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EQUIVALENCES OF CATEGORIES AND A MODEL STRUCTURE
ON RELATIVE CATEGORIES

SEUNGHUN LEE

Abstract. We show that there is a model structure on the category RelCat of small
relative categories such that for a morphism f in RelCat, f is a weak equivalence iff
the associated functor on homotopy 1-categories is an equivalence of categories. In this
model category (i) every object is cofibrant and (ii) the homotopy category functor
becomes a fibrant replacement. The model structure is left-induced from the model
category on small categories with equivalences of categories as weak equivalences by the
homotopy category functor in a Quillen equivalent way.
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1. Introduction

The purpose of this note is to show that there is a model structure on the category RelCat
([BK12b]) of small relative categories such that for a morphism f : (C, V ) → (D,W ) in
RelCat, f is a weak equivalence iff the associated functor

C[V −1]
≃−→ D[W−1] (1)

on homotopy categories1 ([GZ67]) is an equivalence of categories. Furthermore, if the
category Cat of small categories is equipped with the model structure whose weak equiva-
lences are precisely the equivalences of categories, then RelCat equipped with this model
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structure is Quillen equivalent to Cat. In fact, the model structure on RelCat is lifted
from Cat as a left-induced model structure ([BHK+15]) along the functor associated with
localizations of relative categories. Before we state the main result, we fix some notations.

For an object (C,W ) of RelCat (Definition 2.27), we denote by L(C,W ) the associated
homotopy category C[W−1] ([GZ67]). Given a morphism f : (C, V )→ (D,W ) in RelCat,
we denote by Lf : L(C, V ) → L(D,W ) the functor associated with f . Then we have a
functor L : RelCat→ Cat which is a left adjoint functor of an adjunction

L : RelCat ⇄ Cat : R (2)

where R is a functor mapping C to (C, iso(C)) where iso(C) is the subcategory of isomor-
phisms in C, i.e., the maximal groupoid of C.

For a model category M we denote its underlying category by

u(M) (3)

and its model structure by (
w(M), c(M), f(M)

)
(4)

where w(M), c(M), f(M) is the class of weak equivalences, cofibrations and fibrations in
M respectively. We use the following abbreviations.

wc(M) = w(M) ∩ c(M) wf(M) = w(M) ∩ f(M) (5)

We denote by Catc the model category on Cat(= u(Catc)) whose model structure(
w(Catc), c(Catc), f(Catc)

)
(6)

satisfies the following properties.

� w(Catc) is the class of equivalences of small categories.

� c(Catc) is the class of functors injective on objects.

� f(Catc) is the class of isofibrations.

Now we state our main result.

1.1. Theorem. There is a model category RelCath on RelCat whose model structure(
w(RelCath), c(RelCath), f(RelCath)

)
(7)

satisfies the following properties.

1. For a morphism f in RelCat,

(a) f is in w(RelCath) iff Lf is in w(Catc).

(b) f is in c(RelCath) iff Lf is in c(Catc).
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2. With the model structures (6) and (7), the adjunction (2) is a Quillen equivalence.

3. Every object of RelCath is cofibrant.

4. For an object (C,W ) of RelCat, the following are equivalent.

(a) (C,W ) is fibrant in RelCath.

(b) (C,W ) = RC, i.e., W = iso(C) holds.

The proofs for (1) and (2) are in Section 3.
Section 4 is about the two weak factorization systems associated with (7). The cofi-

brations and trivial fibrations are characterized explicitly with a generating set for cofi-
brations. For the pair of trivial cofibrations and fibrations we only prove (4). In this note,
we are concerned only with 1-categorical localization. As such, (2) and (4) say that the
model structure (7) is exactly what we need. When a category H is viewed as a homotopy
category, a relative category (C,W ) satisfying

H = C[W−1] (8)

provides a presentation of H. (4) says that the fibrant objects are precisely the homotopy
categories. Another consequence of (4) is that for every object (C,W ) of RelCat, the
morphism

(C,W )→ RL(C,W ) (9)

associated with the localization of (C,W ) is a fibrant replacement of (C,W ) in RelCath.
The enriched model structures on RelCath parallel to those on Catc are explained in

Section 5. RelCath has one monoidal model structure and two simplicial model structures.
In Section 6 we compare our model structure with the Barwick-Kan model structure

([BK12b]). We observe that our model structure is not a Bousfield localization of Barwick-
Kan model structure.

