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WOOD FUSION AND THIEBAUD ALGEBRAICITY

To the memory of Bill Lawvere,
with gratitude for his mathematical foundations.

ROSS STREET

ABSTRACT. The goal is to show how a 1978 paper of Richard Wood on monoidal
comonads and exponentiation relates to more recent publications such as Pastro et alia
[30] and Bruguiéres et alia [7]. In the process, we mildly extend the ideas to procomonads
in a magmal setting and suggest it also works for algebras for any club in the sense of
Max Kelly [18, 19].

1. Introduction

Richard Wood’s paper [40] deals with a closed comonad G on a closed category €. He
actually writes for the case where % is closed monoidal; then a closed comonoid is the
same as a monoidal comonad. The paper provides necessary and sufficient conditions for
the natural promonoidal structure on the category €¢ of Eilenberg-Moore coalgebras for
G to be closed (that is, to be representable by an internal hom). It also provides necessary
and sufficient conditions for €“ to be closed in that way and for the underlying functor
und : €% — € to be strong closed (that is, to preserve the internal hom).
The process involves morphisms

wey = GIY, 2] & [ay, 621 25 v, 62] (1.1)

for Y % GY an object of €% and Z an object of 4. Here I am denoting the closed
structure on G by G% where the closed structure on ¢ is what I think of as the “left” kind.
These are what I will call Wood fusion morphisms.

An aim of the present paper is to relate Wood fusion to the fusion occurring in more re-
cent papers such as [35, 7, 8, 29]. Another aim is to generalize the results from comonadic-
ity to the kind of algebraicity developed in the PhD thesis [39] of Michel Thiébaud written
under the supervision of Bill Lawvere.

It became clear that the structure-lifting results apply to more general structures than
closed categories %. In particular, we could work with algebras % for a club in the sense
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of Kelly [18, 19]. It is about the functors providing the operations (such as binary tensor
product), while the structural natural transformations (such as associativity constraints)
and axioms thereon (such as the Mac Lane pentagon) carry over automatically to the
constructions. Since the forgetful functor from the category of coalgebras is to be strong
and the comonad is to be coherent, the structural natural transformations are coalgebra
morphisms. Since the forgetful functor is also conservative, the axioms lift. Moreover, we
are mainly interested in the existence of lifted right adjoints; they gain structure as mates
under the adjunctions. In particular, the results apply to skew monoidal closed categories
(as in [37] for example).

However, rather than review the notion of club and to keep the notation simple, I
have written for the case of magmal categories, that is, categories % equipped with a
binary functorial operation ¢ x € — % which we still call and write as a tensor product.
Indeed, as is our custom, we will be a little more general and work with hom ¥ ’-enriched
categories throughout.

As pointed out by Thiébaud [39], monadicity and comonadicity are both special cases
of his construction using a procomonad I". We find that we can extend Wood’s results to
magmal procomonads I' on magmal ¥ '-categories € .

Appendices on adjoint lifting theorems of [1, 13, 16, 17| are added to provide a per-
spective suggested by Richard Garner and Stephen Lack. A recent paper [6] about lifting
closed structures to the category of algebras for a monad, which is not necessarily op-
monoidal, has come to my notice.

2. Magmal comonads and cloaks

We work with categories enriched in a suitably complete and cocomplete, symmetric,
monoidal category ¥ as base for enrichment (see Kelly [22]). The tensor of ¥ is denoted
by U ® V and the tensor unit by /. At times, we omit the prefix “7#-" taking it for
granted.

2.1. DEFINITION. A ¥ -category € is magmal when it is equipped with a ¥ -functor & :
C ®C — € (this overworked notation, written as usual between the arguments). A ¥ -
functor S : € — 2 between magmal ¥V -categories is called magmal when it is equipped
with a ¥ -natural transformation Sy as in (2.2).

CRQE —2 ¢

s@sl 2 ls (2.2)
A ¥V -natural transformation 0 : S = T : € — P between magmal ¥ -functors is called
magmal when it satisfies the equation 8cgc0Sa.c.cr = Ta.sc,.5c:0(0c®0cr) for allC,C" € €.
A comonad G = (G,e,9) is magmal when the functor G : € — €, and the ¥ -natural
transformations € : G = 1l¢ and § : G = G o G are all magmal.
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2.2. DEFINITION. Suppose € is a magmal ¥ -category and Y,Z € €. We say Z is left
cloaked by Y when there is an object [Y,Z] € € and a morphism

evy [V, Z]QY — Z
such that the family
CX, Y, Z]) - € XQY,7),

¥ -natural in X obtained by the Yoneda Lemma, consists of isomorphisms. In the language
of Appendiz B, [Y,Z] = 1if(— ®Y, Z) and ev}, = £, in the 2-category ¥ -Cat. We say
[Y, Z] is the left cloak of Z by Y'; if these exist for all Z, we have the components

evy [V, Z]®Y — Z and vek : X - [V, X QY]

of the counit and unit of an adjunction — QY — [Y,—]. If left cloaks Y, Z] exist for all
Y, Z €€, we say € is left cloakal.

