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QUASI-TAME SUBSTITUDES AND THE GROTHENDIECK
CONSTRUCTION

MICHAEL BATANIN, FLORIAN DE LEGER, AND DAVID WHITE

ABSTRACT. This paper continues the study of the homotopy theory of algebras over
polynomial monads initiated by the first author and Clemens Berger. We introduce the
notion of a quasi-tame polynomial monad (generalizing tame ones) and produce trans-
ferred model structures (left proper in many settings) on algebras over such a monad.
Our motivating application is to produce model structures on Grothendieck categories,
which are used in [BDW23] to give a unified approach to the study of operads, their
algebras, and their modules. We prove a general result regarding when a Grothendieck
construction can be realized as a category of algebras over a polynomial monad, exam-
ples illustrating that quasi-tameness is necessary as well as sufficient for admissibility,
and an extension of classifier methods to a non-polynomial situation, namely the case
of commutative monoids.
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1. Introduction

It is often advantageous to have a model structure on a category of algebras over an op-
erad or higher operad. Such model structures were crucial to the recent proof of a general
stabilization theorem that implied a strong form of the Baez-Dolan stabilization hypoth-
esis in a wide range of settings [BW15, BW24, Whi21b, BW22|. The existing literature
has dozens of papers working out model structures on various flavors of operads and their
algebras and modules. In this paper, we unify many seemingly disparate approaches,
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and study the homotopy theory of (a wide variety of flavors of) operads and their alge-
bras/modules via the Grothendieck construction. That is, we begin with a category B
(e.g., a category of operads), and a functor ® : B — CAT to the large category of cat-
egories (e.g., ®(0) can be the category of O-algebras, left O-modules, (O, P)-bimodules
if B is the category of pairs of operads, etc.). The idea is to find some conditions under
which the Grothendieck construction [ ® has a transferred model structure.

We assume that B is a category of algebras of a polynomial monad. As demonstrated
in [BB17] this assumption holds for most flavors of categories of operads. Our main
observation in this paper is that in such a case, f ® can also be encoded as a category of
algebras over a polynomial monad. Unfortunately, the methods of [BB17] are not enough
to produce a transferred model structure on [ ® (which we call a global model structure),
because this polynomial monad is rarely tame [BB17, Definition 6.19]. We therefore
generalize [BB17], first to produce filtrations associated to any polynomial monad (rather
than only to a tame one), and then we introduce the notion of a quasi-tame polynomial
monad P. The notion of quasi-tameness should be considered as a homotopy invariant
version of the notion of tameness. We then show that the canonical filtration for a
quasi-tame monad decomposes in such a way that the transferred model structure on P-
algebras exists. Indeed, we conjecture that a lack of quasi-tameness yields obstructions to
the existence of the transferred model structure so that quasi-tameness is really the best
possible hypothesis on a polynomial monad, and we provide some evidence in support of
this conjecture.

In [BDW23, Theorem 3.7] we prove that the existence of the global model structure
on [ @ implies the existence of so-called horizontal and vertical model structures on B
and every ®(0O). Hence, our main result, the existence of the global model structure in
very general settings, allows us to recover almost all known previous results regarding
model structures on categories of operads and their categories of algebras and modules,
as part of the same general theory. Furthermore, [BDW23, Theorem 3.14] proves that,
when the global model structure is left /right proper, then so are the horizontal and vertical
model structures. For this reason, in Section 4, we prove a theorem demonstrating when a
category of algebra over a quasi-tame polynomial monad, such as [ @, is left /right proper.
In [BDW23, Section 3.4], this properness result is used to deduce rectification results for
vertical model structures, again unifying results spread across the existing literature, and
also proving new results in contexts where rectification has not been studied.

It is sometimes the case that [ @ has only the global semi-model structure and not
a full model structure. In [BDW23, Section 3.2], we treat this situation carefully. With
Proposition 3.4 in hand, it is easy to produce global semi-model structures, so in this
paper we focus on the more difficult question of the existence of a full model structure.
Our approach also works beyond the setting of polynomial monads, as we demonstrate in
Section 6.

We work in the ambient setting of a cofibrantly generated monoidal model category M,
and we transfer the (semi-)model structure on [ ® from a suitable category of collections
built from M. Since the (semi-)model structure on [ @ arises via the machinery of
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transfer, it is automatically cofibrantly generated (and combinatorial if M is).

The generality of our approach allows for applications in the theory of operads, al-
gebras, and modules for a wide variety of operads including non-symmetric, symmetric,
cyclic, modular, hyperoperads, and twisted modular operads. As we previously men-
tioned, we begin with a polynomial monad that encodes f ®, then produce a framework
to transfer a model structure to [ @, then deduce the existence of model structures on B
and ®(0)’s. Thus, this paper can also be thought of as an enriched extension of [BB17],
since it results in model structures on Alg(O; M) for operads O valued in M, rather than
only operads O arising from Set-valued polynomials.

We prove our main transfer theorem in slightly more generality in Section 4, using
the language of substitudes, in order that our work be applicable to the homotopy the-
ory of m-operads. Our approach also works beyond the setting of polynomial monads
and substitudes, if one is able to produce a transferred model structure on [ ® through
other means. We illustrate in [BDW23, Section 3.4] with an application in the setting
of the model category of small categories, where algebras over any finitary monad admit
transferred model structures.

We now explain the layout of the paper. We start in Section 2 with a review of basic
definitions and notation that we will use throughout the paper. In Section 3, we prove a
general result that allows us to encode the Grothendieck construction [ @ as a category
of algebras over a polynomial monad. We then provide many examples that we will study
throughout the paper.

In Section 4, we introduce the notion of quasi-tame polynomial monads, and we prove
that algebras over quasi-tame monads have transferred model structures (which are, more-
over, left proper if the ambient model category M is well-behaved), and that the monads
encoding the Grothendieck construction are often quasi-tame. Following [BW22] and mo-
tivated by applications to n-operads, we work in the generality of substitudes, which are
equivalent to operads with a category of colors. We recall the details in Section 4.2.

In Section 5, we provide several applications of the global model structure, including
to operads, opetopic sequences, homotopy algebras, and twisted modular operads. Lastly,
in Section 6, we discuss the case when [ @ is encoded by a non-polynomial monad. We
show how to produce a model structure in the case of commutative monoids and their
modules, and how to prove this model structure is left proper.
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2. Preliminaries

We assume the reader is familiar with monoidal model categories [Hov99] and the basics of
colored operads (a.k.a. multicategories) [BM07]. Our main results will have applications
in the setting of colored non-symmetric operads, and various flavors of colored symmetric
operads. Recall that a symmetric operad P is constant free if P(0) = () is the initial
object of M. Call P reduced (or 0-reduced) if P(0) = x is the terminal object of M. Call
P non-reduced if it has no restriction on P(0). In this section we remind the reader of
some less standard notions that we will require.

2.1. POLYNOMIAL MONADS. In this section we recall the theory of polynomial monads
[BB17]. Recall that a natural transformation between two functors is called cartesian if
all naturality squares are pullbacks. A monad T on a category with pullbacks is called
cartesian if T preserves pullbacks and both, the multiplication and the unit of the monad
T, are cartesian natural transformations.

Polynomial functors have been studied extensively in category theory (e.g. in [Kocll]).
A polynomial monad 7" on a comma category Set/I is a monad in the 2-category of
overcategories, polynomial functors, and cartesian natural transformations. In particular,
this implies that 7" has a decomposition as ¢, o p, o s* : Set/I — Set/I generated by a
polynomial:

I~ p-rY.p_t.g

We will often think of I as a set of colors, of B (resp. E) as a set of operations (resp.
marked operations), of s (resp. t) as a source (resp. target) morphism, and of p as a
projection. We will always assume the morphism p has finite fibers.

2.2. INTERNAL ALGEBRA CLASSIFIERS. In order to transfer a model structure to the
category T-algebras, we must compute a pushout of the following form, where F' is the
free T-algebra functor and j : K — L is a generating (trivial) cofibration:

F(K)—2 F(L) (1)

Our tool for analyzing such pushouts is the method of classifiers in [BB17, BW22],
which converts the problem of computing pushouts of T-algebras into a problem of internal
categories. This method then finds a representing object (a category) for the pushout,
and computes the colimit of this category via a discrete final subcategory in the case
where T is tame (Section 2.19). This procedure can be viewed as a categorification of the
simplicial bar construction. We now recall the relevant terms.

Any polynomial monad 7T induces a monad on Cat. Such a monad is called a 2-monad.
Strict algebras for this 2-monad are called categorical T-algebras. As usual, categorical T-
algebras can either be considered as internal categories in T-algebras, or as T-algebras in
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categories. They form a 2-category with respect to strict categorical T-algebra morphisms
and T-natural transformations.

2.3. DEFINITION. Let A be a categorical T-algebra. An internal T-algebra X in A is a
lax morphism of categorical T-algebras X : 1 — A, where 1 is the terminal categorical
T-algebra. The internal T-algebras in A form a category Intp(A) and this correspondence
defines a 2-functor:

Inty : Alg;(Cat) — Cat.

2.4. THEOREM. [Bat08] The 2-functor Inty is represented by a categorical T-algebra TT.
The underlying categorical object of TT is the 2-truncated simplicial object

KTy ui
731 — T —T?1 <—Tn{—T1
T2(1) (")

(2)
of the simplicial bar-resolution B(T,T,1)s of the terminal categorical T-algebra 1.

The categorical T-algebra T7 classifies internal T-algebras, i.e., every morphism of
categorical T-algebras 1 — C (that picks out internal T-algebras in C) corresponds one-
to-one with a morphism 77 — C of categorical T-algebras. This categorical T-algebra TT
will be called the internal algebra classifier of T" because of its universal property.

There is an analogous formula in the non absolute case. Namely, for a morphism of
polynomial monads f : S — T that is given on colors by a function ¢ : J — I, we have
the following commutative square of adjunctions:

*

Algg(Set) Alg,(Set)
Z/{S .7:5 Z/[T -7:T
Set” Set!

on

Here ¢* is the restriction functor induced by ¢ : J — I and ¢, : Set” — Set! is its left
adjoint given by coproducts over fibers of ¢.

2.5. DEFINITION. Let f : S — T be a morphism of polynomial monads. Let A be a

categorical T-algebra. An internal S-algebra in A is a lax morphism of categorical S-
algebras X : 1 — f*(A). There is a 2-functor

Intg : Alg,(Cat) — Cat

that associates to A the category of internal S-algebras in A.
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2.6. THEOREM. [Bat08] The 2-functor Intg is represented by a categorical T-algebra TS.
The underlying categorical object of T is the 2-truncated simplicial object

Fro.8%(1) = Fro.S(1) < Fro.(1) 5

of the two-sided bar-construction B(Fr - ¢i, S, 1)s where 1 is a terminal categorical S-
algebra.

This categorical T-algebra T* classifies internal S-algebras in a categorical T-algebra
C, and hence is called the internal S-algebra classifier of T

The method of classifiers [BB17] provides filtrations essential for transferring (semi-
Jmodel structures to Alg; (M), whenever the monad 7T is polynomial. We build on this
section and generalize those filtrations in Section 4 below.

Every polynomial monad 7" has an associated Y-cofibrant set-valued colored operad
(with color set I) Or with operations given by elements b € B and inputs given by
p~1(b). While algebras over the monad T are the same as Op-algebras, the language of
polynomials makes it easy to prove that the associated operad is ¥-cofibrant, and gives a
very explicit description of the trees used to encode operations. The use of polynomials
avoids the need to discuss symmetric group actions; they only arise in the passage to
Or. Hence, many constructions (e.g. the plus construction [BKJM10]) are simpler with
polynomial monads than with colored operads.

2.7. TRANSFERRING MODEL STRUCTURES. In this section, we recall several relevant
model categorical conditions from [BB17] that we shall need, in order to transfer left
proper model structures to categories of T-algebras. We also generalize several results
from [BB17]. Analogously, in Section 4, we generalize the filtration results of [BB17] to
hold for all polynomial monads, rather than just tame polynomial monads. The condition
below allows us to use the small object argument in categories of algebras.

2.8. DEFINITION. Let K be a class of morphisms. A cofibrantly generated model category
M s called K-compactly generated, if all objects are small relative to IC-cell and if the
weak equivalences are closed under filtered colimits along morphisms in IC. M s called
compactly generated if it is K-compactly generated for KC the monoidal saturation of the
generating cofibrations.

The next condition, due to Schwede and Shipley [SS00], is required to transfer a
model structure to a category of monoids (and, more generally, to algebras over the tame
polynomial monads recalled in Section 2.19).

2.9. DEFINITION. Given a class of morphisms C in M, let C ® M denote the class of
morphisms f @ idx where f € C and X € M. A model category is said to satisfy the
monoid axiom if every morphism in (Trivial-Cofibrations @ M)-cell is a weak equivalence.

Recall that a monad T" on M is called finitary if T' preserves filtered colimits, or equiv-
alently, if the forgetful functor Ur : Alg, — M preserves filtered colimits. Here, Alg,
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denotes the category of T-algebras and Fr 4 Up : Alg;, — M the free-forgetful adjunc-
tion. Thus T'= UrFr and Fr(X) = (TX, ux) where p : T? — T is the multiplication of
the monad T

Recall that the theory of left Bousfield localization of model categories requires left
properness (though, see [BW24] for results in non-left proper settings). In operadic con-
texts, applications are explored in [BW21, Whi2la, WY18, WY18b]. In order to prove
that transferred model structures are left proper, one must analyze diagrams of the fol-
lowing form, and show that, whenever u : K — L is a cofibration in M and f: A — B
is a weak equivalence in Alg,(M), then Afu,a] — Blu, fa] is a weak equivalence in
Algp(M):

Fr(a)

Fr(K) 2P (U(A) LB

| [ |

r r
Fp(L) — Fr(P) —— Alu,a] —= Blu, fa]
Doing so requires the following definitions.

2.10. DEFINITION. A morphism of free T-algebras Fr(u) : Fr(K) — Fr(L) is an h-
cofibration if in any diagram like (2.7), in which f is a weak equivalence, the induced
morphism Alu,a] — Blu, fa] is again a weak equivalence. We shall say that Fr(u) is a

relative h-cofibration if the latter preservation property only holds for those f for which
Ur(A) and Urp(B) are cofibrant in M.

