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A NOTE ON THE ATOMICITY OF ARITHMETICITY

MICHAEL HOEFNAGEL AND PIERRE-ALAIN JACQMIN

Abstract. The main aim of this note is to show that, in the regular context, every
matrix property in the sense of [13] either implies the Mal’tsev property, or is implied by
the majority property. When the regular category C is arithmetical, i.e., both Mal’tsev
and a majority category, then we show that C satisfies every non-trivial matrix property.

1. Introduction

Consider an extended matrix of variables

M =

 x11 · · · x1m y1
...

...
...

xn1 · · · xnm yn


where the xij’s and the yi’s are (not necessarily distinct) variables from {x1, . . . , xk}. We
refer to the last column (the column of yi’s in M) as the right column of M, and every
other column as a left column. A row-wise interpretation of M of type (X1, . . . , Xn) is a
matrix of the form  f1(x11) · · · f1(x1m) f1(y1)

...
...

...
fn(xn1) · · · fn(xnm) fn(yn)


where the fi : {x1, . . . , xk} → Xi are functions. Given any relation R ⊆ X1 × · · · × Xn,
we say that it is strictly M-closed if for every row-wise interpretation N of M of type
(X1, . . . , Xn) if the left columns of N are elements of R then the right column of N is
also an element of R. This set-theoretic property of relations can be internalised (via the
Yoneda embedding) in any finitely complete category C, so that C is then said to have
M-closed relations if every internal relation in C is strictly M-closed. We will also refer to
the property of M-closedness of internal relations in C as simply the matrix property M.

Let us formulate this property in a way which we will use for the remainder of this
paper. Given two morphisms f and g in a category C with the same codomain, we
will write f ⊏ g if f factors through g. This relation on morphisms in C defines a
cover relation in the sense of [15, 16]. Then we can reformulate the matrix property
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M of a finitely complete category C in the following way: given any internal relation
r : R ↣ X1 × · · · ×Xn in C and any row-wise interpretation

N =
[
c1 · · · cm y

]
of the matrix M of type (hom(S,X1), . . . , hom(S,Xn)) where the ci’s are the left columns
of N and the y is the right column of N (viewed as morphisms S → X1×· · ·×Xn), then,
if for every i ∈ {1, . . . ,m} we have ci ⊏ r, then we have y ⊏ r.

The first and most well-known example of a matrix property is the property of a
finitely complete category to be a Mal’tsev category [5, 4], since a category C with finite
limits is a Mal’tsev category if and only if every internal relation is difunctional [19], i.e.,
every internal relation is strictly Mal-closed where

Mal =

[
x1 x2 x2 x1

x2 x2 x1 x1

]
.

Similarly to what was done in [9], given integers n, k > 0 and m ⩾ 0, we write
matr(n,m, k) for the set of all matrices with n rows, m+1 columns and whose entries are
in the set {x1, . . . , xk}. Then matr is the union of all such matr(n,m, k) for n, k > 0 and
m ⩾ 0. Corresponding to a matrix M ∈ matr, we will write mclex{M} for the collection
of finitely complete categories which satisfy the matrix property M, and refer to these
collections as matrix classes. The collection of all such matrix classes is then denoted by
Mclex, i.e.,

Mclex = {mclex{M} | M ∈ matr}
and it has a poset structure given by inclusion of matrix classes. We will also write
Mclex[n,m, k] for the sub-poset of Mclex of matrix classes mclex{M} determined by a
matrix M in matr(n,m, k). Among the elements of the poset Mclex are two trivial ones,
i.e., the matrix class of preorders with a single isomorphism class and the matrix class of
finitely complete preorders. These are respectively the bottom element and the unique
atom of Mclex. They are determined by the so-called trivial matrices (see [11]). The top
element of Mclex, i.e., the matrix class of all finitely complete categories is called the anti-
trivial element and is determined by the so-called anti-trivial matrices. The degenerate
matrix classes (respectively the degenerate matrices) are the ones which are either trivial
or anti-trivial.