The model structure (6) is the unique one with w(Catc) as the class of weak equiva-
lences. Unlike (6), the model structure (7) is not the unique one with w(RelCath) as the
class of weak equivalences. There is a model structure one can obtain by mixing ([Col06])
the model structure (7) and the Barwick-Kan model structure. It is a left Bousfield
localization of the Barwick-Kan model structure. We discuss about it in Section 7.

I would like to thank Professor Clark Barwick for answering my question and raising
interesting questions. I would also like to thank the referee for pointing my attention to
a Mathoverflow question by Tim Campion ([Cam16]). There the existence of the model
structure (7) is claimed without proof. The fibrant objects described there is the fibrant
objects of a different but related model category of which a left Bousfield localization is
RelCath.

2. Review on basic notions

The only purpose of Section 2 is to make this note self-contained. We recall some well-
known notions and facts and fix notations convenient for us.
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2.1. Model category. Here we review model categories ([Qui67], [Hov99], [Hir03],
[MP12]).

2.2. Definition. Let K be a category. Let f, g be two morphisms in K. We say that
f (resp g) has a right (resp. left) lifting property with respect to g (resp. f),
denoted by

g � f, (10)

if every commutative square of solid arrows (11) has a dotted morphism h that makes the
whole diagram commute.

· ·

· ·
g fh (11)

2.3. Definition. Let K be a category. Let A be a class of morphisms in K.

1. We denote by A� the class of morphisms in K satisfying right lifting property with
respect to every morphism in A.

2. We denote by �A the class of morphisms in K satisfying left lifting property with
respect to every morphism in A.

2.4. Definition. Let K be a category. A pair (A,B) of classes of morphisms in K is
called a weak factorization system on K if the following two properties hold.

1. A� = B and A = �B.

2. Every morphism f in K can be factored as f = hg where h ∈ B and g ∈ A.

2.5. Definition. A model category M consists of

1. a category, called the underlying category of M and denoted by

u(M), (12)

with all small limits and small colimits and

2. three classes of morphisms in u(M), called the model structure of M and denoted
by (

w(M), c(M), f(M)
)
, (13)

such that

(a) w(M) satisfies the two-out-of-three property: for every composable morphisms
f, g in u(M) if two of f, g, gf are in w(M) then so is the third.

(b) (w(M) ∩ c(M), f(M)) and (c(M), w(M) ∩ f(M)) are weak factorization sys-
tems.

We call the elements of w(M), c(M) and f(M) weak equivalences, cofibrations and
fibrations in M respectively.
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2.6. Remark. For a model category M , we use the following abbreviations.

wc(M) = w(M) ∩ c(M) wf(M) = w(M) ∩ f(M) (14)

2.7. Model category Catc. It is known that Cat has an unique model structure such
that the weak equivalences are precisely the equivalences of small categories ([Rez96],
[Joy], [mmm10]). On Cat, we only work with this model structure. Here we review its
property.

2.8. Theorem. There is a combinatorial model category Catc on Cat whose model struc-
ture (

w(Catc), c(Catc), f(Catc)
)

(15)

satisfies the following properties.

1. w(Catc) is the class of equivalences of categories.

2. c(Catc) is the class of functors injective on objects.

3. f(Catc) is the class of isofibrations.

Below we collect some properties of Catc without proof.

2.9. Lemma. Every object of Catc is cofibrant and fibrant.

2.10. Lemma. Let f be a morphism in Cat. Then the following hold.

1. f ∈ wc(Catc) iff f ∈ w(Catc) and f is injective on objects.

2. f ∈ wf(Catc) iff f ∈ w(Catc) and f is surjective on objects.

2.11. Definition. We define two objects P and E of Cat as follows.

1. We denote by P the category with two objects 0, 1 and two distinct morphisms 0 ⇒ 1.

P =
{
0 ⇒ 1

}
(16)

2. We denote by E the groupoid with two objects 0, 1 and two non-identity morphisms
0 ⇄ 1.

E =
{
0 ⇄ 1

}
(17)
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2.12. Definition. We define morphisms t, b, p, j in Cat as follows.

1. We denote by
t : ∅ → [0] (18)

the unique functor.

2. We denote by
b : dis([1])→ [1] (19)

the canonical embedding where dis([1]) = {0, 1} is the discrete subcategory of [1].

3. We denote by
p : P → [1] (20)

the functor mapping 0 and 1 in P to 0 and 1 in [1] respectively.

4. We denote by
e : [0]→ E (21)

the functor mapping 0 in [0] to 0 in E.

2.13. Lemma. With the notations in Definition 2.11 and Definition 2.12 the following
hold.

1. {t, b, p} is a generating set for c(Catc).

