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THE ELEMENTARY THEORY OF THE 2-CATEGORY OF SMALL
CATEGORIES

In Memory of Bill Lawvere

CALUM HUGHES AND ADRIAN MIRANDA

Abstract. We give an elementary description of 2-categories Cat (E) of internal cate-
gories, functors and natural transformations, where E is a category modelling Lawvere’s
elementary theory of the category of sets (ETCS). This extends Bourke’s characterisa-
tion of 2-categories Cat (E) where E has pullbacks to take account for the extra proper-
ties in ETCS, and Lawvere’s characterisation of the (one-dimensional) category of small
categories to take account of the two-dimensional structure. Important two-dimensional
concepts which we introduce include 2-well-pointedness, full-subobject classifiers, and
the categorified axiom of choice. Along the way, we show how generating families (resp.
orthogonal factorisation systems) on E give rise to generating families (resp. orthogonal
factorisation systems) on Cat(E)1, results which we believe are of independent interest.

1. Introduction

Lawvere’s Elementary Theory of the Category of Sets (hereafter ETCS) [Law64] provides
a set theory which axiomatises the properties of function composition rather than those
of a global set membership relation. It provides an important fragment of a category-
theoretic foundation of mathematics, but is strictly weaker than the traditional foundation
of mathematics given by Zermelo Fraenkel Set Theory with the Axiom of Choice (hereafter
ZFC). Precisely, ZFC is equiconsistent with ETCS augmented with the axiom schema of
replacement [Osi74].
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In his PhD thesis [Law63], Lawvere also gave an elementary, first order axiomatisation
of the category of categories and functors. He later advocated for the first order theory
of the category of categories as a foundation of mathematics (CCAF) [Law66]. In an
address at the 2015 Category Theory conference in Aveiro, he called for an “improved
axiomatisation” to an explicit formulation of the principles of category theory [Law]. Our
work is a step towards this goal, re-expressing Lawvere’s foundational framework as one
for category theory rather than one for set theory.

In this paper, we propose a different categorification of ETCS which captures the
natural two-dimensional structure of the 2-category of small categories. This is the ele-
mentary theory of the 2-category of small categories (ET2CSC) of the title. Our main
result establishes that the theory of such 2-categories is ‘Morita biequivalent’ with ETCS,
meaning that the two theories have biequivalent 2-categories of models.

ETCS lacks the expressive power needed to support certain important set theoretical
constructions, such as transfinite recursion. Nonetheless, it does support many of the
set theoretic constructions that most mathematicians use in everyday practise. Indeed,
Lawvere’s aim in giving the definition was to capture more closely those aspects of set
theory which are more broadly used. It is a structuralist foundation, which prioritises the
perspective of how sets relate to one another, rather than a materialist one such as ZFC
which prioritises how sets are built, such as via well-founded trees. While philosophical
considerations are not the focus of this paper, a reader interested in these matters should
consult Chapters 1 and 5 of [Lan17], and the references therein. ET2CSC clarifies the
position of the ordinary theory of small categories within Street’s programme towards a
formal category theory [Str80, Str06]. It facilitates a structuralist framework in which
many simple category theoretical constructions can be performed, just as ETCS does for
many simple set theoretical constructions. In follow up work [HM], we extend the present
axiomatisation of the 2-category of small categories by adding a discrete opfibration clas-
sifier that satisfies a categorified version of the axiom of replacement. This provides
a 2-dimensional analogue of categories of small maps [JM95], and extends the present
theory to encompass ZFC and facilitate more sophisticated categorical constructions.

1.1. Outline of main results. Our main contribution is giving an elementary theory
for the 2-category of small categories, and showing that the 2-category of models for this
theory is biequivalent to that for Lawvere’s elementary theory of the category of sets, as
recalled in Definition 1.2, to follow.

1.2. Definition. ([Law64]) A category E is said to model the elementary theory of the
category of sets if the following conditions are satisfied.

1. E has finite limits.

2. E is cartesian closed.

3. The terminal object 1 is a generator for E, as recalled in Definition 5.8 part (1).

4. E has a natural numbers object, as recalled in Definition 6.1 part (1).
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5. E has a subobject classifier, as recalled in Definition 7.1 per the discussion in Re-
mark 7.2.

6. E satisfies the external axiom of choice, as recalled in Definition 8.2.

See [Lei14] for a gentle introduction to ETCS, and [LM05] for technical details. For
Definition 1.2 part n ∈ {1, ..., 6}, Section n + 2 exhibits a condition on the 2-category
Cat(E) that is equivalent to the condition on E listed as axiom n above. In particular,
the main results of each of these sections are Theorem 3.3, Theorem 4.1, Theorem 5.14,
Theorem 6.4, Theorem 7.7, and Theorem 8.14. We collate these results in Theorem 9.3
to characterise up to 2-equivalence those 2-categories which are of the form Cat(E) for E
a model of ETCS. This is expressed in terms of the elementary theory of the 2-category
of small categories, which we introduce in Definition 9.2. Theorem 9.9 builds upon this
result to characterisation to morphisms of models, and finally Theorem 9.15 establishes
the biequivalence between the 2-categories of models of ETCS and ET2CSC.

1.3. Key ideas and techniques.

1.3.1. Internal Category Theory and Bourke’s characterisation of Cat(E).
Section 2 establishes our notation and conventions in internal category theory, and cata-
logues various concepts that will be used in constructions and proofs. Specifically, Sub-
section 2.3 describes internal categories, functors and natural transformations via their
truncated nerves, and also describes the 2-category structure that these data comprise.
In Subsection 2.14 we catalogue the various adjunctions between E and Cat(E)1 that will
be used throughout this paper.

Sections 3 (resp. 4) review the well known relationships between finite limits in E
and finite 2-limits in Cat(E) (resp. cartesian closedness of E and cartesian closedness
of Cat(E)). Our work relies heavily on Bourke’s characterisation up to 2-equivalence of
2-categories of the form Cat(E) for E with pullbacks, recalled in Proposition 3.1. We
thereafter allow ourselves to assume that K is of this form, focusing on characterising the
remaining aspects of ETCS.

1.3.2. Generating families. The following new results in Section 5 are important
stepping stones.

� Lemma 5.2 shows that E has extensive coproducts if and only if Cat(E) does.

� Theorem 5.5 part (2) shows that if in addition to the previous point E is also
cartesian closed, then the 2-category Cat(E) also has copowers by 2.

As well as simplifying subsequent proofs by allowing two-dimensional aspects of limit
like universal properties to be deduced from their one-dimensional counterparts, copowers
by 2 are used to construct generators in Cat(E) from those in E . This is shown in
Corollary 5.9, a result that we think is of independent interest. Definition 5.12 introduces
a definition of a 2-category K being 2-well-pointed. This is a two-dimensional analogue
of well-pointedness for categories, and is a novel concept.
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1.3.3. Adjunctions and full subobject classifiers. Sections 6 (resp. 7) relate
natural numbers objects (resp. subobject classifiers) in E to their appropriate counterparts
in Cat(E). The proofs in Sections 5, 6 and 7 use routine calculations involving the
adjunctions Π0 ⊣ disc ⊣ (−)0 ⊣ indisc, which are reviewed in Subsection 2.14. Section 7
introduces the definition of a full subobject classifier, which is a different two-dimensional
analogue of a subobject classifier to the discrete opfibration classifiers of [Web07]. These
are a new concept, introduced in Definition 7.1.

1.3.4. Orthogonal factorisations and the categorified axiom of choice.
In Section 8 we first give a condition on 2-categories of the form K := Cat(E) which
is equivalent to the external axiom of choice in E , and then re-express this condition
in 2-categorical terms without relying on being able to recognise K as Cat(E). The
internal formulation involves fully-faithfulness and the condition of being an epimorphism
on objects. Whilst the first of these properties can be recognised representably in any
2-category, the second cannot. Although we could appeal to Proposition 3.1 to content
ourselves with recognising it via K ≃ Cat(E), we show that epimorphism on objects
internal functors are characterised by a left orthogonality property against a representably
defined class of maps R′. This follows from Proposition 8.9, also of independent interest,
in which we show that orthogonal factorisation systems (L,R) on E give rise to orthogonal
factorisation systems (L′,R′) on Cat(E). Indeed, R′ is precisely the full subobjects, for
which classifiers are examined in Section 7.3.

2. Notation, conventions and background on internal category theory

In this section we establish the notation, terminology and conventions used in this paper,
and catalogue concepts from internal category theory that will be crucial for our proofs.

2.1. Notation. In this paper we will use the following conventions for font.

� Calligraphic font E , C, K will be used for categories or 2-categories, with the letter
K typically being reserved for 2-categories.

� Ordinary mathematical font will be used for objects in categories or in 2-categories.
These will typically be capitals X, Y, Z when they are objects, and lower case f, g, h
when they are morphisms. Greek letters will typically be used for 2-cells.

� Blackboard bold A,B,C will be used for internal categories. When we need to be
even more careful in distinguishing data in Cat(E) from data in E , the former will
be either underlined or overlined. As an example, in Definition 2.10 we distinguish
between the 2-cell α : f ⇒ g in Cat(E), and its components assigner, which is a
morphism α : A0 → B1 in E .
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2.2. Remark. We assume some familiarity with 2-category theory and basic notions
from elementary topos theory. We briefly remind the reader of common 2-categorical
notions and conventions that are used in this paper. For general background on two-
dimensional category theory, see [Lac09, JY21]. We will refer to Cat-enriched (co)limits
as 2-(co)limits. We assume familiarity with the notion of powers and copowers by the
category 2 := { • • }, elsewhere also called cotensors and tensors by 2, respec-
tively. A notion of finiteness for weights for 2-(colimits) is described in [Str76], and all
2-(co)limits that we will consider are finite in this sense. We will call an adjoint equivalence
in the 2-category V-Cat for (V ,⊗, I) = (Cat,×,1) a 2-equivalence. If K is a 2-category,
then Disc(K) will denote its category of discrete objects, with an object X ∈ K being
called discrete if any 2-cell into X is an identity. Note that Disc(K) is distinct from the
un-capitalised disc : E → Cat(E)1, to be recalled in Remark 2.15, which sends an object
to a discrete internal category. A functor (resp. 2-functor) will be said to preserve some
structure if it does so up to isomorphism.

2.3. Internal categories and the 2-category Cat(E). Internal categories were
formally introduced by Grothendieck in [Gro60], but their structure was already implicit in
[Ehr59] and further early applications to differential geometry appeared in the subsequent
[Ehr63]. See chapter 8 of [Bor94] for a modern textbook account of internal category
theory, and B2 of [Joh02] for its relation to topos theory.

Let ∆ denote the skeleton of the ‘simplex category’, whose objects are non-empty
finite ordered sets and morphisms are order preserving functions. Identify each object in
∆ with its representative ordered set [n] := {0, 1, 2..., n}. For k ≤ n, let δnk : [n] → [n+1]
denote the unique monotonic function whose image does not contain k ∈ [n + 1] and let
σn
k : [n+ 1] → [n] denote the unique monotonic function mapping two elements to k and

one element to every other possible output. Let ∆≤3 denote the full-subcategory of ∆ on
the objects [n] for 0 ≤ n ≤ 3.

2.4. Definition. A category internal to a locally small category E is a diagram in E
as displayed below left, which sends the pushout squares in ∆≤3 displayed below right to
pullback squares in E.

∆op
≤3 EC

n+ 2 n+ 1

n+ 1 n

⌟

δn+1
2

δn+1
0

δn1

δn0

2.5. Remark. We unpack this definition, and establish notation and terminology which
we will use in this paper. A category C := (C0, C1, d0, d1, i,m) internal to E is given by
the datum of a diagram in E as displayed below.

C2 C1 C0m

π0

π1

d0

d1

i
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The objects C0, C1 ∈ E are called the object of objects and object of arrows respectively,
and the morphisms d1, d0, i,m are called source, target, identity assigner and composition.
The object of composable n-tuples Cn for n ∈ {2, 3} are pullbacks as depicted below.

C2 C1

C1 C0

⌟

π0

π1 d1

d0

C3 C2

C2 C1

⌟

π3,0

π3,1 π1

π0

These data are subject to axioms asserting the commutativity of the diagrams dis-
played below.