As another example of a collection of categories determined by a matrix property,
consider the matrix property corresponding to the matrix Maj where

Maj =

 x1 x1 x2 x1

x1 x2 x1 x1

x2 x1 x1 x1

 .

Then, mclex{Maj} is the collection of all finitely complete majority categories [7]. For
another example, consider the matrix Ari where

Ari =

 x1 x2 x2 x1

x2 x2 x1 x1

x1 x2 x1 x1

 .
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Then mclex{Ari} is the collection of all finitely complete arithmetical categories as defined
in [11]. Note that in the Barr-exact context [1] with coequalisers this matrix property
determines arithmetical categories as introduced first in [18] and later generalised to wider
contexts in [2, 6].

Some matrix properties imply others, which is to say that some matrix classes are con-
tained (as sub-collections) in other matrix classes. For example, we have thatmclex{Ari} ⊆
mclex{Maj} and also mclex{Ari} ⊆ mclex{Mal}. Thus, the general question: is there a
procedure for determining when a given matrix class contains another? This question has
been recently answered in the paper [11], where an algorithm was given which determines
inclusions of the form mclex{N} ⊆ mclex{M}, i.e., which determines implications of ma-
trix properties. Computer implementation of this algorithm allows us to determine, for
relatively small n,m, k, the posets Mclex[n,m, k]. For instance, Figure 1 (which describes
the same poset as Figure 2 in [11] and Figure 1 in [12]) gives a visual depiction of the
poset of non-degenerate elements of Mclex[3, 7, 2] as obtained by the computer, where each
integer entry i corresponds to the variable xi and the shaded column is the right column
in the representing matrix. Note that most of these matrix classes are not represented
here by 3× (7 + 1) matrices but up to duplication of rows and left columns, they can be
turned to such matrices. One of the main results of [12] shows that among the non-trivial
matrix classes in Mclex represented by a matrix with at most two variables (i.e., binary
matrices) the matrix class mclex{Ari} is the least. In fact, Figure 1 already illustrates
this fact, as the matrix class farthest to the left is mclex{Ari}. However, in Mclex we have
non-trivial matrix classes which are strictly contained in mclex{Ari}.

Figure 1: The poset of non-degenerate elements of Mclex[3, 7, 2]. The matrix furthest
to the left represents the matrix class mclex{Ari} and the only matrix with two rows
represents mclex{Mal}. The matrix which is just above this latter matrix represents the
matrix class mclex{Maj}.

Let us now write mcreg{M} for the collection of all regular categories [1] satisfying
the matrix property M, i.e., mcreg{M} is the intersection of mclex{M} and the collection
of all regular categories. Such classes of regular categories we refer to as regular matrix
classes. We may then consider the poset Mcreg of all regular matrix classes ordered by
inclusion, and ask the analagous question: is there an algorithm for determining whether
or not mcreg{M} ⊆ mcreg{N}? As it stands, this question is still open, and it is known
that mcreg{M} ⊆ mcreg{N} need not imply that mclex{M} ⊆ mclex{N} — see Section 5
of [11].

In this paper we will show that the regular matrix classes corresponding to Mal, Maj
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and Ari play a special role in Mcreg. For one thing, we will show that every regular matrix
class in Mcreg is either contained in mcreg{Mal} or contains mcreg{Maj}. We will also
show that among the non-trivial members of Mcreg, the least is the regular matrix class
corresponding to Ari. While, as shown in [12], both results extend to the finitely complete
context for binary matrices, we know they do not extend to that context in full generality.

Notation. In order to simplify notation, we will borrow the notation of [10], and write
M ⇒lex N if mclex{M} ⊆ mclex{N} and likewise write M ⇒reg N if mcreg{M} ⊆ mcreg{N}.

2. A strong majority property

Given a category C with binary products, in what follows we will write πi,j for the two-
fold projection (πi, πj) : X1 × · · · ×Xn → Xi ×Xj determined by πi and πj, where i, j ∈
{1, 2, . . . , n}. For a natural number n ⩾ 3, we define the following property on a finitely
complete category C.

