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PARTIAL ORDERS ARE THE FREE CONSERVATIVE
COCOMPLETION OF TOTAL ORDERS

CALIN TATARU

Abstract. We show that the category of partially ordered sets Pos is the free con-
servative cocompletion of the category of finite non-empty totally ordered sets ∆, also
known as the simplex category. This means that Pos is the initial cocomplete category
that contains ∆ as a full subcategory and preserves the existing colimits of ∆.

1. Introduction

Colimits are an important tool in category theory, allowing us to glue together objects in
a category in a universal way. However, most categories do not have all colimits. We can
get around this, for a small category C, by considering its free cocompletion Ĉ = [Cop, Set],
which is cocomplete and contains C as a full subcategory via the Yoneda embedding:

y : C → Ĉ
c 7→ C(−, c)

Moreover, it satisfies the following universal property [4]. For every cocomplete category
D and functor F : C → D, there is an essentially unique cocontinuous functor extending
F along the Yoneda embedding:

C Ĉ

D
F

y

F̂

However, the category C will often have some colimits to start with, but the Yoneda
embedding will not, in general, preserve those colimits. This motivates the idea of the
free conservative cocompletion. We recall the definition from [13].

1.1. Definition. The free conservative cocompletion of a category C consists of:

� a cocomplete category C̃, and

� a fully faithful cocontinuous functor I : C → C̃.
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such that for every cocomplete category D and cocontinuous functor F : C → D, there
exists an essentially unique cocontinuous functor F̃ : C̃ → D such that:

C C̃

D
F

I

F̃

There is a well-known way to characterise the free conservative cocompletion of a small
category, which is guaranteed to exist, due to Kelly [3, Theorem 6.23]. See [2, Theorem
11.5] for a simpler description of the result without proof.

1.2. Proposition. If C is a small category, the free conservative cocompletion C̃ is equiv-
alent to the full subcategory of [Cop, Set] whose objects are the continuous presheaves (i.e.
presheaves that take colimits in C to limits in Set).

While this description is useful, it is not always easy to work with. In general, obtaining
a concrete description of the free conservative cocompletion of a given category is not
straightforward. In this paper, we will prove the following result.

1.3. Theorem. The category of partially ordered sets Pos is the free conservative cocom-
pletion of the category of finite non-empty totally ordered sets ∆.

The proof makes use of the nerve of the inclusion ∆ ↪→ Pos, which is a functor

N : Pos → [∆op, Set]

We first show that the inclusion is cocontinuous, so the image of the nerve is contained in
the category of continuous simplicial sets. We then show that the inclusion is dense, so
the nerve is fully faithful. Finally, we show that the nerve is essentially surjective onto the
category of continuous simplicial sets. Therefore Pos is equivalent to the free conservative
cocompletion of ∆ by Proposition 1.2.

1.4. Related work. A similar result was proved by Mimram and Di Giusto [6]. They
give a concrete description of the free finite conservative cocompletion P of a category L
that has the same objects as ∆ but different morphisms (partial strictly monotone maps
instead of monotone maps). The category P has as objects finite sets equipped with
a transitive relation, and as morphisms partial monotone maps, so it contains Pos as a
subcategory. There are some similarities in the proofs, mostly in the proof of transitivity
in Lemma 3.9, but the results are independent.

The motivation for the main result comes from associative n-categories [1, 7]. The
terms in an associative n-category are defined inductively over ∆, yet several results use
colimits and require passing to Pos, such as [8, 10, 11]. We previously lacked a formal
justification for this passage, and this paper finally provides one.

1.5. Acknowledgements. The author would like to thank his supervisor Jamie Vicary
for reviewing this paper, as well as Alex Rice and Ioannis Markakis for helpful discussions.
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2. Preliminaries

We first recall some basic definitions and facts from order theory.

2.1. Definition. A partial order on a set X is a relation ≤ that is:

� reflexive, i.e. x ≤ x for all x ∈ X,

� transitive, i.e. if x ≤ y and y ≤ z then x ≤ z for all x, y, z ∈ X, and

� antisymmetric, i.e. if x ≤ y and y ≤ x then x = y for all x, y ∈ X.

A total order is a partial order such that either x ≤ y or y ≤ x for all x, y ∈ X.

