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WOOD FUSION AND THIÉBAUD ALGEBRAICITY

To the memory of Bill Lawvere,
with gratitude for his mathematical foundations.

ROSS STREET

Abstract. The goal is to show how a 1978 paper of Richard Wood on monoidal
comonads and exponentiation relates to more recent publications such as Pastro et alia
[30] and Bruguiéres et alia [7]. In the process, we mildly extend the ideas to procomonads
in a magmal setting and suggest it also works for algebras for any club in the sense of
Max Kelly [18, 19].

1. Introduction

Richard Wood’s paper [40] deals with a closed comonad G on a closed category C . He
actually writes for the case where C is closed monoidal; then a closed comonoid is the
same as a monoidal comonad. The paper provides necessary and sufficient conditions for
the natural promonoidal structure on the category C G of Eilenberg-Moore coalgebras for
G to be closed (that is, to be representable by an internal hom). It also provides necessary
and sufficient conditions for C G to be closed in that way and for the underlying functor
und : C G Ñ C to be strong closed (that is, to preserve the internal hom).

The process involves morphisms

wυ,Z :“ GrY, Zs
Gℓ

2
ÝÑ rGY,GZs

rυ,1s
ÝÝÑ rY,GZs (1.1)

for Y υ
ÝÑ GY an object of C G and Z an object of C . Here I am denoting the closed

structure on G by Gℓ
2 where the closed structure on C is what I think of as the “left” kind.

These are what I will call Wood fusion morphisms.
An aim of the present paper is to relate Wood fusion to the fusion occurring in more re-

cent papers such as [35, 7, 8, 29]. Another aim is to generalize the results from comonadic-
ity to the kind of algebraicity developed in the PhD thesis [39] of Michel Thiébaud written
under the supervision of Bill Lawvere.

It became clear that the structure-lifting results apply to more general structures than
closed categories C . In particular, we could work with algebras C for a club in the sense
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of Kelly [18, 19]. It is about the functors providing the operations (such as binary tensor
product), while the structural natural transformations (such as associativity constraints)
and axioms thereon (such as the Mac Lane pentagon) carry over automatically to the
constructions. Since the forgetful functor from the category of coalgebras is to be strong
and the comonad is to be coherent, the structural natural transformations are coalgebra
morphisms. Since the forgetful functor is also conservative, the axioms lift. Moreover, we
are mainly interested in the existence of lifted right adjoints; they gain structure as mates
under the adjunctions. In particular, the results apply to skew monoidal closed categories
(as in [37] for example).

However, rather than review the notion of club and to keep the notation simple, I
have written for the case of magmal categories; that is, categories C equipped with a
binary functorial operation C ˆ C Ñ C which we still call and write as a tensor product.
Indeed, as is our custom, we will be a little more general and work with hom V -enriched
categories throughout.

As pointed out by Thiébaud [39], monadicity and comonadicity are both special cases
of his construction using a procomonad Γ. We find that we can extend Wood’s results to
magmal procomonads Γ on magmal V -categories C .

Appendices on adjoint lifting theorems of [1, 13, 16, 17] are added to provide a per-
spective suggested by Richard Garner and Stephen Lack. A recent paper [6] about lifting
closed structures to the category of algebras for a monad, which is not necessarily op-
monoidal, has come to my notice.

2. Magmal comonads and cloaks

We work with categories enriched in a suitably complete and cocomplete, symmetric,
monoidal category V as base for enrichment (see Kelly [22]). The tensor of V is denoted
by U b V and the tensor unit by I. At times, we omit the prefix “V -”, taking it for
granted.

2.1. Definition. A V -category C is magmal when it is equipped with a V -functor b :
C b C Ñ C (this overworked notation, written as usual between the arguments). A V -
functor S : C Ñ D between magmal V -categories is called magmal when it is equipped
with a V -natural transformation S2 as in (2.2).

C b C

SbS
��

b
// C

S
��

S2 +3

D b D
b

// D

(2.2)

A V -natural transformation θ : S ñ T : C Ñ D between magmal V -functors is called
magmal when it satisfies the equation θCbC1˝S2;C,C1 “ T2;SC,SC1˝pθCbθC1q for all C,C 1 P C .
A comonad G “ pG, ε, δq is magmal when the functor G : C Ñ C , and the V -natural
transformations ε : G ñ 1C and δ : G ñ G ˝ G are all magmal.
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2.2. Definition. Suppose C is a magmal V -category and Y, Z P C . We say Z is left
cloaked by Y when there is an object rY, Zs P C and a morphism

evYZ : rY, Zs b Y Ñ Z

such that the family
C pX, rY, Zsq ÝÑ C pX b Y, Zq ,

V -natural in X obtained by the Yoneda Lemma, consists of isomorphisms. In the language
of Appendix B, rY, Zs “ rifp´ b Y, Zq and evYZ “ ε´bY

Z in the 2-category V -Cat. We say
rY, Zs is the left cloak of Z by Y ; if these exist for all Z, we have the components

evYZ : rY, Zs b Y Ñ Z and veYX : X Ñ rY,X b Y s

of the counit and unit of an adjunction ´ b Y % rY,´s. If left cloaks rY, Zs exist for all
Y, Z P C , we say C is left cloakal.

2.3. Proposition. Suppose S : C Ñ D is a V -functor between magmal V -categories
and Y P C . Suppose C admits left cloaks by Y and D admits left cloaks by SY . There is
a bijection between families

S2;X,Y : SX b SY Ñ SpX b Y q

V -natural in X and families

Sℓ
2;Y,Z : SrY, Zs Ñ rSY, SZs

V -natural in Z.

Proof. This is an application of the mate bijection (in the sense of [21]) between V -

natural p´ b SY q ˝ S
S2;´,Y
ÝÝÝÝÑ S ˝ p´ b Y q and S ˝ rY,´s

Sℓ
2;Y,´

ÝÝÝÑ rSY,´s ˝ S under the
adjunctions ´ b Y % rY,´s and ´ b SY % rSY,´s.

Obviously every monoidal category, functor, and natural transformation has an un-
derlying magmal structure.

Let G be a magmal comonad on a magmal V -category C . So we have V -natural
families εX : GX Ñ X, δX : GX Ñ GGX and G2;X,Y : GX b GY Ñ GpX b Y q.

As for monoidal V -categories (see [40, 28, 27]), the category C G of Eilenberg-Moore
G-coalgebras becomes magmal with tensor product

pX
ξ

ÝÑ GXq b pY
υ
ÝÑ GY q “ pX b Y

ξbυ
ÝÝÑ GX b GY

G2;X,Y
ÝÝÝÝÑ GpX b Y qq . (2.3)

This gives the construction of coalgebras for comonads (in the sense of [31]) in the 2-
category MagpV -Catq of magmal V -categories, magmal V -functors, and magmal V -
natural transformations.