(Mn) For any morphism y : S → X1 × · · · × Xn and any monomorphism r : R ↣ X1 ×
· · · ×Xn, if πi,jy ⊏ πi,jr for any i, j ∈ {1, 2, . . . , n}, then y ⊏ r.

Note that for such y : S → X1 × · · · ×Xn, r : R ↣ X1 × · · · ×Xn and i, j ∈ {1, . . . , n}, if
πi,jy ⊏ πi,jr, then πj,iy ⊏ πj,ir and πi,iy ⊏ πi,ir; so that in the above description of (Mn),
it is equivalent to ask πi,jy ⊏ πi,jr only for all i, j ∈ {1, . . . , n} with i < j. As we will
see shortly, the property (Mn) for any integer n ⩾ 3 is equivalent to a matrix property.
Define a matrix Mn with n rows, m =

(
n
2

)
left columns ci,j indexed by all pairs of integers

(i, j) where 1 ⩽ i < j ⩽ n and whose right column is the column vector containing only
the variable x1. Order the left columns ci,j < ci′,j′ from left to right according to the
lexicographic order (i, j) < (i′, j′) on N2. In each column ci,j place a x1 at the ith and jth

entry. Then in each row, insert the variables x2, . . . , xk (where k =
(
n−1
2

)
+1) in increasing

order (of index) at each position which does not contain a x1. For example, in the case
n = 3, the matrix M3 is nothing but

M3 = Maj =

 x1 x1 x2 x1

x1 x2 x1 x1

x2 x1 x1 x1


as defined in the Introduction. In the case n = 4, we have

M4 =


x1 x1 x1 x2 x3 x4 x1

x1 x2 x3 x1 x1 x4 x1

x2 x1 x3 x1 x4 x1 x1

x2 x3 x1 x4 x1 x1 x1

 .

2.1. Proposition. Let n ⩾ 3 be an integer. A finitely complete category C satisfies (Mn)
if and only if C has Mn-closed relations, i.e., C satisfies the matrix property corresponding
to Mn.
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Proof. Suppose that C satisfies (Mn) and let r : R ↣ X1×· · ·×Xn be any monomorphism
and

M ′ =

 x11 · · · x1m y1
...

...
...

xn1 · · · xnm yn


be a row-wise interpretation of the matrixMn of type (hom(S,X1), . . . , hom(S,Xn)) where
m =

(
n
2

)
. Each column of the matrix M ′ above determines a (unique) morphism S →

X1×· · ·×Xn, and we will write c′i,j : S → X1×· · ·×Xn for the morphism corresponding to
the left column ci,j of Mn. We write y = (y1, . . . , yn) : S → X1×· · ·×Xn for the morphism
determined by the right column of M ′. We suppose that each c′i,j factorises through r and
we must show that y also does. As earlier, we write πi,j : X1×· · ·×Xn → Xi×Xj for the
two-fold projection determined by πi and πj. It may then be seen that πi,jc

′
i,j = (yi, yj),

since M ′ is a row-wise interpretation of Mn. Therefore πi,jy = πi,jc
′
i,j ⊏ πi,jr for all

i, j ∈ {1, 2, . . . , n} with i < j so that y ⊏ r by (Mn).
Conversely, suppose that C has Mn-closed relations and that we are given a monomor-

phism r : R ↣ X1 × · · · ×Xn and a morphism y = (y1, . . . , yn) : S → X1 × · · · ×Xn such
that πi,jy ⊏ πi,jr for each i, j ∈ {1, 2, . . . , n}. Thus, there are factorisations f ′

i,j : S → R
such that πi,jrf

′
i,j = (yi, yj). Form the matrix M ′ whose left columns are determined by

the morphisms c′i,j = rf ′
i,j (again ordering them via the lexicographic order on N2) and

whose right column is determined by the morphism y. This matrix M ′ is then a row-wise
interpretation of Mn of type (hom(S,X1), . . . , hom(S,Xn)). Since C has Mn-closed rela-
tions, we deduce that y ⊏ r.