2.3. PROPOSITION. Suppose S : € — P is a ¥ -functor between magmal ¥ -categories
andY € €. Suppose € admits left cloaks by Y and & admits left cloaks by SY . There is
a bijection between families

SQ;X7Y : SX@SY - S(X@Y)
YV -natural in X and families
Stz 1 SIY, Z] — [SY,SZ]

Y -natural in Z.
PROOF. This is an application of the mate bijection (in the sense of [21]) between ¥'-
74

=Y S5y _
natural (—® SY)o S LR (—®Y) and So[Y,—] —— [SY,—] oS under the
adjunctions —®Y H [Y,—] and —® SY H [SY, —]. =

Obviously every monoidal category, functor, and natural transformation has an un-
derlying magmal structure.

Let G be a magmal comonad on a magmal ¥ -category %. So we have ¥ -natural
families ex : GX — X, 6x : GX - GGX and Go.xy : GX®GY - G(X®Y).

As for monoidal ¥ -categories (see [40, 28, 27]), the category € of Eilenberg-Moore
(G-coalgebras becomes magmal with tensor product

X50X)Y 2aY)= (XY 2 axecy X qgxeY)) .  (23)

This gives the construction of coalgebras for comonads (in the sense of [31]) in the 2-
category Mag(7#-Cat) of magmal ¥ -categories, magmal ¥ -functors, and magmal ¥'-
natural transformations.

The following result is an application of Proposition B.2 and yet we still give a direct
proof within the present context.
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2.4. LEMMA. Let G be a magmal comonad on a magmal ¥ -category €. Suppose cloaks
[(Y,0),(GZ,87)] and [(Y,v),(G*Z,0¢z)] exist in € for the objects (Y,v) and (Z,() of
€C. Then the cloak [(Y,v),(Z,()] exists if and only if the parallel pair

[176Z]
[(Y,v), (GZ,02)] [(Y,v),(G*Z, 662)] - (2.4)
[1,G¢]

has an equalizer (E, k) 2 [(Y,v),(GZ,82)] in €. If that holds, then

[(Y7U)’ (Zv g)] = (E7 KV)

(Yov)

and the counit eV(Z”O

is determined by commutativity of the square (2.5).

(Y,v)
V(z,0)

(B, k) ® (Y, v) (Z,¢)

k@ll lc (2.5)

[(Y,0),(GZ,62)] @ (Y, v) —577—(GZ,dz)

eV(Y v)

(GZ,67)
PROOF. We have the equalizer
(2.0) ————(GZ.82) — (G*Z,642) (2.6)
—

in €¢. The “only if” direction is then clear since right adjointness of the functor [(X, ), —]
implies it preserves the equalizer (2.6). For the other direction, note that morphisms
(A, «) ER (E,k) are in bijection (via composition with k) with morphisms (A4,q) %
[(Y,v), (GZ,62)] such that [1,]og = [1, G¢]og and so with morphisms (A4, 0)Q (Y, v) 2
(GZ,07) such that ; o h = G o h. Using the equalizer (2.6), we see that (F, k) is the
stated cloak and that the last sentence of the lemma holds. [

The following lemma is essentially in [40].

2.5. LEMMA. Let G be a magmal comonad on a magmal ¥ -category €. Suppose the
cloaks [Y, Z] and |GY,GZ] exist in €. Then a cloak of the cofree object (GZ,d7) by any
object (Y,v) in € is given by the cofree object (G|Y, Z], dpy,z)) with the composite

GY

Gy, Z1®Y 2% [ay,cZl@ GY 9% g7

(Yov)
as €V iczs,)-
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PROOF. We have the chain of isomorphisms

G°((A,a), (G[Y, Z],61v.2)))

¢(A Y, Z])

C(AQY,Z)

CE(ARY, 6(a®v)),(GZ,5,))
~ G9((A,0)® (Y, v), (GZ,67))

lle

lIe

which by Yoneda is induced by the evaluation morphism given by the clockwise path
around the diagram (2.7).