The following result is an application of Proposition B.2 and yet we still give a direct
proof within the present context.
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2.4. Lemma. Let G be a magmal comonad on a magmal V -category C . Suppose cloaks
rpY, υq, pGZ, δZqs and rpY, υq, pG2Z, δGZqs exist in C G for the objects pY, υq and pZ, ζq of
C G. Then the cloak rpY, υq, pZ, ζqs exists if and only if the parallel pair

rpY, υq, pGZ, δZqs

r1,δZ s
//

r1,Gζs

//
rpY, υq, pG2Z, δGZqs . (2.4)

has an equalizer pE, κq
k
ÝÑ rpY, υq, pGZ, δZqs in C G. If that holds, then

rpY, υq, pZ, ζqs “ pE, κq

and the counit evpY,υq

pZ,ζq
is determined by commutativity of the square (2.5).

pE, κq b pY, υq
ev

pY,υq

pZ,ζq
//

kb1
��

pZ, ζq

ζ

��

rpY, υq, pGZ, δZqs b pY, υq
ev

pY,υq

pGZ,δZ q

// pGZ, δZq

(2.5)

Proof. We have the equalizer

pZ, ζq
ζ

// pGZ, δZq

δZ //

Gζ
//
pG2Z, δGZq (2.6)

in C G. The “only if” direction is then clear since right adjointness of the functor rpX, ξq,´s

implies it preserves the equalizer (2.6). For the other direction, note that morphisms
pA,αq

f
ÝÑ pE, κq are in bijection (via composition with k) with morphisms pA,αq

g
ÝÑ

rpY, υq, pGZ, δZqs such that r1, δZs˝g “ r1, Gζs˝g and so with morphisms pA,αqbpY, υq
h
ÝÑ

pGZ, δZq such that δZ ˝ h “ Gζ ˝ h. Using the equalizer (2.6), we see that pE, κq is the
stated cloak and that the last sentence of the lemma holds.

The following lemma is essentially in [40].

2.5. Lemma. Let G be a magmal comonad on a magmal V -category C . Suppose the
cloaks rY, Zs and rGY,GZs exist in C . Then a cloak of the cofree object pGZ, δZq by any
object pY, υq in C G is given by the cofree object pGrY, Zs, δrY,Zsq with the composite

GrY, Zs b Y
Gℓ

2bυ
ÝÝÝÑ rGY,GZs b GY

evGY
GZ

ÝÝÝÑ GZ

as ev
pY,υq

pGZ,δZq
.
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Proof. We have the chain of isomorphisms

C G
ppA,αq, pGrY, Zs, δrY,Zsqq

– C pA, rY, Zsq

– C pA b Y, Zq

– C G
ppA b Y, ϕpα b υqq, pGZ, δZqq

– C G
ppA,αq b pY, υq, pGZ, δZqq

which by Yoneda is induced by the evaluation morphism given by the clockwise path
around the diagram (2.7).

GrY, Zs b Y

Gℓ
2bυ

%%

δrY,Zsbυ
//

1bυ

**

GGrY, Zs b GY
G2 //

GεrY,Zsb1

��

GpGrY, Zs b Y q

GpεrY,Zsb1q

��

GrY, Zs b GY
G2

//

Gℓ
2b1
��

GprY, Zs b Y q

GevYZ
��

rGY,GZs b GY
evGY

GZ

// GZ

(2.7)

Diagram (2.7) thus shows ev
pY,υq

pGZ,δZq
to be the composite stated in the lemma.

3. Wood fusion morphisms

Notice that, if the cloak rY,GZs exists, then the evaluation in Lemma 2.5 corresponds,
under the universal property of cloaks, to the composite

wυ,Z :“ GrY, Zs
Gℓ

2
ÝÑ rGY,GZs

rυ,1s
ÝÝÑ rY,GZs . (3.8)

3.1. Definition. The wυ,Z of (3.8) are called Wood G-fusion morphisms.

Notice that the Wood fusion morphism for cofree coalgebras occurs in the construction
of a new skew-closed structure using a closed comonad; see Proposition 3 of [37].

We will be interested in when the Wood fusion morphisms are invertible. As with
ordinary fusion (recalled in Section 4), invertibility for an arbitrary G-coalgebra follows
from invertibility for cofree G-coalgebras.

3.2. Proposition. For a G-coalgebra pY, υq and any object Z, the Wood fusion morphism
wυ,Z is invertible if wδY ,Z is invertible and wδGY ,Z is an epimorphism.

Proof. For any coalgebra pZ, ζq, we have an equalizer of the form

Z
ζ

// GZ

δZ //

Gζ
//
G2Z (3.9)
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which is preserved by all functors (that is, it is an absolute equalizer). It follows that the
rows of (3.10) are coequalizers. The vertical morphisms give two composable morphisms
of coequalizer diagrams (that is, the appropriate diagrams commute using naturality of
G2, and coassociativity properties of υ and δ).

GrG2Y, Zs

Gℓ
2 ��

GrδY ,1s
//

GrGυ,1s
//
GrGY,Zs

Gℓ
2��

Grυ,1s
// GrY, Zs

Gℓ
2��

rG3Y,GZs

rδGY ,1s
��

rGδY ,1s
//

rG2υ,1s
//
rG2Y,GZs

rδY ,1s
��

rGυ,1s
// rGY,GZs

rυ,1s
��

rG2Y,GZs

rδY ,1s
//

rGυ,1s
//
rGY,GZs

rυ,1s
// rY,GZs

(3.10)

If the middle vertical composite is invertible and the left vertical composite is an epimor-
phism then the right vertical composite is invertible.

3.3. Definition. The closed comonad G on C is Hopf-Wood when the Wood fusion
morphisms wυ,Z are all invertible. By Proposition 3.2, it suffices to know that all wδY ,Z

are invertible; then the property can be expressed without reference to Eilenberg-Moore
coalgebras.

3.4. Lemma. Under the conditions of Lemma 2.5, the parallel pair (2.4) is isomorphic to
the parallel pair

pGrY, Zs, δrY,Zsq

Gwυ,Z˝δrY,Zs
//

Gr1,ζs

//
pGrY,GZs, δrY,GZsq . (3.11)

3.5. Definition. A strong magmal functor K : A Ñ C is said to create the cloak of
B by A in A when the cloak of KB by KA exists in C , and there exist H in A and
τ : KH – rKA,KBs in C with the following two properties:

(i) there exists a unique morphism ē : H b A Ñ B such that the square

KH b KA
τb1

//

K2

��

rKA,KBs b KA

eKA
KB

��

KpH b Aq
Kē

// KB

(3.12)

commutes;

(ii) the object H with ē is a cloak for B by A.

