑃 ∗ (𝐽#𝐵 ⊗ (𝐽#𝐴 ⊗ 𝐽#𝐶))

(𝑃 ∗ (𝐽#𝐴 ⊗ 𝐽#𝐵)) ∗ 𝐽#𝐶 (𝑃 ∗ 𝐽#𝐵) ∗ (𝐽#𝐶 ⊗ 𝐽#𝐴)

𝑃 ∗ ((𝐽#𝐴 ⊗ 𝐽#𝐵) ⊗ 𝐽#𝐶) 𝑃 ∗ (𝐽#𝐵 ⊗ (𝐽#𝐶 ⊗ 𝐽#𝐴))

((𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#𝐵) ∗ 𝐽#𝐶 ((𝑃 ∗ 𝐽#𝐵) ∗ 𝐽#𝐶) ∗ 𝐽#𝐴

𝑃 ∗ (𝐽#𝐴 ⊗ (𝐽#𝐵 ⊗ 𝐽#𝐶)) 𝑃 ∗ ((𝐽#𝐵 ⊗ 𝐽#𝐶) ⊗ 𝐽#𝐴)

(𝑃 ∗ 𝐽#𝐴) ∗ (𝐽#𝐵 ⊗ 𝐽#𝐶) (𝑃 ∗ (𝐽#𝐵 ⊗ 𝐽#𝐶)) ∗ 𝐽#𝐴

𝑃 ∗ (𝐽#𝐴 ⊗ 𝐽#(𝐵 ∗ 𝐽#𝐶)) 𝑃 ∗ (𝐽#(𝐵 ∗ 𝐽#𝐶) ⊗ 𝐽#𝐴)

(𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#(𝐵 ∗ 𝐽#𝐶) (𝑃 ∗ 𝐽#(𝐵 ∗ 𝐽#𝐶)) ∗ 𝐽#𝐴

(
𝑚

𝐽#𝐵,𝐽#𝐴

𝑃

)−1
∗𝐽#𝐶 𝑚

𝐽#𝐴,𝐽#𝐶

𝑃∗𝐽#𝐵

𝑚
𝐽#𝐵⊗𝐽#𝐴,𝐽#𝐶

𝑃

𝑃∗𝑎
𝐽#𝐵,𝐽#𝐴,𝐽#𝐶(𝑃∗𝑐

𝐽#𝐴,𝐽#𝐵
)∗𝐽#𝐶

𝑚
𝐽#𝐴⊗𝐽#𝐵,𝐽#𝐶

𝑃

𝑃∗(𝑐
𝐽#𝐴,𝐽#𝐵

⊗𝐽#𝐶)

(
𝑚

𝐽#𝐵,𝐽#𝐴⊗𝐽#𝐶

𝑃

)−1
(𝑃∗𝐽#𝐵)∗𝑐

𝐽#𝐴,𝐽#𝐶

(
𝑚

𝐽#𝐵,𝐽#𝐶⊗𝐽#𝐴

𝑃

)−1
𝑃∗(𝐽#𝐵⊗𝑐

𝐽#𝐴,𝐽#𝐶
)

𝑚
𝐽#𝐴,𝐽#𝐵

𝑃
∗𝐽#𝐶

𝑚
𝐽#𝐵,𝐽#𝐶

𝑃∗𝐽#𝐴
𝑚

𝐽#𝐴,𝐽#𝐵⊗𝐽#𝐶

𝑃

𝑃∗𝑎
𝐽#𝐴,𝐽#𝐵,𝐽#𝐶

(
𝑚

𝐽#𝐶,𝐽#𝐴

𝑃∗𝐽#𝐵

)−1

𝑚
𝐽#𝐵,𝐽#𝐶

𝑃
∗𝐽#𝐴(

𝑚
𝐽#𝐵⊗𝐽#𝐶,𝐽#𝐴

𝑃

)−1
𝑃∗𝑎

𝐽#𝐵,𝐽#𝐶,𝐽#𝐴

𝑃∗𝑐
𝐽#𝐴,𝐽#𝐵⊗𝐽#𝐶

(𝑃∗𝐽#𝐴)∗𝛾𝐵,𝐶

𝑃∗(𝐽#𝐴⊗𝛾𝐵,𝐶 ) 𝑃∗(𝛾𝐵,𝐶⊗𝐽#𝐴)