2.11. DEFINITION. A monoidal model category is h-monoidal if for each (trivial) cofi-
bration f : X — Y and each object Z, the morphism f ® Z is a (trivial) h-cofibration,
1.e., pushouts along this morphism preserve weak equivalences. Formally, this means that
mn any diagram as below, in which both squares are pushout squares and w is weak equiv-
alence, then w' is also a weak equivalence:

X®Z—A—+B

e

Y®Z—>A—>B

M is strongly h-monoidal if in addition the weak equivalences are closed under tensor
product.

These conditions on M are verified in [BB17] to hold for effectively all model categories
of interest. Additionally, monads for a wide variety of operadic situation are analyzed
and proven to be tame. We do not need all the results of [BB17], but we do wish to note
that the monad for monoids is tame, the monad for non-symmetric operads is tame (but
we will see that the same is not true for the Grothendieck construction for pairs (O, A)
where O is a non-symmetric operad and A is an O-algebra), the monad for non-reduced
symmetric operads is not tame, and the monad for Com is not even polynomial.

When the base model category M satisfies the monoid axiom but is not strongly
h-monoidal, one can often prove that Alg,(M) is still relatively left proper:
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2.12. DEFINITION. A model structure on Alg;y(M) is relatively left proper if, for every
weak equivalence f : R — S, and any cofibration R — R’', if R and S forget to cofibrant
objects in M then the pushout R — R' Ugr S is a weak equivalence of T-algebras.

With these definitions in hand, we are ready to turn to the question of transferred
model structures. We include the semi-model category case [BW22, Section 2] in the
following, because it is needed in [BDW23].

2.13. DEFINITION. Let £ be a model category, W its class of weak equivalences, and K, L
be two saturated classes in € such that L C WNK. A monad T on & is said to be (K, L)-
admissible if for each cofibration (resp. trivial cofibration) u : X — Y and each morphism
of T-algebras o : Fr(X) — R, the pushout in Alg,

Fr(X)

FT(u)j
-

Fr(Y)—— R[u, o]

R (4)

U

yields a T-algebra morphism u, : R — R|u, a] whose underlying morphism Ur(u,,) belongs
to K (resp. to L). We say T is (K, L)-semi admissible (resp. (K, L)-semi-admissible
over M) if this holds for pushouts into T-algebras R that are cofibrant (resp. cofibrant in
M). When we say T is admissible (resp. semi-admissible) we mean it is (K, L)-(semi-
Jadmissible for some (K, L).

2.14. LEMMA. If & is cofibrantly generated then a monad T is (K, L)-admissible if and
only if the morphism Ur(uy) belongs to K (resp. to L) for any generating cofibration
(resp. generating trivial cofibration) u.

PRrOOF. The forward implication is trivial. To prove the inverse implication it is enough
to observe that in a cofibrantly generated category any cofibration is a retract of a cellular
morphism. Since Fp preserves colimits and I is saturated the result follows. The same
argument is valid for trivial cofibrations and class L. [

The definition above isolates precisely what is needed to transfer a model structure or
semi-model structure to the category of T-algebras. We recall that a category has a semi-
model structure (resp. semi-model structure over &) if it satisfies all the model structure
axioms, but only admits the (trivial cofibration, fibration) factorization, and the lifting
of a trivial cofibration against a fibration, for morphisms with cofibrant domain (resp.
domain that becomes cofibrant in £) [BDW23, Section 2]. We will not need semi-model
categories in this paper, but the following result is used in [BDW23].

2.15. THEOREM. For any finitary (K, L)-admissible (resp. semi-admissible, resp. semi-
admissible over £) monad T on a K-compactly generated model category &, the category
of T-algebras admits a transferred cofibrantly generated model structure (resp. semi-model
structure, resp. semi-model structure over £). This (semi-)model structure is (relatively)
left proper if and only if the free T-algebra functor takes cofibrations in € to (relative)
h-cofibrations in Alg,.
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PROOF. The proof in case where T is (IC, £)-admissible follows exactly as in Theorem 2.11
of [BB17] except with £ replacing W N K. For the cases of semi-admissibility, we verify
(ii) of Theorem 2.11 of [BB17] only for morphisms between cofibrant (resp. underlying
cofibrant) objects, and this is what the semi-admissibility hypotheses guarantee. For the
semi-admissibility cases, left properness is automatic, since it asks that weak equivalences
between cofibrant objects be preserved by pushout along cofibrations. In the case of a
semi-model structure over £, this same proof shows Alg, is relatively left proper. [

2.16. DEFINITION. A monad T is (K, L£)-adequate if the underlying morphism of any
free T-algebra extension u, : R — Ru, ] admits a functorial factorization

Ur(R) = R[u]®© = Ru]V — ... = Ru]™ — ... — colim,R[u]"™ = Ur(R|u, a));

such that for a cofibration (resp. trivial cofibration) u, each morphism of the sequence
belongs to KC (resp. L), and moreover for a weak equivalence f : R — S, the induced
morphisms R[u]™ — S[u]™ are weak equivalences for all n > 0.

The monad T is relatively (K, L)-adequate if the last property only holds if u is a
cofibration with cofibrant domain and f : R — S is a weak equivalence with cofibrant
underlying objects Ur(R) and Ur(S).

2.17. THEOREM. Any finitary (relatively) (K, L)-adequate monad T on a K-compactly
generated model category E is (IC, L)-admissible, and the associated free T-algebra functor
takes cofibrations to (relative) h-cofibrations. Hence, the category of T-algebras has a
transferred model structure that is (relatively) left proper.

PROOF. The proof proceeds mutatis mutandis from the proof of Theorem 2.14 of [BB17].m

2.18. REMARK. When T is polynomial, it is always semi-admissible, by Theorem 6.3.1
of [WY18]. It is sometimes semi-admissible over &£, e.g., when Algr is the category of
symmetric operads. We will see in Section 4 that quasi-tame monads are admissible.

2.19. TAME POLYNOMIAL MONADS. We review the notion of tameness from [BB17],
which we generalize in Section 4.
For a finitary monad T on a cocomplete category C, let T'+ 1 be the finitary monad
on C x C given by
(T+1)(X,Y)=(T(X),Y)
(T'+1)(¢,¥) = (T(e), %)

with evident multiplication and unit. If 7" is a polynomial monad, so is 7'+ 1 [BB17]. A
polynomial monad 7 is said to be tame if the classifier T7*! is a coproduct of categories
with terminal object. In this case, the terminal objects (one in each connected com-
ponent) form a final discrete subcategory, drastically simplifying colimit computations.
Furthermore, when T is tame, the classifier 779 described in [BB17, Section 7] has a final
subcategory spanned by a final discrete subcategory of simpler classifiers. This allows for
the computation (Theorem 7.11 [BB17]) of (1) as colimy P, where each P,_; — Py is a
pushout in M of the morphism from the colimit of a punctured cube (whose vertices are
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words in K, L, X, and whose edges convert K’s to L’s or X'’s) to the terminal vertex of
all L's and X’s. This computation is the key input to the following theorem (Theorem
8.1 of [BB17]):

2.20. THEOREM. Suppose T is a tame polynomial monad. Suppose M is compactly
generated and satisfies the monoid axiom. Then Algr(M) is a relatively left proper model
category, which is left proper if M is strongly h-monoidal.

In the proof of this theorem, the filtration from [BB17] (generalized in Proposition 4.11
below) is used to filter each morphism of the form Afu,a] — Blu, fa] into a transfinite
sequence of trivial h-cofibrations, which will be a weak equivalence as required.

In this paper, we will make heavy use of Proposition 4.11, and most of the monads
we encounter will be polynomial. Numerous examples are given in [BB17], and more can
be found in Sections 4 and 6. The filtration of Proposition 4.11 is fundamental for us
because it will enable us to replace free algebra extensions by left Kan extensions that
are much easier to analyze. For tame and quasi-tame polynomial monads, the filtration
decomposes into a particularly tractable form, so that T-algebras have transferred left
proper model structures in many settings of interest [BB17].

3. Polynomial monads for Grothendieck constructions

In this section, we prove a general result about when [ @ is encoded by a polynomial
monad, and we give numerous examples of this phenomenon.

3.1. THE GROTHENDIECK CONSTRUCTION. We record some basic observations about
the Grothendieck construction that we will need.
Let B be a category and
¢ : B? — CAT
be a functor. Let ¢ : O — O’ be a morphism in B. We will write ¢* to denote ®(¢) :
®(0') — ®(0). We can form now the Grothendieck construction [ ®: the objects are
pairs (O, A) where O € B and A € ®(0). A morphism

(0,A) = (0", A)

is a pair (¢, f) where ¢ : O — O’ and f : A — ¢*(A’). We will very often identify a
morphism f in ®(O) with a morphism (id, f) in [ P.

As we are interested in model structures, we will assume f ® is cocomplete. This
implies that each ¢* is a right adjoint. We denote by ¢, the left adjoint of ¢*. We now
explain how to compute pushouts in [ ®.

3.2. LEMMA. Let the following be a pushout dz’agmm in [P

(A, B) (A’ B)

(@9)1 lW

(A// B//) (C D)
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Then in ®(C), D can be realized as the push forward of the pushout of the following
span in ®(A): ¢*(B") < B — *B’. Furthermore, D is also the pushout of the span
a(B") < a.¢.(B) = 7.0.(B) = 7.(B').

PRrROOF. The proof boils down to the universal property of the pushout, and uses the
functors displayed in the commutative diagram above (and the adjunctions they induce,
like (v, a*)) to shift between ®(A) and ¢(C). n

We finish this section by proving that, if B is the category of algebras over a polynomial
monad 7', and if we have a way to speak of algebras over every O € B, via a morphism
of polynomials, then [ @ is encoded as algebras over a polynomial monad that we can
explicitly construct. The special case where B is the category of one-colored symmetric
operads, and ®(0) = Alg,, [GRSO21] (Lemma 4.7) proves that there is a ¥-cofibrant
colored operad for [ ®, making use of results in [BMO07].

Let T be an I-colored symmetric operad in a closed symmetric monoidal category
M, equipped with a morphism of operads ¢ : T'— SOp(J), where SOp(J) is the Y-free
symmetric operad for J-colored symmetric operads. This morphism ¢ induces a restriction
functor

" AlgSOp(J)('A/l) — Algr(M).

This restriction functor allows us to talk about algebras of O, when O is itself an algebra
of T

3.3. DEFINITION. Let O be an algebra of T. An algebra of O in M is a J-collection
C={C;|jeJ} of objects of M equipped with a morphism of T-algebras

O — ¢*(End(C))

where End(C) is the endomorphism operad of C.

One can define a morphism of O-algebras in the usual way. If M is cocomplete then
¢* admits a left adjoint ¢, and the category of O-algebras is isomorphic to the category
Algy, (0)(M).

We now have a functor

q) . AlgT(M)Op — Cat

that assigns to a T-algebra O the category of O-algebras and to a morphism of T-algebras
f: O — O assigns the restriction functor f* : Algy (M) — Alg,(M). We can form
now the Grothendieck construction [ ®. So, the objects of [ @ are pairs (O, A) where
O € Algp(M) and A € Algy(M). A morphism

(0,A) = (0", A

is a pair (f, ) where f : O — O’ and a: A — f*(A').

Let now M be a symmetric monoidal model category. We will call a morphism (f, ¢)
in [ ® a weak equivalence (resp. fibration) if the underlying morphisms of I-collections
U(f) and J-collections U(¢) are pointwise weak equivalences (resp. fibrations). We will
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say that [ ® admits the global model structure if there is a model structure on [ @ with
these weak equivalences and fibrations.

It is in general a difficult task to know if such a model structure exists. In this paper
we concentrate on the case when T comes from a polynomial monad in Set, and, moreover,
¢ is a morphism of polynomial monads (using that SOp(J) is a polynomial monad).

3.4. PROPOSITION. If ¢ is a morphism of polynomial monads in Set then there exists
a polynomial monad Gr(T) such that the category [ ® is isomorphic to the category

Algg ) (M).
PROOF. Recall from [BB17, Section 9.4] that SOp(J) is represented by the polynomial

Bq(J)<—ORTr*(J) —= ORTr(J) — Bq(J)

where ORTr(J) is the set of ordered rooted trees whose edges are decorated by J and
Bq(J) is the set of decorated bouquets. ORT'r*(.J) is the set of decorated ordered rooted
trees with a marked vertex. Let T" be represented by a polynomial I <~ E — B — [ and
¢ is given by the morphism of polynomials

I : E z B— I
J
] l P
Bq(J)<—ORTr*(J) —= ORTr(J) — Bq(J)
We define a polynomial monad

3

ruJ D*—"=D—"=TUJ

in the following way. The set D is the coproduct
BUB=DBU{(bo)|occORTr(J),be v (o)}

The target of an element b € B is t(b) and the target of (b, o) is the target of o.

The set D* is the set of elements of D with a marked source in the sense that given
b € B we mark one of the element of p~1(b). For a pair (b,o) we either mark an element
of p~1(b) or we mark one of the leaves of o. By forgetting the marked elements we obtain
a morphism D* — D.

Finally, the source of the element from D* coincides with the source of the marked
element of p~1(b) or the color of the marked leaf of o.

The substitution operation is given by substitution in 7" if the source was from I, or
grafting of trees if the source was from J. [
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In Section 3 we will see that, if 7" is the monad for monoids, then the polynomial
monad for Gr(T') is tame. In Section 4, we will see that, if 7" is the monad for non-
symmetric operads then the monad Gr(T), whose algebras are pairs (O, A) where A is
an (O-algebra, is quasi-tame but is not tame. The same is true for the monad for pairs
(O, M) where O is a non-symmetric operad and M is an O-module. Furthermore, if 7" is
the monad for reduced symmetric operads, then Gr(T') is not even quasi-tame, and hence
we are forced into the world of semi-model categories, treated in [BDW23, Section 3.2].
In Section 6, we will see that, if 7" is the monad for commutative monoids, then T" and
Gr(T) are not even polynomial, but we still have a technique to endow their categories
of algebras with transferred model structures.