� Sources and targets for identities and composites:

C0 C1

C0

i

1C0

d0

C0 C1

C0

i

1C0

d1

C2 C1

C1 C0

m

π0 d0

d0

C2 C1

C1 C0

m

π1 d1

d1

� The associativity and left and right unit laws for composition:

C3 C2

C2 C1

m0

m1 m

m

C1 C2 C1

C1

i0

1C1

m

i1

1C1

Where the morphisms m0 := (mπ3,0, π1π3,1), m1 := (π0π3,0,mπ3,1), i0 := (id0, 1C1)
and i1 := (1C0 , id1) are induced by the universal property of C2 as a pullback.
For example, the equation required for m0 to be well-defined is witnessed by the
following calculation.

d1.m.π3,0 = d1.π1.π3,0 = d1.π0.π3,1 = d0.π1.π3,1

These conditions correspond to the simplicial identities which must be preserved by
functoriality of C : ∆op

≤3 → E .

2.6. Definition. Let E be a category with pullbacks and let A,B : ∆op
≤3 → E be categories

internal to E. An internal functor from A to B is a natural transformation as depicted
below.

∆op
≤3 E

A

B

f
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2.7. Remark. Internal functors can also be defined explicitly as given by a component
on objects f0 : A0 → B0 and a component on arrows f1 : A1 → B1 in E which satisfy the
commutativity of the diagrams shown in 2.7. Here the morphism f2 := (f1π0, f1π1), is
induced by the universal property of B2, as witnessed by the following calculation

d1.f1.π0 = f0.d1.π0 = f0.d0.π1 = d0.f1.π1

The component f3 : A3 → B3 is uniquely determined from this information by the uni-
versal property of B3 in a similar way. The diagrams below express f ’s respect for sources,
targets, identities, and composition, and they all correspond to naturality conditions for
f : A → B.

A1 B1

A0 B0

f1

dA0 dB0

f0

A1 B1

A0 B0

f1

dA1 dB1

f0

A0 B0

A1 B1

f0

iA iB

f1

A2 B2

A1 B1

f2

mA mB

f1

The morphism f2 is thought of as taking a composable pair in A and returning the
composable pair given by its image under f . Given (x, y) : X → A2, the morphism f2
composes with (x, y) to give (f1x, f1y), and so the equation f1m (x, y) = m (f1x, f1y)
follows by respect for composition.

2.8. Remark. It is evident from their definition that internal categories and internal
functors form a category, in fact a full subcategory of [∆op

≤3, E ]. We write this category
as Cat (E)1, using the subscript ‘1’ to distinguish it from the 2-category Cat(E) which
we will recall in Proposition 2.11. In particular, Cat (E)1 is small (resp. locally small)
if E is small (resp. locally small), since ∆op

≤3 is certainly small. The inclusion functor
N : Cat (E)1 ↪→ [∆op

≤3, E ], which sends an internal category to its underlying truncated
simplicial object in E , is called the nerve.

2.9. Proposition. Consider the functors (−)0, (−)1 : Cat(E)1 → E, which send an
internal category to its object of objects and object of arrows respectively.

1. (−)1 : Cat(E)1 → E is faithful.

2. (−)0 and (−)1 preserve and jointly reflect limits.

Proof. For part (1), let f, g : A → B be internal functors in E such that f1 = g1. We
need to show that f = g. Since f1 = g1, in particular f1i

A = g1i
A. Since f and g

both preserve identities, this is equivalent to saying that iBf0 = iBg0. But by sources (or
targets) for identities in B, we may compose these equal morphisms in E with the source
(or target) map of B to see that f0 = g0. For part (2), it is standard that the family of
functors (−)n : [∆op

≤3, E ] → E for n ≤ 3 preserve and jointly reflect limits, and that limits
in Cat(E)1 are computed in [∆op

≤3, E ]. But since the outputs for n ∈ {0, 1} are enough to
determine the rest of an internal category structure, it follows that (−)0 and (−)1 also
jointly reflect limits.
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We now review how Cat(E)1 can be upgraded to a 2-category by incorporating the
internal natural transformations of Definition 2.10, to follow.

2.10. Definition. Given internal functors (f0, f1) , (g0, g1) : A → B, an internal natural
transformation

A B

f

g

α

is a morphism α : A0 → B1 called the component assigner, making the following
diagrams in E commute.

� Assignation of components: the commutative diagrams displayed below left and below
centre commutes.

� Internal naturality: the square displayed below right commutes, where the morphisms
α0 := (αd1, g1) : A1 → B2 and α1 := (f1, αd0) : A1 → B2 are induced by the
universal property of B2.

A0 B1

B0

α

f0
d1

A0 B1

B0

α

g0
d0

A1 B2

B2 B1

α0

α1 m

m

Internal natural transformations correspond to simplicial homotopies {α0,...,n : An →
Bn+1}n∈N [GJ09], but are once again determined by significantly less data than in the
setting of general simplicial objects due to the universal property of pullbacks in E .

2.11. Proposition. (Proposition 8.1.4 of [Bor94], Section 1.4 of [Mir18]) Let E be a
category with pullbacks. Categories, functors and natural transformations internal to E
form a 2-category Cat (E) whose underlying category is Cat(E)1, identity 2-cells 1f have
component assigners given by if0, vertical composite of 2-cells below left has component
assigner given by the morphism in E depicted below right.

A B A0 B2 B1

h

g

f

(α,β) m
α

β

The left whiskering and right whiskering pictured below are defined as the composites
in E given by βf0 and g1α respectively, and the horizontal composition of 2-cells is defined
via whiskering and vertical composition in the usual way as described in Proposition II
3.1 of [ML13].
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A B Cf

g

g′

β A B C

f

f ′

gα

If E is small (resp. locally small), then Cat (E) is small (resp. has small hom-
categories).

Further background on properties of the 2-category Cat(E) will be reviewed in Re-
mark 3.2.

Fully-faithfulness for internal functors is recalled in Definition 2.12, to follow. Unlike
in the enriched setting, this is equivalent to the representably defined notion of fully-
faithfulness for morphisms in Cat(E).

2.12. Definition. Let E be a category with products. An internal functor f : A → B is
called

� faithful if the morphism into the pullback induced by the following commutative
square is a monomorphism.

� fully faithful if the induced morphism into the pullback is an isomorphism.

A1 B1

A0 × A0 B0 ×B0

f1

(d0,d1) (d0,d1)

f0×f0

2.13. Remark.An internal functor (f0, f1) is a monomorphism inCat(E) if and only if it
is faithful and f0 is a monomorphism. In Section 7 we will relate subobject classifiers in E
to classifiers for morphisms in Cat(E) which are both fully faithful and monomorphisms;
these notions being definable representably in Cat(E). In Subsection 8.8, we will exhibit
such morphisms in Cat(E) as the right class R′ of an orthogonal factorisation system,
giving an internal version of the analysis in Section 5.2 of [BG14]. The left class L′ of this
factorisation system will consist of internal functors f : A → B for which f0 : A0 → B0

are epimorphisms in E . This will allow us to detect them via the 2-category structure of
Cat(E), despite the fact that representables E(X,−) : E → Set typically fail to preserve
or jointly reflect epimorphisms. The class L′ features in our categorification of the axiom
of choice, in Definition 8.13.

2.14. Adjunctions between E and Cat(E)1. We review some adjunctions between
Cat(E)1 to E . These adjunctions will be invaluable in our proofs that various universal
properties in one of these categories imply analogous properties in the other.
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2.15. Remark. The functor (−)0 : Cat(E)1 → E has a left adjoint disc : E → Cat (E)1.
This sends X ∈ E to the internal category disc(X) : ∆op

≤3 → E which is constant at X.
The components of the unit of this adjunction on X ∈ E are all given by identities, and
as such disc : E → Cat(E)1 is fully faithful. Indeed, it is the inclusion of the category
of discrete objects in Cat(E) in the sense of Remark 2.2. Meanwhile the components of
the counit on an internal category A are given by the internal functor whose component
on objects is 1A0 and component on arrows is i : A0 → A1. It is easy to see that the
naturality square for the counit on an internal functor f is a pullback precisely if f
reflects identities, in the sense that the square f1i = if0 is a pullback. It is also easy to
see that disc preserves finite limits, even when it does not have the left adjoint that will
be described in Remark 2.18.

2.16. Remark. When E has products, (−)0 : Cat(E)1 → E also has a right adjoint,
which we call indisc : E → Cat(E)1. This sends X to the internal category defined by
{n 7→ Xn}, with n-simplices given by the n-fold product for n ∈ ∆op

≤3. When E = Set,
this is the groupoid with set of objects is X and a unique morphism between any two
objects. The counit of (−)0 ⊣ indisc is the identity, and as such indisc : E → Cat(E)1 is
fully faithful. Meanwhile the unit has its component on an internal category A given by
the internal functor ηA : A → indisc(A) which is given by the identity on objects, and the
morphism (d0, d1) : A1 → A0 × A0 between objects of arrows. Observe that an internal
functor f is fully faithful if and only if the naturality square of ηE on f is a pullback.

We call internal categories of the form indisc(X) for some X ∈ E indiscrete. Note that
there are other names for this in the literature: chaotic, codiscrete, coarse and Brandt.

2.17. Remark. The counit of disc ⊣ (−)0 and the unit of (−)0 ⊣ indisc both have com-
ponents which are internal functors given by isomorphisms (indeed, identities) between
objects of objects. Isomorphism on objects internal functors f : A → B play a special
role in the 2-category Cat(E). They are strongly left orthogonal to fully faithful inter-
nal functors, in the sense of Definition 2.3.3 of [Bou10]. Indeed, they form the left class
of an orthogonal factorisation system in Cat(E)1, for which the right class are the fully
faithfuls. This factorisation is constructed via certain 2-categorical limits and colimits in
Cat(E), which we will describe in more detail in Remark 3.2.

2.18. Remark. Assume E has coequalisers of reflexive pairs. Then disc has a left ad-
joint Π0 : Cat (E) → E which sends every internal category A to the codomain of the
coequaliser qA of its source and target, and every internal functor (f0, f1) : A → B to the
morphism shown below, which is induced by the universal property of Π0(A), given the
serial commutativity of the square on the left.

A1 A0 Π0(A)

B1 B0 Π0(B)

d0

d1
f1

qA

f0 Π0(f)
d0

d1
qB
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Since disc : E → Cat(E)1 is fully faithful, the component of the counit on an object
X ∈ E can again be chosen to be the identity. Meanwhile, the component of the unit
q : 1Cat(E)1 ⇒ disc ◦ Π0 on an internal category A is given on objects by the coequaliser
qA above, and on arrows by the subsequent composite from A1 to Π0(A). The triangle
identities can be shown using the universal properties of the coequalisers.

For the proof of Theorem 5.14 we will need the more nuanced observation that there
is also a natural bijection E(Π0(A), B) ∼= Cat(E)1(A,disc(B)), defined whenever the
coequaliser of the source and target morphisms for A exists in E . It is straightforward to
see that this also holds, via a similar argument to the one sketched above.

3. Finite limits and Bourke’s characterisation of Cat(E)
If E has pullbacks then on top of pullbacks, Cat(E) also has powers by the category
2, containing the free-living arrow. These are given by an internal version of arrow
categories, and will be described briefly in Remark 3.2. A more detailed explicit internal
description is given in [Bou10, Mir18]. Moreover, 2-categories of the form Cat(E) have
been characterised by Bourke, as we recall in Proposition 3.1 to follow. For our purposes,
it suffices to know that 2-categories of the formCat(E) may be characterised in elementary
and purely 2-categorical terms.

3.1. Proposition. (Theorem 4.18 of [Bou10]) If E is a category with pullbacks then the
2-category K := Cat(E) satisfies the conditions listed below. Conversely, if K satisfies the
conditions listed below, then there is a 2-equivalence K ≃ Cat (E) where E := Disc (K).

1. K has pullbacks and powers by 2.

2. K has codescent objects of categories internal to K whose source and target maps
form a two-sided discrete fibration.

3. Codescent morphisms are effective in K.

4. Discrete objects in K are projective, in the sense of Definition 4.13 of [Bou10].

5. For every object A ∈ K, there is a projective object P ∈ K and a codescent morphism
c : P → A.

3.2. Remark. In this paper we mostly work with 2-categories K which satisfy the con-
ditions listed in Proposition 3.1. When doing so, Bourke’s result allows us to use the
techniques of internal category theory in our proofs, even when dealing with properties
stated in purely 2-categorical terms.