(𝑃∗𝛾𝐵,𝐶 )∗𝐽#𝐴
𝑃∗𝑐

𝐽#𝐴,𝐽# (𝐵∗𝐽#𝐶 )

𝑚
𝐽#𝐴,𝐽# (𝐵∗𝐽#𝐶 )
𝑃

(
𝑚

𝐽# (𝐵∗𝐽#𝐶 ) ,𝐽#𝐴

𝑃

)−1

(2)
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(𝑃 ∗ 𝐽#(𝐴 ∗ 𝐽#𝐵)) ∗ 𝐽#𝐶

(𝑃 ∗ (𝐽#𝐴 ⊗ 𝐽#𝐵)) ∗ 𝐽#𝐶 𝑃 ∗ (𝐽#(𝐴 ∗ 𝐽#𝐵) ⊗ 𝐽#𝐶)

((𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#𝐵) ∗ 𝐽#𝐶 𝑃 ∗ ((𝐽#𝐴 ⊗ 𝐽#𝐵) ⊗ 𝐽#𝐶) 𝑃 ∗ 𝐽#((𝐴 ∗ 𝐽#𝐵) ∗ 𝐽#𝐶)

(𝑃 ∗ 𝐽#𝐴) ∗ (𝐽#𝐵 ⊗ 𝐽#𝐶) 𝑃 ∗ (𝐽#𝐴 ⊗ (𝐽#𝐵 ⊗ 𝐽#𝐶)) 𝑃 ∗ 𝐽#(𝐴 ∗ (𝐽#𝐵 ⊗ 𝐽#𝐶))

(𝑃 ∗ 𝐽#𝐴) ∗ (𝐽#𝐶 ⊗ 𝐽#𝐵) 𝑃 ∗ (𝐽#𝐴 ⊗ (𝐽#𝐶 ⊗ 𝐽#𝐵)) 𝑃 ∗ 𝐽#(𝐴 ∗ (𝐽#𝐶 ⊗ 𝐽#𝐵))

((𝑃 ∗ 𝐽#𝐴) ∗ 𝐽#𝐶) ∗ 𝐽#𝐵 𝑃 ∗ ((𝐽#𝐴 ⊗ 𝐽#𝐶) ⊗ 𝐽#𝐵) 𝑃 ∗ 𝐽#((𝐴 ∗ 𝐽#𝐶) ∗ 𝐽#𝐵)

(𝑃 ∗ (𝐽#𝐴 ⊗ 𝐽#𝐶)) ∗ 𝐽#𝐵 𝑃 ∗ (𝐽#(𝐴 ∗ 𝐽#𝐶) ⊗ 𝐽#𝐵)

(𝑃 ∗ 𝐽#(𝐴 ∗ 𝐽#𝐶)) ∗ 𝐽#𝐵

𝑚
𝐽# (𝐴∗𝐽#𝐵) ,𝐽#𝐶

𝑃(𝑃∗𝛾𝐴,𝐵)∗𝐽#𝐶

𝑚
𝐽#𝐴⊗𝐽#𝐵,𝐽#𝐶

𝑃

𝑃∗𝛾
𝐴∗𝐽#𝐵,𝐶𝑚

𝐽#𝐴,𝐽#𝐵

𝑃
∗𝐽#𝐶

𝑚
𝐽#𝐵,𝐽#𝐶

𝑃∗𝐽#𝐴

𝑃∗(𝛾𝐴,𝐵⊗𝐽#𝐶)