3.5. EXAMPLE: MONOIDS AND MODULES. Let Mon be the polynomial for monoids.
There is a trivial morphism of polynomial monads ¢ : Mon — SOp given by inclusions
of sets, where SOp = SOp(x) is the polynomial monad for symmetric operads. The
restriction functor ¢* induced by this morphism sends a symmetric operad P to the
monoid given by P;. In this section we give an explicit description of the polynomial
monad Gr(Mon) given by Proposition 3.4. By definition, its algebras are pairs (R, M)
where R is a monoid in M and M is an R-module. As a symmetric operad it was
described in [BMO7][Example 1.5.1]. We give polynomial description of it and show that
this monad is tame in the sense of Batanin-Berger. It follows immediately from [BB17]
that under good conditions the category of Gr(Mon)-algebras has a model structure,
which is (relative) left proper if M is h-monoidal. The conditions we obtained are weaker
then the conditions from [HP15] for the existence of this model structure.
The polynomial that represents this monad is given by

{r,m}<— D* P . p—* {r,m}

Here {r,m} is two element set. The set D consists of linear graphs of two types:

and

—O-O-O-]

The target of a graph of the first type is  and the target of the graph of the second
type is m. The set D* consists of the elements of D with one vertex marked. The source
of such an element is r if the marked vertex is a circle and it is m if the marked vertex is
a box.

As usual, the morphism p forgets the marking and the substitution operation is defined
by insertion at the marked vertex. Notice that a circled tree can be inserted only in a
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circled vertex and a boxed tree can be inserted only in a boxed vertex. Pictorially, this
means the insertion operation is the gluing of the outside boundary of a tree to the
boundary of the vertex.

It is not hard to check that the polynomial above defines a polynomial monad Gr(Mon)
whose algebras consists of pairs (R, M) consisting of a monoid R and a left R-module M.
We now prove that this monad is tame.

3.6. PROPOSITION. The polynomial monad Gr(Mon) is tame.

PROOF. For this we need to describe the classifier Gr(Mon)"(Mom+1 (see [BB17].) Ac-
cording to the general procedure given in [BB17][6.19] the objects of this classifier are
graphs like above with an additional decoration of each vertex by one of two letters X or
K. The morphisms are given by contraction of edges that connect two vertices decorated
by X with the agreement that a contraction of an edge whose right vertex is a box results
to a boxed X-vertex. We also can introduce a new circled X-vertex on any edge except
for the most right edge of a boxed vertex.

It is now trivial to see that such a category has a terminal object in each connected
component. They are precisely linear graphs of the following types:

ANy
COOOD

(see the description of the classifier 77! from [BB17]) or

—O-E-O-®H]

or
—O-E—W
This shows that the polynomial monad Gr(Mon) is tame. =

3.7. REMARK. Similar calculations show that there exists a tame polynomial monad
for monoids and right modules as well as for monoids and right-left modules and for
the category of bimodules. As a consequence, these categories inherit transferred model
structures.

More generally, one can construct a polynomial monad Gr(Mon(I)) whose category
of algebras is the Grothendieck construction for the functor

Cat(I)” — CAT

that associates to each small M-category C' with set of objects I, the category of M-
valued presheaves on C. For the construction of this monad it is enough to use linear
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graphs whose edges are colored by elements of I with the following restriction: the colors
of the outgoing and incoming edges of a boxed vertex must coincide. The set of colors
of this monad is I x I LU I. The target of a linear graph is the pair of colors of roots
and the color of the leave for nonboxed graphs and is the color of root for boxed graphs.
The morphisms in the classifier Gr(Mon(I))"MonD)+1 are very much similar to the one-
colored case with one extra rule that the result of contraction of an internal edge between
a circled vertex and a boxed vertex is a boxed vertex whose edges have colors of the
incoming circled vertex. For example, the contraction of the internal edge of the graph

O]

results in the graph

]

Obviously this monad is tame for the same reason as in the one-colored case. Hence,
by [BB17, Theorem 8.1], if M is a compactly-generated monoidal model category sat-
isfying the monoid axiom, then the Grothendieck construction [ @, whose objects are
pairs (R, M) where R is a monoid in M and M is a left R-module, possesses a global
model structure. If in addition M is strongly h-monoidal, then this model structure is
left proper by Theorem 2.15. If M is only cofibrantly generated, then we still have the
global semi-model structure on [ ® [WY18, Theorem 6.3.1].

3.8. REMARK. The work in this section also proves that, if A is a commutative monoid,
then the category of pairs (R, M) where R is an A-algebra and M is an R-module,
possesses the global model structure. For this setting, we work with A-modules as our
base model category and note that, by [SS00, Theorem 4.1], this category of A-modules
satisfies the pushout product axiom and monoid axiom.

3.9. REMARK. Generalizing the example in this section, one can ask about the category
of pairs (R, M) where R is a P-algebra and M is an R-module, where P is some operad.
If P-algebras are encoded by a polynomial monad, then Proposition 3.4 tells us that this
category of pairs is also given by a polynomial monad. However, this polynomial monad
will in general not be tame, for P # Ass. Nevertheless, we still have the global semi-model
structure on pairs.

3.10. EXAMPLE: NON-SYMMETRIC OPERADS AND THEIR ALGEBRAS. Our next example
is the monad for the Grothendieck construction for the functor

NO(I)® — CAT

that associates to an I-colored non-symmetric operad its category of algebras. We denote
NOp(I) the polynomial monad for I-colored non-symmetric operads. There is an obvious
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morphism of polynomial monads ¢ : NOp(I) — SOp(I) whose induced restriction functor
forgets the symmetric group action. Let Gr(NOp(I)) be the polynomial monad given by
Proposition 3.4.

The polynomial for Gr(NOp(I)) looks like

PBq(I)UI<— PTr*(I) 2= PTr(I)—% PBq(I)U I

where PBq(I) are are planar I-bouquets that is I-colored planar corollas. A typical
picture of the first three corollas is like this:

The set PTr(I) is the set of isomorphism classes of planar trees whose edges are
colored by elements of I and whose vertices can be circled or boxed. Moreover, the entire
tree itself is either boxed or circled. The rules are the following. If a tree is circled then
all the vertices of this tree are circled. So the boxed vertices only appear on a boxed tree.
The second rule is that such boxed vertices have valency one and are always on the top
of the tree. Here is an example of a boxed tree.

As usual, the set PTr*(I) is the set of planar trees as above with one vertex marked.
The morphism p forgets the marking. The morphism ¢ on a non-boxed tree contracts the
tree to the colored corolla. The target of a boxed tree is the color of the root of the tree.
The source of the marked tree is the colored corolla that corresponds to the vertex if the
vertex is circled and it is the color of corresponding leaf if it is boxed. The substitution
operation is tree insertion to a circled vertex or a grafting of a tree to the leaf of a marked
boxed vertex and removing this boxed vertex (this can be considered as another insertion
operation to the marked vertex). In particular, a substitution of a boxed tree with stumps
results in the formation of virtual boxed vertices. For example, the result of a substitution
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18

Accordingly, the classifiers Gr(NOp(I))¢"(Nert))+1 will have objects colored planar
trees as above with additional coloring of vertices by letters X or K. The morphisms
are contractions of internal edges that connect circled X-vertices and introducing a new
circled X-vertex of valency one. Another type of generating morphism is a simultaneous
contraction of a group of incoming edges that connect a circled X-vertex to boxed X-
vertices. This is possible only if all incoming edges of the circled X-vertex are connected
to boxed X-vertices. In this case we obtain a single boxed X-vertex after contraction.
For example,

X
R Gl Ty
o

We also have a morphism

H{x

¢
!

(6)
This monad is not tame, as we now show.

3.11. EXAMPLE. Let I be a non-empty set of colors. The monad 7" = Gr(NOp(I)),
whose algebras are pairs (O, A) where O is a non-symmetric [-colored operad and A is
an O-algebra, is not tame. The final subcategory of 7779 cannot be discrete, because it
contains zigzags of the form

X

Fortunately, this T" is quasi-tame, by Proposition 4.35, so we will still obtain a model
structure on f ®. This example was the motivation for our work on quasi-tameness in
Section 4.
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3.12. EXAMPLE: NON-SYMMETRIC OPERADS AND THEIR LEFT MODULES. In order to
study the homotopy theory of operadic modules and bimodules, it is important to study
the category of pairs (O, M), where O is a non-symmetric operad and M is a left O-
module. We cannot apply Proposition 3.4 to this situation directly. Instead, we produce
a new operad O’ whose algebras are left O-modules.

3.13. LEMMA. Let O be a one-color non-symmetric operad. Then left O-modules are
algebras over O" where O'(ny, ..., ng;n) is Ok if nqy + -+ -+ ng = n, and empty otherwise.

PROOF. One can check directly that the structure of an O’-algebra, i.e., morphisms of
the form O'(ny,...,ng;n) @ Ap, ® - ® A, — A, is the same as an O-algebra structure
Or,®A, ® A, = A,. m

It is not hard to see that this construction can be generalized to I-colored non-
symmetric operads. If O is an I-colored non-symmetric operad, we can produce a new
operad O" whose algebras are left O-modules. The set of colors of O’ is the set of
I-bouquets, that is the set of k + 1-tuples i = (11,...,1;4) in I for varying k& > 0.

-

04 (;1,...,fk;j) is given by O(j1,...,Jk; ) if jm = (Jmiys - Jmi;Jm) form =1,... k
and J = (ji1, ..., jmi,:J). It is empty otherwise.

3.14. HiGHER EXTENSIONS. The cases of Gr(Mon) and Gr(NOp(I)) fit into a general
scheme. Let T be a polynomial monad with the set of objects I and let T+ be its Baez-
Dolan +-construction [BKJM10]. First, we recall from [BB17] that the classifier for T+
is particularly easy to understand. For example, when T is the monad for monoids, the
classifier for T can be again realized as linear trees, but now allowing circles for groupings
of adjacent vertices. Each linear tree with circles can be unpacked into a planar tree as
illustrated below. It follows that the classifier for T is the same as for non-symmetric
operads. The following picture illustrates:

For a general polynomial monad T, given by I < B — E — I, the objects of T™
are elements of B, and the operations of T are trees on B, denoted tr(B). Such a tree
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g (with nodes in B), represents an operation taking the sources of ¢ (the input edges
$1(q), - - -, sn(q)) to the target of ¢ (the root).

A Tt-algebra A is a collection of objects, one for each b € B, such that, for every tree
in tr(B), there is a composition rule A(s1(q)) ® --- ® A(sn(q)) — A(t(q)).

Given a TT-algebra A, we can define an A-algebra C to be a T-algebra twisted by
A, meaning there are objects (C(7));er with A(b) ® C(s1(b)) ® - -+ @ C(sg(b)) — C(t(D)).
Such objects can also be defined via the endomorphism 7"*-algebra, as in [BB17].

Then there is a canonical morphism of polynomial monads

¢:TT — SOp(I)

which, according to Proposition 3.4, means there is a polynomial monad Gr(T™) for pairs
(P, A) where P is an algebra of 7" and A is an algebra of P.

This morphism is constructed as follows. Recall that the polynomial for T has a
form

B<—tr*(B) 2= 1tr(B)+—=B

where tr(B) is the set of isomorphism classes of rooted trees decorated by elements from
B. The morphism ¢ is represented by the following diagram (recall Proposition 3.4):

B * tr*(B) —>—tr(B) —* B

(R N S

Bq(I)<— ORTr*(I) —= ORTr(I) — Bq(I)

Here ¢ sends an operation b to its bouquet. The morphism ) sends a tree decorated by
elements of B to the same tree decorated by bouquets of elements.

3.15. FURTHER EXAMPLES OF THE GROTHENDIECK CONSTRUCTION. There are many
ways to encode algebraic structure that fall under the banner of the Grothendieck con-
struction. For example, to every club T we can associate a category of T-algebras [Kel74].
The resulting Grothendieck construction has objects (7', A) where T" is a club and A is a
T-algebra. We can do the same for Lawvere theories L, since every one has a category
of L-modules. We can also do this for PRO(P)s. In general, categories of fibers in these
situations are not known to have model structures, so the machinery of [HP15] cannot be
used to produce global model structures. Unfortunately, our machinery cannot be used
either, because these categories [ ® are not algebras over a set-valued polynomial, though
the category of clubs can be encoded via a category-valued polynomial, and a suitable
extension of our machinery could be used to produce global (semi-)model structures in
these settings, over a nicely behaved base model category. An easier example is the ar-
row category M? of a model category M. The codomain functor yields a Grothendieck
construction [CM20, Example 4.1], and this example is related to the theory of Smith
ideals of ring spectra [WY19b, WY24]. Lastly, if M is the category of topological spaces
or simplicial sets, B is the category of topological or simplicial groups (or monoids), and
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®(G) is the category of G-spaces or G-spectra, then [ ® is a setting for (global) equiv-
ariant homotopy theory and we can obtain the model structures of [GW18, HW20] using
our machinery.

4. Quasi-tame polynomial monads

In this section, we prove a general theorem that allows us to transfer model structures
(and left properness) to categories of T-algebras, where T is a quasi-tame polynomial
monad, a generalization of the notion of tame from [BB17]. Motivated by applications to
n-operads, we actually work in the context of quasi-tame substitudes. But we start with
polynomial monads for simplicity. After setting up the filtration, we prove the transfer
result. Then we prove that most of the monads from the previous section are quasi-tame,
and this allows us to deduce the existence of the global model structure, consequences of
which are explored in [BDW23].

We start this section by reviewing and generalizing the filtration of [BB17] for free-
algebra extensions over polynomial monads. Much of our exposition, and many of our
definitions, are drawn from [BB17]. The purpose of the filtration is to make the conditions
of Theorems 2.15 and 2.17 easier to check. We begin with a reminder of classifiers, picking
up where Section 2.2 left off.

4.1. CLASSIFIER FOR FREE ALGEBRA EXTENSIONS. Let T be a finitary monad. In order
to transfer a model structure to T-algebras, we must compute pushouts like (1). The
starting data is a span in the underlying category M:

L (7)

where X is a T-algebra. It is observed in [BB17] that to compute such a pushout one can
construct a monad T, whose algebras are 5-tuples (X, K, L, f, g) assembling to diagrams
as above, together with a morphism of the monads a : Ty, — T such that for any
symmetric monoidal category M, the left adjoint to the restriction functor

a. : Algr, (M) — Algr(M)

is exactly the pushout P of (1).