Although readers should be able to follow our proofs by treating Proposition 3.1 as a
‘black box’, we give some brief comments on its content. The powers A2 can be given an
explicit description internally to E . They have objects of objects given by A1; the object
of arrows of A, while their objects of arrows are given by the pullback depicted below
which may be thought of as the ‘object of internal squares in A’.
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ASq A2

A2 A1

⌟
m

m

Codescent objects in a 2-category K are 2-categorical colimits of truncated simplicial
objects, defined by the weight ∆≤2 → Cat, where ∆≤2 is considered as a 2-category
with only identity 2-cells. Categories internal to K whose source and target maps form
a two-sided discrete fibration are called cateads in K. Such data can be thought of as
two-dimensional versions of preorders, with the condition that (d1, d0) : A1 → A0 × A0

should be jointly monic being replaced by the condition that it should be a two-sided
discrete opfibration.

An object A of a 2-category K is said to be projective if the representable K(A,−) :
K → Cat preserves codescent morphisms. This extends the one-dimensional notion,
where instead the representable preserves regular epimorphisms.

Codescent morphisms for cateads in K = Cat(E) are precisely those internal functors
f : A → B for which f : A0 → B0 are isomorphisms. One may think of a catead C in
Cat(E) as a two-dimensional version of an equivalence relation. From this perspective,
its codescent object is a two-dimensional quotient, which is equivalently given by the
‘0-th row’ of the underlying double category in E . If the internal category of objects of
the double category C is called its underlying vertical category internal to E , then the
codescent object of C is its underlying horizontal category internal to E .

As mentioned in Remark 2.17, (iso on objects, fully faithful) forms an orthogonal
factorisation system on Cat(E)1. We briefly review its construction. Given an internal
functor f : A → B, first form the following double category, or category internal to
Cat(E)1.

f ↓ f ↓ f f ↓ f Am

π1

π0

d1

d0

i

Where f ↓ f and f ↓ f ↓ f are respectively given by the comma and pullback in
Cat(E) depicted below left and below right.

f ↓ f A

A B

d0

d1

ϕ
f

f

f ↓ f ↓ f f ↓ f

f ↓ f A

⌟

π0

π1 d1

d0

Bourke shows that the double category just described is a catead, and that the fac-
torisation f = hk where k is given by an isomorphism between objects of objects and h is
fully faithful, is given by taking k : A → C to be coprojection to the codescent object for
this catead and h : C → B to be the internal functor induced by the universal property of
C. The adjective ‘effective’ in part (3) of Proposition 3.1 then amounts to the fact that h
is an isomorphism in Cat(E) if and only if f0 : A0 → B0 is an isomorphism in E . Finally,
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projective covers are given by εA : disc(A)0 → A; the components of the counit of the
adjunction disc ⊣ (−)0 described in Remark 2.15.

3.3. Proposition. The 2-category Cat (E) has all finite 2-limits if and only if the cate-
gory E has all finite limits.

Proof. By Proposition 3.1, and the fact that 2 is a strong generator in Cat, it suffices
to show that E has terminal objects if and only if Cat(E) does. But this follows from the
adjunctions disc ⊣ (−)0 ⊣ indisc.

4. Cartesian closedness

Recall that exponentials [X, Y ] in Set consist of sets whose elements are functions from
X to Y , while exponentials [C,D] in Cat consist of categories whose objects are functors
from C to D, and whose morphisms are natural transformations between these functors.
In this Section we consider an E-internal version of these functor categories, which can
also be constructed in terms of exponentials and finite limits in E .

4.1. Theorem. Let E be a category with finite limits. The category E is cartesian closed
if and only if the 2-category Cat(E) is cartesian closed. In this case, disc : E → Cat(E)1
preserves internal homs.

Proof. Cartesian closedness of the category Cat(E)1 has been shown in [BE72], under
the assumption that E has finite limits and exponentials, by viewing Cat(E)1 as the
category of models of a finite limit sketch. Indeed, it is shown in Theorem 2.1.1 of [Mir18]
that the nerve N : Cat(E)1 → [∆op, E ] is an inclusion of an exponential ideal. The two-
dimensional aspect of the universal property of cartesian closedness for the 2-category
Cat(E) follows from the universal property of powers by 2, which we denote as 2 ⋔ (−).
In particular, it is exhibited by the following natural bijections.

Cat(E)1(A× B,2 ⋔ C) ∼= Cat(E)1(A, (2 ⋔ C)B) ∼= Cat(E)1(A,2 ⋔
(
CB))

Conversely, let E be a category with finite limits and suppose Cat(E) is cartesian
closed. We show that E is cartesian closed with exponentials given as displayed below for
Y, Z ∈ E .

ZY := (disc(Z)disc(Y ))0

The following calculations show that the proposed exponential satisfies the isomor-
phism depicted below, naturally in all X, Y, Z ∈ E .

Hom(X × Y, Z) ∼= Hom(X,ZY )
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E(X × Y, Z) = E(X × Y,disc(Z)0) (unit of disc ⊣ (−)0 is the identity)
∼= Cat(E)1(disc(X × Y ),disc(Z)) (disc is fully-faithful)
∼= Cat(E)1(disc(X)× disc(Y ),disc(Z)) (disc preserves products)

∼= Cat(E)1
(
disc(X),disc(Z)disc(Y )

)
(Cat(E) is cartesian closed)

∼= E
(
X,

(
disc(Z)disc(Y )

)
0

)
(disc ⊣ (−)0)

=: E
(
X,ZY

)
.

Cartesian closedness of disc : E → Cat(E) is an easy inspection given the construction
of internal homs in Cat(E), and also follows from Day’s reflection theorem [Day72].

5. Well-pointedness

Recall that in Set, we can test whether two functions f, g : X → Y are equal by checking
if f(x) = g(x) for every x ∈ X. Similarly, in Cat, to test if two functors F,G : C → D
are equal it suffices to check that Ff = Gf for every f ∈ C1. This amounts to 1 being a
generator for Set and 2 being a generator for Cat. The aim of this section is to show that
the analogous statements for E and Cat(E) are logically equivalent under the assumption
that E is lextensive and cartesian closed. As we saw in Theorem 4.1, E is cartesian closed
if and only if Cat(E) is. We first show a similar logical equivalence between extensivity
of E and of Cat(E). It will follow that E is lextensive if and only if Cat(E) is.

5.1. Definition.

1. A category with pullbacks E is said to be extensive [CLW93] if it has finite coproducts
and for all A,B ∈ E, the functor E/A × E/B → E/ (A+B), which takes the
coproduct, is an equivalence of categories. Call an extensive category lextensive if
it moreover has a terminal object.

2. Call a 2-category with pullbacks K extensive if it has finite coproducts and the simi-
larly defined 2-functor is a 2-equivalence. Call an extensive 2-category K lextensive
if it moreover has a terminal object and powers by 2.

5.2. Lemma. Let E be a category with pullbacks and products. The category E is extensive
if and only if the 2-category Cat (E) is extensive, in which case the coproducts in Cat (E)
are computed in [∆op

≤3, E ].

Proof. It is clear from the adjunctions disc ⊣ (−)0 ⊣ indisc that E has an initial
object if and only if Cat(E)1 does, and in this case so does the 2-category Cat(E). The
functor category [∆op

≤3, E ] has whatever colimits E has, computed pointwise. Suppose E has
extensive coproducts. Let A and B be categories internal to E . Then the diagrams which
need to be pullbacks for A + B to be well-defined as an internal category are precisely
the coproducts in E of the corresponding pullbacks which exhibit A and B as internal
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categories. But by extensivity of E , these will be pullbacks as well. Thus the category
Cat (E)1 has coproducts as computed in [∆op

≤3, E ]. But the two-dimensional aspect of the
universal property for coproducts follows from the one-dimensional aspect, since Cat(E)
has powers by 2.

Conversely, suppose that Cat(E) has extensive coproducts. For X, Y ∈ E , we claim
that their coproduct is given by (disc(X) + disc(Y ))0. By Remark 2.16, since E has
products the functor (−)0 : Cat(E)1 → E is a left adjoint and hence preserves coproducts.
But (disc(X))0 = X and (disc(Y ))0 = Y . This completes the proof.

For the remainder of this section we assume that E , and hence Cat(E), is lextensive.
Next, we recall the construction of the free-living arrow 2E as a category internal to

E . Copowers by 2 in Cat(E) can be constructed in terms of this internal category, as we
will show in Theorem 5.5.

5.3. Remark. Recall that any finite limit preserving functor between finite limit cat-
egories G : S → E gives rise to a 2-functor Cat (G) : Cat (S) → Cat (E), which acts
componentwisely on all data [Mir18]. Recall also that the category of finite sets FinSet
is the free completion under finite coproducts of the terminal category. Furthermore, for
lextensive E , the unique coproduct preserving functor FE : FinSet → E which preserves
the terminal object also preserves all other finite limits.

5.4. Definition. Take S = FinSet as in Remark 5.3 and apply the 2-functor Cat (FE) :
Cat (FinSet) → Cat (E) to the free living arrow 2 ∈ Cat (FinSet). Denote the resulting
category internal to E as 2E .

The internal category 2E of Definition 5.4 can be described explicitly as a truncated
simplicial object, with n-simplices given by the (n + 2)-fold coproduct of the terminal
object 1 ∈ E ; see Example 2.3.2 of [Mir18] for details. Recall that the copower by 2 of an
object A ∈ K, if it exists, is an object 2 ⊙ A equipped with isomorphisms of categories
K (2⊙ A,B) ∼= Cat (2,K (A,B)) which vary 2-naturally in B. The next theorem then
shows that the 2-functor Cat (FE) : Cat (FinSet) → Cat (E) preserves copowers by 2.

5.5. Theorem. Let E be lextensive and cartesian closed, and let 2E be constructed as in
Definition 5.4.

1. The internal hom [2E ,B] has the universal property of the power of B by 2.

2. For A ∈ Cat (E), the internal category 2E × A has the universal property of the
copower of A by 2 in Cat (E).

Proof. Consider the unique non-identity naturnal transformation ρ from the category 1
to the category 2. The internal functor [2E ,B] → B2 is induced by the universal property
of the power by 2 given the image of ρ under the 2-functor displayed below.

Cat(FinSet)op Cat(E)op Cat(E)Cat(FE)
op [−,B]



THE ELEMENTARY THEORY OF THE 2-CATEGORY OF SMALL CATEGORIES 211

We describe the transpose 2E ×B2 → B of the required inverse internal functor B2 →
[2E ,B]. Recall first that 2 is the category that has, as objects, the set {∗} + {∗} and, as
arrows, the set {∗}+{∗}+{∗}. By lextensivity of E and as Cat(FE) preserves coproducts,
2E × B has, as objects, B1 + B1 and as arrows Bsq + Bsq + Bsq. Now, between objects
of objects, the functor 2E × B2 → B is given by (d0, d1) : B1 + B1 → B0 induced by the
universal property of the coproduct, using the source and target maps. Between objects
of arrows it is given by the morphism Bsq + Bsq + Bsq → B1 induced by the universal
property of the coproduct by the source and target maps of B2, as well as by the diagonal
of the pullback square defining Bsq. To prove internal functoriality, one needs to check
commutativity conditions for maps out of coproducts. These can in turn be verified by
checking cases for each summand appearing in the coproduct. However, each of these
individual cases just involves pullbacks and hence follows from the analogous property
when E = Set, using the Yoneda Lemma. The proof that these internal functors are
mutually inverse is similar. This proves part (1). Part (2) then follows by the following
chain of isomorphisms, where the penultimate step uses part (1).

Cat (2,Cat (E) (A,B)) ∼= Cat (E) (A,B)2

∼= Cat (E)
(
A,B2

)
∼= Cat (E) (A, [2E ,B])
∼= Cat (E) (2E × A,B)

In particular we have that 2E has the universal property of the copower by 2 of the
terminal object in Cat(E).

5.6. Remark. The assumptions of Theorem 5.5 part (2) can be relaxed. In particular,
lextensivity of E suffices for Cat(E) to have copowers by 2. One can directly check that
2E × A has the appropriate universal property. However, doing so requires significant
tedious calculations. Some of these calculations can be found in the Appendix of [Mir18].
We do not need this extra level of generality however since for our purposes we may
assume that the category E , or equivalently, the 2-category Cat(E), is cartesian closed.