The following lemma is straightforward.
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3.6. Lemma. Suppose (3.13) is a pullback of magmal V -categories and strong magmal
V -functors with W fully faithful. Suppose A,B P A are such that K 1 creates the cloak of
V B by V A. If rV A, V Bs – V H for some H then K creates the cloak of B by A.

A V //

K
��

A 1

K1

��

C
W

// C 1

(3.13)

3.7. Lemma. Suppose rY, Zs and rGY,GZs exist in C . The forgetful functor

undG : C G
Ñ C

creates the exponential rpY, υq, pGZ, δZqs of Lemma 2.5 if and only if rY,GZs exists in C
and the Wood G-fusion morphism (3.8) is invertible.

Proof. Assume rY,GZs exists in C and the Wood G-fusion morphism (3.8) is invertible.
In the definition of creation, take H “ pGrY, Zs, δrY,Zsq and τ “ wυ,Z . Commutativity of
diagram (3.12) means, in this case, that ē must be the clockwise route around the diagram

GrY, Zs b Y
Gℓ

2b1
//

1bυ
��

rGY,GZs b Y
rυ,1sb1

//

1bυ
��

rY,GZs b Y

evYGZ

��

GrY, Zs b GY
Gℓ

2b1
// rGY,GZs b GY

evGY
GZ

// GZ

and the diagram shows that ē is the evaluation displayed in Lemma 2.5. By Lemma 2.5
we have what we need for “if”.

Now suppose undG : C G Ñ C creates the exponential rpY, υq, pGZ, δZqs which we know
from Lemma 2.5 is the object pGrY, Zs, δrY,Zsq with the evaluation ē as displayed in that
lemma. Since undGpGZ, δZq “ GZ and undGpY, υq “ Y , we have the existence of rY,GZs

and that there is an isomorphism τ : GrY, Zs – rY,GZs such that ē “ evXGY ˝ pτ b 1q.
This last equation means that τ corresponds to ē under the universal property of rY,GZs;
that is, τ “ wυ,Z , which proves “only if”.

3.8. Proposition. Let G be a magmal comonad on a magmal V -category C . Suppose
pY, υq P C G is such that rY, Zs and rGY,GZs exist for all Z P C . The Wood G-fusion
morphisms wυ,Z are invertible for all Z if and only if undG : C G Ñ C creates all cloaks
by pY, υq. In this case, for any pZ, ζq P C G,

rpY, υq, pZ, ζqs – prY, Zs, w´1
υ,Z ˝ r1, ζsq .

Proof. Lemma 3.7 gives “if”. Suppose all wpY,υq,Y are invertible. We will use facts
involved in the Beck monadicity theorem [26] in dual form for comonads. We have the
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cosplit equalizer (3.9). From Lemma 3.7, the parallel pair in equalizer (2.4) is taken by
UG to the cosplit pair

rY,GZs

r1,δZ s
//

r1,Gζs

//
rY,GGZs (3.14)

which, by applying rY,´s to (3.9), has the cosplit equalizer

rY, Zs
r1,ζs

// rY,GZs

r1,δZ s
//

r1,Gζs

//
rY,GGZs . (3.15)

Since undG is comonadic, there exists a unique G-coalgebra prY, Zs, κq and an equalizer

prY, Zs, κq
r1,ζs

// prY,GZs, κ1q

r1,δZ s
//

r1,Gζs

//
prY,G2Zs, κ2q (3.16)

in C G, where (using Lemma 3.4) the coactions κ1 and κ2 are transported from the coac-
tions δrY,Zs on GrY, Zs and δrY,GZs on GrY,GZs under the invertible Wood fusion mor-
phisms. So we have condition (ii) for undG to create the cloak. For condition (i), note that
commutativity of (2.5) in Lemma 2.4 with k “ r1, ζs shows that evYZ : prY, Zs, κqbpY, υq Ñ

pZ, ζq is the G-coalgebra morphism for the unique solution to diagram (3.12).

4. Fusion for opmagmal monads

Let T be an opmagmal monad on the magmal V -category C . The monad structure
involves a unit η : 1C Ñ T and a multiplication µ : TT Ñ T . The opmagmal structure
involves a natural family of morphisms T2;X,Y : T pX b Y q Ñ TX b TY . We denote
the magmal category of Eilenberg-Moore T -algebras by C T with strong magmal forgetful
functor undT : C T Ñ C . The tensor product for C T is defined by

pTX
α
ÝÑ Xq b pTY

β
ÝÑ Y q “

´

T pX b Y q
T2
ÝÑ TX b TY

αbβ
ÝÝÑ X b Y

¯

.

For X P C and pY, βq P C T , we call the composite v “ vX,β:

T pX b Y q
T2
ÝÑ TX b TY

1bβ
ÝÝÑ TX b Y (4.17)

a T -fusion morphism (as featured in [7]).
Suppose T : C Ñ C has a right adjoint functor G. As discussed in [15], G becomes

a comonad on C and there is an isomorphism of categories C T – C G over C . These
matters involve the calculus of mates (in the sense of [21]) as does the fact that G becomes
a monoidal comonad and the isomorphism C T – C G becomes strong monoidal.
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4.1. Proposition. Suppose T is an opmagmal monad on the magmal V -category C .
Suppose G is a right adjoint magmal comonad for T . Let pY, βq P C T correspond to
pY, υq P C G. The T -fusion morphism vX,β is invertible for all X P C if and only if the
Wood G-fusion morphism wυ,Z is invertible for all Z P C .

Proof. Apply the Yoneda Lemma to the following commutative diagram where σ : TG Ñ

1C is the counit of T % G.

C pTX b Y, Zq
– //

C p1bβ,1q

��

C p1bσY ,1q ))

C pX,GrY, Zsq

C p1,Gℓ
2q

��

C pTX b TGY,Zq

C pG2,1q

��

C p1bTυ,1quu

C pTX b TY, Zq

C pG2,1q

��

C pX, rGY,GZsq

C p1,rυ,1sq

��

C pT pX b GY q, Zq

–

55

C pT p1bυq,1q

uu

C pT pX b Y q, Zq
–

// C pX, rY,GZsq

where σ : TG Ñ 1C is the counit of T % G.