Moreover, if T" is a polynomial monad in Set the monad 7% 4 is polynomial and a is a
cartesian morphism of polynomial monads. Hence, we can apply the theory of classifiers
and obtain U(P) (coming from the pushout (1)) as a colimit over a classifier T71.9.

It was observed that if 7" is tame the classifier 7779 has a final subcategory t with a
canonical filtration t™ such that U(P) is a sequential colimit in M of objects P,, which
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are themselves colimits over t. Finally, P, itself is a pushout of the form

Qn_>Ln

L

P, —PF,

where (), is a pushout over a punctured n-dimensional cube. This allows us to study
the homotopical properties of the pushout for P using the monoid and pushout-product
axioms.

If T is not tame one can not immediately apply the results of [BB17], but we will see
that in our case of interest most of the discussion from [BB17] goes through. The same
observation applies even to some monads that are not polynomial in Set but are obtained
as a canonical lifting of operads in Set as mentioned in Section 6.

Recall the polynomial monad 7"+ 1 (Section 2.2) for pairs (A, L), where A is a T-
algebra and L € M. The classifier T7™! encodes semi-free coproducts T(L) ] 4, taken
in T-algebras. There is a canonical morphism of monads 7'+ 1 — 7', whose induced
restriction functor is given by A — (A, U(A)). This semi-free coproduct is a special case
of (1) where K is the initial object of M. We define 7"+ 2 to be (T'+ 1) + 1.

There are morphisms of polynomial monads over T

T'+1—=T+2—1T,.

The first morphism is the identity on the 7" summand of 7'+ 1 and sends the summand
1 to the second 1 of T'+ 2. The second morphism was described before. This induces a

morphism of classifiers
TT+1 N TT+2 N TTg.

It is not hard to see that explicitly T7*! can be realized as a full subcategory of T7+2
that consists of objects with X and L edges only.
Analogously, there is a morphism of monads

I'+1—-T+2—=1T;
and a morphism of classifiers
T 5 T2 7T

These morphisms are used to relate the classifiers 77+, T7r 779 and T7r¢. Having
recalled the necessary notation from [BB17], we are ready to give the substitude version.

4.2. SUBSTITUDES. In this section, we recall the definition of Set-valued substitudes,
which can encode algebraic settings that Set-valued polynomials cannot. For more details,
we refer the reader to Section 5 of [BW22]. Throughout, 3J,, denotes the symmetric group
on n letters.
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4.3. DEFINITION. A substitude (P, A) is a small category A together with a sequence of

functors:
P AP ® .- @ AP QA — Set, n >0,

v
n—times

equipped with suitable substitution operations, ¥,-actions on P"(ay,...,ay;a), and unit
morphisms 1 : A(ay, ay) — P(ar; as).

A morphism of substitudes (P,A) — (Q, B) is a pair (f,g) where g : A — B is a
functor and f is a sequence of natural transformations

1P g QY

and g* is the restriction functor along (¢°?)" ® g, which respects the substitution and unit
operations.

To simplify notation we often omit the superscript in the notation P"(ay,...,a,;a).
Notice that P! is a monad on A in the bicategory of profunctors. The Kleisli category of
this monad is called the underlying category of P.

Any colored operad & in Set can be viewed as a substitude in several ways, e.g., taking
A to be the category of unary operations in & and P(&)(ay,...,a,;a) = &(aq, ..., a,;a).
The category A = U(&) is called the underlying category of the colored operad &. In
general, a substitude is a colored operad & together with a small category A and an
identity-on-objects functor n: A — U(&).

The full subcategory of substitudes (P, A) for which A is a discrete category is iso-
morphic to the category of operads. Its full inclusion functor has a right adjoint that
takes a substitude (P, A) to the substitude (Fy, Ag), where Aj is the maximal discrete
subcategory of A and F, is the restriction of P to Ap.

Let MA be the free strict monoidal category on A and S A be the free strict symmetric
monoidal category on A. The universal property of MA yields a canonical monoidal
functor € : MA — SA. Recall that a bimodule from a category B to a category A is a
functor

F:B? x A— Set

and the data for a substitude (P, A) (without substitution and unit) is the same as a
bimodule

P:(SA)™ x A — Set.

The following notion of a Y-free substitude [BW22, Definition 5.2.3] extends the notion
of a Y-free operad (i.e., polynomial monad):

4.4. DEFINITION. A substitude (P, A) is called Y-free if there exists a bimodule
d(P): (MA)? x A — Set, (8)
such that P is the left Kan extension of d(P) along

ex1:(MA)?P x A— (SA)” x A.



698 MICHAEL BATANIN, FLORIAN DE LEGER, AND DAVID WHITE

This implies that the symmetric group action is free, which greatly simplifies our
homotopical arguments in Section 4 when computing colimits like (1). When (P, A) is
Y-free, Py is a polynomial monad.

4.5. CLASSIFIERS FOR SUBSTITUDES. In this section, we will review the method of clas-
sifiers for Y-free substitudes from [BW22, Section 8]. We note that Proposition 4.6 was
stated without proof in [BW22, Proposition 8.2.1], but we include a proof. Lemma 4.7
did not appear in [BW22]. Proposition 4.11 was stated as [BW22, Proposition 8.3.1], but
the proof contained a flaw, so we have include a different and correct proof.

Let (P, A) be a Y-free substitude in Set (Definition 4.3). Let Py, be the category
whose objects are quintuples (X, K, L, g, f), where X is a P-algebra, K, L are objects in
[A,Set] and g : K — n*(X), f : K — L are morphisms in [A, Set]. There is an obvious
forgetful functor

Usg - Prg — [Ao, Set] x [Ag, Set] x [Ay, Set],

taking the quintuple (X, K, L, f,g) in Py, to the triple (nj(X),*(K),i*(L)), where i :
Ay — A is the inclusion and 7 is the composite of the unit 7 and 7 as usual.

4.6. PROPOSITION. Let (P, A) be a X-free substitude in Set.

(i) The functor Uy, is monadic and the induced monad Py, is polynomial;

(ii) There is a commutative square of adjunctions

Lp
]PDf’g 1 AlgP
Rp
Fra || Urg (mo)« | 4|76
7|_‘7
[Ap, Set] x [Ag, Set] x [Ag, Set] _ L~ [Ag, Set]
A

in which A is the diagonal and Rp is given by
Rp(Y) = (Y,n"(Y),n"(Y),idy(v), idy(v))-

(i1i) The left adjoint Lp to Rp is given by the following pushout in Algp:

no(K) —0 (1)

: N

X LP(XaKvLagvf)

in which g is the mate of g.
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PRrOOF. The functor U, factors as
P;, — [A, Set] x [A, Set] x [A, Set] — [Ap, Set] x [Ag, Set] x [Ay, Set],

The explicit formula for the left adjoint of the first functor is given in the proof of [BB17,
Proposition 7.2(i)]. The left adjoint of the second functor is a product of left Kan exten-
sions along i. Therefore the explicit formula for F;, is given by

‘Ff,g<X7 K, L) = ((WO)*(X LlK),i*(K),i*(KUL),g,f)7

where f : 1,(K) — i.(KUL) is the coproduct injection and g : i,(K) — n*(10)« (X UK) is
the composite of the coproduct injection i, (K) — i,(XUK) and the unit of the adjunction
between 7, and n*. The adjunction between (7). and 7 is monadic. Since (P, A) is X-
free, the monad is polynomial [BW22, Section 6.1]. The adjunction between 7, and i* is
also induced by a polynomial monad, namely the category A itself. The rest of the proof
is completely analogous to the proof of Proposition 7.2 in [BB17]. [

The classifier P%7, is by definition the classifier induced by the morphism of polyno-
mial monads Py — Py, where Py, the restriction of P to Ay, is polynomial since P is
Y-free [BW22, Section 6.1]. We recall its description from [BW22, Section 8.2].

The objects of PPrs are corollas decorated by the elements of B = P(1) with its
|p~1(b)| incoming edges colored by one of the three colors X, K, L:

K X X X L

(9)

These incoming edges will be called X-edges, K-edges or L-edges accordingly.

Morphisms of PPrs can be described in terms of generators and relations. There
are three types of generators. First, we have the generators coming from the P-algebra
structure on X-colored edges and unary operations on K and L edges corresponding to
morphisms of A. The relations between these generators witness the relations between
operations in (P, A). We will call these generators X -generators.

Next, we have generators corresponding to the morphism f : K — L. Such a generator
simply replaces a K-edge with an L-edge in the corolla. Generators of this kind will be
called F'-generators.

Finally, we have generators corresponding to g : K — 1*(X). Such a generator replaces
a K-edge with an X-edge. Generators of this kind will be called G-generators. The
following lemma asserts how the generators commute and distribute over each other. The
first statement appeared as diagram (8.2.2) in [BW22]. The proof is a straightforward
exercise.
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4.7. LEMMA. Let (P, A) be a S-free substitude and consider the description of P59 in
terms of generators and relations.

1. Any span b &a B in which ¢ is an F-generator (resp. G-generator) and 1 is
an X -generator, completes uniquely to a commutative square

|+

a a’ (10)
¢l Jtﬁ'
b b

y

in which ¢' is an F-generator (resp. G-generator) and v’ is an X -generator.

2. Any cospan b Yy & in which ¢' is an F-generator and 1" is an X-generator
can be completed to a commutative square

|+

a a (11)
¢l J¢>’
b b

y

in which ¢ is an F-generator and v is an X -generator.

3. Any sequence of morphisms a %5 %W in which @ is an X -generator and v 1s an
F-generator (resp. G-generator) can be completed to a commutative square

|«

a a (12)
¢l ltﬁ’
b b

.

in which ¢’ is an X -generator and )" is an F-generator (resp. G-generator).

4. Any sequence of morphisms a L XY in which ¢ 1s an F'-generator and 1 is an
X -generator can be completed to a commutative square

|«

a a’ (13)
|l
b v

‘|

in which ¢ is an F-generator and v’ is an X -generator.

With this lemma in hand, we are ready to provide the filtration that will be at the
heart of most of our transfer proofs.
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4.8. CANONICAL FILTRATION. We first recall from [BW22, Section 8] that Pf is the
category whose objects are quadruples (X, K, L, f), where X is a P-algebra, K, L are
objects in [A, Set] and f : K — L is a morphism in [A, Set]. There is a corresponding
monad Py, analogous to Py,. We put P+2A = (P+ A)+ A, and it yields a polynomial
monad on [Ay, Set] x [A, Set] x [Ay, Set] as do Py, and Py. These monads are related by
[BW22, Lemma 8.2.2]. We next recall the notation of [BW22, Section 8.3], which we will
require for several results below.

To shorten the notation, we put p = P*#s. We say that an object a of p is of type
(p, q) if a contains exactly p K-edges and ¢ L-edges, and we call p+ g the degree of a. Let
E>1.

4.9. NoOTATION. We define:
e p® to be the full subcategory of p spanned by all objects of degree < k;

o L™ to be a full subcategory of PPT4 ¢ PP+24 « p spanned by all objects of degree
< k;

e w*) to be the full subcategory of p spanned by all objects of degree exactly k;

e q® to be the full subcategory of w*) spanned by all objects of type (p, k — p) such
that p # 0;

e 1% £ be the full subcategory of w®) spanned by all objects of type (0,k);
e G to be the full subcategory of p*) spanned by the objects not contained in 1.

Observe that w*) and q® are also full subcategories of P77,

4.10. EXAMPLE. In the case when (P, A) encodes a Grothendieck construction [ @, the
objects of G*¥) are boxed planar trees where all leaves are boxed, and labeled by X, K,
or L. Each connected component consists a fixed string of X, L, and K obtained by
moving around the tree clockwise and recording the order of vertices encountered, with
no consecutive X'’s, because all possible reduction rules have been applied.

We now state our main filtration result. It was also stated as [BW22, Proposition
8.3.1], but the proof there had a flaw that we now correct. Specifically, the proof in
[BW22] stated that we could restrict 7 from [BW22, Lemma 8.2.2] to ¢, but in fact
this is not possible because the latter category contains F-generators. The proof below
proceeds in a different way, using Lemma 4.7 above.

4.11. PROPOSITION. For any functor X : PPrs — M, the colimit of X is a sequential
colimit of pushouts in M.
More precisely, for Sy = CO].imp(k)X|p(k), we get

S = colimpX = colimy Sy,
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where the canonical morphism Sy_1 — Sy is part of the following pushout square in M

Wk

Qr Ly,
akl r l
Spg — S, (14)

in which Qy, (resp. Ly) is the colimit of the restriction of X to q®) (resp. 17).

PROOF. First, observe that p*~b is a final subcategory of G*). Let I : p*~Y c @ be
the canonical inclusion and let b € g*).

Observe that the objects of @*) that are not in the image of this inclusion must have
the type (p,q) where p+ ¢ = k and p # 0. That is, they have at least one K-edge.
So application of a G-generator (that is replacing a K-edge by an X-edge) to b gives a
morphism to an object in p*~Y and the comma-category b/I is not empty.

Let now a & b % ¢ be a span in G* with a and ¢ being two objects of p*~1) and
assume that b is not in p*~Y. Then ¢ and 1 both have representations as composites of
generators in which there is at least one G-generator. Using Lemma 4.7, one can assume
that such a representation contains this generator in the first place so that the original
span is the following composite

ald &3 Y

where d/,¢ € p . Now if ¢y = g2 = ¢ (and hence a’ = ) the following diagram
connects the objects ¢ and ¢ in b/I :

(k—1)

b (15)

a
¢l
a

If g1 # go it means that the generators g, go replace different K-edges by X-edges.
So, one can extend the span @’ &~ b & ¢ to the commutative square by means of a cospan

a By & . All these data can be placed on the commutative diagram

b (16)
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which again connects objects ¢ and 1.

The rest of the proof proceeds as in [BW22, Proposition 8.3.1]. The category 1% s a
reflective subcategory of w*) by the restriction of the reflection p from [BW22, Lemma
8.2.2] (that is, replacing all K-edges by L-edges).