5.7. Remark. Generating families, in the sense we will recall in Definition 5.8, can be
constructed in Cat(E) using copowers by 2. To show this we will need to observe that
internal natural transformations out of discrete categories correspond to morphisms into
the object of arrows of their codomain internal category. We now explain why this is so.

Let X ∈ E and A ∈ Cat (E), and recall the adjunction disc ⊣ (−)0 from Remark 2.15.
Then there are the following natural bijections:

E (X,A1) = E
(
X,

(
A2

)
0

) ∼= Cat(E)1
(
disc (X) ,A2

) ∼= [2,Cat(E) (disc (X) ,A)]0
Thus morphisms from X to the object of arrows of an internal category A are in

natural bijection with internal natural transformations between internal functors from
the discrete category on X to A.
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5.8. Definition.

1. A family of objects G in a category C is said to be generating if the family of hom-
functors C (X,−) : C → Set for X ∈ G are jointly faithful.

2. A family of objects Ĝ in a 2-category K is said to be generating if the family of
hom-functors K (X,−) : K → Cat for X ∈ G are jointly faithful on 1-cells and
2-cells.

5.9. Corollary. Suppose that E has finite limits, extensive coproducts, and a generating
family of objects G. Form the family of internal categories Ĝ := {2E × disc (X) |X ∈ G}.
Then Ĝ is a generating family for Cat (E).

Proof. Let f, g : A → B be internal functors and assume that fh = gh for all internal
functors h : 2E × disc (X) → A where X ∈ G. By Proposition 2.9 part (1), to show that

Ĝ is a generating family, it suffices to show that f1 = g1 under this assumption. Denote
by α : X → A1 the component assigner of the internal natural transformation which
corresponds to h via the universal property of the copower by 2. Then the whiskerings
fα = gα are also equal in Cat(E). But by Remark 5.7, any morphism X → A1 is E
corresponds to an internal natural transformation between internal functors from disc (X)
to A This amounts to saying that f1α = g1α for all α : X → A1, and hence f1 = g1 as
X ∈ G.

This shows that the family of 2-functors Cat(E)(G,−) : Cat(E) → Cat for G ∈ Ĝ are
jointly faithful on 1-cells. But joint faithfulness on 2-cells follows from joint faithfulness
on 1-cells as Cat(E) has powers by 2. A parallel pair of internal natural transformations
as depicted below left corresponds to a parallel pair of internal functors as depicted below
right.

A B

f

g

βγ

B

A B2

B

f

g

β̃

γ̃

d1

d0

By the one-dimensional aspect of Ĝ being a generator, the equality of such a pair
of internal functors can be detected via Cat(E)(G,−) : Cat(E) → Cat. As such, the
equality of the original parallel pair internal natural transformations can also be detected
via these representables.
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5.10. Example. Let C be a small category and E := [Cop,Set]. Then E has a generating
family given by the representables G := {C(−, X) : Cop → Set|X ∈ C}. Now, the 2-
functor Cat(−) : LEX → 2-CAT of Proposition 3.1.5 in [Mir18] preserves powers by
small categories, and as such there is an isomorphism of 2-categories Cat([Cop,Set]) ∼=
[Cop,Cat], where the second of these is the V-enriched functor category with V = Cat
and C considered as a 2-category with only identity 2-cells. Since [Cop,Cat] is an enriched
fuctor category, it has copowers computed pointwisely in Cat. Corollary 5.9 then says
that the following is a generating family for the 2-category [Cop,Cat]. This coincides with
the generating family for [Cop,Cat] in terms of representables and copowers by the strong
generator {2} ⊆ Cat.  Y 7→

∐
f∈C(Y ,X)

2

∣∣∣∣∣∣ X ∈ C


5.11. Remark. If certain colimits exist in E , then a generating family G ′ ⊆ Cat(E) also
gives rise to a generating family on E . Specifically, we need E to have coequalisers for all
reflexive pairs of source and target morphisms where G ∈ G ′.

G1 G0 Π0(G)
d0

d1

qG

In this case, the partial adjunction E(Π0(G), X) ∼= Cat(E)1(G,disc(X)) exists for all
G ∈ G. The generating family in E is then given by G := {Π0(G)|G ∈ G}. We give a
detailed proof only of a special case in Theorem 5.14, since this will be enough for our
main results and since generating families are in practice typically easier to construct in
E than in Cat(E). The proof of this special case requires no extra colimit assumptions
on E . We leave the straightforward generalisation to the setting described here to the
interested reader.

Recall that a category E is called well-pointed if it has a terminal object 1 and the
family containing just 1 ∈ E is a generator. We introduce the following categorified
version of this definition.

5.12. Definition. A 2-category K is called 2-well-pointed if the following conditions
hold.

1. K has a terminal object 1.

2. The copower 2⊙ 1 exists in K.

3. The family containing just 2⊙1 is a generator for K, in the sense of Definition 5.8
part (2).

There is one final lemma that we will need before we are ready to prove the main
result of this section.
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5.13. Lemma. Let C be a category with finite products. For A ∈ C, consider the diagram
displayed below in which the morphisms ∆A : A → A×A denotes the diagonal (1A, 1A) and

A A× A A
π1 π2 denote the product projections. This diagram is an equaliser.

A A× A A× A× A
∆A

π1×∆A

∆A×π2

Proof. This is straightforward to check when C = Set: the functions being equalised
send (x, y) to (x, x, y) and (x, y, y) respectively. These outputs are indeed equal precisely
when x = y. The claim then follows representably for a general C with finite limits.

5.14. Theorem. Let E be a lextensive, cartesian closed category. Then E is well-pointed
if and only if Cat(E) is 2-well-pointed in the sense of Definition 5.12.

Proof. Recall that by Theorem 5.5, the copower 2 ⊙ 1 ∈ Cat(E) may be taken as 2E .
Corollary 5.9 therefore specialises to show that E being well-pointed implies that Cat(E)
is 2-well-pointed by taking G := {1}. For the converse, recall from Remark 2.18 that
a natural bijection E(Π0(A), B) ∼= Cat(E)1(A,disc(B)) exists if the source and target
morphisms of A have a coequaliser in E . Recall from the discussion after Definition 5.4,
with further details found in Example 2.3.2 of [Mir18], that the internal category 2E has
object of n-simplices given by the (n + 2)-fold coproduct of the terminal object 1. Now,
Lemma 5.13 applies to C := Eop with A = 1, and shows that this coequaliser does exist
in E , so that Π0(2E) ∼= 1. Therefore E(Π0(2E), B) ∼= Cat(E)1(2E ,disc(B)) and so there
is a bijection between diagrams of the following forms for f, g ∈ E(X, Y ).

1 X Y
f

g
2E disc(X) disc(Y )

disc(f)

disc(g)

Hence if {2E} is a generator in Cat(E) then 1 is a generator in E . This completes the
proof.

Observe that the assumptions of Theorem 5.14 hold if E is an elementary topos. In
Theorem 7.7 we will characterise this stronger property for E in terms of Cat(E). Observe
also that copowers by 2 inCat(E) exist under assumptions which have already been shown
to be equivalent for E and Cat(E), namely lextensivity and cartesian closedness. Since
Cat(E) has copowers by 2, two-dimensional aspects of universal properties for 2-limits
can be inferred from the one-dimensional aspects of these universal properties. This is
dual to the argument for faithfulness on 2-cells of the family of 2-functors Cat(E)(G,−) :

Cat(E) → Cat for G ∈ Ĝ, given in the proof of Corollary 5.9. As such we will herein
omit verification of two-dimensional aspects of universal properties for limits.

6. Natural numbers objects

We show that E has a natural numbers object if and only if Cat(E) has a natural numbers
object, in the sense of Definition 6.1, to follow. In particular, the work of this section
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shows that a natural numbers object in Cat(E) is discrete on the natural numbers object
of E . Throughout this section we assume only that E has finite limits.

6.1. Definition.

1. Let C be a category with a terminal object 1. The data 1 N Nz s is

called a natural numbers object in C if for any 1 X X
f g

there is a
unique u : N → X making the diagram below commute.

1 N N

X Xf

z s

u u

g

2. Let K be a 2-category with a terminal object 1. The data 1 N Nz s

is called a natural numbers object in K if it is a natural numbers object for the

underlying 1-category of K and, additionally, if given 1 X X
f g

and

1 X X
f ′ g

which have corresponding maps u, u′ : N → X respectively,

whenever we have a 2-cell

1 X

f

f ′

α

then there is a unique 2-cell as depicted below left, making the pasting diagram
depicted below right commute.

N X

u

u′

ϕ

1 N N

X X

f

f ′

z s

uu′ uu′

g

ϕ ϕ
α

We first give a proof of the following standard result.

6.2. Lemma. Let C,D be categories with a terminal object and suppose D has a natural
numbers object (N, z : 1 → N, s : N → N). If L : D → C is a left adjoint such that the
unique morphism j : L1 → 1 is invertible, then (LN,L(z) ◦ j−1 : 1 → LN,Ls : LN →
LN) is a natural numbers object for C.
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Proof. Let R : C → D be the right adjoint of L. As a right adjoint, the unique morphism

k : R1 → 1 is invertible. Let 1 X X
f g

be in C. By the adjunction L ⊣ R,
there is a bijection between diagrams of the forms depicted below.

1 N N

RX RX

z

R(z′)◦k−1

s

v v

Rg

1 LN LN

X X

L(z)◦j−1

f

Ls

u u

g

By the universal property of the natural numbers object (N, z : 1 → N, s : N → N)
in D, there is a unique such v : N → RX . Hence such a u : LN → X exists and is
unique, as required.

We obtain the following for one-dimensional natural number objects.

6.3. Corollary. Let E be a category with terminal object and pullbacks. Then E has a
natural numbers object if and only if Cat(E)1 has a natural numbers object.

Proof.Apply Lemma 6.2 to disc(−) ⊣ (−)0 for one implication, and to (−)0 ⊣ indisc(−)
for the converse.

We extend this to a correspondence between a one-dimensional natural numbers object
of E and a two-dimensional natural numbers object for Cat(E).

6.4. Theorem. Let E be a category with finite limits. Then E has a natural numbers
object if and only if the 2-category Cat(E) has a natural numbers object. In this case, the
functors disc : E → Cat(E)1, (−)0 : Cat(E)1 → E and Π0 : Cat(E)1 → E all preserve
the natural numbers object.

Proof. By Corollary 6.3, E has a natural numbers object if and only if Cat(E)1 does, and
by Lemma 6.2 the functors mentioned preserve the natural numbers object. It suffices to
show that (disc(N),disc(z) : 1 → disc(N),disc(s) : disc(N) → disc(N)) satisfies the
two-dimensional aspect of the universal property in Definition 6.1 part (2).

Consider a diagram

1 X X

f

f ′

g
α

in Cat(E) and let u, u′ : disc(N) → X be the morphisms induced by the universal
property of the natural numbers object. Since 1 = disc(1), the internal natural transfor-
mation α : f ⇒ f ′ is uniquely determined by a map α : 1 → X1 in E . This along with the
morphism g1 : X1 → X1 uniquely determines a map ϕ : N → X1 giving rise to an internal
natural transformation satisfying the commutativity conditions in Cat(E) depicted below
left. Conversely, using the universal property of X2 and the fact that (X2)0 = X1, an in-
ternal natural transformation ϕ : u ⇒ u′ satisfying g.ϕ = ϕ.s corresponds to a morphism
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in E satisfying the commutativity condition depicted below right, where α := ϕ.z. Hence,
ϕ is unique and (disc(N),disc(z) : 1 → disc(N),disc(s) : disc(N) → disc(N)) is a
natural numbers objects for the 2-category Cat(E).

1 disc(N) disc(N)

X X

f

f ′

z s

uu′ uu′

g

ϕ ϕ
α

1 N N

X1 X1
α

z s

ϕ ϕ

g1

6.5. Remark. The category Cat(E)1 may fail to have coequalisers even if E is an ele-
mentary topos. For example, take E := FinSet, the category of finite sets. Then the
parallel pair in Cat(E)1 displayed below does not have a coequaliser.