We write Pos for the category of partially ordered sets and monotone maps, Tos for the
full subcategory of totally ordered sets, and ∆ for the full subcategory of finite non-empty
totally ordered sets:

∆ ↪→ Tos ↪→ Pos

For convenience, we will work with a skeletal presentation of the category ∆, also
known as the simplex category, where the objects are given by the finite non-empty ordinals

[n] = {0, 1, . . . , n}

and the morphisms are generated by two families of monotone maps:

� face maps δi : [n− 1] → [n] skipping an element i ∈ [n], i.e.

δi(j) =

{
j if j < i

j + 1 if j ≥ i

� degeneracy maps σi : [n+ 1] → [n] duplicating an element i ∈ [n], i.e.

σi(j) =

{
j if j ≤ i

j − 1 if j > i

subject to the following equations, which are known as the simplicial identities [5]:

δjδi = δiδj−1 (i < j)

σjσi = σiσj+1 (i ≤ j)

σjδi = δjσi−1 (i < j)

σjδi = id (i = j or i = j + 1)

σjδi = δj−1σi (i > j + 1)
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Figure 1: The data of a simplicial set X.

The category Pos is cocomplete, with its colimits obtained as follows: take the colimit
in Set, endow it with the smallest preorder ≤ such that all maps of the colimiting cocone
are monotone, and then take the quotient under the equivalence relation ∼ defined by:1

x ∼ y ⇐⇒ x ≤ y and y ≤ x

On the other hand, the category ∆ is not cocomplete (e.g. it has no coproducts). However,
we will see later that the inclusion ∆ ↪→ Pos is cocontinuous, and in fact, the colimits in
∆ are computed in the same way as the colimits in Pos.

2.2. Definition. A linear extension of a partial order ≤ is a total order ⪯ on the same
set such that ≤ is contained in ⪯, i.e. x ≤ y implies x ⪯ y for all x, y.

2.3. Proposition. [Order extension principle [9]] Every partial order has a linear exten-
sion, and moreover, it is the intersection of all of its linear extensions.

Note that for infinite sets, this requires Zorn’s Lemma (which is equivalent to the axiom
of choice). However, for finite sets, it can be proved without choice.

2.4. Simplicial sets. Recall that the free cocompletion of the simplex category ∆ is
the category of simplicial sets [∆op, Set], which will play a crucial role in our proof.

2.5. Definition. A simplicial set is a presheaf on ∆, i.e. a functor X : ∆op → Set.

Given a simplicial set X, we adopt the following notation:

� Xn is the image of [n], whose elements are called n-simplices,

� di : Xn → Xn−1 is image of the face map δi : [n− 1] → [n], and

� si : Xn → Xn+1 is image of the degeneracy map σi : [n+ 1] → [n].

In fact, the data of a simplicial set X is completely determined by the sets Xn and maps
di, si satisfying the dual of the simplicial identities (see Figure 1).

2.6. Nerve, dense functors.

1The equivalence classes of ∼ are the strongly connected components of the preorder ≤.
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2.7. Definition. Any functor F : C → D induces a functor NF : D → [Cop, Set], called
the nerve of F , given by the restricted Yoneda embedding:

D y−→ [Dop, Set]
(−)◦F op

−−−−−→ [Cop, Set]

In particular, it sends every object d ∈ D to the presheaf NF (d) := D(F (−), d).

2.8. Definition. Let F : C → D be a functor and let d ∈ D. The comma category
F ↓ d is the category whose objects are pairs (c, f) consisting of an object c ∈ C and a
morphism f : F (c) → d in D, and whose morphisms α : (c1, f1) → (c2, f2) are morphisms
α : c1 → c2 in C making the following commute:

F (c1) F (c2)

d
f1

F (α)

f2

The comma category has a canonical projection πC : F ↓ d→ C sending (c, f) to c.

Recall the following proposition due to Ulmer [12, Lemma 1.7].

2.9. Proposition. For every functor F : C → D, the following are equivalent:

� Every object d ∈ D is canonically a colimit of objects in the image of F :

d ∼= colim(F ↓ d πC−→ C F−→ D)

� The nerve NF : D → [Cop, Set] is fully faithful.

A functor satisfying the conditions of Proposition 2.9 is called dense.

2.10. Example. The Yoneda embedding y : C → [Cop, Set] is dense [12, Lemma 1.10].
To see that, note that any presheaf is a colimit of representables, and the nerve is the
identity.