2. {e} is a generating set for wc(Catc).

2.14. Left-induced model structure. Here we recall the left-induced model struc-
ture in [BHK+15].

2.15. Definition. Let K be a category with small limits and small colimits. Let M be
a model category. Let L : K ⇄ u(M) : R be an adjunction. If the triple of classes of
morphisms in K (

L−1w(M), L−1c(M),
(
L−1(wc(M))

)�
)

(22)

satisfies the axioms of model category with

� L−1w(M) the class of weak equivalences.

� L−1c(M) the class of cofibrations.

� (L−1(wc(M)))
�
the class of fibrations

then it is called a left-induced model structure on K.

The cofibrant generation in [BHK+15] is weaker than the one in [Hir03]. It allows the
generation by a class of morphisms instead of a set, and the smallness condition is not
required.
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2.16. Definition. We say that a weak factorization system (A,B) on a category K is
cofibrantly generated by a class I of morphisms in K iff I� = B.

2.17. Definition. A model category M is cofibrantly generated by a pair of classes
of morphisms I and J in u(M) iff the weak factorization systems (c(M), wf(M)) and
(wc(M), f(M)) are cofibrantly generated by I and J respectively.

The following theorem relies on the work of Makkai and Rosický ([MR14]).

2.18. Theorem. [Theorem 2.23 in [BHK+15]] Let K be a locally presentable category
with small limits and small colimits. Let M be a locally presentable model category that
is cofibrantly generated by a pair of sets of morphisms in M . Let L : K ⇄ u(M) : R be
an adjunction. If (

L−1c(M)
)� ⊆ L−1w(M) (23)

then the left-induced model structure on K exists and is cofibrantly generated by a pair of
sets.

2.19. Localization of category.There is a general procedure to obtain a localization
C[W−1] of a category C with respect to a class Σ of morphisms in C ([GZ67], [DHKS04]).
Here we review it.

2.20. Definition. Let C be a category and let Σ be a class of morphisms in C.

1. A zigzag of (C,Σ) is a finite sequence

a0 a1 · · · am
φ1 φ2 φm

(24)

of morphisms in C, m ≥ 1, such that whenever φi : ai → ai−1 is a backward
morphism φi belongs to Σ. We call m the length of the zigzag.

2. Given a zigzag (24), its type is the partition P ∪N of {1, . . . ,m} such that for every
i in {1, . . . ,m}, i belongs to N iff φi is a backward morphism.

3. By a hat we mean a zigzag

a
φ−→ b

φ←− a or a
φ←− b

φ−→ a (25)

for some φ in Σ.

The category C[W−1] has the same object as C. For morphisms, we have the following

2.21. Remark. Let C be a category and let Σ be a class of morphisms in C. Given two
objects x, y of C the hom-set C[W−1](x, y) consists of equivalence classes of zigzags where
two zigzags are equivalent iff one is obtained from the other by a finite sequence of the
following six operations.

1. Inserting an identity morphism.
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2. Deleting an identity morphism.

3. Composing two adjacent morphisms in the same direction.

4. Factorizing a morphism into two morphism in the same direction.

5. Inserting a hat (25).

6. Deleting a hat.

2.22. Definition. Let C be a category and let Σ be a class of morphisms in C. Given
a zigzag (24), we denote by[

a0 a1 · · · am
φ1 φ2 φm

]
(26)

the element of the hom-set C[W−1](a0, am) that (24) represents.

2.23. Lemma. Let C be a category and let Σ be a class of morphisms in C. Let φ : x→ y
be an isomorphism in C. If φ and φ−1 are in Σ then they represents the same morphism
in L(C,W )(x, y). [

x
φ−→ y

]
=

[
x

φ−1

←−− y
]

(27)

2.24. Relative categories. Here we review relative categories ([BK12b]).

2.25. Definition. Let C be a category. We denote by dis(C) the discrete subcategory of
C.

2.26. Definition. Let W be a subcategory of a category C. We call W wide if dis(W ) =
dis(C).

2.27. Definition. A relative category is a pair (C,W ) of a category C and a wide
subcategory W of C. We call C the underlying category of (C,W ) and W the category
of weak equivalences. The morphisms of W are called weak equivalences. A relative
category (C,W ) is small if C is small.

2.28. Remark. Let (C,W ) be a relative category. By an abuse of notation, we will often
denote W by w(C).

(C,W ) = (C,w(C)) (28)

Also, when it is convenient, we will abbreviate (C,W ) with the bold C.