1 2
d1

d0

Indeed, the coequaliser of this parallel pair inCat = Cat(Set) is the monoid of natural
numbers, considered as a one object category. As such, natural numbers objects seem to
be necessary for the category Cat(E)1 to have coequalisers, and hence for the 2-category
Cat(E) to have finite 2-colimits. Indeed, Lawvere observed in [Law66] that coequalisers
of functors between categories implies the ‘axiom of infinity’. This complexity remains for
coinserters, even though they are PIE colimits [PR91]; the coinserter of the parallel pair
in Cat is again the monoid of natural numbers. We will comment further on coequalisers
in Cat(E) in the conclusion, but leave detailed investigation to future research.

1 1
11

11

6.6. Remark. We thank Ross Street for pointing us to Theorem 3.1 of [JW78]. In that
theorem, E is assumed to be an elementary topos with a natural numbers object, and the
image of the natural numbers object in Cat(E) of Corollary 6.3 is shown to be an up-to-
isomorphism version of a natural numbers object in the 2-category of toposes bounded
over E .

7. Subobject classifiers

We show in this section that subobject classifiers in E give rise to something similar to
a subobject classifier in Cat(E); rather than classifying monomorphisms as a subobject
classifier would, the maps that are classified are monomorphisms which are also fully
faithful. In this section we assume that E is lextensive and cartesian closed, so that
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Cat(E) has copowers by 2 as per Theorem 5.5. This means that the two-dimensional
aspect of the universal property of pullbacks follows from the one-dimensional aspect, so
we omit mention of it. Note E satisfying ETCS is in particular an elementary topos, and
so is therefore lextensive.

7.1. Definition. Let K be a 2-category.

1. A morphism i : A → B is a full monomorphism if for every X ∈ K the functor
K (X, i) : K (X,A) → K (X,B) is fully faithful and injective on objects.

2. Two full monomorphisms i : A → B and i′ : A′ → B with the same codomain are
said to be equivalent if there is an isomorphism a : A → A′ satisfying i′a = i. A full
subobject of B is an equivalence class of full monomorphisms into B.

3. A full subobject classifier is a full monomorphism ⊤ : 1 → Ω such that for any fully
faithful monomorphism i : A → B, there is a unique morphism χi : B → Ω making
the following square a pullback.

A 1

B Ω.

!

i
⌟

⊤

χi

7.2. Remark. Note that ⊤ being a full subobject classifier is precisely to say that it
is a terminal object in the category whose objects are full subobjects in K, and whose
morphisms are pullback squares. This is indeed in analogy to the universal property
defining subobject classifiers, with the 2-categorical notion of full subobjects replacing
subobjects. Indeed, any monomorphism in a 1-category C is fully faithful as a morphism
in the discrete 2-category on C. As such, the notion of a full subobject classifier specialises
to the notion of a subobject classifier in the setting where K has only identity 2-cells. This
is in contrast to other categorifications of subobject classifiers such as discrete opfibration
classifiers of [Web07]. On the other hand, full-subobject classifiers in arbitrary 2-categories
are typically not subobject classifiers in their underlying categories.

Note that we have not included any universal property for 2-cells into full-subobject
classifiers in Definition 7.1. It is an easy exercise to check that there is a unique internal
natural transformations between any parallel pair of internal functors whose codomain is
an indiscrete internal category. Since the full subobject classifiers that we construct in
Proposition 7.3 will be indiscrete internal categories, we could have included this feature
as part of the definition. We have refrained from doing so since it is not needed for
Theorem 7.7, and also since doing so would lose subobject classifiers in 1-categories as
examples.

7.3. Proposition. Suppose E has a subobject classifier ⊤ : 1 → Ω. Then indisc(⊤) :
1 → indisc (⊤) is a full subobject classifier for Cat(E).
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Proof. Let f : X → Y be a full monomorphism. Then f0 : X0 → Y0 is a monomorphism
in E . Since E has a subobject classifier, we have a unique χf0 : Y0 → Ω such that the
square depicted below left is a pullback. Now, since (−)0 ⊣ indisc, the adjunct of χf0 is
a unique map χf : Y → indisc(Ω) making the square below right commute. We need to
show that this square is a pullback.

X0 1

Y0 Ω

!

⌟
f0 ⊤

∃!χf0

X 1

Y indisc(Ω)

!

f indisc(⊤)

∃!χf

But the required square is clearly a pullback on objects, and given on morphisms as
displayed below. By Proposition 2.9 part (2), it suffices to show that this square is a
pullback. But the left square is indeed a pullback since f : A → B is fully faithful. The
proof is complete by the pullback lemma.

X1 X0 ×X0 1

Y1 Y0 × Y0 Ω× Ω

(d0,d1)

⌟
f1 f0×f0

!

⌟
(⊤,⊤)

(d0,d1) χf0
×χf0

7.4. Example. Taking E = Set, the full subobject classifier in Cat is given by the
free-living isomorphism I := {⊥ ∼= ⊤}.

The proof of the converse follows easily from the adjunction (−)0 ⊣ indisc.

7.5. Proposition. Let E be a category with terminal object and pullbacks. Suppose
Cat(E) has a full subobject classifier ⊤ : 1 → Ω. Then ⊤0 : 1 → Ω0 is a subobject
classifier for E.

Proof. Let i : A → B be a monomorphism in E . Then

indisc(i) : indisc(A) → indisc(B)

is clearly fully faithful and mono on objects; monomorphisms are closed under products
and the maps indisc(X)1 → indisc(X)0 × indisc(X)0 are identities for X ∈ {A,B},
so that the relevant square defining fully-faithfulness is indeed a pullback. Hence, there
exists a pullback square in Cat(E) as displayed below left. Since (−)0 is a right adjoint,
it preserves limits and in particular pullbacks. Hence, using the fact that (−)0 ◦ indisc =
1, we have the pullback square in E depicted below right. Uniqueness also follows by
adjointness.
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indisc(A) 1

indisc(B) Ω

!

indisc(i)
⌟

⊤

ϕ

A 1

B Ω0

!

i
⌟

⊤0

ϕ0

7.6. Remark. Note that the above proof holds without the assumption that E is exten-
sive.

We have just proven the following result.

7.7. Theorem. Let E be an extensive, cartesian closed category with finite limits. Then E
has a subobject classifier if and only if the 2-category Cat(E) has a full subobject classifier.
In this case, the 2-functor indisc : E → Cat(E), with E being considered as a locally
discrete 2-category, preserves full-subobject classifiers.

Proof. Combine Propositions 7.3 and 7.5.

7.8. Remark. We characterise booleanness and two-valuedness of E in terms of proper-
ties in Cat(E). These properties follow for E from the axioms of ETCS. Booleanness is a
consequence of the axiom of choice [Dia75], and in fact both of these properties are a con-
sequence of well-pointedness (Proposition 7, Part VI of [MM12]). As such, the equivalent
properties that we are about to describe in Cat(E) will also follow as a consequence of
the axioms in the elementary theory of the 2-category of small categories, which we will
give in Subsection 9.1.

Consider the two internal functors 1 → 2E which are the source and target of the
universal 2-cell exhibiting 2E as the copower of 1 ∈ Cat(E) by 2 ∈ Cat. It is easy to
see that these are both full monomorphisms. Hence by Proposition 7.3, they determine
internal functors 2E → indisc(Ω). At the level of objects, one of these is given by
(⊤,⊥) : 1+1 → Ω while the other is given by (⊥,⊤). Recall (Proposition 5.14 of [Joh14])
that an elementary topos E is boolean if and only if these morphisms are invertible. As
such, E is boolean if and only if either (hence both) of these internal functors in Cat(E)
are codescent morphisms, since as discussed in Remark 3.2 these are precisely the internal
functors which are isomorphic on objects. Similarly, recall that an elementary topos is
two-valued if and only if the hom-set E(1,Ω) has exactly two morphisms, namely ⊤
and ⊥. Hence by fully faithfulness of indisc : E → Cat(E)1, E is two-valued if and
only if in Cat(E) there are exactly two morphisms from the terminal object to the full
subobject classifier. In this case the hom-category Cat(E)(1, indisc(Ω)) is the free-living
isomorphism.

7.9. Remark. When E is an elementary topos, the internal functor disc(⊤) : 1 →
disc(Ω) is also a classifier for a certain class of monomorphisms. These are those internal
functors which are monomorphisms between objects of objects, and discrete bifibrations;
a notion that can either be defined representably in Cat(E), or internally to E by asking
f0dk = dkf1 to be a pullback for k ∈ {0, 1}. We call such functors strict bi-sieves.
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When E = Set, such functors determine a subset of the set of connected components of
their codomain, and are inclusions of full subcategories on all objects in those connected
components. Indeed, the proof uses the adjunction Π0 ⊣ disc of Remark 2.18. We give
only a sketch of the proof, since this will not be needed for any of the results in this paper.

Via Π0 ⊣ disc, a classifier B → disc(Ω) corresponds to a morphism Π0(B), which in
turn corresponds to a monomorphism f ′ : X → Π0(B) in E . The coequaliser diagram
depicted below left is sent by Ω(−) : Eop → E to the equaliser diagram below right.

B1 B0 Π0(B)
d0

d1

qB ΩB1 ΩB0 ΩΠ0(B)

Ωd0

Ωd1
ΩqB

But the morphisms Ωdk : ΩB0 → ΩB1 for k ∈ {0, 1} correspond to pullbacks of
monomorphisms. As such the monomorphism f ′ corresponds to a monomorphism f0 :
A0 → B0 whose pullback along both d0, d1 : B1 → B0 are the same monomorphism
f1 : A1 → B1. These data precisely correspond to a strict bi-sieve f : A → B. One shows
that this moreover satisfies Π0(f) = f ′.

7.10. Proposition. Suppose Cat(E) has finite 2-limits, is 2-cartesian closed and has a
full subobject classifier. Then:

1. E is extensive.

2. Cat(E) is extensive.

Proof. By Proposition 3.3, the assumptions that Cat(E) has finite 2-limits means that
E has finite limits, and so by noting Remark 7.6, we can apply Proposition 7.5 and obtain
a subobject classifier in E . By Theorem 4.1, it follows that E is cartesian closed and so E
is an elementary topos and therefore extensive. By Lemma 5.2, it follows that Cat(E) is
extensive.

8. The axiom of choice

It is well known that the axiom of choice is equivalent to the statement that any es-
sentially surjective on objects and fully faithful functor is part of an adjoint equivalence
in Cat ([FS90], 1.364). The axiom of choice is also equivalent to the proposition that
any surjective-on-objects and fully faithful functor has a section. The second of these
formulations is easier to treat in the context of internal category theory. Establishing
this logical equivalence is the aim of Subsection 8.1. Subsection 8.8 will consider how the
property of being epimorphic-on-objects can be expressed abstractly in the 2-category
K = Cat(E) without reference to the fact that K is of this form. In particular, we will
show that the class of epimorphic-on-objects internal functors in Cat(E) is precisely the
left orthogonality class with respect to the fully faithful monomorphisms. For this, we
need the assumption that E has an (epi, mono)-factorisation system, which is true in any
elementary (or indeed pre-)topos.
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8.1. In terms of internal category theory.

8.2. Definition. A category E is said to satisfy the external axiom of choice if every
epimorphism e : X → Y has a section. That is, there exists a map s : Y → X satisfying
es = 1X .

We give a proof that the external axiom of choice for E is equivalent to the proposi-
tion that any epimorphic-on-objects functor that is fully faithful has a section. For this
equivalence, we require that E has pullbacks and products.

8.3. Lemma. Let E be a category with pullbacks and products and let e : A → B be a
fully faithful internal functor. Suppose e0 has a splitting s0 : B0 → A0. Then s0 extends
to an internal functor s : B → A, with assignment on arrows given as depicted below.
Moreover, es = 1B.

B1

B0 ×B0 A1 B1

A0 × A0 B0 ×B0

(d0,d1)
s1

1B1

s0×s0

e1

(d0,d1)

⌟
(d0,d1)

e0×e0

Proof. By construction, s1 is a section of e1 : A1 → B1 and s := (s0, s1) forms a
morphism of the underlying graphs of B and A. This morphism of graphs clearly gives a
splitting of e. We need to prove that this is well-defined as an internal functor. We show
it respects identities using the universal property of A1. Compatibility with the pullback
projection e1 follows from the commutativity of the diagram displayed below left, while
compatibility with the other pullback projection follows from the commutativity of the
diagram below right, for k ∈ {0, 1}.