The matrixM4 is identical (up to replacement of variables) to the matrix in Remark 2.4
of [12]. For this reason, we know we do not have M3 ⇒lex M4 although we do have
M4 ⇒lex M3. We can actually generalise this.

2.2. Proposition. We have a sequence of strict implications

· · · ⇒lex Mn+1 ⇒lex Mn ⇒lex · · · ⇒lex M5 ⇒lex M4 ⇒lex M3

and all these matrices are non-degenerate.

Proof. According to Theorem 2.5 in [11], a matrix is anti-trivial if and only if its right
column appears among its left columns. Clearly, this is not the case for these matrices Mn.
Moreover, we can immediately deduce from Theorem 2.3 in [11] that these matrices are
not trivial neither and so not degenerate.

Let us now prove that for n ⩾ 3, we have Mn+1 ⇒lex Mn. To fix notation, let m =
(
n
2

)
,

k =
(
n−1
2

)
+ 1, m′ =

(
n+1
2

)
and k′ =

(
n
2

)
+ 1 so that Mn ∈ Mclex[n,m, k] and Mn+1 ∈

Mclex[n+ 1,m′, k′]. According to the algorithm from [11], to prove Mn+1 ⇒lex Mn it is
enough to prove that the matrix M ′ formed by the first n rows of Mn+1 admits a row-wise
interpretation of type ({x1, . . . , xk}, . . . , {x1, . . . , xk}) whose left columns can be found
among the left columns of Mn and whose right column is the right column of Mn. This
can be easily seen by interpreting in M ′ each x1 by x1 and each other variable (which
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appears only once in each row) by the only variable such that the left column c′i,j of M ′

for 1 ⩽ i < j ⩽ n is interpreted as the left column ci,j of Mn, and the left column c′i,n+1

of M ′ for 1 ⩽ i ⩽ n is interpreted as the left column ci,n if i < n or c1,n if i = n of Mn.
It remains to prove that we do not have Mn ⇒lex Mn+1. Again according to the

algorithm from [11], it is enough to prove that for any matrix M ′ with n + 1 rows and
whose each row is a row of Mn, and for any row-wise interpretation M ′′ of M ′ of type
({x1, . . . , xk′}, . . . , {x1, . . . , xk′}), if the left columns of M ′′ can be found among the left
columns of Mn+1, then so can its right column. By contradiction, suppose M ′ and M ′′ are
such matrices such that the left columns of M ′′, but not its right column, are among the
left columns of Mn+1. In each row of Mn (and so of M ′), there are exactly n−1 many x1’s
in its left part (i.e., not counting its rightmost entry). If, for some j ∈ {1, . . . , n+1}, these
x1’s in the jth row of M ′ are interpreted in M ′′ as xl with 1 < l ⩽ k′, then the left columns
of M ′ containing x1 in the jth row are all interpreted the same in M ′′ since xl appears
exactly once in the jth row of Mn+1. In that case, since for each j′ ∈ {1, . . . , n+1}, there
is a left column of M ′ with x1 as j

th and j′ th entries, the right column of M ′ (constituted
only of x1’s) is interpreted in M ′′ in the same way as its left columns containing x1 in
the jth row. This would imply that the right column of M ′′ must be found among the
left columns of Mn+1, which is a contradiction. Therefore, each x1 in the left part of M ′

is interpreted as x1 in M ′′. Thus, there are at least (n + 1)(n − 1) many x1’s in the left
part of M ′′. However, each left column of M ′′ being a left column of Mn+1, they contain
exactly two x1’s each. There are thus exactly 2m = 2

(
n
2

)
= n(n− 1) many x1’s in the left

part of M ′′, which is a contradiction.

Let us recall now that from Corollary 2.4 in [11] and Corollary 2.5 in [10] we have the
following two propositions.