(C,W ) = C (29)

2.29. Definition. A relative functor from a relative category C to D is a functor f :
C → D that preserves weak equivalences.
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2.30. Definition. We denote by RelCat the category

1. whose objects are small relative categories and

2. whose morphisms are relative functors between small relative categories.

We need to use the Dwyer maps ((3.5) in [BK12b]) in Section 6. But we don’t recall
the definition here. We just need the following property of Dwyer maps.

2.31. Remark. If a morphism A′ → B in RelCat is a Dwyer map then it admits a

factorization A′ ∼=−→ A→ B such that

1. the first morphism is an isomorphism in RelCat.

2. the second morphisms is a relative inclusion, i.e.,

A ⊂ B and w(A) = A ∩ w(B) (30)

where A = (A,w(A)) and B = (B,w(B)).

3. if Z(A,B) is the full relative subcategory of B spanned by the objects b ∈ B for
which there exists a morphism a → b in B with a ∈ A then there is a morphism
r : Z(A,B)→ A in RelCat such that for every a ∈ A, ra = a.

We will use the following two adjunctions.

2.32. Definition. We define functors

π0, π1 : RelCat→ Cat (31)

by π0(C,W ) = C and π1(C,W ) = W , and functors

ι0, ι1 : Cat→ RelCat (32)

by ι0(C) = (C, dis(C)) and ι1(C) = (C,C).

2.33. Lemma. There are following two adjunctions.

1. An adjunction
ι0 : Cat ⇄ RelCat : π0. (33)

2. An adjunction
ι1 : Cat ⇄ RelCat : π1. (34)

2.34. Remark. Even though for a morphism f in RelCat, f and π0(f) are essentially
the same, it will be convenient for us to distinguish them systematically.
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3. Existence and Quillen equivalence

Here we prove (1) and (2) in Theorem 1.1. We first prove (1).
The model category Catc (Theorem 2.8) is a combinatorial model category. The

category RelCat has small limits and small colimits, and locally finitely presentable. So
by applying Theorem 2.23 in [BHK+15] (Theorem 2.18) to the adjunction (2) we can lift
a model structure from Catc once we verify the acyclicity condition

(L−1c(Catc))
� ⊆ L−1w(Catc). (35)

We first characterize the morphisms in L−1c(Catc) and (L−1c(Catc))
�.

3.1. Lemma. Let g be a morphism in RelCat. Then the following are equivalent.

1. Lg is a cofibration in Catc.

2. Lg is injective on objects.

3. π0(g) is injective on objects.

4. π0(g) is a cofibration in Catc.

Proof. It follows from the definition of cofibrations in Catc.

3.2. Lemma. Let g be a morphism in Cat. If g ∈ c(Catc) then

ι0(g), ι1(g) ∈ L−1c(Catc). (36)

Proof. It follows from Lemma 3.1 because π0(ιi(g)) = g for i = 1, 2.

3.3. Lemma. Let f be a morphism in RelCat. If

f ∈ (L−1(c(Catc)))
� (37)

then
π0(f), π1(f) ∈ wf(Catc). (38)

Proof. Let i = 1, 2. Let g be a cofibration in Catc. Then g � πi(f) iff ιi(g) � f by the
adjunction (33) and (34). Thus (37) and Lemma 3.2 imply that πi(f) is a trivial fibration
in Catc.
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3.4. Remark. The converse of Lemma 3.3 also holds (Proposition 4.5).

We also need the following lemma.

3.5. Lemma. Let f : (C,w(C))→ (D,w(D)) be a morphism in RelCat. We assume that

1. π0(f) is full and faithful.

2. π1(f) is full.

Let φ be a morphism in C. If π0(f)(φ) is an identity morphism in D then

1. φ is an isomorphism in C and

2. φ, φ−1 are in w(C).

Proof. Since π0(f) is full and faithful, φ is an isomorphism in C. Since π1(f) is full and
w(D) is a wide subcategory of D, there is a morphism φ′ in w(C) mapped to the identity
morphism. Since π0(f) is faithful, φ = φ′. Thus φ is in w(C). The inverse φ−1 of φ also
mapped to the identity in D. Thus φ−1 is also in w(C).

Now we show that (35) holds.

3.6. Lemma. Let L be the left adjoint functor in (2). Then the inclusion (35)

(L−1c(Catc))
� ⊆ L−1w(Catc) (39)

holds.