𝑃∗𝑎
𝐽#𝐴,𝐽#𝐵,𝐽#𝐶 𝑃∗𝐽#𝑚𝐽#𝐵,𝐽#𝐶

𝐴

𝑚
𝐽#𝐴,𝐽#𝐵⊗𝐽#𝐶

𝑃

(𝑃∗𝐽#𝐴)∗𝑐
𝐽#𝐵,𝐽#𝐶

𝑃∗𝜍
𝐴,𝐽#𝐵⊗𝐽#𝐶

𝑃∗(𝐽#𝐴⊗𝑐
𝐽#𝐵,𝐽#𝐶

) 𝑃∗𝐽# (𝐴∗𝑐
𝐽#𝐵,𝐽#𝐶

)

𝑚
𝐽#𝐴,𝐽#𝐶⊗𝐽#𝐵

𝑃

𝑃∗𝜍
𝐴,𝐽#𝐶⊗𝐽#𝐵(

𝑚
𝐽#𝐶,𝐽#𝐵

𝑃∗𝐽#𝐴

)−1

𝑚
𝐽#𝐴,𝐽#𝐶

𝑃
∗𝐽#𝐵

𝑃∗𝑎
𝐽#𝐴,𝐽#𝐶,𝐽#𝐵

𝑃∗(𝛾𝐴,𝐶⊗𝐽#𝐵)

𝑃∗𝐽#𝑚𝐽#𝐶,𝐽#𝐵

𝐴

𝑚
𝐽#𝐴⊗𝐽#𝐶,𝐽#𝐵

𝑃

(𝑃∗𝛾𝐴,𝐶 )∗𝐽#𝐵

𝑃∗𝛾
𝐴∗𝐽#𝐶,𝐵

𝑚
𝐽# (𝐴∗𝐽#𝐶 ) ,𝐽#𝐵

𝑃

(3)
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6.3. Remark. In the proposition above, we obtained a right braiding on a left skew
monoidal category by considering structures with tensor 𝐴 ∗ 𝐽#𝐵 as in (1), i.e. induced
by a right action and a right adjoint. If we consider structures induced on right actegories
by a left adjoint, we would get right braidings on right skew monoidal categories.

Similarly, on left actegories, the induced braiding would be left – depending on whether
we use left or right adjoint to define the tensor, we would get a left braiding on either left
or right skew monoidal category.

7. Closedness of the induced structures

In this section, we present sufficient conditions under which the structure obtained as in
Theorem (3.1) is left/right closed.

7.1. Definition. We say that a skew monoidal structure (A,◁, 𝐽) is right closed, if the
functor 𝐴 ◁ (−) has a right adjoint ⟦𝐴,−⟧ for any 𝐴 ∈ A.

Analogously, we say that (A,◁, 𝐽) is left closed if (−) ◁ 𝐵 has a right adjoint ⟦𝐵,−⟧
for any 𝐵 ∈ A.

When discussing left or right closedness for structures arising from variants of Theorem
(3.1), it is not that important to distinguish whether we start with a left or a right action.
Results for structures arising from right actions will mirror those for structures arising
from left actions, if we switch the roles of left and right closedness.

We will therefore only treat cases arising from left actions. On the other hand, since
we are specifically interested in the existence of right adjoints of the tensor functors, it
may be sensible to distinguish whether we assume that 𝐽∗ has a left or a right adjoint.

We will observe that closedness of (A,◁, 𝐽) is closely related to “closedness” of the
action of V, which is formalised in the following definition.

7.2. Definition. Let V be a (skew) monoidal category acting on a category A (from
the left). We say that the action is left closed (or that A is a left closed actegory), if for
every 𝐴 in A the functor 𝐴∗ = (−) ∗ 𝐴 : V ! A has a right adjoint.

We say that the action is right closed (or that A is a right closed actegory), if for
every object 𝑋 in V, the functor 𝑋 ∗ (−) : A ! A has a right adjoint ⟦𝑋,−⟧∗.