B0 A0 A1

B0

B1 A1 B1

s0

i

1B0

i

e0

e1

i

s1

1B1

e1

B0 A0 A1

B0

B1 A1 B1

s0

i

1B0 1A0

i

dk

s0

s1

dk

dk

Similarly, respect for composition also follows from the universal property of A1 as per
the calculations displayed below. This completes the proof.
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B2 A2 A1

B1 A1

B0

B1 A1 A0

s2

m

πk

m

πk

dk

s1

dk

dk

s0

s1

dk

dk

B2 A2 A1

B2

B1 A1 B1

s2

m

1B2

m

e2

e1

m

s1

1B1

e1

8.4. Remark. By fully-faithfullness, s can be shown to be a right adjoint equivalence
right inverse to e. The unit η : 1A ⇒ se is determined by 1e given e = 1B.e = ese and
representable fully-faithfulness of e : A → B. Adjointness and invertibility of η follow
from representable faithfulness and conservativity of e, respectively.

8.5. Proposition. Let E be a category with pullbacks. The following are equivalent:

1. The external axiom of choice holds in E.

2. Any fully faithful and epimorphism-on-objects functor internal to E has a section in
the 2-category Cat(E).

Proof. Let e : A → B be an epi-on-objects and fully faithful functor. Assuming the
external axiom of choice for E , the morphism e0 : A0 → B0 has a splitting. The splitting
for the internal functor e : A → B is given in Lemma 8.3.

Conversely, assume that every epi-on-objects and fully faithful functor has a section.
Let f : X → Y be an epimorphism in E . The internal functor indisc(f) : indisc(X) →
indisc(Y ) is fully faithful and an epimorphism-on-objects and hence has a section s :
indisc(Y ) → indisc(X) giving us s0 : Y → X, a section of f .

8.6. Example. When E = Set, functors which are epi on objects and fully faithful are
the right class of a weak factorisation system on Cat, with the left class being the injective
on objects functors. This factorisation system features in the canonical model structure
on Cat. See [EKVdL05, JT06] for more on homotopical aspects of internal category
theory.

8.7. Remark. We briefly outline how Proposition 8.5 sheds light on category theory
internal to categories which do not satisfy the external axiom of choice. When E does
not satisfy the external axiom of choice, one often works with internal anafunctors, rather
than internal functors, between internal categories so that ‘weak equivalences’ are actu-
ally adjoint equivalences [Mak96, Rob12, Rob21]. Anafunctors internal to E are typically
defined in terms of covering families, an important example of which is the one generated
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by regular epimorphisms. In this setting, internal anafunctors A ↛ B are spans of or-

dinary internal functors A F Bl r in which l is fully faithful, and a regular
epimorphism on objects. If regular epimorphisms are stable under pullback then inter-
nal anafunctors form the morphisms of a bicategory Ana(Cat(E)), with their composi-
tion involving pullbacks in Cat(E). There is a canonical homomorphism of bicategories
I : Cat(E) → Ana(Cat(E)), which is the identity on objects and a full monomor-
phism between hom-categories. It views a functor as an anafunctor by taking the left leg
l : F → A to be the identity on A.

If any epimorphism in E is regular and E has an (epi, mono) orthogonal factorisation
system, as is the case when E is an elementary topos, then by Remark 8.4, Proposition 8.5
says precisely that the external axiom of choice holds for E if and only if the left leg
l : F → A in any internal anafunctor is in fact a left adjoint left inverse equivalence in
Cat(E). In this case, the homomorphism of bicategories I : Cat(E) → Ana(Cat(E))
has functors between hom-categories which are essentially surjective on objects. Thus
if the external axiom of choice holds for E then the 2-category Cat(E) is biequivalent
to the bicategory Ana(Cat(E)). These observations will be generalised to appropriate
2-categories K in place of Cat(E) in Remark 8.15.

8.8. In 2-categorical terms. The property of being an epimorphism on objects may
appear difficult to express in terms of the 2-categorical structure of K = Cat(E), without
reference to the fact that it is of this form. To fix this, we first show in Proposition 8.9,
to follow, that orthogonal factorisation systems on E give rise to orthogonal factorisa-
tion systems on the 2-category Cat(E), as defined in [Day06] and described explicitly in
Remark 2.3.2 of [Bou10]. This result is stated without proof in the discussion between
Propositions 62 and 63 of [BG14]. We believe it to be of independent interest, and give
a detailed proof in Appendix A. For our purposes, it will mean that epimorphism on
objects internal functors can then be characterised via this left orthogonality property.

8.9. Proposition. Let (L,R) be an orthogonal factorisation system on a category E with
pullbacks and products. Then

(L-on-objects,R-on-objects and fully faithful)

is an orthogonal factorisation system on the 2-category Cat(E).

8.10. Corollary. Let E be a category with pullbacks, products, and an orthogonal fac-
torisation system (L,R) in which L are the epimorphisms and R are the monomorphisms.
Then (L′,R′) is an orthogonal factorisation system on Cat(E), where L′ is the class of
internal functors which are epi-on-objects, and R′ is the class of full monomorphisms.

Proof. By Proposition 8.9 there is an orthogonal factorisation system (L′,R′) on the
2-category Cat(E) in which L′ is as required and R′ is the class of internal functors which
are both fully faithful and given by monomorphisms on objects. But as discussed in the
beginning of Remark 2.13, such internal functors are precisely the full monomorphisms in
Cat(E).
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8.11. Remark. The factorisation system on Cat(E) obtained in Corollary 8.10 is an
internal version of the factorisation system constructed in Cat via kernels and quotients,
in 5.2 of [BG14]. The class of full monomorphisms, and its left orthogonality class, are
respectively called chronic and acute in 1.1 and 1.4 of [Str82]. Although pullback stability
of maps in L ⊆ E is not needed in the proof of Proposition 8.9, if this class is pullback
stable then so is the class L′ ⊆ Cat(E). In particular, if E is a regular category then
Cat(E) is a regular 2-category in the sense of 1.19 in [Str82].

8.12. Definition. ([Str82]) A morphism in a 2-category K which is left orthogonal to
all fully faithful monomorphisms in K will be called acute.

8.13. Definition. Say that a 2-category K satisfies the categorified axiom of choice if
any acute fully faithful morphism has a section.

Putting these results together gives the following reformulation of the external axiom
of choice in E in terms of the 2-categorical structure of Cat(E).

8.14. Theorem. Let E be a category with pullbacks, products and an (epi, mono)-orthogonal
factorisation system. Then the following are equivalent.

1. The category E satisfies the external axiom of choice.

2. The 2-category Cat(E) satisfies the categorified axiom of choice.

Proof. Proposition 8.5 established the logical equivalence between the external axiom
of choice in E and an analogue of the categorified axiom of choice for Cat(E) with ‘epi-
on-objects’ in place of acute. But Corollary 8.10 ensures that being an epimorphism on
objects characterises acute morphisms in Cat(E).

8.15. Remark. The discussion in Remark 8.7 is also possible to rephrase in 2-categorical
terms, rather than in terms of internal category theory. Let K be a 2-category with
pullbacks and suppose that acute morphisms are stable under pullback in K. Define
an anamorphism in K to be a span whose left leg is acute and fully faithful. Then
there is a bicategory Ana(K) defined in the usual way. There is also a homomorphism
of bicategories I : K → Ana(K) which is given by the identity on objects and full
monomorphisms between hom-categories. If the categorified axiom of choice holds in
K, then I moreover has functors between hom-categories which are essentially surjective
on objects. Hence in this case I a biequivalence, exhibiting morphism composition as a
strictification of anamorphism composition.

8.16. Remark.We thank Richard Garner for observing that when E is regular, acuteness
of fully faithful internal functors is equivalent to the simpler property of being a regular
epimorphism. It is clear that if E has products, then since (−)0 : Cat(E)1 → E is a
left adjoint it preserves regular epimorphisms. Conversely, if f0 : A0 → B0 is a regular
epimorphism and E is a regular category then f0 is the coequaliser of its kernel pair in
E . Then f1 : A1 → B1 is also a regular epimorphism, since f : A → B is fully faithful



226 CALUM HUGHES AND ADRIAN MIRANDA

and regular epimorphisms are closed under products and stable under pullback in E . One
verifies that f is the coequaliser of its kernel pair in Cat(E) using the universal property
of the coequalisers f0 and f1 in E ; we leave these details to the interested reader.

9. Comparing ETCS to ET2CSC

We collect the main results of previous sections and characterise 2-categories of the form
Cat(E) when E is a model of the elementary theory of the category of sets. Our charac-
terisation of such 2-categories is in 2-categorical terms, rather than in terms of category
theory internal to the discrete objects of K. The theory of such 2-categories is again ele-
mentary, although we refrain from providing an explicit first order presentation as is done
for ETCS on [nLa23]. Following this, in Subsection 9.5 we describe relationships between
different models of ET2CSC, and establish a ‘Morita biequivalence’ between ETCS and
ET2CSC.

9.1. A characterisation of Cat(E) when E is a model of ETCS.

9.2. Definition. We say that the 2-category K models the elementary theory of the
2-category of small categories (ET2CSC) if the following properties hold:

1. It satisfies the conditions listed in Proposition 3.1

2. It has a terminal object.

3. It is cartesian closed.

4. It is 2-well-pointed, in the sense of Definition 5.12.

5. It has a natural numbers object, in the sense of Definition 6.1 part (2).

6. It has a full subobject classifier, in the sense of Definition 7.1 part (3).

7. It satisfies the categorified axiom of choice, in the sense of Definition 8.13.

We are now ready to combine the results so far and prove our first main result.

9.3. Theorem.

1. Let E be a category. Then E models the elementary theory of the category of sets
if and only if Cat(E) models the elementary theory of the 2-category of small cate-
gories, and in this case E ≃ Disc(Cat(E)).

2. Conversely, let K be a 2-category. Then K models the elementary theory of the
2-category of small categories if and only if Disc (K) models the elementary theory
of the category of sets, and in this case K ≃ Cat(Disc (K)).
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Proof. Proposition 3.1 gives the correspondence between pullbacks in E and the first item
of Definition 9.2, as well as the equivalences E ≃ Disc(Cat(E)) and K ≃ Cat(Disc (K)).
We describe how the results in this paper so far give correspondences between the various
other properties of ETCS and ET2CSC.

The correspondence for terminal objects is given in Proposition 3.3, and the correspon-
dence for cartesian closedness is Theorem 4.1. Herein, assume that the category E (resp.
the 2-category K) satisfies the properties mentioned so far. Assuming additionally that E
has a subobject classifier makes E into an elementary topos; in particular it is extensive
and so by Theorem 7.7, Cat(E) has a full subobject classifier. Conversely, assuming that
K ≃ Cat(Disc(K)) has a full subobject classifier means that E is extensive by Proposi-
tion 7.10 and so by Theorem 7.7, we get the other direction of this correspondence. Note
also that by Theorem 5.5, under these assumptions K (resp. Cat(E)) has copowers by 2.

The correspondence between well-pointedness and 2-well-pointedness is Theorem 5.14.
The correspondence for natural numbers objects is Theorem 6.4. Finally, the correspon-
dence between the axiom of choice and the categorified axiom of choice is Theorem 8.14.
This last correspondence uses the epi-mono factorisation system on E (resp. Disc(K)),
which exists since by this stage this category is an elementary topos.

Theorem 9.3 will be built upon further in Subsection 9.5, where we will define 2-
categories whose objects are models of ETCS and ET2CSC respectively, and prove that
these two 2-categories are biequivalent in Theorem 9.15.

9.4. Remark. Assuming that K satisfies the conditions listed in Proposition 3.1, the
one-dimensional aspects of the remaining conditions in ET2CSC are enough to imply
that Disc(K) satisfies ETCS, and hence that K satisfies the two-dimensional aspects of
ET2CSC. In particular, the theory can be simplified by removing the two-dimensional
aspect of cartesian closedness, the faithfulness on 2-cells aspect of 2-well-pointedness, the
two-dimensional aspect of the universal property of natural numbers objects, and the
two-dimensional aspect of left orthogonality in the definition of acute maps. Indeed, as
discussed in Remark 7.2, we could have also included a two-dimensional universal prop-
erty in our definition of a full-subobject classifier. Such a definition would demand a
representing object Ω for the 2-functor Kop → Cat which sends an object X to the indis-
crete category on the set of full subobjects into X, and acts on morphisms via pullback.
We chose not to give such a definition so that we retained ordinary subobject classifiers
as examples.