Proof. Let f : (C,w(C))→ (D,w(D)) be in RelCat. We assume that

f ∈ (L−1c(Catc))
�. (40)

Below we show that Lf is a weak equivalence in w(Catc), i.e. an equivalence of categories.
Lemma 2.10 and Lemma 3.3 imply that π0(f) is surjective on objects and π0(f), π1(f)

are full. Thus Lf is surjective on objects and is full. So it remains to show that Lf is
faithful.

Let m,n be positive integers. Let x, y be objects of C. Let α and β be two morphisms
in L(C,w(C))(x, y). Let the zigzags (Definition 2.20)

(x =)a0 a1 · · · am(= y)
φ1 φ2 φm

(41)

and
(x =)b0 b1 · · · bn(= y)

ρ1 ρ2 ρn
(42)

represent α and β in L(C,w(C))(x, y) respectively. We assume that

Lf(α) = Lf(β). (43)
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Below we will show that α = β.
First, because of (43), we may assume that two zigzags (41) and (42) have the same

length and same type and their images in D by π0(f) coincide. It is because we can lift
the six operations (Remark 2.21) on the images of (41) and (42) in D to C. It follows
from the following observations (i) - (vi).

(i) Inserting an identity morphism at π0(f)(ai) for 0 ≤ i ≤ m can be lifted by inserting
the identity morphism at ai.

(ii) Deleting an identity morphism in D can be lifted by the following argument:

Assume that φi is a backward morphism ai−1
φi←− ai and it is mapped to an identity

morphism in D for some 1 ≤ i ≤ m. By Lemma 3.3 and Lemma 3.5, φi is an isomorphism
in C and φi, φ

−1
i are in w(C). By Lemma 2.23,

[φi] = [φ−1
i ]. (44)

Then we can remove φi by composing φi or φ
−1
i with an adjacent morphism. When φi is

a forward morphism we argue similarly.
(iii) Factoring a morphism π0(f)(φi) for 1 ≤ i ≤ m can be lifted because π0(f) and

π1(f) are full and π0(f) is surjective on objects by Lemma 3.3.
(iv) Composing two morphisms π0(f)(φi−1) and π0(f)(φi) in the same direction for

2 ≤ i ≤ m can be lifted by composing φi−1 and φi.
(v) Inserting a hat (25)

π0(f)(ai) d π0(f)(ai)
ψ ψ

(45)

or

π0(f)(ai) d π0(f)(ai)
ψ ψ

(46)

for 0 ≤ i ≤ m can be lifted because π1(f) is full and π0(f) is surjective on objects by
Lemma 3.3.

(vi) Deleting a hat can be lifted. Suppose that π0(f)(ai) = π0(f)(ai+2) and π0(f)(φi+1) =
π0(f)(φi+2) for some 0 ≤ i ≤ m− 2 so that we have a hat (25)

π0(f)(ai) π0(f)(ai+1) π0(f)(ai+2)
π0(f)(φi+1) π0(f)(φi+2)

(47)

or

π0f(ai) π0(f)(ai+1) π0(f)(ai+2).
π0(f)(φi+1) π0(f)(φi+2)

(48)

We assume for a moment that (47) holds. Since π0(f) is full and faithful by Lemma 3.3,
there is a morphism φ : ai → ai+2 in C such that

(a) φ is mapped to the identity morphism at π0(f)(ai).

(b) φi+2 = φi+1 · φ.
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By (b) we can replace

ai ai+1 ai+2
φi+1 φi+2

(49)

with
ai ai+2.

φ
(50)

Lemma 3.5 and (a) imply that φ is an isomorphism and φ, φ−1 are in w(C). Then by
Lemma 2.23, we can compose φ or φ−1 with an adjacent morphism and can omit (49). A
similar argument holds for (48).

Finally, we show that (43) implies α = β. Since ai and bi are mapped to the same
object in D and π0(f) is full, there is a morphism ki : ai → bi in C mapped to the identity
morphism at π0(f)(ai). Consider the hammock diagram in C made of two zigzags (41),
(42) and ki.

a1 a2 · · · am−1

x y

b1 b2 · · · bm−1

φ2

k1 k2

φm

km−1

φ1

ρ1
ρ2

ρm

(51)

Note that since π0(f) is faithful by Lemma 3.3, the collection of ki makes the diagram
(51) commute. By Lemma 3.5, ki is an isomorphism and k, k−1

i are in w(C). So, by
Lemma 2.23,

[ki] = [k−1
i ] (52)

for 1 ≤ i ≤ m − 1. Then the two zigzags represent the same morphism in L(C,w(C))
because α is represented by the zigzag (42) by inserting

bi
k1←− ai

ki−→ bi (53)

at every bi for 1 ≤ i ≤ m− 1.