4.2. Example. Let C be a braided closed monoidal category. Let H be a monoid in
the monoidal category of comagma in C . Then ´ b H : C Ñ C is an opmagmal monad
with right adjoint rH,´s : C Ñ C . Proposition 4.1 relates Wood fusion for the magmal
comonad rH,´s with the fusion morphism

H b H
δb1
ÝÝÑ H b H b H

1bµ
ÝÝÑ H b H

for H. We say H is Hopf when its fusion morphism is invertible. This is equivalent to
´ b H Hopf and to rH,´s Hopf-Wood.

5. Procomonads

Let V be a symmetric closed monoidal category which is complete and cocomplete. Let
M “ V -Mod be the bicategory of V -categories and V -modules in the terminology of
[33, 12] and elsewhere; modules are also called “bimodules” by Lawvere [24], and first
“profunctors” [4] and then “distributors” [5] by Bénabou. The bicategory M has homs
enriched in V -Cat; the hom MpA ,Bq is the V -functor V -category rBop b A ,V s. Com-
position of V -modules M : A Û B and N : B Û C is defined by coends

pN ˝ MqpC,Aq “

ż B

MpB,Aq b NpC,Bq .
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Each V -functor F : A Ñ B gives V -modules F˚ : A Û B and F ˚ : B Û A with
F˚ % F ˚ in M; indeed, F˚pB,Aq “ BpB,FAq and F ˚pA,Bq “ BpFA,Bq. A module
M : A Û B is called Cauchy when it has a right adjoint in M. A module M : A Û B
is called convergent or representable when M – F˚ for some V -functor F : A Ñ B.

We write I for the V -category with one object 0 and hom I p0, 0q “ I (the tensor
unit of V ). Then MpI ,C q – rC op,V s, the category of V -presheaves on C . Composition
with N P MpB,C q transports to a left adjoint V -functor

sN : rBop,V s ÝÑ rC op,V s

where

sNpF qpCq “

ż B

F pBq b NpC,Bq so that sNpBp´, Bqq – Np´, Bq . (5.18)

In fact, N ÞÑ sN is the object function of a biequivalence between the bicategory M
and the 2-category P of V -presheaf categories, left adjoint V -functors, and V -natural
transformations.

A V -procomonad is a comonad in M and so consists of a V -category C , a V -module
Γ : C Û C , a V -natural transformation ε : Γ ñ 1C , and a V -natural transformation
δ : Γ ñ Γ ˝ Γ satisfying the coassociativity and counital conditions. We say Γ “ pΓ, ε, δq
is a V -procomonad on C . For any V -category A , we obtain a V -comonad Mp1A ,Γq on
the V -category MpA ,C q. Then we have the V -category MpA ,C qMp1A ,Γq of Eilenberg-
Moore Mp1A ,Γq-coalgebras. In particular, when A “ I , we obtain a V -comonad sΓ
on the presheaf V -category rC op,V s and its V -category rC op,V s

sΓ of Eilenberg-Moore
sΓ-coalgebras.

The following definition agrees with the category C Γ defined by Thiébaud [39] in the
case V “ Set.

5.1. Definition. The V -category of Γ-algebras in C is defined by the pullback (5.19) in
V -Cat of the underlying V -functor along the Yoneda embeddingょ.

C Γ ょΓ
//

und

��

rC op,V s
sΓ

und
��

C
ょ

// rC op,V s

(5.19)

So such a Γ-algebra consists of an object C P C equipped with a coaction morphism
γ : I Ñ ΓpC,Cq, subject to the two axioms (5.20). We will write γX : C pC,Xq Ñ ΓpC,Xq

for the natural family corresponding to γ under the Yoneda bijection. Similarly we have
γX : C pX,Cq Ñ ΓpX,Cq.

I

γ

��

1C

&&

ΓpC,Cq εC,C

// C pC,Cq

I
γbγ

//

γ

��

ΓpC,Cq b ΓpC,Cq

inC
��

ΓpC,Cq
δC,C

//
şX

ΓpX,Cq b ΓpC,Xq

(5.20)
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We will call any V -functor into C , isomorphic over C to und : C Γ Ñ C , Thiébaud
algebraic over C .

5.2. Example. The construction C Γ includes the Eilenberg-Moore constructions for both
V -monads and V -comonads.

1. If T “ pT, η, µq is a V -monad on the V -category C and we take Γ “ T ˚ so that
ΓpX, Y q “ C pTX, Y q with counit ε and comultiplication δ induced by the unit η
and multiplication µ then C Γ – C T , the V -category of T -algebras.

2. If G “ pG, ε, δq is a V -comonad on the V -category C and we take Γ “ G˚ so that
ΓpY, Zq “ C pY,GZq with counit and comultiplication induced by those of G then
C Γ – C G, the V -category of G-coalgebras.

The two main closure properties Thiébaud proved in [39] were that Thiébaud alge-
braicity is closed under pullback and exponentiation. We now look at that.

Given a V -functor W : D Ñ C and a V -procomonad Γ on C , we have the V -
procomonad ΓW “ W ˚ ˝ Γ ˝W˚ on D ; it is the lifting of Γ through W˚ in M (see Section
2 of [31]).

5.3. Proposition. The following square is a pullback.

DΓW //

und
��

C Γ

und
��

D
W

// C

Proof. Using Yoneda, we deduce that ΓW pD1, Dq – ΓpWD1,WDq. The remaining de-
tails are routine.

5.4. Corollary. Thiébaud algebraicity is the closure under pullback of comonadicity.

Given V -categories A and C , each V -procomonad Γ on C defines a V -procomonad
ΓA on rA ,C s via the commutative diagram (5.21).

rA ,C s
ΓA

//

r1A ,ょs˚

��

rA ,C s

rA , rC op,V ss
r1A ,sΓs˚

// rA , rC op,V ss

r1A ,ょs˚

OO

(5.21)

It is the lifting of r1A , sΓs˚ through r1A ,ょs˚ and satisfies the simple formula:

ΓA
pF 1, F q “

ż

A

ΓpF 1A,FAq .

5.5. Proposition. rA ,C sΓ
A

– rA ,C Γs over rA ,C s.
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Proof. The pullback (5.19) is preserved by exponentiation rA ,´s by A . The Eilenberg-
Moore construction of coalgebras in V -Cat is also preserved by exponentiation. So we
have the pullback

rA ,C Γs //

r1A ,unds

��

rA , rC op,V ssr1A ,sΓs

und
��

rA ,C s
r1A ,ょs

// rA , rC op,V ss .

The result now follows from Proposition 5.3 with W “ r1A ,ょs, the definition (5.21) of
ΓA , and the second item of Example 5.2.