9.5. Morphisms of models of ET2CSC. The notion of what a morphism of models
of ETCS or of ET2CSC should be is clear from the description of these theories, but we
spell it out in detail in Definition 9.6, to follow. The aim of this Subsection is to extend
Theorem 9.3 to a correspondence between morphisms of models of the two theories, and
to show that they have biequivalent 2-categories of models.

9.6. Definition.
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1. Let E and E ′ be categories modelling ETCS. An ETCS-morphism is a functor
F : E → E ′ which preserves finite limits, internal homs, the subobject classifier, and
the natural numbers object.

2. Let K and K′ be 2-categories modelling ET2CSC. An ET2CSC-morphism is a
2-functor F : K → K′ which preserves pullbacks, powers by 2, codescent objects
of cateads, the terminal object, internal homs, the full-subobject classifier, and the
natural numbers object.

9.7. Proposition. (Theorem 4.28 of [Bou10]) Let F : E → E ′ be a pullback preserving
functor. Then Cat (F ) preserves pullbacks, powers by 2 and codescent objects of cateads
and there is a natural isomorphism F ∼= Disc ◦ Cat(F ). Conversely, if a 2-functor
G : Cat (E) → Cat (E ′) preserves pullbacks, powers by 2 and codescent objects of cateads,
then Disc (G) : Disc ◦ Cat (E) → Disc ◦ Cat (E ′) preserves pullbacks and there is a
2-natural isomorphism G ∼= Cat ◦Disc (G).

9.8. Remark. By Proposition 9.7 an ET2CSC-morphism is isomorphic to one of the
form F = Cat(F ) for some pullback preserving functor F : E → E ′. As such, we will
continue this section assuming that F ∼= Cat(F ) for some such F : E → E ′. Note that
since ET2CSC-morphisms preserve pullbacks, terminal objects and powers by 2, they
preserves all 2-limits. The reason that well-pointedness, the axiom of choice and their
respective analogues do not feature in Definition 9.6 is that these are properties rather
than structure to be preserved. In any case, logical functors preserve epimorphisms and
the terminal object, and once we show thatDisc(F ) for a morphism of models of ET2CSC
is a logical functor, it will follow in Corollary 9.13 that F also preserves coproducts,
copowers by 2, and acute morphisms.

9.9. Theorem. A 2-functor F : K → K′ between categories satisfying ET2CSC is an
ET2CSC-morphism if and only if is is of the form F ∼= Cat(F ) for some F : E → E ′

where F is an ETCS-morphism.

We prove this through a series of lemmata. In these, we repeatedly use the fact that
(−)0 is a 2-natural transformation from the 2-functorCat(−) : Lex → Lex to the identity
on Lex. Here Lex denotes the 2-category whose objects are categories with finite limits,
whose morphisms are functors that preserve finite limits, and whose 2-cells are arbitrary
2-natural transformations. Similarly, we use that disc : 1Lex → Cat(−) is a 2-natural
transformation and that indisc : 1Lex → Cat(−) is a pseudonatural transformation.
See [Mir18] for proofs of these properties, although we will address preservation of the
terminal object in Lemma 9.10 for completeness. Throughout these proofs, suppose that
our 2-functor F preserves pullbacks, powers by 2 and codescent objects of cateads, so that
it is of the form F = Cat(F ) for some F : E → E ′.

9.10. Lemma. A pullback preserving functor F : E → E ′ preserves the terminal object if
and only if Cat(F ) : Cat(E) → Cat(E ′) preserves the terminal object.
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Proof. Suppose that for any A,B ∈ E , we have F1 ∼= 1′. Then by 2-naturality of disc

Cat(F )(1) = Cat(F )(disc(1)) = disc(F (1)) ∼= disc(1′) = 1′.

Conversely, suppose Cat(F )(1) ∼= 1′. By 2-naturality of (−)0, we have

F1 = F (1)0 = (Cat(F )1)0 ∼= (1′)0 = 1′.

In Lemma 9.11, to follow, we denote exponentials in E as [X, Y ] rather than Y X , for
ease of readability. Similarly, we denote exponentials in Cat(E) as [[[X,Y]]].

9.11. Lemma. Suppose F : E → E ′ preserves finite limits. Then F [A,B] ∼= [FA, FB]′ for
all A,B ∈ E if and only if Cat(F )[[[X,Y]]] ∼= [[[Cat(F )X,Cat(F )Y]]]′ for all X,Y ∈ Cat(E).
Proof. Suppose F [A,B] ∼= [FA, FB]′ and recall that exponentials in Cat(E)1 are con-
structed in [∆op

≤3, E ]. The proof that Cat(F )[[[X,Y]]] ∼= [[[Cat(F )X,Cat(F )Y]]]′ follows from
the chain of isomorphisms in [∆op

≤3, E ] depicted below.

Cat(F )[[[X,Y]]](−) = F

∫
[n]∈∆≤3

∏
ϕ∈∆(−,n)

[Xn, Yn] definition of exponentials in Cat(E),

∼=
∫
[n]∈∆≤3

F
∏

ϕ∈∆(−,n)

[Xn, Yn] the end is a finite limit,

∼=
∫
[n]∈∆≤3

∏
ϕ∈∆(−,n)

F [Xn, Yn] each hom of ∆≤3 is finite,

∼=
∫
[n]∈∆≤3

∏
ϕ∈∆(−,n)

[FXn, FYn]
′ F preserves exponentials,

= [[[Cat(F )X,Cat(F )Y]]]′(−) by definition of Cat(F ).

Conversely, suppose that for any X,Y ∈ Cat(E), we have

Cat(F )[[[X,Y]]] ∼= [[[Cat(F )X,Cat(F )Y]]]′.

In Theorem 4.1, we showed that [A,B] = ([disc(A),disc(B)])0. Let A,B ∈ E . Then

F [A,B] = F [[[disc(A),disc(B)]]]
0

= (Cat(F )[[[disc(A),disc(B)]]])0
∼= [[[Cat(F )disc(A),Cat(F )disc(B)]]]

′
0

= [[[disc(FA),disc(FB)]]]
′
0

= [FA, FB]′
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9.12. Lemma. FΩ ∼= Ω′ if and only if Cat(F )(Ω) ∼= Ω′.

Proof. In Section 7, we characterised the full subobject classifier of Cat(E) in terms
of the subobject classifier in E , with the full subobject classifier being given by Ω :=
indisc(Ω).

Assume that F : E → E ′ preserves the subobject classifier. Then there is the following
chain of isomorphisms in Cat(E ′), with the first being given by pseudonaturality of indisc
in F and the second being given by the isomorphism up to which F preserves the subobject
classifier.

Cat(F )(Ω) = Cat(F )(indisc(Ω)) ∼= indisc(FΩ) ∼= indisc(Ω′) = Ω′.

Conversely, suppose that Cat(F )Ω ∼= Ω′. Then the calculation below demonstrates
that F : E → E ′ also preserves the subobject classifier.

FΩ = F (indisc(Ω))0 = F (Ω)0 = (Cat(F )Ω)0 ∼= (Ω′)0 = (indisc(Ω′))0 = Ω′.

9.13. Corollary. If Cat (F ) preserves pullbacks, powers by 2 and codescent objects of
cateads, then Cat (F ) preserves coproducts, copowers by 2, and acute morphisms as in
Definition 8.12.

Proof. By Proposition 9.7, Lemma 9.10, Lemma 9.11 and Lemma 9.12, it follows that
F : E → E ′ is a logical functor. But logical functors preserve coproducts (Corollary 2.2.10
part (i) A2.2 [Joh02]), and coproducts in Cat (E) are computed in [∆op, E ] so Cat (F ) also
preserves coproducts. Similarly, Cat (F ) preserves copowers by 2 since these are built
in E out of coproducts, terminal objects and products, all of which F preserves. Finally,
by Corollary 8.10, acute morphisms in Cat(E) are precisely the epimorphism-on-objects
internal functors, and logical functors also preserve epimorphisms.

9.14. Lemma. F (N) ∼= N ′ if and only if Cat(F )(N) ∼= N ′.

Proof. Similar to the proof of Lemma 9.12, but with disc in place of indisc.

We now describe how these results combine to prove Theorem 9.9.

Proof. (Theorem 9.9).
The correspondence between preservation of pullbacks in E , and preservation of pull-

backs, powers by 2, and codescent objects of cateads in K is part of Bourke’s result
recalled in Proposition 9.7. The correspondence for preservation of terminal objects is
shown in Lemma 9.10, while the correspondence for preservation of exponentials is shown
in Lemma 9.11. The correspondence between preservation of subobject classifiers in E
and full subobject classifiers in K is shown in Lemma 9.12. Finally, the correspondence
between preservation of natural numbers objects is shown in Lemma 9.14.
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Theorem 9.15, to follow, says that ETCS and ET2CSC have biequivalent 2-categories
of models. This is the sense in which we claim to have categorified ETCS, and provided a
foundation of mathematics that captures the structural aspects of categories. In contrast,
ETCS is a foundation which axiomatises the structural properties of sets.

9.15. Theorem. Let ETCS denote the 2-category whose objects are categories modelling
ETCS, whose morphisms are ETCS morphisms, and whose 2-cells are natural isomor-
phisms. Let ET2CSC denote the 2-category whose objects are 2-categories modelling
ET2CSC, whose morphisms are ET2CSC morphisms, and whose 2-cells are 2-natural
isomorphisms. Then there is a biequivalence as depicted below.

ETCS ∼ ET2CSC
Cat(−)

Disc(−)

Proof. The required biequivalence is a restriction of the one in Theorem 4.28 of [Bou10].
The fact that it restricts as required follows from Theorem 9.3 and Theorem 9.9.

10. Conclusions and future directions

In this paper we have extended Bourke’s characterisation of 2-categories of the form
Cat(E) of internal categories, functors and natural transformations for E a category with
pullbacks (Proposition 3.1), and his characterisation of 2-functors of the form Cat(F ) for
pullback preserving functors F : E → E ′ (Proposition 9.7). Specifically, we have charac-
terised 2-categories of the same form Cat(E), where E now models Lawvere’s elementary
theory of the category of sets (Theorem 9.3), and we have also characterised 2-functors
of the form Cat(F ) where F : E → E ′ preserves the structure in ETCS (Theorem 9.9).
In particular, we have done so in a way that such 2-categories Cat(E) can be finitely
axiomatised in first order logic, without presupposing an ambient set theory. For these
reasons we have called the theory of such 2-categories ‘the elementary theory of the 2-
category of small categories’, or ET2CSC. These results build upon Bourke’s work to
show that ETCS and ET2CSC have biequivalent 2-categories of models (Theorem 9.15).
To the extent that ETCS provides a structural foundation by axiomatising the category
structure of sets and functions, ET2CSC provides a structural foundation by axiomatising
the 2-category structure of categories, functors and natural transformations.

ET2CSC also has the feature that it can be expressed in purely 2-categorical terms,
without reference to the fact that its models are of the form Cat(E), up to equivalence.
An important step towards this is Corollary 5.9, in which we show that generating families
in lextensive E give rise to generating families in Cat(E). This motivated the notion of
2-well-pointedness, introduced in Definition 5.12 part (2), which is a key ingredient in
ET2CSC. Another key ingredient in this axiomatisation is the concept of a ‘full subob-
ject’, which is an abstraction of functors which include full subcategories determined by
some subset of the objects of their codomain. Classifiers for full-subobjects were intro-
duced in Definition 7.1, and such classifiers in Cat(E) were shown in Theorem 7.7 to be
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tantamount to subobject classifiers in E . Meanwhile, maps which are left orthogonal to
these full subobjects, the so called acute maps of [Str82], played a role in expressing the
categorified axiom of choice abstractly rather than in terms of internal category theory, in
Theorem 8.14. The correspondence between specific properties of E and analogous prop-
erties of Cat(E) often requires much less to be assumed than the remaining properties
in ETCS, and we have presented our proofs accordingly so that the various intermedi-
ate results may be applied in greater levels of generality. In particular, we think the
intermediate results Corollary 5.9 and Proposition 8.9 may be of independent interest.