Now we prove (2). Let η and ε be the unit and counit of the adjunction (2). Every
object of Catc is fibrant by Lemma 2.9. Every object of RelCath is cofibrant by the
definition and Lemma 2.9 (Corollary 4.3). So because of Proposition 1.3.13 in [Hov99], it
is enough to show that

(a) for every object (C,W ) of RelCat,

η(C,W ) : (C,W )→ RL(C,W ) (54)

is a weak equivalence in RelCath and

(b) for every object C of Cat,
εC : LR(C)→ C (55)

is a weak equivalence in Catc.
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(a) holds because

RL(C,W ) =
(
C[W−1], iso

(
C[W−1]

))
(56)

and η(C,W ) is the functor associated with the localizations C → C[W−1] of C with respect
to W . (b) holds because εC is an isomorphism in Cat.

4. Two weak factorization systems

Here we prove (3) and (4) in Theorem 1.1. (3) is Corollary 4.3. (4) is Proposition 4.11.

4.1. Cofibration and trivial fibration.

4.2. Proposition. Let f be a morphism in RelCat. The following are equivalent.

1. f is a cofibration in RelCath.

2. π0(f) is a cofibration in Catc.

Proof. Because L−1(c(Catc)) is the class of cofibrations in RelCat, it follows from
Lemma 3.1.

4.3. Corollary. In RelCath, every object is cofibrant.

Proof. Every object in Catc is cofibrant by Lemma 2.9. Thus it follows from Proposi-
tion 4.2.

4.4. Definition. We define a set Ih of morphisms in RelCat by

Ih = ι0(I) ∪ ι1(I) (57)

where I = {t, b, p} is a generating set for c(Catc) in Lemma 2.13(1).

4.5. Proposition. Let f be a morphism in RelCat. The following are equivalent.

1. f is a trivial fibration in RelCath.

2. π0(f) and π1(f) are trivial fibration in Catc.

3. f has a right lifting property with respect to Ih.
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Proof. (1)⇒ (2) Because
(
L−1(c(Catc))

)�
is the class of trivial fibrations in RelCath, it

follows from Lemma 3.3.
(1)⇐ (2) Let f : (C,w(C)) → (D,w(D)). Let g : (A,w(A)) → (B,w(B)) be in

c(RelCath). Let

(A,w(A)) (C,w(C))

(B,w(B)) (D,w(D))

g f (58)

be a commuting square in RelCat. By Proposition 4.2, π0(g) is a cofibration in Catc.
Then there is a lifting h : B → C in the square

A C

B D

π0(g) π0(f)h (59)

associated with (58) in Cat. It remains to show that h(w(B)) ⊆ w(C) holds.
Let φ : b → b′ be a morphism in w(B). Since π1(f) is full, there is a morphism

ρ : h(b)→ h(b′) in w(C) such that π1(f)(ρ) is the image of φ in w(D). Then, since π0(f)
is faithful, ρ must be h(φ) in C. Thus h(φ) is in w(C).

(2)⇔(3) The set {t, b, p} is a generating set for c(Catc) by Lemma 2.13. Then (2) and
(3) are equivalent by Lemma 2.33.

4.6. Trivial cofibration and fibration.

4.7. Proposition. Let f be a morphism in RelCat. Then the following are equivalent.

1. f is a trivial cofibration in RelCath.

2. Lf is a trivial cofibration Catc.

3. Lf is injective on objects and is an equivalence of categories.

Proof. It follows from Lemma 2.10 and the definitions.

4.8. Lemma. Let f be a morphism in RelCat. If f is a fibration in RelCath then π0(f)
and π1(f) are fibrations in Catc.

Proof. It follows from Lemma 2.13 and Lemma 2.33 because ι0([0]→ E) and ι1([0]→ E)
are trivial cofibrations in RelCath.
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4.9. Remark. In Catc every object is fibrant by Lemma 2.9. So, π0(f) and π1(f) being
fibrations in Catc does not imply that f is a fibration in RelCath because of Proposi-
tion 4.11.

4.10. Lemma. Let f be a morphism in Cat. Then the following are equivalent.

1. f is a fibration in Catc.

2. Rf is a fibration in RelCath.

Proof. (1)⇒ (2) holds because R is a right Quillen functor.
(1)⇐ (2) holds by Lemma 4.8.

Every object in RelCath is cofibrant. But not every object is fibrant. Fibrant objects
are precisely (C, iso(C)).