Consider the following diagram of categories where the central square commutes:

q® w® 1)

Restricting X to this subcategory and taking colimits we obtain a commutative diagram
like (14). We only need to know that this is a pushout diagram in M.

A closer inspection of the central square (17) reveals that it is a categorical pushout of
a special kind: the category p®* is obtained as the set-theoretical union of the categories
q* and w®) along their common intersection q*). Indeed, away from this intersection,
there are no morphisms in p*) between objects of G*) and objects of w(¥). By [BB17,
Lemma 7.13], this implies that (14) is a pushout square in M. n

4.12. EXAMPLE. In the case where (P, A) encodes monoids, the filtration of Proposition
4.11 is especially nice, because p has a discrete final subcategory t, described in Section
3.5, and we can define the subcategories of Notation 4.9 relative to this t. Set @, =
colimg X. Let q®)(0) denote the subcategory of q'*) spanned by the objects with no

X’s. Let Qr(0) = colimgc)(O). It is easy to see that Q(0) is the domain of the iterated

pushout product f=*, i.e., is the colimit of the n-dimensional punctured cube with vertices
words of length n formed from the letters K and L. For the intersection of q*) with t,
there are also X’s between the K’s and L’s, forming an alternating string, like in Section
3.5. The morphism wy, in Proposition 4.11 is precisely the morphism X®*+D & fO% from
[SS00].

4.13. MODEL STRUCTURE FOR INTERNAL ALGEBRAS. In this section, we use the fil-
tration of Proposition 4.11 to prove the existence of model structures on algebras over
well-behaved substitudes. We make use of the model category terminology of Section 2.7

Let (P, A) be a Y-free substitude. This amounts to an identity-on-objects morphism
of polynomial monads n : A — P [BW22, Section 6.1]. This morphism 7 induces an
adjunction between covariant presheaves over A and algebras over P in M.

4.14. REMARK. We could actually have the following generalization. Let £ be a cocom-
plete categorical pseudoalgebra of P. Then n induces an adjunction between internal
algebras of A in £ and P in £. We call the category of internal A-algebras in & the
category of internal A-collections Colls(€) and the category of internal P-algebras in €
simply the category of P-algebras Algp(E). To clarify the situation, an A-collection X
is an internal A-presheaf in the categorical A-presheaves n*(£). That is for each a € A,
X(a) € E(a) and for each f : a — bin A we have a morphism E(f)(X(a)) — X(b) in



704 MICHAEL BATANIN, FLORIAN DE LEGER, AND DAVID WHITE

E(b) (thinking about f as a unary operation of P). These morphisms satisfy an obvious
coherence relation. For transparency and simplicity, we will stick throughout to the case
where £ = M?* is a constant P-algebra. Then an internal A-presheaf in £ is just a presheaf
in M. The argument in the general situation does not differ much.

The unit 7 of the substitude induces an adjunction between [A, M] and Alg,(M) and
this adjunction is monadic (cf. [BW22]). Assume now that [A, M] is equipped with a
model structure, as discussed in [CW24, CW25, Whi24]. We next discuss transferring
such a model structure to the category of P-algebras. B

Now let X = (X, K, L, g, f) be an algebra of P;, and let X : PPro — Alg,(M) be
the functor which represents X. By restricting along n we obtain a composite functor:

X : PPra — Algp(M) L [A, M].
On an object b € PPrs (that is, a decorated corolla)

= Q& x & K Q L (18)

i€sources of X-edges j€sources of K-edges kéesources of L-edges

For example X(b) = X ® X ® X ® K ® L on the corolla below

K X X X L

(19)
In this example the monad has only one color.

4.15. PROPOSITION. Let K be a saturated class in [A, M] such that [A, M] is IC-compactly
generated model category. And let L C W N K as usual. Then the monad on [A, M]
induced by the adjunction between [A, M] and Algp(M) is

(a) (K, L)-admissible if for any cofibration u : K — L in [A, M] the morphisms
belong to IC and if u is a trivial cofibration these morphisms belongs to L;

(b) relatively (K, L)-adequate if in addition [A, M] is left proper, for any cofibration
u with cofibrant domain the morphism wy(u) is an h-cofibration and for any weak
equivalence ¢ : X — Y between relatively cofibrant T-algebras the morphisms Qy(¢) :

Qr(X) = Qr(Y) and Ly(¢) : Li(X) — Li(Y) are weak equivalences;

(¢) (K, L)-adequate if [A, M| is left proper, if for any cofibration u the morphism wy(u)
1s an h-cofibration, and if for any weak equivalence between internal T-algebras
¢ X =Y the morphisms Qr(¢) and Li(¢) are weak equivalences.
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PROOF. To simplify the notation, we will denote Algp(M) simply Algp.
To prove (a) we need to check that for each (trivial) cofibration v : K — L and each
morphism of P-algebras a : Fp(K) — X, the pushout in Algp

Fp(K)———X (20)
Fp(u)l U
r
Fp(L) — X[u, a]

yields a P-algebra morphism u, : X — X[u,a] whose underlying morphism Up(u,)
belongs to I (resp. to L).

According to Proposition 4.6, X[u,a] = Lp(X, K, L, g,u), where Lp is the left adjoint
of Rp : Algp — Py, and g is the mate of a. According to Proposition 4.11 such a pushout
can be computed as a sequential colimit, where each morphism is a certain pushout of
wg(u). Since K and L are saturated classes, the conclusion follows.

For (b) observe that if w : K — L is a cofibration with cofibrant domain and f :
X — Y is a weak equivalence between relatively cofibrant algebras we have the following
commutative cube for each k£ > 1

Qr(Y) P (Y)

A

Qr(X) l P (X)

Li(Y) ——|—=R.(Y)

e e

Li(X) Pr(X)

(21)

Now, the morphism U(¢) = ¢ : U(X) = Py(X) = U(Y) = By(Y) is a weak equivalence.
Let us prove by induction that any ¢, is a weak equivalence, so the adequateness of the
monad will follow from the fact that the category of collections is K-compactly generated.

Indeed, in the cube (21) the arrow Py 1(X) — P,_1(Y) is a weak equivalence by
the inductive assumption, and Q(X) — Qr(Y), Lx(X) — Li(Y') are weak equivalences.
It remains to show that both the front and back squares are homotopy pushouts. This
follows from the condition that [A, M] is left proper and wy(u) are h-cofibration, hence,
the pushouts in front and back of the cube are homotopy pushouts.

The proof for statement (c) is similar to (b). "

4.16. THEOREM. Under the conditions of Proposition /.15

(a) The category Algp(M) admits a transferred model structure;
(b) This model structure is relatively left proper;

(¢) This model structure is left proper.

PRroor. This follows from Theorem 2.15. n
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4.17. REMARK. Proposition 4.15 and Theorem 4.16 hold in the generality of Remark
4.14. If € is a cocomplete categorical pseudoalgebra of P, and if the adjunction between
the category of internal collections and internal T-algebras in £ is monadic, then we can
transfer a model structure from M = Coll4(€) to the category of internal P-algebras in
& and Theorem 4.16 tells us when this model structure is (relatively) left proper. This
generality is not needed in our current paper but is relevant in non-abelian cohomology.
The category of internal A-collections is the same as the first non-abelian cohomology of
A with coefficients in the categorical presheaf n*(£). From this point of view, classifiers
are representing objects for non-abelian (and multivariable) cohomology, an important
stepping stone for non-abelian algebraic geometry.

4.18. QUASI-TAME SUBSTITUDES. In [BB17|, many examples of polynomial monads are
given, and we have seen more in Section 3. However, tameness is somewhat rare in general.
For instance, the monads for reduced operads and for non-symmetric operads are tame,
but the monads for their Grothendieck constructions are not tame.

Our key new contribution to handle such situations is the notion of a quasi-tame poly-
nomial monad. Such monads are much more common than tame polynomial monads, and
Theorem 4.25 can be applied to them in order to produce (relatively) left proper trans-
ferred model structures. If 7" is tame, then the pushouts Sy in the sequential colimit from
Proposition 4.11 are particularly easy to handle. However, quasi-tameness is sufficient for
the arguments of Theorem 2.20, as we now show.

In this section, we work in the even more general setting of quasi-tame substitudes,
which are quasi-tame polynomial monads in case A is a discrete category (i.e., a set). We
do this in order to get applications to n-operads. We then prove that algebras over a quasi-
tame substitude admit a transferred model structure, which is furthermore left proper if
the ambient model category M is sufficiently nice. The following is a generalization of
the definition of tame polynomial monads, as we will prove below.

4.19. DEFINITION. A Y-free substitude (P, A) is called quasi-tame if the fundamental
groupoid 1, (PF+4) is simple, that is, equivalent to a discrete groupoid.

Note that a groupoid is equivalent to a discrete groupoid if and only if all its auto-
morphism groups are trivial, which occurs if and only if it is a coproduct of indiscrete
groupoids [Web15, Lemma 6.2]. The key reason why quasi-tameness is enough for a trans-
ferred model structure is that the colimit over PP#9 can be split into two colimits — one
with information about the K and L vertices, and the other with information about the
X vertices. For quasi-tame polynomial monads, the larger colimit can be computed from
the smaller colimits. The proof of this statement requires a finality argument, which we
will explain below.

The category [A, M] is symmetric monoidal category with respect to the pointwise
tensor product ®,. When we spoke of operads, we wrote My instead of [X¢, M| because
this is the standard notation in operad theory. However, when we speak of substitutes
(which, recall, are category-colored operads) we instead write [A, M| to emphasize the
role of the category A.
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We further assume that [A, M] is equipped with a cofibrantly generated model cate-
gory structure with the class of weak equivalences VW, and set of generating cofibrations
7 and set of generating trivial cofibrations 7.

The following definitions are not new and were introduced in [BB17]. Here we spe-
cialize it to the pointwise monoidal structure on [A, M] by adding the adjective pointwise
everywhere. This is done just for convenience in order to remember which structure we
have in mind.

4.20. DEFINITION. A model structure on [A, M] is called pointwise compactly generated
if it is Z®?-compactly generated where

I% = Sat({Z @, x, = € [A, M]}).

4.21. DEFINITION. A model structure on [A, M] is called pointwise monoidal if the
pushout-product axiom is satisfied for the pointwise monoidal structure on [A, M].

4.22. DEFINITION. A model structure on [A, M| satisfies the pointwise monoid axiom if
the following containment holds, where Sat means saturation:

T = Sat({T @, x, x € [A, M]}) C W.

4.23. DEFINITION. A model structure on [A, M] will be called pointwise h-monoidal if
for any cofibration f : x — y and any preasheaf z the morphism f ®,z is an h-cofibration,
which is trivial if f s trivial. It will be called strongly pointwise h-monoidal if weak
equivalences are closed under pointwise tensor product.

As in the case of h-monoidal categories, any cofibration in a pointwise h-monoidal
category is an h-cofibration so it is left proper [BB17]. In addition the following analogue
of Proposition 2.5 from [BB17] holds.

4.24. PROPOSITION. In a pointwise compactly generated h-monoidal category the point-
wise monoid axiom holds.

4.25. THEOREM. Let (P, A) be a quasi-tame X-free substitude.

1. If [A, M| satisfies the pointwise monoid axiom then the category Algp(M) admits
a transferred model structure along n* : Algp(M) — [A, M].

2. If[A, M] is pointwise h-monoidal then this model structure on Algp(M) is relatively
left proper.

3. If [A, M] is strongly pointwise h-monoidal then this model structure on Algp(M) is
left proper.
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Proor. We have to prove that for any cofibration f : K — L the canonical morphism
wy : Qr — Ly is in Z%®» and it is in W NZ®r if f is a trivial cofibration.

Let X = (X,K,L,g, f) be an algebra of Py, and let X : PPrs — [A, M] be the
functor (18). To compute @y, it is enough to restrict X to P%s because w*) and q* are
full subcategories of P77. This restriction represents the Ps-algebra (X, K, L, f) and we
will denote it by X also.

Observe that the functor X is canonically isomorphic to the product of two functors

X (b) @p Xy(b) (22)
that are defined as follows:

X.0)= & X

i€sources of X-edges

and on X-generators it acts as X (so one can think about it as replacing all L and K by
the tensor unit I) but on F-generators it acts as identity. The functor X;(b) is defined as

X(b) = X K; X Ly
jé€sources of K-edges kesources of L-edges

and it acts as identity on X-generators and as X on F-generators.
We summarize the situation as the following commutative diagram

PPr X [A, M] (23)

AJ N
PPr s PP — X XD ) ¢ [A, M

By the second point of [BW22, Lemma 8.2.2], we have a canonical isomorphism
mo(PPHA) — mo(PP#) that induces the following decomposition

CEN |

cETo (PP+A)

Thus the colimit of a functor over q* is a coproduct of the colimits over the categories
q&k). We now focus on how we can compute these colimits.
Restricting diagram (23) to al we get a diagram:

qM X [A, M] (24)

N

k)  (XaXy)

at x g =LA M) x [A, M]
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Let now qgk) [X 1] be the localization of q((;k) at the subset of X-generators and similarly

q((;k) [F~!] be the localization of qgk) at the subset of F-generators and observe that X,

can be factored through q[F~1] and Xy can be factored through q [X~1]. We then
have a commutative diagram of functors

q” X (A, M] (25)
Al T—‘@p—
5 0 x gl —FF e (A M) x [A M)

a’ [P x g [X 7Y

We can now prove that wy : Qn — Ly is in Z%. According to Lemma 4.27 below,
the left vertical composite A is a final functor, so that the colimit of X over qgk) is
isomorphic to the colimit of X, ®, X over the category ql? [F~1] x qt? [ X!, Similarly,
Ly is isomorphic to the colimit of X, ®, X over the category 1 [F~1] x 1M X 1], where
1® is the connected component of 1% corresponding to ¢ € mo(PP+4), and 1M [F1]
and 1M X 1] are the localizations of 1% at the subset of F-generators and X-generators
respectively. We thus have good control over wy from Proposition 4.11. Note that wy is
induced by a functor g [F~1] x ¥ [X 1] = 1% [F~1] x IM[X 1], which is the product
of two functors, the first being an isomorphism and the second turning all K-edges to
L-edges. Therefore, wy is the usual comparison morphism in the punctured k-cube and
so the standard argument [BB17, SS00] show that under the pointwise pushout-product
and pointwise monoid axioms for ®, it is in Z®» if f is a cofibration and it is a weak
equivalence if f is a trivial cofibration. The proof of the rest of the theorem also follows
standard arguments from [BB17]. =

4.26. LEMMA. For a ¥-free quasi-tame substitude (P, A) the fundamental groupoid I1; (PF+24)
15 equivalent to a discrete groupoid.