An object X of a monoidal bicategory N (see [12]) is magmal when a 1-morphism
P : X b X Ñ X is specified. For example, every monoidale (called pseudomonoid by
[12] and elsewhere) in N has an underlying magmal object.

In particular, a magmal object in V -Cat is called a magmal V -category as in Defini-
tion 2.1. A module M : C Û D between magmal V -categories is called magmal when it
is equipped with a V -natural family M2 of morphisms

M D,D1

2;C,C1 :MpD,Cq b MpD1, C 1
q Ñ MpD b D1, C b C 1

q ;

such families, by the universal property of coend and Yoneda’s Lemma, are in bijection
with V -natural families of morphisms

M D2

2;C,C1 :

ż D,D1

MpD,Cq b MpD1, C 1
q b DpD2, D b D1

q Ñ MpD2, C b C 1
q ;

and in bijection with V -natural families of morphisms

M D,D1

2;C2 :

ż C,C1

C pC b C 1, C2
q b MpD,Cq b MpD1, C 1

q Ñ MpD b D1, C2
q .

A module morphism α :M ñ N is magmal when

αDbD1,CbC1 ˝ M D,D1

2;C,C1 “ N D,D1

2;C,C1 ˝ pαD,C b αD1,C1q .

A V -functor S : C Ñ D is magmal as in Definition 2.1 if and only if the module S˚ is.
Using the Yoneda Lemma, we see that this amounts to a V -natural family of morphisms

S2 “ S2;C,C1 : SC b SC 1
ÝÑ SpC b C 1

q

as in diagram (2.2). Call S strong magmal when all S2,C,C1 are invertible.
If C is a small magmal V -category then the presheaf V -category pC “ rC op,V s has

the Day convolution magmal structure

˚ : pC b pC Ñ pC
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defined by

pF ˚F 1
qZ “

ż X,Y

C pZ,X b Y q b FX b F 1Y .

The Yoneda embeddingょ : C Ñ pC is strong magmal and has the (bicategorical) universal
property of the magmal small cocompletion of C : for any small-cocomplete magmal X ,
the category of [strong-]magmal V -functors C Ñ X is equivalent (via left Kan extension
alongょ) to the category of colimit-preserving [strong-]magmal V -functors pC Ñ X .

A procomonad Γ “ pΓ, ε, δq on a V -category X is magmal when Γ, ε, δ are all magmal.
Let Γ be a magmal procomonad on the magmal V -category C . Then sΓ is a magmal

comonad on pC . To obtain sΓ2 we use the isomorphisms

sΓpF q˚sΓpF 1
q –

ż UV XY

FU b F 1V b ΓpX,Uq b ΓpY, V q b C p´, X b Y q

and

sΓpF ˚F 1
q –

ż UV

FU b F 1V b Γp´, U b V q ,

to transport
şUV

1FU b 1F 1V b Γ ´
2;U,V to obtain sΓ2;F,F 1 : sΓpF q˚sΓpF 1q Ñ sΓpF ˚F 1q. Using

(2.3), we obtain a magmal structure on pC
sΓ. This restricts along the fully faithful V -

functorょΓ : C Γ Ñ pC
sΓ to a magmal structure on C Γ which is defined by

´

X, I
ξ

ÝÑ ΓpX,Xq

¯

b

´

Y, I
υ
ÝÑ ΓpY, Y q

¯

:“

ˆ

X b Y, I
ξbυ
ÝÝÑ ΓpX,Xq b ΓpY, Y q

ΓXY
2;XY

ÝÝÝÑ ΓpX b Y,X b Y q

˙

.

5.6. Definition. Suppose S : C Ñ D is a V -functor between magmal V -categories.
Suppose Z is left cloaked by Y in C . We say S preserves the left cloaking of Z by Y when
SrY, Zs provides a left cloaking of SZ by SY . If this holds for all Y, Z then we say S is
strong left cloakal; by Proposition 2.3, it follows that S is magmal, but it is not necessarily
strong magmal.

5.7. Proposition. For any magmal V -category C , the convolution magmal presheaf V -
category pC is left cloakal. For H,K P pC , the left cloaking of K by H is given by

rH,KsU “

ż

V

rHV,KpU b V qs – pC pH,KpU b ´qq .

In particular, rょY,ょZsX – C pX b Y, Zq so that the Yoneda embeddingょ : C Ñ pC
preserves any left cloakings C admits.

Proof. This follows mutatis mutandis the proof by Day [9] in the monoidal case.
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5.8. Definition. The fusion morphisms for magmal procomonad Γ are the Wood fusion
morphisms for the magmal comonad sΓ restricted to representables.

Let us make this definition more explicit. According to Definition 3.1, Wood fusion
for sΓ is the composite

wρ,K :“ sΓrH,Ks
sΓℓ
2

ÝÑ rsΓH, sΓKs
rρ,1s
ÝÝÑ rH, sΓKs , (5.22)

for pH, ρq P pC
sΓ and K P pC . For X,Z P C and pY, υq P C Γ, put K “ょZ, H “ょY , and

ρ “ υ´, then we write wX,υ,Z instead of pwρ,KqX . Using Yoneda, we obtain

psΓょY qX – ΓpX, Y q ,

psΓrょY,ょZsqX –

ż U

C pU b Y, Zq b ΓpX,Uq ,

rsΓょY, sΓょZsX “ pC pΓp´, Y q,ΓpX b ´, Zqq ,

rょY, sΓょZsX “ ΓpX b Y, Zq .

5.9. Proposition. Let Γ be a magmal procomonad on the magmal V -category C . Sup-
pose pY, I

υ
ÝÑ ΓpY, Y qq P C Γ. The diagram (5.23) commutes.

şU
C pU b Y,Zq b ΓpX,Uq

wXυZ //

şU 11υ

��

ΓpX b Y,Zq

şU
C pU b Y,Zq b ΓpX,Uq b ΓpY, Y q

şU inY

//
şUV

C pU b V,Zq b ΓpX,Uq b ΓpY, V q

ΓXY
2;Z

OO

(5.23)

Proof. Replace the end vertex ΓpX b Y, Zq of the diagram by the Yoneda isomorphic
pC pC p´, Y q,ΓpX b ´, Zqq. The morphism wXυZ transports to the composite

ż U

C pU b Y, Zq b ΓpX,Uq
sΓℓ
2

ÝÑ pC pΓp´, Y q,ΓpX b ´, Zqq
pC pυ´,1q

ÝÝÝÝÝÑ pC pC p´Y q,ΓpX b ´, Zqq .