4.11. Proposition. Let (C,w(C)) be an object of RelCat. Then the following are equiv-
alent.

1. (C,w(C)) is fibrant in RelCath.

2. w(C) = iso(C).

Proof. (1)⇐(2) It follows from Lemma 4.10 because every object of Catc is fibrant by
Lemma 2.9.

(1)⇒(2) First, we show that w(C) ⊆ iso(C).
Let φ : x→ y be a morphism in w(C). Let g : ([1], [1])→ (C,w(C)) be the morphism

mapping the morphism 0→ 1 in [1] to φ. Consider

k : ([1], [1])→ (E, [1]) (60)

where π0(k) : [1]→ E is the functor mapping 0, 1 in [1] to 0, 1 in E (17) respectively. Lk
is an isomorphism. k is in wc(RelCath). Then there is an extension (E, [1])→ (C,w(C))
of g because (C,w(C)) is fibrant. Hence φ ∈ iso(C).

Next we show that w(C) ⊇ iso(C). Let φ : x→ y be in iso(C). Let g : (E, dis(E))→
(C,w(C)) be the morphism such that π0(g) maps 0→ 1 in E to φ in C. Let

k : (E, dis(E))→ (E, [1]) (61)

be a morphism satisfying π0(k) = idE. Lk is an isomorphism. k is a trivial cofibration
in RelCath. Then there is an extension (E, [1]) → (C,w(C)) of g because (C,w(C)) is
fibrant. Hence φ ∈ w(C).



A MODEL STRUCTURE ON RELATIVE CATEGORIES 799

4.12. Remark. Let (C,W ) be a relative category. Then the localization

γ : C → L(C,W ) (62)

has an associated morphism

η(C,W ) : (C,W )→ RL(C,W ) (63)

It is a trivial cofibration in RelCat. Thus Proposition 4.11 implies that η(C,W ) is a fibrant
replacement of (C,W ).

5. Enriched model structures

Here we show that RelCat has three enriched model structures, one monoidal model
structure and two simplicial model structures. The proof is a relative version of what was
proved in [Rez96].

5.1. Monoidal model structure. Here we show that RelCath is a monoidal model
category. First, we show that RelCat is a closed symmetric monoidal category.

5.2. Definition. Let C = (C,w(C)) and D = (D,w(D)) be objects in RelCat.

1. The product C⊗D of C and D is defined by

C⊗D = (C ×D,w(C)× w(D)). (64)

2. The hom-object Map(C,D) in Cat has

(a) as objects the morphisms in RelCat(C,D).

(b) as morphisms from f to g the natural transformations

α : π0(f)→ π0(g). (65)

3. The hom-object RelMap(C,D) in RelCat is the pair(
Map(C,D), w

(
Map(C,D)

))
(66)

where w
(
Map(C,D)

)
is the wide subcategory of Map(C,D) such that for a mor-

phism α : f → g in Map(C,D), α belongs to w
(
Map(C,D)

)
iff αc is in w(D) for

all c ∈ C.

5.3. Proposition. The bifunctors ⊗ and RelMap make RelCat a closed symmetric
monoidal category.
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Proof. ([0], [0]) is the unit object of RelCat. The associativity isomorphism and the unit
isomorphisms are the pairs of the corresponding isomorphisms in the monoidal category
Cat. The product ⊗ is clearly symmetric. Let C = (C,w(C)), D = (D,w(D)) and
E = (E,w(E)) be objects of RelCat. By definition, we have

RelCat(C⊗D,E) ∼= RelCat(C,RelMap(D,E)) (67)

and

RelCat(C⊗D,E) ∼= RelCat(D,RelMap(C,E)) (68)

In particular, the monoidal structure is closed.

5.4. Proposition.With the monoidal structure in Proposition 5.3, RelCath is a monoidal
model category.

Proof. SM0: By (67) and (68), RelCat has tensors C⊗D, cotensors RelMap(C,D) and
hom-objects RelMap(C,D) in RelCat where C,D ∈ RelCat.

SM7: The functor L in (2) preserves pushouts. The functor L preserves and reflects
(trivial) cofibrations by definition. So it follows from Theorem 5.1 in [Rez96].

5.5. Simplicial model structure. Here we show that there are two simplicial model
structure on RelCat associated with the two adjunctions in (33) and (34). We use the
Quillen adjunction

τ : sSet ⇄ Cat : N (69)

where N is the nerve functor.