3. Main results

We begin by showing that the inclusion i : ∆ ↪→ Pos is cocontinuous. We break it down
into two steps: (1) we show that the inclusion ∆ ↪→ Tos is cocontinuous, and (2) we show
that the inclusion Tos ↪→ Pos is cocontinuous.

3.1. Proposition. Let f : N → T be an injective monotone map between totally ordered
sets with N finite and non-empty. Then f is a split monomorphism.

Proof. Write N = {x0, . . . , xn}. We define g : T → N as follows:

g(t) =


x0 if t < f(x0)

xi if f(xi) ≤ t < f(xi+1)

xn if t ≥ f(xn)

It is easy to see that g ◦ f = id, so f is a split monomorphism.
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The following is adapted from a proof by David Gao on Mathoverflow.2

3.2. Proposition. The inclusion ∆ ↪→ Tos is cocontinuous.

Proof. Let D : J → ∆ be a diagram which admits a colimit ϕ : D ⇒ N where N is
a finite non-empty totally ordered set. We claim that ϕ is also the colimit of D in Tos
(modulo an implicit inclusion functor), so let ψ : D ⇒ T be a cocone in Tos for a totally
ordered set T .

Recall that for every j ∈ J , we can consider the image of the map ψj, denoted ψj[Dj],
which is a subset of T . Now we define the image of ψ to be the following subset of T :

ψ[D] :=
⋃
j∈J

ψj[Dj] ⊆ T

Note that J is non-empty since ∆ has no initial object, so ψ[D] is non-empty. We claim
that ψ[D] is also finite. Namely, for every finite non-empty subset S ⊆ ψ[D], there is a
split epi map r : ψ[D] → S by Proposition 3.1. Hence r ◦ ψ is a cocone in ∆, so there
exists a unique monotone map u : N → S making this commute for every j ∈ J :

S

N ψ[D]

Dj

u r

ϕj ψj

Note that the families of morphisms (ϕj)j∈J and (ψj)j∈J are jointly epic and r is epic,
so u is also epic.3 Thus |S| ≤ |N |. Now this holds for every finite non-empty subset
S ⊆ ψ[D], so |ψ[D]| ≤ |N | (otherwise ψ[D] would contain a finite subset of cardinality
strictly greater than that of N).

Finally, we have the following isomorphism of sets of monotone maps:

{v : N → T | v ◦ ϕ = ψ} ∼= {v : N → ψ[D] | v ◦ ϕ = ψ}

This is because the family of morphisms (ϕj)j∈J is jointly epic so the image of v equals
ψ[D]. Since ψ[D] lives in ∆ and the inclusion ∆ ↪→ Tos reflects colimits as it is fully
faithful, the universal property in Tos follows from the universal property in ∆.

3.3. Proposition. The inclusion Tos ↪→ Pos is cocontinuous.

2See https://mathoverflow.net/q/467739/525267.
3If a composite of two morphisms g ◦ f is epi, then so is the morphism g (see [5, Section I.5]).

https://mathoverflow.net/q/467739/525267
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Proof. Let D : J → Tos be a diagram which admits a colimit ϕ : D ⇒ T where T is a
totally ordered set. We claim that ϕ is also the colimit of D in Pos.

Now Pos is cocomplete, so D has a colimit ψ : D ⇒ P in Pos for a poset P , and so
there exists a unique monotone map u : P → T making this commute:

P T

Dj

u

ψj ϕj

Let i : P ↪→ L be a linear extension of P . Then i ◦ ψ is a cocone over D in Tos, and so
there exists a unique monotone map v : T → L making this commute:

L

T P

Dj

v i

ϕj ψj

We have that v◦u◦ψ = v◦ϕ = i◦ψ. Since the family of morphisms (ψj∈J ) is jointly epic,
it follows that v ◦ u = i. In other words, every linear extension L of P factors through T .

This implies that u must be order-reflecting: if u(x) ≤ u(y) in T , then x ≤ y in every
linear extension L of P , so x ≤ y in P . Therefore P is totally ordered. Now the inclusion
Tos ↪→ Pos reflects colimits as it is fully faithful, so T ∼= P .

3.4. Proposition. The inclusion i : ∆ ↪→ Pos is cocontinuous.

Proof. This follows immediately from the previous two propositions.

3.5. Proposition. The inclusion i : ∆ ↪→ Pos is dense.

Proof. Let P be a poset. The comma category i ↓ P consists of:

� objects: monotone maps of the form

x : [n] → P (n ∈ N)

which are equivalent to finite chains of P .