It suffices to show that the two paths around (5.23) agree after we precompose the
diagram with each injection

C pU b Y, Zq b ΓpX,Uq
inU
ÝÝÑ

ż U

C pU b Y, Zq b ΓpX,Uq

and postcompose with each projection

pC pC p´, Y q,ΓpX b ´, Zqq
prV
ÝÝÑ rC pV, Y q,ΓpX b V, Zqs .

Now we need to show that two paths

C pU b Y, Zq b ΓpX,Uq Ñ rC pV, Y q,ΓpX b V, Zqs
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are equal. By Yoneda, it suffices to check them equal after taking Z “ U b Y and
evaluating at the identity (that is, on precomposing with

jUbY b 1ΓpX,Uq : ΓpX,Uq Ñ C pU b Y, U b Y q b ΓpX,Uq q .

Two commutative diagrams then show that both paths reduce to the morphism

ΓpX,Uq ÝÑ rC pV, Y q,ΓpX b V, U b Y qs

corresponding to

ΓpX,Uq b C pV, Y q
1bυV

ÝÝÝÑ ΓpX,Uq b ΓpV, Y q
Γ2
ÝÑ ΓpX b V, U b Y q

under the closed-monoidal adjunction ´ b C pV, Y q % rC pV, Y q,´s for V .

5.10. Corollary. Suppose Z is left cloaked by Y in the magmal V -category C and
pY, υq P C Γ. Then the fusion morphism (5.23) becomes the composite (5.24).

ΓpX, rY, Zsq
wXυZ //

1bυ
��

ΓpX b Y, Zq

ΓpX, rY, Zsq b ΓpY, Y q
Γ2

// ΓpX b Y, rY, Zs b Y q

Γp1,evq

OO

(5.24)

Proof. We leave this as an exercise for the reader.

5.11. Definition. We call Γ Hopf at pY, υq when wXυZ is invertible for all X,Z.

5.12. Lemma. Suppose pY, υq P C Γ is such that rY, Zs P C exists for all Z P C . Then Γ
is Hopf at pY, υq if and only if sΓ is Hopf atょΓpY, υq.

Proof. “If” is clear since wXυZ is defined as a special case of Wood fusion for sΓ. Con-
versely, suppose wXυZ : ΓpX, rY, Zsq – ΓpX b Y, Zq for all X,Z P C . For K P pC , one
easily calculates that rょY,Ks – Kp´ b Y q, so

sΓrょY,Ks –

ż U

KpU b Y q b Γp´, Uq

–

ż UZ

C pU b Y, Zq b KZ b Γp´, Uq

–

ż UZ

C pU, rY, Zsq b KZ b Γp´, Uq

–

ż Z

KZ b Γp´, rY, Zsq

–

ż Z

KZ b Γp´ b Y, Zq

– sΓpKqp´ b Y q

– rょY, sΓpKqs ,

where the fifth isomorphism uses the invertible Γ-fusion morphisms w´υZ . The composite
is (5.22) for H “ょY and ρ “ υ´.
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Suppose Z is left cloaked by Y in the magmal V -category C and pY, υq, pZ, ζq P C Γ.
Suppose Γ is Hopf at pY, υq. Then we have prY, Zs, ωq P C Γ defined by commutativity of
(5.25).

I ω //

ζ

��

ΓprY, Zs, rY, Zsq

wrY,ZsυZ

��

ΓpZ,Zq
Γpev,1q

// ΓprY, Zs b Y, Zq

(5.25)

Via Example 5.2, we obtain our unification of [7] and [40] as an application of Propo-
sition 3.8 with G “ sΓ, using Lemmas 3.6 and 5.12.

5.13. Theorem. Let Γ be a magmal procomonad on a magmal V -category C . Suppose
pY, υq P C Γ is such that rY, Zs P C exists for all Z P C . Then Γ is Hopf at pY, υq if and
only if und : C Γ Ñ C creates all cloaks by pY, υq. In this case, for any pZ, ζq P C Γ,

rpY, υq, pZ, ζqs – prY, Zs, ωq ,

where ω is defined by (5.25).

5.14. Remark. In general the V -functor und : C Γ Ñ C has neither left nor right adjoint.
Example 5.2 is where it does.

A. Lifting adjunctions and doctrinal adjunction

After my talk on Wood fusion in the Australian Category Seminar on 8 February 2023,
Steve Lack and Richard Garner suggested that the results I presented were obtainable
from adjoint lifting theorems and that I should look at Peter Johnstone’s paper [16]. This
section addresses that suggestion.

Richard Wood [40] already referred to William Keigher [17]. Johnstone states he
learned of [17] after writing [16].

We revisit the Adjoint Triangle Theorem of Eduardo Dubuc [13] in Appendix B. Now
we will see that other adjoint lifting results can be viewed as consequences of doctrinal
adjunction (in the sense of Max Kelly in [20]) involving examples as in Theorem 9 of [31]
and Theorem 1 of [32].

Let MndC denote the bicategory of monads in a bicategory C essentially as defined in
[31]. An object is a pair pA, sq consisting of an object A P C and a monoid s (called a
monad on A) in the endomonoidal category CpA,Aq. The unit and multiplication of s will
be denoted by η : 1A ñ s and µ : s ˝ s ñ s. A morphism pu, ϕq : pA, sq Ñ pB, tq (called a
monad morphism) consists of a morphism u : A Ñ B equipped with a 2-morphism

A

u
��

s // A

u
��

ϕ +3

B
t

// B

(A.26)
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in C compatible with η, µ in the obvious way. A 2-morphism σ : pu, ϕq ñ pv, ψq : pA, sq Ñ

pB, tq is a 2-morphism σ : u ñ v in C such that σs˝ϕ “ ψ ˝ tσ. Composition is performed
by pasting. There is a forgetful pseudofunctor

MndC Ñ C , pA, sq ÞÑ A . (A.27)

A morphism in MndopC “ pMndCopqop is called a monad opmorphism: the 2-morphism in
(A.26) is reversed. A morphism in MndcoC “ pMndCcoqco is called a comonad morphism.
A morphism in MndcoopC “ pMndCcoopqcoop is called a comonad opmorphism.

A.1. Example.

1. Let T be an opmagmal monad on the magmal V -category C as in Section 4. For
pX,αq P C T , T -fusion supplies a monad morphism

C

´bX
��

T // C

´bX
��

v´,α +3

C
T

// C .

2. Let G be a magmal comonad on the magmal V -category C as in Definition 2.1. For
pY, υq P C G, Wood fusion supplies a comonad opmorphism

C

rY,´s

��

G // C

rY,´s

��

w´,υ +3

C
G

// C .