2.3. Proposition. [11] If M ∈ matr(2,m, k) is a two-row matrix (for integers m ⩾ 0 and
k > 0), then mclex{M} is trivial, anti-trivial or the matrix class of Mal’tsev categories.

2.4. Proposition. [10] For any matrix M ∈ matr, the implication M ⇒lex Mal does not
hold if and only if every selection of two rows from M forms an anti-trivial matrix.

We are now able to prove the following.

2.5. Proposition. Given integers n ⩾ 3, m ⩾ 0 and k > 0 and a matrix M ∈
matr(n,m, k), we have that either M ⇒lex Mal or Mn ⇒lex M, and these two implica-
tions cannot occur simultaneously.

Proof. By construction, every selection of two rows from Mn forms an anti-trivial matrix
and so Mn ⇒lex Mal does not hold by Proposition 2.4. This already proves that the two
implications of the statement cannot occur simultaneously. Suppose now that M ⇒lex Mal
does not hold. Then every selection of two rows of M forms an anti-trivial matrix by
Proposition 2.4. Let C be any finitely complete category in mclex{Mn} and let us prove
it is in mclex{M}. Let r : R ↣ X1 × · · · ×Xn be any relation in C and let

M ′ =
[
c′1 · · · c′m y

]
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be any row-wise interpretation of M of type (hom(S,X1), . . . , hom(S,Xn)) where the left
columns c′1, . . . , c

′
m of M ′ (viewed as morphisms S → X1 × · · · × Xn) satisfy c′l ⊏ r for

each l ∈ {1, . . . ,m}. We must show that the right column y of M ′ (also viewed as a
morphism S → X1 × · · · × Xn) satisfy y ⊏ r. Since, by Proposition 2.1, C satisfies the
property (Mn), we only have to show that πi,jy ⊏ πi,jr for any i, j ∈ {1, . . . , n}. For such
i and j, since the matrix obtained by selecting the ith and the jth row of M is anti-trivial,
we know that πi,jy = πi,jc

′
l for some l ∈ {1, . . . ,m}. Therefore, πi,jy = πi,jc

′
l ⊏ πi,jr as

desired.

3. The regular context

Recall that a category is regular [1] if it is finitely complete, has coequalisers of kernel
pairs and regular epimorphisms are stable under pullbacks. In that case, each morphism
factorises as a regular epimorphism followed by a monomorphism. Although, in the finitely
complete context, the implications of Proposition 2.2 are strict, this is not the case any
more in the regular context as attested by the following theorem.

3.1. Theorem. We have a sequence of equivalences

· · · ⇔reg Mn+1 ⇔reg Mn ⇔reg · · · ⇔reg M5 ⇔reg M4 ⇔reg M3

i.e., for any integer n ⩾ 3, in the regular context, the property (Mn) is equivalent to the
majority property (M3).

Proof. In view of Proposition 2.2 and since M3 = Maj, it is enough to prove that any
regular majority category C satisfies (Mn) for each n ⩾ 3. Given such C and n, let
r : R ↣ X1 × · · · × Xn be any monomorphism and let y : S → X1 × · · · × Xn be any
morphism in C such that, for any i, j ∈ {1, . . . , n}, πi,jy ⊏ πi,jr. We must show that
y ⊏ r. For all i, j ∈ {1, . . . , n}, let

R
ei,j // // Ri,j

//mi,j // Xi ×Xj

be the (regular epimorphism, monomorphism)-factorisation of the composite

R // r // X1 × · · · ×Xn

πi,j // Xi ×Xj.

By the equivalence of (i) and (v) of Theorem 5.1 in [8], and Proposition 4.1 in [8], the
diagram

R
(ei,j)(i,j)∈{1,...,n}2 //

��

r

��

n∏
i,j=1

Ri,j

��
n∏

i,j=1
mi,j

��
n∏

l=1

Xl
(πi,j)(i,j)∈{1,...,n}2

//
n∏

i,j=1

Xi ×Xj
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is a pullback. Since, for all i, j ∈ {1, . . . , n}, we have supposed πi,jy ⊏ πi,jr, we know that
πi,jy ⊏ mi,j; producing a morphism S →

∏n
i,j=1Ri,j so that, by the universal property of

the above pullback, we get y ⊏ r.