5.6. Proposition. Let i = 1, 2. Then RelCath is a simplicial model category with tensors

C⊗K = C⊗ ιi(τK) (70)

cotensors
CK = RelMap(ιi(τK),C) (71)

and hom-objects in sSet

RelCat(C,D) = Nπi(RelMap(C,D)) (72)

where C,D ∈ RelCat and K ∈ Cat.

Proof. SM0: Using (67) and (68), we have

RelCat(C⊗K,D) (73)

=RelCat(C⊗ ιi(τK),D) (74)
∼=RelCat(ιi(τK),RelMap(C,D)) (75)
∼=sSet(K,NπiRelMap(C,D)) (76)

=sSet(K,RelCat(C,D)) (77)
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and

RelCat(C,DK) (78)

=RelCat(C,RelMap(ιi(τK),D)) (79)
∼=RelCat(ιi(τK),RelMap(C,D)) (80)
∼=sSet(K,NπiRelMap(C,D)) (81)

=sSet(K,RelCat(C,D)) (82)

SM7: It follows from SM7 of the monoidal model category RelCath because τ and ιi
preserve (trivial) cofibrations and colimits.

6. Comparison with the Barwick and Kan model structure

We denote by RelCatBK the Barwick-Kan model category ([BK12b]). Here we compare
RelCath with RelCatBK.

It is known that a weak equivalence in RelCatBK is a weak equivalence in RelCath
([BK10],[BK12a]).

w(RelCatBK) ⊂ w(RelCath) (83)

So, we may ask if RelCath is obtained from RelCatBK as a Bousfield localization. The
answer is negative for both of the left and the right.

A Dwyer map (Remark 2.31) in RelCat is a cofibration in RelCath. Every cofibration
in RelCatBK is a Dwyer map by Theorem 6.1(iii) in [BK12b]. Thus c(RelCatBK) is a
subcategory of c(RelCath). Every cofibrant object in RelCatBK is a relative poset by
Theorem 6.1(iv) in [BK12b]. But, in RelCath, every object is cofibrant (Corollary 4.3).
Thus

c(RelCatBK) ⫋ c(RelCath) (84)

So, RelCath is not a left Bousfield localization of RelCatBK.
Let k : [1] → E be the canonical inclusion in Cat where E is the category (17). The

morphism ι1(k) : ([1], [1])→ (E,E) is a trivial cofibration in RelCat because Lι1(k) is an
isomorphism. But ι1(k) is not a trivial cofibration in RelCatBK because it is not a Dwyer
map (Remark 2.31(3)). We have Z(([1], [1]), (E,E)) = (E,E). But there is no morphism
r : (E,E)→ ([1], [1]) such that π0(r)0 = 0 and π0(r)1 = 1. Thus f(RelCath) is a proper
subcategory of f(RelCatBK).

f(RelCatBK) ⫌ f(RelCath) (85)

So, RelCath is not a right Bousfield localization of RelCatBK.

7. Non-uniqueness and the mixed model structure on RelCat

The model structure (6) on Catc is the unique model structure with w(Catc) as the class
of weak equivalences. In contrast, the model structure in Theorem 1.1 is not an unique
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one whose class of weak equivalences is w(RelCath). It is an immediate consequence of
the following theorem of Cole on mixed model structures.

7.1. Theorem. [Theorem 2.1 in [Col06]] Let (W1, C1, F1) and (W2, C2, F2) be two model
structures on a category M . If W1 ⊆ W2 and C1 ⊆ C2 then there exists a model structure
(Wm, Cm, Fm) such that Wm = W2 and Cm = C1.

Thus, we know from (83), (84) and Theorem 7.1 that there is a different model struc-
ture on RelCat such that

� w(RelCat) is the class of weak equivalences and

� c(RelCatBK) is the class of cofibrations.

Now we denote by RelCatmix the model category with the mixed model structure above
so that

� w(RelCatmix) = w(RelCath).

� c(RelCatmix) = c(RelCatBK).

� f(RelCatmix) =
(
w(RelCath) ∩ c(RelCatBK)

)�
.

The left adjoint L : RelCat → Cat factors through the category SimCat of simplicially
enriched categories

L : RelCat
LH

−−→ SimCat
π0−→ Cat (86)

where LH is the Hammock localization ([DK80a]). RelCatmix is a left Bousfield localization
of RelCatBK. So, it would be interesting to know if there are intermediate model structures
between RelCatBK and RelCatmix in which for a morphism f in RelCat, f is a weak
equivalence iff the functor on homotopy (n, 1)-categories is an equivalence.
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