PROOF. Observe the classifier (as a category) PF+24 can be decomposed as a coproduct

of categories
PP+2A ~ H H 7)73+2A(p Q)

k>0 p+q=k
where PP+24(p, q) € PP+24 is the full subcategory of objects of type (p, ¢). Since we have
no F-generators in the classifier PP*24 we have the following isomorphisms of categories
for every (p,q) with p+ g = k.

PP+2A(]9, (]) ~ 'PP+2A(I{:, 0) — PP+A(]€)

where PPHA(k) c PP+A is the full subcategory of objects of type (k,0). We finish the
proof by observing that

PP+A ~ HPP+A(]€).

k>0
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4.27. LEMMA. The left vertical composite A in diagram 25 is a final functor.

PROOF. We have to show that the comma-category (b,')/A is nonempty and connected
for every (b,') in qV[F1] x g [x1].

For nonemptiness we must find (b”,0") in the image of A with a morphism from (b, ')
to (1", 6") in g [F~1] x ¢ [X~1]. By assumption, the b and ¥’ live in the same connected
component qﬁk). Thus we have a zig-zag of morphisms in qgk) where each morphism is an
X or F'-generator:

b<by—=b+—by—---¢b, =V

Using distributivity and commutativity of X-generators over F-generators from Lemma
4.7 we can assume that in this zig-zag there is a by = b” such that on the left-hand side
of b there are only F-generators but on the right-hand side there are only X-generators

in the sequence. Then the left-hand side represents a morphism b— b in qgk) [F~1] and

the right-hand side represents a morphism & — 0" in q¢ )[X ~1] so together they provide
a morphism (b, ') — (0", b") in gV [F~1] x ¢ [X1).

Next, we study morphisms in the categories g/ [F~1] and g'*'[X~!]. First observe
that any cospan of F-generators b Doy 2y in qﬁk)
square

can be completed to a commutative

by L b (26)

W s

/
b b
in which f{, f5 are F-generators. To find such a b” it is enough to change all L-edges in
b to K-edges.
It follows from this and Lemma 4.7 that a typical morphism in qgk) [F~Y] from b — 0"
can be represented by a zigzag of morphisms of the form

b by Bob, 5

where f1, fo are F-generators and x is an X-generator.
Similarly a morphism from ¥ — b in gt [ X~ can be represented by a zigzag of the
form:

W2 by S by oo = by b, L b

where o, ..., z, are X-generators and f is an F-generator.
An object (b,t') — (b",0") in (b,b')/A is, therefore, represented by a zigzag of the
form

bl b Bby B Lb, By by Eby B Y (27)
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We now have to show that given a similar zigzag (b,b") — (b, ")

by By sy Ly My oy By Ty (28)

one can connect b’ and b by a zigzag of morphisms in qgk) together with corresponding
zigzags making everything commute.

For this we first pay attention to the cospan
by S b,

in the middle of the zigzag (27). By Lemma 4.7 one can replace it by a span

by &0 5 b,.

Moreover, one can assume that ¥ does not have L-colored edges because if it does we can
always cover it by an object without any. We now can see that we have a morphism in
(b,¥')/A from the object (b,b') — (b, V") (a zigzag obtained by replacement of the middle
cospan by a span) to the object (b,0') — (b”,5"). Observe that all morphisms in the zigzag
(b,') — (b,b") from the left hand side of b” are F-generators but all morphisms from the
right hand side are X-generators.

We do a similar transformation for the zigzag (28) and observe that the new object v
is related to b” by a zigzag of F-generators and both do not have L-colored edges. Hence,
b’ = b" = d and we have the following diagram in qgk) :

by by

bn (29)

/ )
8l
4
/
/
/
/
/
/
/
/

b

"
<,

\

4~
0 b o,

in which the subdiagram of solid arrows commutes and in which the right-hand side dia-
gram consists of two solid arrows and dashed arrows representing zigzags of X-generators
in qgk). Hence, by virtue of Lemma 4.26 it can be filled in to the commutative diagram
using only X-generators. Hence the finality of A is proved. m

We conclude with a multi-paragraph remark illustrating what goes wrong for monads
that fail to be quasi-tame.
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4.28. REMARK. Computations show that Theorem 4.25 is close to a characterization of
quasi-tameness, in the sense that, if (P, A) is a X-free substitude that is admissible for
all M such that [A, M] satisfies the pointwise monoid axiom, then (P, A) is quasi-tame.
Indeed, let M be the projective model structure on the category of chain complexes over
a field of characteristic p > 0. Let (P, A) be a non-quasi-tame substitude, meaning that
I1;(PP+4) is not equivalent to a discrete groupoid. We conjecture that there cannot be
a transferred model structure in this setting. A possible line of attack is to convert the
non-quasi-tameness of (P, A) into a symmetric group action, with which we can mimic
Example 2.9 of [BW21] (where we showed that the substitude for I-colored symmetric
operads is not admissible).

Skipping many technical details, we first take a coproduct of the terminal algebra of
P and the free algebra on a cofibrant contractible collection K;,i € I. Then II;(PP*4)
acts on certain tensor products of K; by permutations, and we will show below that all
morphisms in IT; (PP*+4) are just these permutations. More precisely, this action exhibits
an embedding of the groupoid IT; (P7*4) into the groupoid of permutations on the K;. The
reason is that morphisms in IT; (PP*+#) are generated by compositions in P, their inverses,
and certain permutations of the K; which might happen when we compose operations in
P. A nontrivial loop can only happen as a nontrivial permutation of K; terms. Indeed, one
can show easily that in the classifier P¥, every morphism can be factored as a permutation
of colors followed by an order-preserving morphism. This factorization can be lifted to
PP+4 via the morphism of classifiers induced by P + A — P. So in PP+4, we have two
subcategories: of order-preserving morphisms and of certain isomorphisms generated by
permutations of K. Using this factorization one can reduce any element in IT; (P7+4) to
a triangle like

b—a
c
where the top morphism is an isomorphism induced by permutations of K, the two
other morphisms are order preserving, and c is a local terminal object in the order-
preserving subcategory of PP4. If we assume that the induced element in ¥, is trivial
then from the terminality of c it follows that the triangle commutes. So, a non-trivial

element of II; yields a non-trivial ¥,,-action, which we can then convert into trivial cofi-
bration whose pushout is not a weak equivalence, just as in Example 2.9 of [BW21].

4.29. EXAMPLES OF QUASI-TAME SUBSTITUDES. Quasi-tame substitudes are much more
numerous than tame substitudes. In this section, we prove that the polynomial monads
for various Grothendieck constructions of Section 3 are quasi-tame, so that transferred
model structures exist. We begin by proving that every tame substitude is quasi-tame.

4.30. PROPOSITION. Let (P, A) be a tame substitude. Then (P, A) is quasi-tame.
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PROOF. Since (P, A) is tame, it has a discrete final subcategory. It follows that the
fundamental groupoid consists of a discrete set of points, because PP+4 is a coproduct of
categories with terminal object. Each connected component of PP*4 is contractible, so
(P, A) is quasi-tame. n

For tame (P, A), the proof of Theorem 4.25, more precisely of the finality of A,
simplifies. We can let C' = qgk) and let C’ be the discrete final subcategory guar-
anteed by tameness. In C’, all X-vertices have already been multiplied together, so
C'[X '] is isomorphic to C’. Since C'[F~!] is a contractible groupoid, it follows that
A O — C'F1 x C'[X 7Y, taking z + (z, ), is final.

The monad for monoids is tame, hence quasi-tame. Its quasi-tameness can also be
seen directly, following the logic above, since C[X '] = C by inspection of the free
monoid filtration. The case for non-symmetric operads is similar, but with alternating
trees instead of alternating letters. In this setting, C'[M '] is a coproduct of indiscrete
categories.

The monad for nonreduced symmetric operads is polynomial but is not quasi-tame,
because the presence of objects with nontrivial ¥s-automorphisms creates non-contractible
loops in 71 (PP*4). In practice, this means that, in the terminology of (24), to compute
the colimit of X, one would need X; ®sx, X,.

The following is our main tool for proving quasi-tameness in this paper. In general,
the aim is to deduce that (G, U) is quasi-tame from the fact that (7', A) is quasi-tame.

4.31. DEFINITION. We will say that a morphism of X-free substitudesi : (T, A) — (G,U)
realizes a Grothendieck construction for F': B — CAT if:

1. fF = Alg(G,U) and B = Alg(T,A)7

2. the canonical projection [ F — B is isomorphic to the restriction functor i* :
Alg gy = Algr 4y along i, and

3. i has a retraction v : (G,U) — (T, A).
The previous definition is motivated by the following example:

4.32. EXAMPLE. Let (T, A) = NOp(I) be the substitude for /-colored non-symmetric
operads. Let (G,U) = Gr(NOp(I)) be the substitude for pairs (O, A) where O is a
I-colored non-symmetric operad and A is an O-algebra. Then the obvious inclusion
morphism i : (T, A) — (G,U) realizes a Grothendieck construction for F' : B — CAT,
where B is the category of non-symmetric operads and F' sends a non-symmetric operad to
its category of algebras. The retraction r : (G,U) — (T, A) is given by the morphism that
automatically removes boxes on top of each leaf (recall the description of Gr(NOp(1))
from Subsection 3.10). The restriction functor r* induced by r sends a non-symmetric

operad to (O, Oy).

We now prove the desired quasi-tameness result.
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4.33. THEOREM. Assume that a morphism of ¥-free substitudes i : (T, A) — (G,U)
realizes a Grothendieck construction for F': B — CAT and

1. (T, A) is quasi-tame,
2. the functor U — A given by the retraction r can be factored as follows

U A

N A

A+ A

where V is the folding morphism

3. the square of polynomial monads

G+U——G

|

T+2A—T

induces a faithful functor
gngZ/{ ¥ (TT+2.A) (30)

Then (G,U) is quasi-tame as well.

PROOF. Using the fact that (T, A) is quasi-tame, we get from Lemma 4.26 that IT; (77 +24)
is equivalent to a discrete groupoid. We deduce that IT;(G9) is also equivalent to a
discrete groupoid since the functor (30) is faithful. =

4.34. REMARK. The proofs above suggest a notion between tameness and quasi-tameness.
We could call a substitude (P, A) pseudo-tame if PP+ contains a final subcategory that
is a simple groupoid, i.e., equivalent to a discrete groupoid. This would imply that
I1;(PP+24) is equivalent to a discrete groupoid as in Lemma 4.26 and hence these sub-
stitudes would satisfy an analogue of Theorem 4.25, and the requirements in the proof of
Theorem 4.33. However, in order for pseudo-tameness of (7', A) to imply pseudo-tameness

of (G, A), we would still require the faithfulness of Theorem 4.33(3).

We saw in Section 3 that the monad for Gr(NOp(I)) is not tame, where [ is a non-
empty set of colors. Fortunately, this monad is quasi-tame.

4.35. PROPOSITION. The substitude for pairs (O, A), where O is an I -colored non-symmetric
operad and A is an O-algebra, is quasi-tame.
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PROOF. Let i : (T, A) — (G,U) be the morphism of Example 4.32. We will prove that
the conditions of Theorem 4.33 are satisfied.

Since (T, A) is tame [BB17, Section 9.2], it is also quasi-tame thanks to Proposition
4.30.

Recall that the categories A and U are discrete and given by the sets PBq(I) and
PBq(I) U I respectively, where PBq(I) is the set of planar I-bouquets. The morphism
U — A+ A is given by the inclusion of I in PBq(I) which sends a color i to the corolla
with no inputs and the unique edge colored by .

Now let us prove that the last condition of Theorem 4.33 is satisfied. To do this, we
need to describe more explicitly the morphism between algebras induced by the commuta-
tive square of polynomial monads. The category G9 has as objects trees with X-vertices
or K-vertices, possibly boxed if they have valency one. The category 77 724 has as objects
trees with X-vertices, K-vertices or L-vertices, all circled. The induced functor turns all
the boxed X-vertices to circled X-vertices and boxed K-vertices to circled L-vertices. It
leaves the circled vertices unchanged. Let C be the full subcategory of 77124 of trees
whose L-vertices have no inputs. Then the induced functor can be factored

gG+u

r (TT24) (31)

N

The first functor in the factorization has a left adjoint, which turns L-vertices to boxed
K-vertices and leaves the other vertices unchanged. The unit is given by the identity
morphisms and the counit is given by the morphisms 6.

Let D be the full subcategory of 7724 of trees that contain at least one L-vertex
with at least one input. Then 7724 is the disjoint coproduct C'LID. The second functor
in the factorization is the inclusion of the form C' — C' U D. Therefore the composite of
these two functors is indeed faithful, which concludes the proof. [

4.36. PROPOSITION. The substitude for pairs (O, L), where O is an I-colored non-symmetric
operad and L is a left O-module, is quasi-tame.

PROOF. The proof is very similar to the proof of Proposition 4.35. This time we will
define the full subcategory C of 7724 of trees whose L-vertices are all on top. Again, we
will have a factorization as in 31. The left adjoint of the first functor in the factorization
turns L-vertices to boxed K-vertices and adds a boxed unary X-vertex above all the top
X-vertices.

The unit is given from the units of the operad, i.e., the morphisms that insert a circled
unary vertex with label X. The counit is given from the left module actions, as in 5. m

Following the same strategy, we can prove the following.