3.2. Corollary. For any matrix M in matr, we have that either M ⇒reg Mal or Maj ⇒reg

M, and these two implications cannot occur simultaneously.

Proof. If these two implications occur simultaneously, we would have Maj ⇒reg Mal,
which, by Theorem 2.4 in [10], is equivalent to Maj ⇒lex Mal. But this last implication
does not hold, for instance by Proposition 2.4.

Let us now prove that M ⇒reg Mal or Maj ⇒reg M. If M is trivial, then M ⇒reg Mal;
and if M is anti-trivial, we have Maj ⇒reg M. It remains to treat the case where M is
non-degenerate. Suppose that M has n rows. If n ⩽ 2, by Proposition 2.3, M ⇔lex Mal and
so in particular M ⇒reg Mal. Let us now suppose that n ⩾ 3. Then, we have that either
M ⇒lex Mal or Mn ⇒lex M by Proposition 2.5. The result then follows since Maj ⇔reg Mn

for all n ⩾ 3 by Theorem 3.1.

3.3. Remark. Let us make clear here that, although Corollary 3.2 takes place in the
regular context, it holds for the matrix properties in the sense of [13] but not for the matrix
properties in the sense of [15]. Indeed, an example of these latter matrix properties is the
property of being a Goursat category [3]. An example of a (regular) Goursat category
which is not Mal’tsev is given by the category of implication algebras [17] while an example
of a majority category which is not Goursat is given by the category of lattices [3, 7].

The proof of the theorem below makes use of the fact that Ari ⇒lex Mal and Ari ⇒lex

Maj. These implications already appear in Figure 1. For a proof of them, we refer the
reader to Section 5 of [11]. There, it is actually shown that mclex{Ari} = mclex{Mal} ∩
mclex{Maj}, i.e., a finitely complete category is arithmetical if and only if it is both
Mal’tsev and majority.

3.4. Theorem. For any non-trivial matrix M in matr, we have Ari ⇒reg M.

Proof. Suppose that M is any non-trivial matrix with n > 0 rows. If n ⩽ 2, then
Mal ⇒lex M by Proposition 2.3 and therefore Ari ⇒lex M since Ari ⇒lex Mal. We can
therefore suppose without loss of generality that n ⩾ 3. Let C be a regular arithmetical
category, r : R ↣ X1 × · · · ×Xn be any monomorphism in C and the matrix

M ′ =

 x11 · · · x1m y1
...

...
...

xn1 · · · xnm yn


be a row-wise interpretation of the matrixM of type (hom(S,X1), . . . , hom(S,Xn)). View-
ing each of the left columns c1, . . . , cm of M ′ and its right column y as morphisms
S → X1 × · · · × Xn, we suppose that cl ⊏ r for each l ∈ {1, . . . ,m} and we must show
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y ⊏ r. For any i, j ∈ {1, . . . , n}, consider the (regular epimorphism, monomorphism)-
factorisation

R
ei,j // // Ri,j

//mi,j // Xi ×Xj

of the composite

R // r // X1 × · · · ×Xn

πi,j // Xi ×Xj.

For any such i, j, by Proposition 1.7 in [14], since M is non-trivial, the matrix M[i :, j :]
formed from selecting the ith and the jth row of M is non-trivial. Hence, Mal ⇒lex M[i :, j :]
by Proposition 2.3 and so Ari ⇒lex M[i :, j :]. Since πi,jcl ⊏ mi,j for each l ∈ {1, . . . ,m},
this implies that for any i, j there is a morphism fi,j : S → Ri,j such that mi,jfi,j = πi,jy.
Considering the pullback

Qi,j

βi,j //

αi,j
����

R

ei,j
����

S
fi,j

// Ri,j

we know that πi,jyαi,j ⊏ πi,jr. Taking the limit of the diagram formed by the αi,j

produces a regular epimorphism α : Q ↠ S such that, for each i, j ∈ {1, . . . , n}, we have
πi,jyα ⊏ πi,jr. By Theorem 3.1 we have Maj ⇔reg Mn, so that Ari ⇒reg Mn. It follows
that yα ⊏ r, and since α is a regular epimorphism and r a monomorphism, we have that
y ⊏ r.