Part of doctrinal adjunction is the fact that, if pu, ϕq : pA, sq Ñ pB, tq is a monad
morphism and f % u is an adjunction, then pf, ϕ̂q : pB, tq Ñ pA, sq is a monad opmorphism
where ϕ̂ : ft ñ sf is the mate of ϕ : tu ñ us. The other part is obtained by examining
adjunctions

pf, θq % pu, ϕq : pA, sq Ñ pB, tq (A.28)

in MndC. Since pseudofunctors preserve adjunctions, we use (A.27) to deduce that f % u
in C and that the counit α : fu ñ 1A and unit β : 1 ñ uf must be 2-morphisms in MndC.
Using only the first of these, a little diagram shows that θ has inverse the mate

ϕ̂ : ft
ftβ
ÝÝÑ ftuf

fϕf
ÝÝÑ fusf

αsf
ÝÝÑ sf (A.29)

of ϕ. Yet, if this mate of ϕ has an inverse at all, one sees that both α and β are 2-morphisms
in MndC. This proves:
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A.2. Proposition. A morphism pu, ϕq : pA, sq Ñ pB, tq has a left adjoint in MndC if
and only if u : A Ñ B has a left adjoint and the mate (A.29) of ϕ is invertible.

Let FunC denote the lax morphism bicategory of C. An object is a morphism X
x
ÝÑ A

in C. A morphism pu, υ, ūq : x Ñ y is a diagram

X

ū
��

x // A

u
��

υ +3

Y y
// B

(A.30)

in C. A 2-morphism pσ, σ̄q : pu, υ, ūq ñ pv, ω, v̄q : x Ñ y is a pair of 2-morphisms in C
satisfying σx ˝ υ “ ω ˝ yσ̄. A morphism pu, υ, ūq is called strong when υ is invertible. Let
sFunC denote the sub-2-category of FunC obtained by restricting to the strong morphisms.

Let us look at adjunctions pf, τ, f̄q % pu, υ, ūq in FunC. As before, because of the
existence of forgetful pseudofunctors, we must have adjunctions f % u and f̄ % ū in C
such that the counits and units form 2-morphisms pα, ᾱq and pβ, β̄q in FunC. The first of
these yields that the mate υ̂ of υ is a left inverse for τ while the second yields that υ̂ is
a right inverse for τ . On the other hand, any inverse for υ̂ does render pα, ᾱq and pβ, β̄q

2-morphisms.

A.3. Proposition. A morphism pu, υ, ūq : x Ñ y has a left adjoint in FunC if and only
if both u : A Ñ B and ū : X Ñ Y have left adjoints and the mate υ̂ of υ is invertible.
Any left adjoint in FunC is in sFunC. Any pf, τ, f̄q in sFunC has a right adjoint in FunC
if and only if f and f̄ have right adjoints in C.

Now suppose C admits the construction of algebras in the bicategorical sense: for each
monad pA, sq, there is an Eilenberg-Moore s-algebra xs : As Ñ A with action ξs : sxs Ñ xs
for which the functor

CpX,As
q ÝÑ CpX,Aq

Cp1X ,sq , pX
h
ÝÑ As

q ÞÑ pxsh, sxsh
ξsh
ÝÝÑ xshq

is an equivalence for all X P C. Then we have a pseudofunctor

EM : MndC Ñ sFunC (A.31)

defined as follows. For each monad pA, sq, we put EMpA, sq “ xs. For each monad
morphism pu, ϕq : pA, sq Ñ pB, tq, we have a t-algebra

tuxs
υxs
ÝÝÑ usxs

uξs
ÝÝÑ uxs , (A.32)

so there exist (uniquely up to isomorphism) a morphism ū : As Ñ At and an isomorphism
xtū

υ
ÝÑ uxs such that υ becomes a t-algebra isomorphism from pxtū, ξtūq to the t-algebra

(A.32). We put EMpu, ϕq “ pu, υ, ūq : xs Ñ xt; it is a strong morphism. For a 2-morphism
σ : pu, ϕq ñ pv, ψq : pA, sq Ñ pB, tq, there is a unique 2-morphism σ̄ : ū ñ v̄ such that
pσ, σ̄q : pu, υ, ūq ñ pv, ω, v̄q : xs Ñ xt is a 2-morphism in FunC; we put EMσ “ pσ, σ̄q.

Here is a restatement of an observation of Appelgate [1]; also see Lemma 1 of [16].
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A.4. Proposition. The pseudofunctor (A.31) is an equivalence on homcategories.

Proof. Take pu, υ, ūq : xs Ñ xt in sFunC and let τ : ytu Ñ ūys be the mate of υ´1 :
uxs Ñ xtū under the adjunctions ys % xs and yt % xt. Now put

ϕ “ ptu – xtytu
xtτ
ÝÝÑ xtūys

υys
ÝÝÑ uxsys – usq . (A.33)

Recalling how the unit and multiplication of the monads are obtained from the unit and
counit of the generating adjunctions, we routinely check that pu, ϕq : pA, sq Ñ pB, tq is a
morphism of MndC (a string diagram proof is attractive) and that EMpu, ϕq – pu, υ, ūq.
From the definition of EM on 2-morphisms we see, for each pσ, σ̄q : EMpu, ϕq ñ EMpv, ψq :
xs Ñ xt, that σ : pu, ϕq ñ pv, ψq is the unique 2-morphism of MndC with EMσ “ pσ, σ̄q.

A.5. Remark. In the above proof, notice that, since composing with xt is conservative,
ϕ is invertible if and only if τ is. This is Lemma 3 of Johnstone [16].

A.6. Corollary. A monad morphism pu, ϕq : pA, sq Ñ pB, tq has a left adjoint in MndC
if and only if EMpu, ϕq has a left adjoint in FunC.

The second sentence of Corollary A.7 is Theorem 4 of [16] and the dual of Corollary
2.3 of [17]. Furthermore, by way of Example A.1, it relates to Theorem 3.6 of [7] and to
our Proposition 3.8.

A.7. Corollary. A monad morphism pu, ϕq : pA, sq Ñ pB, tq has a right adjoint in
MndC if and only if EMpu, ϕq has a right adjoint pr, ρ, r̄q in sFunC. In particular, if u
has a right adjoint r and ϕ is invertible then ū has a right adjoint r̄ with xsr̄ – rxt.

B. Liftings

We work in a bicategory C. We use the notation

A

S

��

K

rifpS,Bq

77

B
''

εSB��

B

(B.34)

to depict a right lifting rifpS,Bq (see [38]) of the 1-morphism B through the 1-morphism
S. The defining property is that pasting with (B.34) gives a bijection

CpK ,A qpH, rifpS,Bqq – CpK ,BqpSH,Bq .