� morphisms: commutative triangles of the form

[n] [m]

P

f

x y

which are equivalent to inclusions of chains, i.e. xi = yf(i).

It is easy to see that P is the colimit of the diagram i ↓ P → ∆ ↪→ Pos because the
colimit is just a union and every poset is equal to the union of its chains.
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Therefore by Proposition 2.9, the nerve functor is fully faithful:

N : Pos ↪→ [∆op, Set]

P 7→ Pos(i(−), P )

For every poset P , the nerve NP is a simplicial set whose n-simplices are the chains of
length n in P , i.e. tuples (x0, . . . , xn) such that xi ≤ xi+1 for all i. The face and degeneracy
maps are given by applying transitivity and reflexivity:

di(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn)

si(x0, . . . , xn) = (x0, . . . , xi, xi, . . . , xn)

3.6. Proposition. The nerve NP is continuous for every poset P .

Proof. Note that NP is given by the composite

∆op iop−→ Posop
yP−→ Set

We have that iop is continuous because i is cocontinuous by Proposition 3.4, and yP is
continuous because hom-functors preserve limits in the first argument.

Let [∆op, Set]cts be the full subcategory of continuous simplicial sets. Hence the nerve
functor exhibits Pos as a full subcategory of [∆op, Set]cts, so we have

N : Pos ↪→ [∆op, Set]cts

We claim that this is essentially surjective and hence an equivalence. In particular, we
will show that every continuous simplicial set arises as the nerve of a poset. From now
on, suppose that X is a continuous simplicial set.

3.7. Lemma. The map ⟨d1, d0⟩ : X1 → X0 ×X0 is injective.

Proof. The following diagram is a colimit in ∆:

[1]

[1] [1]

[0] [0]

id id

δ1

δ1 δ0

δ0

Hence X takes it to the following limit diagram in Set:

X1

X1 X1

X0 X0

id id

d1

d0 d1

d0
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This is equivalent to the following diagram being a pullback:

X1

X1 X1

X0 ×X0

id id⌞

⟨d1,d0⟩ ⟨d1,d0⟩

which is equivalent to the map ⟨d1, d0⟩ : X1 → X0 ×X0 being injective.

Hence, we can view X1 as a relation on X1. We write x ≤X y iff (x, y) ∈ X1. We
claim that ≤X is, in fact, a partial order, and that X is the nerve of (X0,≤X).

3.8. Lemma. The set Xn is isomorphic to the following set:

{(x0, . . . , xn) ∈ Xn
0 | xi ≤X xi+1}

Proof. This is true by definition for n = 0 and by Lemma 3.7 for n = 1. Now note
that [n + 2] arises as the following colimit in ∆, with n + 2 occurrences of [1] and n + 1
occurrences of [0]:

[n+ 2]

[1] [1] [1] [1]

[0] · · · [0]

δn
+
2
···δ

2

δ n
+
2
···
δ 3
δ 0

δ
n
+
2 δ

n−
1 ···δ

0

δ
n ···δ

0

δ0 δ1 δ0 δ1 δ0 δ1

Hence X takes it to the following limit in Set, so Xn+2 has the expected form:

Xn+2

X1 X1 X1 X1

X0 · · · X0

d2
···d

n+
2

d 0
d 3
···
d n

+
2

d
0 ···d

n
−
1 d

n
+
2

d
0 ···d

n

d0 d1 d0 d1 d0 d1

(⋆)
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3.9. Lemma. The face maps di : Xn → Xn−1 are given by

di(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn)

In particular, ≤X must be transitive, as witnessed by d1 : X2 → X1.

Proof. This holds trivially for n = 1. Now we have the following colimit in ∆:

[2]

[1] [1] [1]

[0] [0] [0]

δ2
δ1

δ0

δ1

δ1 δ0 δ1 δ0

δ1

Hence X takes it to the following limit diagram in Set:

X2

X1 X1 X1

X0 X0 X0

d2
d1

d0

d1

d0d1 d0d1

d1

Therefore the result holds for n = 2. Now will show that the face maps for n > 2 arise as
(co)limits of the face maps for n = 1, 2. We considering three cases:

1. The following diagram is a pushout in ∆:

[0] [n+ 2]

[1] [n+ 3]

δ0

δn+2···δ1

δ0

δn+3···δ2

⌜

Hence the following diagram is a pullback in Set:

Xn+3 X1

Xn+2 X0

⌟
d0

d2···dn+3

d0

d1···dn+2

The bottom map is one of the colimit legs in (⋆), so the left map must be

(x0, . . . , xn+2) 7→ (x1, . . . , xn+2)
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2. The following diagram is a pushout in ∆:

[0] [n+ 2]

[1] [n+ 3]

δ1

δn+1···δ0

δn+3

δn+1···δ0

⌜

Hence the following diagram is a pullback in Set:

Xn+3 X1

Xn+2 X0

⌟
dn+3

d0···dn+1

d1

d0···dn+1

The bottom map is one of the colimit legs in (⋆), so the left map must be

(x0, . . . , xn+2) 7→ (x0, . . . , xn+1)

3. The following diagram is a pushout in ∆ for 0 < i < n+ 3:

[1] [n+ 2]

[2] [n+ 3]

δ1

δn+2···δi+1δi−2···δ0

δi

δn+3···δi+2δi−2···δ0

⌜

Hence the following diagram is a pullback in Set:

Xn+3 X2

Xn+2 X1

⌟
di

d0···di−2di+2···dn+3

d1

d0···di−2di+1···dn+2

The bottom map is one of the colimit legs in (⋆), so the left map must be

(x0, . . . , xn+2) 7→ (x0, . . . , xi−1, xi+1, . . . , xn+2)

3.10. Lemma. The degeneracy maps si : Xn → Xn+1 are given by

si(x0, . . . , xn) = (x0, . . . , xi, xi, . . . , xn)

In particular, ≤X must be reflexive, as witnessed by s0 : X0 → X1.
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Proof. This holds for n = 0 because the following commutes by the simplicial identities:

X0 X1

X0 ×X0

s0

⟨id,id⟩
⟨d1,d0⟩

Now the following diagram is a pushout in ∆:

[1] [n+ 2]

[0] [n+ 1]

σ0

δn+2···δi+2δi−1···δ0

σi

δn+1···δi+1δi−1···δ0

⌜

Hence the following diagram is a pullback in Set:

Xn+1 X0

Xn+2 X1

⌟
si

d0···di−1di+1···dn+1

s0

d0···di−1di+2···dn+2

The bottom map is one of the colimit legs in (⋆), so the left map must be

(x0, . . . , xn+2) 7→ (x1, . . . , xi, xi, . . . , xn+2)

3.11. Lemma. The relation ≤X is antisymmetric.

Proof. The following diagram is a colimit in ∆:

[0]

[1] [1]

[0] [0]

σ0 σ0

δ1

δ0 δ0

δ1

Hence X takes it to the following limit diagram in Set:

X0

X1 X1

X0 X0

s0 s0

d1

d0d0

d1
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In particular, this means that X0 is isomorphic to the set of pairs (x, y) such that x ≤X y
and y ≤X x, via the map x 7→ (x, x). Hence ≤X is antisymmetric.

3.12. Proposition. The relation ≤X is a partial order.

Proof. This follows from Lemmas 3.9, 3.10, and 3.11.

3.13. Theorem. The nerve N : Pos → [∆op, Set]cts is an equivalence.

Proof. We already know that N is fully faithful. It is also essentially surjective: for
every continuous simplicial set X, we have that X ∼= NP for P = (X0,≤X), which is
a well-defined poset by Proposition 3.12. The isomorphism exists by Lemma 3.8 and is
natural by Lemmas 3.9 and 3.10; note that it is enough to prove naturality for the face
and degeneracy maps because they generate the simplex category.

3.14. Corollary. Pos is the free conservative cocompletion of ∆.

Therefore Pos satisfies the universal property of Definition 1.1. That is, for every
cocomplete category C and cocontinuous functor F : ∆ → C, there exists an essentially
unique cocontinuous functor F̃ : Pos → C extending F :

∆ Pos

C
F

F̃

According to Kelly [3, Theorem 6.23], the functor F̃ can be given by a Left Kan extension:

F̃ (P ) := colim(i ↓ P π∆−→ ∆
F−→ C)

Intuitively, this means that to compute F̃ (P ) for a poset P , we consider all finite chains
of P , and take the colimit in C of the images of these chains under F .
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Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be
Christina Vasilakopoulou, National Technical University of Athens: cvasilak@math.ntua.gr


	Introduction
	Preliminaries
	Main results