4.37. PROPOSITION. The substitute for triples (A, B, C) where A and B are non-symmetric
operads and C' is an A — B-bimodule is quasi-tame.
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PROOF. Let (G,U) be the substitude for such triples. We want to prove that IT;(G9+H)
is equivalent to a discrete groupoid. Let C be the full subcategory of G9*Y of objects
from which there can be no non-trivial morphisms coming from the operad B or the right
B-module action. There is an inclusion functor from C' to G9t“ and this inclusion functor
has a left adjoint that automatically applies all the morphisms coming from the operad
B or the right B-module action.

Now let (G',U’) be the substitude for pairs (O, L) where O is a non-symmetric operad
and L is a left module. Each connected component of this category C' is canonically
isomorphic to a connected component of G'9 ' since the morphisms in C' are only the
morphisms from the operad A and the left A-module action. We get the conclusion from
Proposition 4.36. [

We will explore consequences of these results in the next section. We turn now to the
case of symmetric operads. Our techniques are well-suited to the study of constant-free
symmetric operads and their modules, a setting that has been applied in work related to
the bar construction for strongly dualizable n-categories, among other places [BM23].

4.38. PROPOSITION. The substitude for pairs (O, L), where O is an I-colored constant-
free symmetric operad and L is a constant-free left O-module, is quasi-tame.

PRrROOF. The proof is completely analogous to the proof of Proposition 4.36 and is based
on the fact that the substitude for I-colored constant-free symmetric operads is tame
[BB17, Section 9.4], therefore also quasi-tame. n

Recall [BB17] that an n-operad in an operad in the operadic category of n-ordinals.
An n-operad A is constant-free if Ag = @ where 0 is the initial n-ordinal.

4.39. PROPOSITION. The substitude for pairs (O, L), where O is a constant-free n-operad
and L is a constant-free left O-module, is quasi-tame.

PROOF. Recall [BB17, Proposition 12.17] that the polynomial monad for constant-free
n-operads is generated by the polynomial
nROrd<—nPTr;,, —nPTr.., —nROrd

where nROrd is the set of isomorphism classes of regular, that is different from initial,
n-ordinals. The set nPT'r,., is the set of isomorphism classes of regular n-planar trees,
that is the n-ordinals decorating each vertex is regular. As usual, nPTr},, is the set
of trees of nPTr,., with one vertex marked. This polynomial monad is tame [BB17,
Theorem 12.28]. Again, the proof is very similar to the proof of Proposition 4.35. This
time the substitudes (G,U) and (7, A) will be the substitudes for pair (O, L), where
O is a constant-free n-operad and L is a constant-free left O-module, and for constant-
free n-operads respectively. We will have a triangle 31, where the first morphism of the
factorization has a left adjoint. The unit of the adjunction is given thanks to the unit of
the operad and the counit is given thanks to the left module action. [
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We conclude with an example of a non-quasi-tame polynomial monad.

4.40. EXAMPLE. Consider the monad P = Gr(SOp(J)) for the Grothendieck construc-
tion of (any flavor of) symmetric operads, and their algebras. This monad is not quasi-
tame. If it were, then taking M = Ch(F;), we would obtain a full model structure on | @,
which would imply a full model structure on ®(O) for any O. In particular, there would
be a vertical model structure on commutative differential graded algebras, contradicting
[Whil7, Section 5.1].

We can also see directly that this monad is not quasi-tame, analogously to [BB17,
Section 9]. In the internal algebra classifier for Gr(P), there will be objects with, for
example, nontrivial ¥s-automorphisms, as already mentioned in Subsection 4.29. Hence
IT, (PP+4) cannot be equivalent to a discrete groupoid.

5. Applications
In this section, we provide several applications of the previous section.

5.1. OPERADS. Our motivating example takes B to be a category of operads (any flavor
given by a Y-free substitude [BW22]) and ®(O) to be the category of O-algebras or left
O-modules. In [BDW23, Theorem 3.7], we prove that, if [ ® admits the global model
structure, then the categories B (e.g., of monoids or operads) and ®(O) (of algebras and
modules) admit horizontal and vertical model structures, that are furthermore (relatively)
left proper if the ambient model category M satisfies the conditions of Theorem 4.25.
Furthermore, we prove a rectification result, regarding when a weak equivalence ¢ : O —
O’ induces a Quillen equivalence between ®(0O) and ®(0O’). The following is an immediate
consequence of the work of the previous section.

5.2. THEOREM. Assume M is a compactly generated monoidal model category satisfying
the monoid axiom. Then the following global model structures exist:

1. The category of pairs (R, M) where R is a monoid (or, more generally, an A-algebra
for a commutative monoid A) and M is an R-module (left, right, or bimodule).

2. The category of pairs (O, A) where O is a non-symmetric operad and A is an O-
algebra.

3. The category of pairs (O, M) where O is a non-symmetric operad and M is a left
O-module.

4. The category of pairs ((O, P), M) where O and P are non-symmetric operads, and
M is an O — P-bimodule.

5. The category of pairs (O, M) where O is a constant-free symmetric operad (meaning
P(0) = 0 is the initial object of M) and M s a constant-free left O-module.
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6. The category of pairs (O, M) where O is a constant-free n-operad and M is a
constant-free left O-module.

If M s h-monoidal then these model structures are relatively left proper. If M 1is
strongly h-monoidal then they are left proper.

PRroOOF. This follows from Theorem 4.25 and Propositions 3.6, 4.35, 4.36, 4.37, 4.38, and
4.39. [

Thanks to [BDW23, Theorem 3.7] we obtain horizontal model structures on the cat-
egories of non-symmetric operads, constant-free symmetric operads, and constant-free
n-operads. We also obtain vertical model structures on categories of algebras and mod-
ules over any non-symmetric operad, and on constant free left modules over constant free
symmetric or n-operads. We also have a rectification result: if P and O are operads
as above that are cofibrant or relatively cofibrant, then a weak equivalence f : P — O
induces a Quillen equivalence on vertical model structures. As a special case, we re-
cover results from [Murll], and extend them to the case of many-colored non-symmetric
operads.

Most of the previous work on the homotopy theory of symmetric operads and their
algebras/modules deals with reduced or classical operads. The case of constant-free sym-
metric operads seems much less studied, and we are unaware of any paper that proves
the results above in the constant-free context. We note that known counterexamples pre-
vent us from having a model structure on the category of symmetric operads or reduced
symmetric operads in general model categories M. Hence, the constant-free assumption
cannot be dropped. However, global semi-model structures over a suitable base may be
possible [BDW23, Section 3]. To produce such structures would require the combination
of the theory of unary tameness [BW22] with the theory of quasi-tameness.

5.3. PROBLEM. Develop a theory of unary quasi-tame substitudes, and prove that the
category of algebras over such a substitude admit a transferred semi-model structure over
the base model category.

Just as we studied bimodules in the non-symmetric case, they could also be studied
for other flavors of operads.

5.4. PROBLEM. Apply our techniques to construct appropriate global model structures
for the study of connected (P, R)-bimodules, and for suitably restricted algebras/modules
over a dioperad, permutad, or other flavor of operad from [BB17].

If M is compactly generated and satisfies the monoid axiom (resp. strongly h-
monoidal), then the global model structure is relatively left proper, relative to entrywise
cofibrant non-symmetric operads (resp. left proper), by Theorem 4.25. In [BDW23, The-
orem 3.14], we prove that this implies the category of non-symmetric operads and the
categories of O-algebras or left O-modules, are relatively left proper (resp. left proper).
This improves on [Murll, Corollary 8.4], which required all objects in M to be cofibrant,
in order to deduce left properness.
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Another application is to the theory of bimodules, which was important in recent work
of Turchin and Dwyer-Hess on the space of long knots [Turl4, DW12]. The category of
(P, @)-bimodules, where P and () are non-symmetric operads, can itself be viewed as
a category of algebras over a colored non-symmetric operad. Our work provides the
first left proper model structure for the category of (P, @Q)-bimodules over a general base
model category M (satisfying our usual hypotheses). Of course, it is also possible to
study operadic bimodules globally via the Grothendieck construction, since Proposition
4.37 implies the global model structure exists. The global perspective provides change-
of-operad results via the rectification machinery of [BDW23, Theorem 3.17].

We explore the case of symmetric operads in [BDW23, Section 4], where we prove, for
example, that the category of (P, Q)-bimodules has a transferred semi-model structure
under cofibrancy conditions on P and @), proving an analogue of [Fre09, Theorem 16.2.A].
For topological symmetric operads this can be upgraded to a full model structure, since
all colored operads in topological spaces are admissible.

Our last example of an important category of algebras over a colored non-symmetric
operad is the category of infinitessimal O-bimodules where O is a non-symmetric operad.
Hence, we obtain a model structure on this category, useful to [Del22].

5.5. OPETOPIC SEQUENCES. Recall that every polynomial monad 7" has an associated
monad 7", defined via the Baez-Dolan plus construction [BB17, Section 11]. For example,
if T'= NOp then Algp+ consists of hyperoperads. In Section 3.14 we prove that there
is a polynomial monad Gr(T") for the category of pairs (O, A) where O is a Tt-algebra
and A is an O-algebra.

As a consequence, we may study the following opetopic sequence:

Id, Mon, NOp, NOp™, ...

An opetopic fibration is one where the base comes from the sequence above. We
next discuss quasi-tameness, and hence transferred model structures, associated with an
opetopic fibration. For example, with NOp™, we obtain a model structure on pairs (0’, O)
where O is a non-symmetric operad.

5.6. PROPOSITION. If P is a polynomial monad in the opetopic sequence, then Gr(P) is
quasi-tame.

PROOF. If P = Id or P = Mon, the result is given by Subsection 3.5. Let us now write
Pt = (PT)* and prove that Gr(P*) is quasi-tame. Recall from [BKJM10, Subsection
3.4] that the polynomial for P™* is given by

tr(B) <—tr*(P") ——tr(P") ——tr(B)

where tr(B) is the set of isomorphism classes of rooted trees decorated by elements of the
set of operations B of P, tr(P") is the set of isomorphism classes of rooted trees whose
vertices are decorated by elements of tr(B) and edges are decorated by elements of B.
The set of colors of Gr(P*") is tr(B) U B. Its set of operations is the set of isomorphism



720 MICHAEL BATANIN, FLORIAN DE LEGER, AND DAVID WHITE

classes of rooted trees whose vertices are decorated by elements of tr(B) and edges are
decorated by elements of B, and some vertices can be boxed if they are decorated with
the trivial tree without any edges. As before we can apply Theorem 4.33, taking (7', A) to
be the substitute for P*"-algebras and (G, U) to be the substitute for Gr(P**)-algebras.
The induced functor 30 turns all the boxed X-vertices to circled X-vertices and turns
boxed K-vertices to circled L-vertices. The rest of the proof is similar to the proof of
Proposition 4.35. [

We envision several future applications of this result. For example, we hope this
result can be used to prove a generalization of the Turchin/Dwyer-Hess double-delooping
theorem [Turl4, DW12], where we replace the category of non-symmetric operads by the
category of algebras for a polynomial monad in the opetopic sequence.

5.7. HomoTopry T-ALGEBRAS. The global perspective provides another point of view
for the study of homotopy T-algebras for a given polynomial monad 7. Recall [BB17,
Section 11] that if 7" is a polynomial monad then the category of homotopy T'-algebras is
constructed as Q7-alg where Q7 is the cofibrant replacement of the terminal 7"-algebra
7. We know that Alg, = Algr has a transferred semi-model structure under very general
conditions because T is Y-cofibrant as a J-colored operad [WY18, Theorem 6.3.1]. We
can take the cofibrant replacement Q7 for 7 in the model category Algr+ (using that
T is tame, for any polynomial monad T'). Algebras over this Q7 are defined to be
Algs.(or)- Since ¢, is a left Quillen functor, and Q7 is cofibrant, ¢.(Q7) is cofibrant in
SOp(Bq(J)). Thus, Algs, o) has a transferred semi-model structure, claimed to be a
full model structure in Theorem 4 of [Spi01] if the ambient model category M satisfies
the monoid axiom. This provides a form of an answer to the Batanin-Berger Conjecture
[BB17, Section 11], and a powerful tool to study homotopy 7-algebras.

Another consequence of Proposition 5.6 involves rectification, as [BDW23, Theorem
3.17] yields a Quillen equivalence between Algg, and Alg, = Algr. In particular any ho-
motopy 7T-algebra is equivalent to a strict T-algebra. We emphasize that 7" is a polynomial
monad (hence X-cofibrant).

5.8. TWISTED MODULAR OPERADS. As discussed in [BDW23, Theorem 5.1], the cate-
gory of twisted modular operads has a combinatorial vertical model structure. This is a
consequence of Proposition 3.4 and the opetopic sequences above.

6. Grothendieck construction for commutative monoids

In this section, we illustrate that our techniques can also be used for non-polynomial
monads, at least in certain special cases. For a cofibrantly generated monoidal model
category M, let CMon(M) denote the category of commutative monoids and define a
functor ® such that for a given commutative monoid R, ®(R) is the category of left R-
modules. We first discuss transferred (semi-)model structures on CMon(M) and then on

[ .
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6.1. COMMUTATIVE MONOIDS. Say that M satisfies the commutative monoid azxiom if,
whenever f is a trivial cofibration then f"/%,,, obtained from the n-fold iterated pushout
product, is a trivial cofibration. For such M, CMon(M) has a transferred semi-model
structure, which is a model structure if M also satisfies the monoid axiom [Whil7, Def-
inition 3.1, Theorem 3.2, Corollary 3.8]. This result is proven using a filtration that the
author constructed directly, that realizes the critical pushout (1) as a transfinite compo-
sition of pushouts of morphisms of the form X ® f2"/%,,. Our first step is to show how
this filtration is related to the theory of classifiers [BB17], so that we can generalize it for
the global model structure.

The free commutative monoid monad C'om is not polynomial. It is, however, possible
to develop a theory of internal algebras and their classifiers for monads coming from
arbitrary colored symmetric operads in Set, following [BB17]. Despite the fact that such
a monad is not necessary cartesian, we can apply a different construction that produces
a polynomial operad in Cat whose internal algebras behave in similar way as for the
cartesian case. Calculations in general are harder, since they involve a calculation of
nondiscrete codescent objects (e.g., due to the non-free ¥,-actions). However, there is
a procedure for how to do such calculations [Webl16]. It is well-known fact (which can
be obtained also from general theory of classifiers [Web16]) that the symmetric monoidal
category of finite sets is a classifier for commutative monoids.