(This concept is a dual of Kan extension.)
The right lifting is said to be respected by the 1-morphism D

K
ÝÑ K when εSB ¨ K

exhibits rifpS,Bq ¨ K as a right lifting of B ¨ K through S. If S has a right adjoint T
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then rifpS,Bq – T ¨ B and so is respected by all 1-morphisms K. On the other hand, if
rifpS, 1Bq exists and is respected by S then S % rifpS, 1Bq.

If B α
ÝÑ C is a 2-morphism and B and C have right liftings through S, we write

rifpS,Bq
rifpS,αq
ÝÝÝÝÑ rifpS,Cq for the 2-morphism defined by

ˆ

SrifpS,Bq
SrifpS,αq
ÝÝÝÝÝÑ SrifpS,Cq

εSC
ÝÑ C

˙

“

ˆ

SrifpS,Bq
εSB
ÝÑ B

α
ÝÑ C

˙

.

As with all cartesian morphisms, we have this simple property.

B.1. Proposition. Suppose A
S
ÝÑ B

U
ÝÑ C

C
ÐÝ K are 1-morphisms such that rifpU,Cq :

K Ñ B exists. Then

rifpS, rifpU,Cqq – rifpUS,Cq

in the sense that one side exists if and only if the other does and εUS
B is the pasted composite

of εSrifpU,Bq
and εUB.

B.2. Proposition. Suppose A
S
ÝÑ B

M
ÝÑ B

B
ÐÝ K

K
ÐÝ D are 1-morphisms. Sup-

pose η : 1B ñ M is a 2-morphism with ηB P CpK ,Bq and ηBK P CpD ,Bq regular
monomorphisms, and ηC P CpK ,Bq and ηC 1 P CpD ,Bq monomorphism for all K

C
ÝÑ B

and D
C1

ÝÑ B.

(i) For all B P CpK ,Bq,

B
ηB

//MB

ηMB
//

MηB
//
M2B (B.35)

is an equalizer in CpK ,Bq.

(ii) Suppose right liftings rifpS,MBq and rifpS,M2Bq exist and are respected by K. The
existence of a right lifting rifpS,Bq respected by K is equivalent to the existence of
an equalizer

E κ // rifpS,MBq

rifpS,ηMBq
//

rifpS,MηBq

//
rifpS,M2Bq (B.36)

preserved by the functor CpK ,A q
CpK,1A q
ÝÝÝÝÝÑ CpD ,A q.

(iii) In the situation of (ii), there is an isomorphism ω : E – rifpS,Bq whose composite
with rifpS, ηBq is κ.
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Proof. For (i), we know that ηB is the equalizer of some pair α, β : MB Ñ C. Take
ϕ : D Ñ MB such that ηMB ¨ ϕ “ MηB ¨ ϕ. Then

ηC ¨ α ¨ ϕ “ Mα ¨ ηMB ¨ ϕ “ Mα ¨ MηB ¨ ϕ “ Mpα ¨ ηBq ¨ ϕ

and similarly ηC ¨ β ¨ ϕ “ Mpβ ¨ ηBq ¨ ϕ. So ηC ¨ α ¨ ϕ “ ηC ¨ β ¨ ϕ. Since ηC is a
monomorphism, we have α ¨ ϕ “ β ¨ ϕ so that ϕ “ ηB ¨ ψ for some ψ which is unique
because ηB is also a monomorphism.

For (ii), using (i), we have

CpK ,A qpA,Eq

– tA
σ
ÝÑ rifpS,MBq : rifpS, ηMBq ¨ σ “ rifpS,MηBq ¨ σu

– tSA
τ
ÝÑ MB : ηMB ¨ τ “ MηB ¨ τu (B.37)

– CpK ,BqpSA,Bq

– CpK ,A qpA, rifpS,Bqq .

naturally in A P CpK ,A q.
For (iii), by Yoneda, there is an isomorphism ω : E – rifpS,Bq inducing the composite

isomorphism (B.37); this gives commutativity of the square

SE Sκ //

Sω

��

SrifpS,MBq

εSMB

��

SrifpS,Bq
εSB

// B
ηB

//MB .

By applying the bijection

CpK ,BqpSE,MBq – CpK ,A qpE, rifpS,MBqq

we obtain the result stated.

B.3. Proposition. Suppose A
S
ÝÑ B

U
ÝÑ C and D

K
ÝÑ K

B
ÝÑ B are 1-morphisms.

Suppose M :“ rifpU,Uq exists and is respected by all 1-morphisms K Ñ B. Suppose
the 2-morphism η : 1B ñ M , defined by εUU ¨ Uη “ 1U , is such that ηB P CpK ,Bq and
ηBK P CpD ,Bq are regular monomorphisms, and ηC P CpK ,Bq and ηC 1 P CpD ,Bq

are monomorphisms for all K
C
ÝÑ B and D

C1

ÝÑ B. Suppose both QB :“ rifpUS,UBq

and QMB :“ rifpUS,UMBq exist and are respected by D
K
ÝÑ K . Then rifpS,Bq has the

same universal property as the equalizer of the pair of 2-morphisms from QB to QMB in
CpK ,A q corresponding (via the universal property of QMB) to the two paths in (B.38).
Moreover, rifpS,Bq is respected by K if and only if the equalizer is preserved by CpK, 1A q.

USQB

UηSQB

��

εUS
UB // UB

UηB
// UMB

UMSQB –
// UrifpU,USQBq

UrifpU,εUS
UBq

// UrifpU,UBq

–

OO

(B.38)
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Proof. By Proposition B.1, rifpS,MBq – rifpS, rifpU,UBqq – rifpUS,UBq “ QB and
rifpS,M2Bq – rifpS, rifpU,UMBqq – rifpUS,UMBq “ QMB; so they exist by assumption
and Proposition B.2 applies. Furthermore, the parallel pair in (B.36) transports across
these isomorphisms to the pair corresponding to the two paths in (B.38).

B.4. Corollary. [Dubuc Adjoint Triangle Theorem [13]] Suppose the 1-morphism B
U
ÝÑ

C has a right adjoint R with the unit η : 1B ñ RU a regular monomorphism preserved by
the functors CpB, 1Bq for all 1-morphisms B with target B. A 1-morphism A

S
ÝÑ B has

a right adjoint if and only if the composite US has a right adjoint Q and the coreflexive
pair of 2-morphisms

QUSQU
QUηSQU

// QURUSQU
QURαU

''

QU

βQU
::

QUη
// QURU

(B.39)

admits an equalizer preserved by the functors CpB, 1Bq for all 1-morphisms B with target
B, where α, β are the counit and unit for US % Q.
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