It is also of interest to establish sufficient elementary conditions on E for finite 2-
colimits to exist in Cat(E). Coproducts and copowers by 2 were treated in section 5,
while Remark 6.5 recorded that E being an elementary topos is insufficient for Cat(E)
to have coequalisers, or even coinserters. We conjecture that being an elementary topos
with a natural numbers object is sufficient for coequalisers, and hence finite 2-colimits,
to exist in Cat(E). Indeed, coequalisers of a parallel pair of functors depicted below left
are constructed in Cat using not just coequalisers in Set, by also lists of morphisms in
D. Specifically, consecutive morphisms (gn+1, gn) in such lists are not already composable
in D, but rather their intermediate objects d1(gn+1) and d0(gn) must be identified by the
coequaliser in Set depicted below right. Coequalisers of a general parallel pair of functors
are constructed similarly, but moreover involve generating a congruence from Ff ∼ Gf
for morphisms f in their domain, and then quotienting by this congruence.

disc(X) D
F

G

X D0

F0

G0

In future work [HM] we extend the theory developed here to incorporate the axiom
of replacement in the framework of a 2-category of categories. Another interesting direc-
tion for future research would be to reformulate other set theoretical conditions such as
the continuum hypothesis, or large cardinal axioms, in terms of the 2-categorical struc-
ture of Cat(E). On the other hand, a related but different direction for future research
could be axiomatising 2-categories of the form Cat(E) when E satisfies Giraud’s axioms
for Grothendieck toposes (Proposition 6.1.01 of [Lur09]), Frey’s axioms for realisability
toposes [Fre19], or Kock’s axioms for smooth toposes [Koc06]. Finally, one could try
to extend our work to higher categorical settings by axiomatising the three dimensional
structure that small double categories and double functors underlie [Böh20]. Similarly,
higher dimensional structures comprising Kan complexes or quasicategories are already
an active area of research [RV22, Ste24].

A. Proof of Proposition 8.9

A.1. Notation.

1. For s, f morphisms in a 2-category K, write s ⊥1 f if for any commutative square in
K as depicted below left, there is a unique morphism u : B → X satisfying fu = q
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and us = p.

2. Write s ⊥ f if s ⊥1 f and moreover for any commutative pair of 2-cells as depicted
below right, with u : B → X and u′ : B → X the corresponding morphisms induced
by fp = qs and fp′ = q′s respectively, there is a unique 2-cell γ : u ⇒ u′ satisfying
f.γ = β and γ.s = α.

A X

B Y

p

s f

q

A X

B Y

p

p′
s f

q

q′

α

β

3. For M1, M2 classes of morphisms in a category C, write M1 ⊥1 M2 if for every
s ∈ M1 and f ∈ M2, we have s ⊥1 f .

4. For M1, M2 classes of morphisms in a 2-category K, write M1 ⊥ M2 if for every
s ∈ M1 and f ∈ M2, we have s ⊥ f .

5. For (L,R) an orthogonal factorisation system on E , let L′ denote the class of internal
functors which are L-on-objects, and let R′ denote the class of internal functors
which are R-on-objects and fully faithful.

It is clear that both L′ and R′ contain all isomorphisms of internal categories and are
closed under composition, since these properties hold for the classes of morphisms L and
R in E , and for the class of fully faithful functors in Cat(E). By Lemma 2.2 of [Bou77],
it therefore suffices to show that the following properties hold to establish that (L′,R′) is
an orthogonal factorisation system on the category Cat(E)1.

� L′ ⊥1 R′.

� Any internal functor f : X → Y admits a factorisation f = rl with l ∈ L′ and
r ∈ R′.

If moreover L′ ⊥ R′, then (L′,R′) is an orthogonal factorisation system on the 2-
category Cat(E). We prove L′ ⊥ R′ in Lemma A.2, and the existence of an appropriate
factorisation in Lemma A.3.

A.2. Lemma. L′ ⊥ R′.
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Proof. We first prove the one-dimensional aspect of orthogonality. Consider a diagram
in Cat(E) as depicted below, in which s ∈ L′ and f ∈ R′.

A X

B Y

p

s f

q

Apply the functor (−)0 : Cat(E)1 → E to get a commutative square as depicted below
left in E , in which the unique lift exists as s0 ∈ L and f0 ∈ R. We define u1 : B1 → X1

by the universal property of X1, as depicted below right.

A0 X0

B0 Y0

p0

s0 f0
∃!u0

q0

B1

B0 ×B0 X1 Y1

X0 ×X0 Y0 × Y0

q1

(d0,d1)
∃!u1

u0×u0

f1

(d0,d1)

⌟
(d0,d1)

f0×f0

By construction, u := (u0, u1) : B → X is a morphism of graphs. We show that u :=
(u0, u1) : B → X is a functor. Fix k ∈ {0, 1}. Then u : B → X respects identities by the
universal property of X1, as witnessed by the following commutative diagrams.

B0 X0 X1

X0

B1 X1 Y1

u0

i

q0

i

f0

f1

i

u1

q1

f1

B0 X0 X1

B0

B1 X1 X0

u0

i

1B0

i

1X0
dk

u0

u1

dk

dk

Similarly, the following commutative diagrams show that it respects composition.

B2 X2 Y2

X0

B1 X1 Y1

u2

m

q2

m

f2

f1

m

u1

q1

f1

B2 X2 X1

B1 X1

B0

B1 X1 X0

u2

m

πk

m

πk

dk

u1

dk

dk

u0dk

u1 dk
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Hence u : B → X is an internal functor. But observe that u0 : B0 → X0 is the unique
morphism satisfying f0u0 = q0 and u0s0 = p0, since L ⊥1 R in E . Moreover, it is clear
by the construction of u1 via the pullback that (u0, u1) : B → X is the unique morphism
of graphs providing a factorisation fu = q. But also u1s1 = p1, as per the following
calculations using the universal property of X1.

A1 B1 X1

X1 Y1

p1

s1

q1

u1

f1

f1

A1 B1 X1

A0 B0

X1 X0

s1

dk

p1

dk

u1

dk
s0

p0

u0

dk

Thus L′ ⊥1 R′. For the two-dimensional aspect of orthogonality, let fp0 = q0s,
fp1 = q1s, α : p0 ⇒ p1 and β : q0 ⇒ q1 be internal natural transformations satisfying
f.α = β.s, and let u0 : B → X and u1 : B → X be the uniquely induced maps from
the one-dimensional aspect of orthogonality. Then by fully faithfulness of Cat(E)(B, f) :
Cat(E)(B,X) → Cat(E)(B,Y), there is a unique internal natural transformation γ : u0 ⇒
u1 satisfying f.γ = β. As such, the components assigner for γ is induced by the universal
property of X1 as displayed below.

B0

X1 Y1

X0 ×X0 Y0 × Y0

β

(u0
0,u

1
0)

∃!γ

f1

(d0,d1)

⌟
(d0,d1)

f0×f0

Finally, the following diagrams for k ∈ {0, 1} verify that γ.s = α, completing the
proof.

A0 B0 X1

X1 X0

s0

α
pk0

γ

uk
0

dk

dk

A0 B0 X1

X1 Y1

s0

α

γ

β
f1

f1

A.3. Lemma. Any internal functor f : X → Y may be factorised as f = rl with l ∈ L′

and r ∈ R′.
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Proof. Let f : X → Y in Cat(E). Using the (L,R) orthogonal factorisation system, we
obtain a unique factorisation of f0 in E depicted below left. We construct C1 and maps
r1 : C1 → Y1 and (d0, d1) : C1 → C0 × C0 via the pullback in E depicted below right.

X0 Y0

C0

f0

l0 r0

C1 Y1

C0 × C0 Y0 × Y0

r1

(d0,d1)

⌟
(d0,d1)

r0×r0

(1)

Define l1 : X1 → C1 by the universal property of this pullback, as depicted below.

X1

X0 ×X0 C1 Y1

C0 × C0 Y0 × Y0

f1

(d0,d1)
∃!l1

l0×l0

r1

(d0,d1)

⌟
(d0,d1)

r0×r0

Then (f0, f1) = (r0, r1) ◦ (l0, l1) is clearly a factorisation at the level of morphisms
of graphs. It remains to give an internal category structure to the graph in E displayed
below, and to show that these morphisms of graphs are well-defined as internal functors.
Once we have shown this, it will follow by construction that l ∈ L′ and r ∈ R′.

C := C1 C0

d0

d1

Define the identity assigner i : C0 → C1 for C using the universal property of C1, as
depicted below left. Then construct C2 ∈ E as the pullback depicted below right.

C0 Y0

C1 Y1

C0 × C0 Y0 × Y0

r0

i

(1C0
,1C0

)

i

r1

(d0,d1)

⌟
(d0,d1)

r0×r0

C2 C1

C1 C0

π0

π1

⌟

d1

d0

(2)

Define r2 : C2 → Y2 by the universal property of Y2, as described in Remark 2.7. Then
define m : C2 → C1 by the universal property of C1 as depicted below left, given the
commutativity of the diagram depicted below right.
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C2 Y2

C1 × C1 C1 Y1

C0 × C0 Y0 × Y0

r2

m
(π0,π1)

m

d0×d1

r1

(d0,d1)

⌟
(d0,d1)

r0×r0

C2 Y2

C1 × C1 Y1 × Y1 Y1

C0 × C0 Y0 × Y0

r2

(π0,π1)
m

(π0,π1)

d0×d1

r1×r1

(d0,d1) (d0,d1)

r0×r0

(3)
We now consider the internal category axioms for C. Sources and targets for identities

and composites hold by construction. This allows us to define the maps π1,3,m1,m0, π0,3 :
C3 → C2 and i0, i1 : C1 → C2 as in Remark 2.5. Furthermore, define r3 : C3 → Y3 in the
obvious way, using the universal property of Y3. It remains to check the associativity law
and the left and right unit laws.

To check associativity, we use the universal property of C1, and the defining properties
of m and the relevant pullbacks. For k ∈ {0, 1} and j = k + 1 mod 2, we have:

C3 C2 C1

C2 C2 C1

C1

C1 C0

mj

mk
π3,j

πk

m

dkπk

m

πk

m

dk

dk

dk

C3 C2 C1

C2 Y3 Y2

Y2

C1 Y1

m1

m0
r3 r2

m

r1

m

r2

m1

m0

m

m

r1

We now consider the unit laws. We first note that the equations r2.i
C
k = iYk .r1 for

k ∈ {0, 1} hold by the universal property of Y2, as per the following calculations.

C1 C2 Y2

C0 C1

Y1 Y0

Y2 Y1

ik

dk

r1

r2

πk

πkr0

i

r1

dk

ik
i

πk

C1 C2 Y2

Y1 C1

Y2 Y1

ik

r1
1C1 πj

r2

πj

ik
1C1

r1

πj

The left and right unit laws for C hence follow from the universal property of C1, given
the calculations displayed below where j = k + 1 mod 2.
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C1 C2 C1

C0 C1

C1 C0

ik

1C1

dk

m

πk

dk
i

1C0

dk

dk

C1 C2 C1

Y1 Y2

C1 Y1

ik

1C1

r1

m

r2

r1
ik

1Y1

m

r1

C1 C2 C1

C1

C1 C0

ik

1C1

1C1

πj

m

dj

dj

dj

So C is a category internal to E . It is clear from the construction of the identity
assigner in Equation 2 and composition in Equation 3 that the morphism of graphs r :=
(r0, r1) : C → Y is well-defined as an internal functor, which is moreover evidently fully
faithful and R-on-objects as per Equation 1.

It remains to show that the morphism of graphs l := (l0, l1) : X → C is well-defined
as an internal functor. Once again, we do this using the universal property of C1 as
a pullback. Define l2 : X2 → C2 by the universal property of C2, as described in Re-
mark 2.7. Fix k ∈ {0, 1} as above. Respect for identities for l : X → C is exhibited by
the commutativity of the diagrams in E displayed below.

X0 C0 C1

X1 X0

C1 C0

l0

i
1X0

i

1C0
dk

l1

dk

l0

dk

X0 C0 C1

X1 Y0

C1 Y1

l0

i
f0

i

r0

r1

l1
f1

i

r1

Finally, respect for composition for l : X → C follows from the commutativity of the
diagrams in E displayed below. This completes the proof.
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X2 C2 C1

X1 C1

X1 X0

C1 C0

l2

πk

m

πk

m

dk

l1

dk

dkdk

l1
l0

dk

X2 C2 C1

X1 Y2

C1 Y1

l2

m
f2

r2

m

r1

f1
l1

m

r1
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