A regular Mal’tsev category C has been shown to have distributive lattices of equiv-
alence relations if and only if it is a majority category [8]. Various alternative charac-
terisations of equivalence distributive regular Mal’tsev categories have been given in [6],
as well as equivalence distributive Goursat categories. By the theorem above, every reg-
ular equivalence distributive Mal’tsev category satisfies each non-trivial matrix property
from Mclex.

3.5. Remark. Using Bourn localisations as in [9], one can easily extend Theorem 3.4
to the pointed context. That is, using the terminology of [9], for any non-trivial matrix
M ∈ matr∗, one has Ari ⇒reg∗ M.

By definition, a matrix M ∈ matr is trivial if any finitely complete category with
M-closed relations is a preorder. In [9], it is proved that we can equivalently consider
only finitely complete pointed categories to decide whether such a matrix is trivial, i.e.,
a matrix M ∈ matr is trivial if and only if any finitely complete pointed category with
M-closed relations is a preorder. As a corollary of Theorem 3.4, we prove that we can
equivalently only consider varieties of universal algebras.

3.6. Corollary. For a matrix M ∈ matr, the following statements are equivalent.

(i) M is trivial, i.e., any finitely complete category with M-closed relations is a preorder.

(ii) Any pointed finitely complete category with M-closed relations is a preorder.
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(iii) Any regular category with M-closed relations is a preorder.

(iv) Any variety with M-closed relations is a preorder, i.e., the equation x = y holds in
its theory.

(v) The dual of the category of sets Setop does not have M-closed relations.

(vi) The dual of the category of pointed sets Setop∗ does not have M-closed relations.

(vii) The category of Boolean algebras Bool does not have M-closed relations.

Proof. The equivalence (i)⇔(v) appears in [11] while the equivalences (i)⇔(ii)⇔(vi)
appear in [9]. The implications (i)⇒(iii)⇒(iv) are obvious and the implication (iv)⇒(vii)
follows from the fact that Bool is a variety of universal algebras which is not a preorder.
Finally, the implication (vii)⇒(i) follows immediately from Theorem 3.4 since Bool is a
regular arithmetical category.
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(2025), 32–64.

[11] M. Hoefnagel, P.-A. Jacqmin and Z. Janelidze, The matrix taxonomy of
finitely complete categories, Theory and Applications of Categories 38 (2022), 737–
790.

[12] M. Hoefnagel, P.-A. Jacqmin, Z. Janelidze and E. van der Walt, On
binary matrix properties, Quaestiones Mathematicae 47 (2024), 285–319.

[13] Z. Janelidze, Closedness properties of internal relations I: A unified approach to
Mal’tsev, unital and subtractive categories, Theory and Applications of Categories
16 (2006), 236–261.

[14] Z. Janelidze, Closedness properties of internal relations II: Bourn localization,
Theory and Applications of Categories 16 (2006), 262–282.

[15] Z. Janelidze, Closedness properties of internal relations V: Linear Mal’tsev condi-
tions, Algebra Universalis 58 (2008), 105–117.

[16] Z. Janelidze, Cover relations on categories, Applied Categorical Structures 17
(2009), 351–371.

[17] A. Mitschke, Implication algebras are 3-permutable and 3-distributive, Algebra
Universalis 1 (1971/72), 182–186.

[18] M.C. Pedicchio, Arithmetical categories and commutator theory, Applied Cate-
gorical Structures 4 (1996), 297–305.

[19] J. Riguet, Relations binaires, fermetures, correspondances de Galois, Bulletin de la
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