When translated to the realm of classifiers, the explicit calculations of [Whil7], to
describe the critical pushout (1), enable a decomposition of the classifier Com“™f 9 in a
way very analogous to the theory of quasi-tame polynomial monads. We now explicitly
describe the relevant classifiers, referring the reader to [Web16] for full details.

As in the polynomial case, Com®°™*! computes semifree coproducts of commutative
monoids, which are, of course, just tensor products of X and Sym(K’). The objects of
this classifier are finite sets over two element set {X, K}, and the morphisms are any
morphisms of these two-colored sets that are bijections on K. It is not hard to see that
this category has a final subcategory consisting of objects with exactly one element with
X color. It is a groupoid and is equivalent to the groupoid of symmetric groups.

The classifier Com®™#9 can be constructed in a similar way. Its objects are finite
sets with three colors X, K, L. Morphisms are again morphisms of colored sets that are
bijections on K and L elements. There are also generators g : K — X, which simply
change the color of an element from K to X, and similarly f: K — L.

We have a final subcategory of Com®°™#s that consists in this case of finite sets with
a single X-colored element. This final subcategory has a filtration t™ by the number of
elements with K and L colors (that is, just a cardinality of the set minus one). And so,
the colimit over Com®™.s can be computed as a sequential colimit over colimits over t™
like in the non-commutative case. The difference with the non-commutative case is that
colimit over t™ cannot be computed as a pushout of a colimit over punctured cubes. In
the commutative case, the relevant cube has a nontrivial group of automorphisms equal
to 3,. So, we need to saturate the class of morphisms X @ f2"/%, where f runs over
trivial cofibrations. We need then the commutative monoid axiom to be sure that result



722 MICHAEL BATANIN, FLORIAN DE LEGER, AND DAVID WHITE
of such a colimit is a weak equivalence.

6.2. COMMUTATIVE MONOIDS AND THEIR MODULES. It is possible to generalize Propo-
sition 3.4 to Cat-valued polynomials. We are most interested in the case of [ ® where
®(R) is the category of R-modules for a commutative monoid R.

The monad Gr(Com) is determined by a symmetric operad in Set with two colors r
and m. The corresponding polynomial monad in Cat is

{r,m}<— D . p—* {r,m}

Here, D is the category whose objects are finite sets and pointed finite sets. The mor-
phisms are bijections that preserve points (so there are no morphisms between pointed
and unpointed sets). The target of an unpointed set is  and the target of a pointed set is
m. The category D* has objects the objects of D with one point marked, and morphisms
are morphisms of D that preserve the marked points. The source of such an object is r if
the marked point is not a distinguished point. Otherwise the source is m. The substitu-
tion operation is just replacing a marked element by the set that we want to substitute
in an obvious sense.

It is not hard to see that the algebras of such a polynomial monad are pairs (R,C)
where R is a strict symmetric monoidal category and C is a category equipped with a
strict action of R on C. A pseudoalgebra of this monad consists of a symmetric monoidal
category and a category on which it acts in a pseudo sense. The internal algebras in a
pseudoalgebras (R,C) of this monad is a commutative monoid r in R together with an
object m € C and an action r ® m — m where ® is the action of R on C subject natural
axioms (Baez and Dolan called this action riding the action of R on C). In particular,
for (R,C) = (M, M) such an internal algebra is simply a commutative monoid R in M
together with an R-module.

The techniques of Section 3 can now be used to produce the classifier Gr(Com)&m(Com+1,
Just like the cases of monoids and non-symmetric operads, it looks like the classifier
Com© ™+ but with boxes as well, corresponding to the pointed finite sets in D. This
classifier has a final subcategory consisting of finite sets and finite pointed sets with a
single X-colored element. The classifier Gr(Com)“"(©“™s.s has a similar final subcate-
gory and, just like the case of C'om, this final subcategory has a filtration based on the
number of elements with K and L colors. The critical pushout (1), now where T is the
free Gr(Com)-functor, may now be computed as a sequential colimit as in Proposition
4.11. We arrive at the following result, where we use I® to denote the monoidal satura-
tion of the class of cofibrations, i.e., the class of transfinite compositions of pushouts of
morphisms of the form X ® f where X is any object and f is a cofibration.

6.3. THEOREM. Suppose M 1is a cofibrantly generated monoidal model category satisfying
the commutative monoid axiom, where the domains of the generating (trivial) cofibrations
are small relative to I®. Then the Grothendieck construction [ ®, whose objects are pairs
(R, A) where R is a commutative monoid and A is an R-module, inherits a transferred
semi-model structure which is a full model structure if M satisfies the monoid azxiom.
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PROOF. The free functor T': M x M — [ ®, defined by T(X,Y) = (Sym(X), Sym(X) ®
Y) is left adjoint to the forgetful functor U : [ @& — M x M, since Sym(X) ® Y is the
free Sym(X)-module on Y.

The critical pushout starts with a trivial cofibration (fi, fa) : (K, K3) — (L1, Le) in
M x M, and an attaching morphism (g1, ¢92) : (K1, K2) — U(R, A). One then takes the
following pushout in [ ®:

8.b
T(Ky1, Ka) 2% T(Ly, L) (32)
(“’“)l jw,h)
R.A P B
(R.A)———(P.B)

One must show that transfinite compositions of morphisms (¢, f) : (R, A) — (P, B),
obtained by such pushouts, are weak equivalences in [ ®. Lemma 3.2 shows how to
compute such pushouts. The classifier filtration described above allows us to calculate
(¢, f) as a sequential colimit of pushouts in M x M. On the first component, the
morphisms in the sequential colimit are pushouts of morphisms of the form R ® fI"/%,,
so the commutative monoid axiom guarantees that ¢ (and transfinite compositions of
such morphisms) is a weak equivalence as soon as either R is cofibrant or M satisfies the
monoid axiom. We turn to the second component. By Lemma 3.2, we must compute the
following pushout in Sym(K7)-mod:

Sym(K:) ® Ky — ¢*(Sym(L1) ® Lo)

When we compute this pushout in M, we conclude that f is a trivial cofibration,
thanks to [Whil7, Lemma A.3] and hence transfinite compositions of morphisms of the
form (¢, f) arising from (32) are all weak equivalences, hence [SS00, Lemma 2.3] (resp.
[BW22, Theorem 2.2.1]) gives the model (resp. semi-model) structure. n

6.4. REMARK. To better understand (32), it is helpful to factor the pushout square into
a composite of two easier pushout squares:

l(a,n) L ¥.m)
(R, ¢«(Sym(K1) @ K>)) (P, SY (L1) ® L))
(idﬁa)l l
(R, A) ,B
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Since the outer rectangle is a pushout, the bottom square will be a pushout as soon as
the top square is proven to be one. This is an easy exercise.

The top pushout is essentially happening in CMon(M) and the bottom pushout is
essential happening in a module category (it can be computed either in R-mod or P-mod,
by Lemma 3.2.

The top pushout can be handled by the techniques of [Whil7], since the second compo-
nent (the module part) plays no role. Similarly, analysis of the bottom pushout reduces to
second component, which is straightforward using the methods of Theorem 4.1 of [SS00].
Essentially, this comes down to checking that the monad Tgymx,)(M) = Sym(K;) @ M
has Jry,, i, -cofibrations contained in the weak equivalences. When Sym(K7) is a cofi-
brant commutative monoid and M is cofibrant, this is always true. In general, this is true
when the monoid axiom holds.

6.5. REMARK. The proof of Lemma A.1 of [Whil7] can be mimicked to prove that it
suffices to check (32) for the generating trivial cofibrations j of M x M.

6.6. REMARK. In [HP15], M was required to be commutatively flat in order to produce
the global model structure of Theorem 6.3. This means that, for every R and every R-
module M, the operation — ®g M is required to take weak equivalences of R-modules to
weak equivalences in M. Our treatment does not require this condition.

6.7. REMARK. The work in this section also proves that, if A is a commutative monoid,
then the category of pairs (R, M) where R is a commutative A-algebra and M is an R-
module, inherits a transferred model structure. For this setting, we work with A-modules
as our base model category and note that, by [SS00] (Theorem 4.1), this category of
A-modules satisfies the pushout product axiom and monoid axiom.

We conclude this section with three open problems. The first concerns Voronov’s
Swiss-cheese operad, discussed recently in [BS24].

6.8. PROBLEM. Mimic the approach of Theorem 6.3 for the Swiss-cheese operad, and
thereby produce a global model structure on the category of pairs (B, M) where B is a
braided category and M is a monoidal category. Even more generally, apply this approach
to pseudoalgebras of a contractible categorical 2-operad with two colors.

We turn now to the second question. Theorem 5.2 produces a model structure on the
category of pairs (R, M) where R is a monoid and M is an R-module. Theorem 6.3 does
the same when R is a commutative monoid. The following question is therefore natural.

6.9. QUESTION. Is it possible to produce a global model structure on the category of
pairs (R, A) where R is a monoid and A is an R-algebra? What about when R is a
commutative monoid and A is a (commutative) R-algebra?

None of these three categories of pairs can be encoded as algebras over a polynomial
monad, but one can still attempt to mimic the techniques of Theorem 6.3 to produce
global model structures in these contexts. Furthermore, these pairs may be modeled as
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algebras over appropriate Swiss-cheese operads, and hence the techniques of [WY18] may
apply for nicely behaved base model categories M.

Lastly, Harpaz and Prasma also consider the left induced model structure on G-spaces,
where weak equivalences and cofibrations are created (and preserved) by the forgetful
functor to Top [HP15]. This suggests the following.

6.10. PROBLEM. Generalize our approach to allow for left-induced transfers and mixed
transfers (right induced on one component, and left induced on the other) on [ ®.

6.11. LEFT PROPERNESS FOR COMMUTATIVE MONOIDS. With the filtration of the previ-
ous section in hand, it is easy to prove that the category f ® of pairs (R, M) is left proper.
For this, we must also assume that M is h-monoidal and we must assume the strong com-
mutative monoid axiom, which is the commutative monoid axiom plus the requirement
that, whenever f is a cofibration, then f"/%,, is a cofibration. Under these conditions,
CMon(M) is left proper [Whil7, Definition 3.4, Theorem 4.17]. We now obtain a relative
version, and the relevant results for f ®. The following theorem complements [Whil7,
Theorem 4.17] and extends [BB17, Theorem 3.1] to the case of commutative monoids.

6.12. THEOREM. Let M be a compactly generated monoidal model category satisfying the
strong commutative monoid aziom and the monoid axiom. Then CMon(M) is relatively
left proper. If, furthermore, M is strongly h-monoidal, then CMon(M) is left proper.

PROOF. The proof proceeds just like [Whil7, Theorem 4.17|, but fewer hypotheses are
needed because we must only analyze weak equivalences between underlying cofibrant
objects. They key step in the proof of [Whil7, Theorem 4.17] (where all the hypotheses
are used) is to study the following cube, where f : A — B is a weak equivalence (between
underlying cofibrant objects in the relative left properness case) and v : K — L is a
cofibration that we are attaching via Sym(u), o : K — U(A), and a pushout like (1). The
morphisms A[u]™™ 1) — Afu)™ filter A — Alu, o], and similarly for B.

AR Q,/2, A® L®"/%,
Afu]=D ‘
B®Q./%, \ B® L®" /%,

. .

Blu]™Y Blu]™

Alu]™

In the proof of [Whil7, Theorem 4.17], one assumes A[u]™™V — Blu]™~Y is a weak
equivalence and must deduce the same for A[u]™ — B[u]™. In the relatively left proper
case, [BB17, Proposition 2.12] allows us to start with a cofibration v : K — L between
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cofibrant objects, so all objects are cofibrant in this cube, and the two vertical morphisms
in the back face are of the form f ® X where f is a weak equivalence between cofibrant
objects and X is a cofibrant object (such as @, /3,) by the strong commutative monoid
axiom. Such morphisms f® X are always weak equivalences, so the induction of [Whil7,
Theorem 4.17] proves the relevant pushout of f is a weak equivalence, as required for
relative left properness.

If M is strongly h-monoidal then the morphisms X ® f="/%,, are h-cofibrations (for X
either A or B). Since M is strongly h-monoidal, the vertical morphisms f ® X are weak
equivalences and M is left proper [BB17, Lemma 1.12]. Thus, the induced morphism
Alu]™ — Blu]™ is a weak equivalence, by [BB17, Proposition 1.8]. "

We now give the analogous result for the Grothendieck construction [ ® whose objects
are pairs (R, M) where R is a commutative monoid and M is an R-module.

6.13. THEOREM. Let M be a compactly generated monoidal model category satisfying the
strong commutative monoid axiom and the monoid axiom. Then the model structure of
Theorem 6.3 on [ @ is relatively left proper. Furthermore, if either:

1. M is h-monoidal, the domains of the generating cofibrations and the monoidal unit
are cofibrant, and cofibrant objects are flat (i.e., X @ — preserves weak equivalences),
or

2. M is strongly h-monoidal,

then [ @ is left proper.

PRrROOF. The proof of the first part is just like the first part of Theorem 6.12, using the
filtration for the pushout (32). Since we are allowed to take f = (fi, f2) as a cofibration
between cofibrant objects, all objects in the cube are cofibrant, and the vertical weak
equivalences follow in the same way (still f ® X but now with X = Q,/%, ® Ky and
similarly for the L-part).

For the ‘furthermore’ part, the proof in case (1) follows exactly as in [Whil7, Theorem
4.17], but now carrying around extra terms of the form K5 and Ly that do not affect the
proof in any way. Again, they can be taken to be cofibrant because of the hypothesis on
M.

The proof in case (2) follows exactly like in Theorem 6.12. The horizontal morphisms
in the back face are of the form X ® u7"/%, @ f, where X is A or B. Hence, these
morphisms are h-cofibrations and the rest of the proof goes in the same way. [

In future work, we plan to study left/right Bousfield localizations of the various
Grothendieck model structures we have produced in this paper, along with operad-algebra

preservation results after [Whi2la, BW21, WY 19a, WY20, WY23|, and hence left/right
properness will be very valuable for us.
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