Let us assume (A,◁, 𝐽) is defined with tensor 𝐴 ◁ 𝐵 = 𝐽!𝐴 ∗ 𝐵 as in (1). Then, the
functor (−) ◁ 𝐵 can be understood as the composite functor 𝐵∗𝐽! (where 𝐵∗ = (−) ∗ 𝐵).
In order for this structure to be left closed, we want a right adjoint

A V A𝐽! 𝐵∗

⟦𝐵,−⟧

⊣
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As 𝐽! ⊣ 𝐽∗, it is enough to assume that A is a left closed actegory, i.e. that 𝐵∗ has a right
adjoint 𝐵∗ ⊣ 𝐵# for any 𝐵. Then, ⟦𝐵,−⟧ can be defined as the composite 𝐽∗𝐵#:

A V A𝐽!

𝐽∗

𝐵∗

𝐵#

⊣ ⊣

Now, let us turn to the case where (A,◁, 𝐽) has tensor of the form 𝐴 ◁ 𝐵 = 𝐽#𝐴 ∗ 𝐵
as in (1). Then, (−) ◁ 𝐵 can be seen again as the composite 𝐵∗𝐽#. Under the general
assumptions, neither of these functors has a right adjoint. However, if we suppose that
A is a left closed V-actegory, then we have 𝐵∗ ⊣ 𝐵#. Therefore, to give a right adjoint
⟦𝐵,−⟧, it would suffice for 𝐽# to have a right adjoint 𝑅𝐽 .

A V A𝐽#

𝐽∗

𝑅𝐽

𝐵∗

𝐵#
⊣ ⊣

⊣

Then, we would have ⟦𝐵,−⟧ ··= 𝑅𝐽𝐵#.
Right closedness for the cases discussed above amounts to the functor 𝐽!𝐴 ∗ (−) or

𝐽#𝐴 ∗ (−) having a right adjoint. This would be implied if the action was right closed6.
We summarize the observations made above in the following proposition.

7.3. Proposition.

(i) Suppose (A,◁, 𝐽) is a left skew monoidal category with tensor 𝐴◁ 𝐵 = 𝐽!𝐴 ∗ 𝐵 as in
(1). If the action is left closed, so is (A,◁, 𝐽) with ⟦𝐵,−⟧ = 𝐽∗𝐵#.

If the action is right closed, so is (A,◁, 𝐽) with ⟦𝐴,−⟧ = ⟦𝐽!𝐴,−⟧∗.

(ii) Suppose (A,◁, 𝐽) is a left skew monoidal category with tensor 𝐴 ◁ 𝐵 = 𝐽#𝐴 ∗ 𝐵 as
in (1). If the action is left closed and in addition the functor 𝐽# has a right adjoint
𝑅𝐽, then (A,◁, 𝐽) is left closed with ⟦𝐵,−⟧ = 𝑅𝐽𝐵#.

If the action is right closed, so is (A,◁, 𝐽) with ⟦𝐴,−⟧ = ⟦𝐽#𝐴,−⟧∗.

7.4. Example. Suppose C is a small category and D is a complete category. Then all
pointwise right Kan extensions of functors C ! D along functors C ! D exist. Consider
[C,D] with left skew monoidal structure as in (5.2), i.e. with tensor 𝐹◁𝐺 = Lan𝐽𝐹◦𝐺 for
some fixed 𝐽 (assuming that Lan𝐽 exists). For any 𝐺 : C ! D, the functor 𝐺∗ = (−) ◦ 𝐺
has a right adjoint given by the right Kan extension. This means this skew monoidal
structure is left closed with internal hom ⟦𝐺, 𝐹⟧ = Ran𝐺𝐹 ◦ 𝐽.

6It would suffice for it to be “right closed on the image of 𝐽! or 𝐽#”.
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