0 v
aly,zley —21% L qaly, 21 Gy — L G(aY, Z] ® Y)
&v lGE[Y,Z]®1 J/G(E[Y,Z]®1)
lGé@l lGev‘Z/
[GY,GZ]|® GY = GZ
Vez
Diagram (2.7) thus shows evgg’g?az) to be the composite stated in the lemma. n

3. Wood fusion morphisms

Notice that, if the cloak [Y,GZ] exists, then the evaluation in Lemma 2.5 corresponds,
under the universal property of cloaks, to the composite

wey = GIY, 7] %5 [aY, 621 2 [v,67] . (3.8)

3.1. DEFINITION. The w, z of (3.8) are called Wood G-fusion morphisms.

Notice that the Wood fusion morphism for cofree coalgebras occurs in the construction
of a new skew-closed structure using a closed comonad; see Proposition 3 of [37].

We will be interested in when the Wood fusion morphisms are invertible. As with
ordinary fusion (recalled in Section 4), invertibility for an arbitrary G-coalgebra follows
from invertibility for cofree G-coalgebras.

3.2. PROPOSITION. For a G-coalgebra (Y, v) and any object Z, the Wood fusion morphism
Wy, z 15 invertible if ws, 7 s invertible and ws, z is an epimorphism.

PROOF. For any coalgebra (Z, (), we have an equalizer of the form

0z
77— Gz G27 (3.9)
G(¢
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which is preserved by all functors (that is, it is an absolute equalizer). It follows that the
rows of (3.10) are coequalizers. The vertical morphisms give two composable morphisms
of coequalizer diagrams (that is, the appropriate diagrams commute using naturality of
G, and coassociativity properties of v and §).

G[éy,1]
G[G2Y, 7] cicen)  G[GY, 21— L qry, 2]
_
a5 | [Goy 1] e o les X
(C3Y,GZ] (ool [G2Y,G2]— L ay, 62 (3.10)
_
Bav11| 6y 1] [y J{o3
_— v,1
(C2Y,GZ] (eon [GY,GZ] — U L v.G2
_

If the middle vertical composite is invertible and the left vertical composite is an epimor-
phism then the right vertical composite is invertible. [

3.3. DEFINITION. The closed comonad G on % is Hopf-Wood when the Wood fusion
morphisms w, z are all invertible. By Proposition 3.2, it suffices to know that all ws,
are invertible; then the property can be expressed without reference to Eilenberg-Moore
coalgebras.

3.4. LEMMA. Under the conditions of Lemma 2.5, the parallel pair (2.4) is isomorphic to
the parallel pair

Gwy, 208y, 7]
— = 9
(GLY, Z], é1v,21) (GlY,GZ],6v.cz) - (3.11)
G[1]

3.5. DEFINITION. A strong magmal functor K : o/ — € is said to create the cloak of
B by A in of when the cloak of KB by KA exists in €, and there exist H in </ and
7: KH ~[KA, KB] in € with the following two properties:

(i) there exists a unique morphism € : H® A — B such that the square

KHQKA— L [KA KB|®@ KA

Kzl Jegg (3.12)
K(H®A) - KB

commutes;
(i) the object H with € is a cloak for B by A.

The following lemma is straightforward.
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3.6. LEMMA. Suppose (3.13) is a pullback of magmal ¥ -categories and strong magmal
¥ -functors with W fully faithful. Suppose A, B € < are such that K’ creates the cloak of
VB by VA. If [VA,VB] ~ VH for some H then K creates the cloak of B by A.

A S—y

Kl lK’ (3.13)

C—— ¢
3.7. LEMMA. Suppose |Y, Z]| and |GY,GZ] exist in €. The forgetful functor
undg : €€ > €

creates the exponential [(Y,v),(GZ,07)] of Lemma 2.5 if and only if |Y,GZ] exists in €
and the Wood G-fusion morphism (3.8) is invertible.

PROOF. Assume [Y, GZ] exists in € and the Wood G-fusion morphism (3.8) is invertible.
In the definition of creation, take H = (G[Y, Z], d[y,z)) and 7 = w, z. Commutativity of
diagram (3.12) means, in this case, that € must be the clockwise route around the diagram

¢ v
Gy, Zloy — =2 [av,czley —2 L v,zleY
1@% ll@v levgz
2 VGaz

and the diagram shows that e is the evaluation displayed in Lemma 2.5. By Lemma 2.5
we have what we need for “if”.

Now suppose undg : €% — € creates the exponential [(Y, v), (GZ, §z)] which we know
from Lemma 2.5 is the object (G[Y, Z],d[y,z]) with the evaluation € as displayed in that
lemma. Since undg(GZ,dz) = GZ and undg (Y, v) =Y, we have the existence of [Y, GZ]
and that there is an isomorphism 7 : G[Y, Z]| = [Y,GZ] such that & = evd, o (T ® 1).
This last equation means that 7 corresponds to € under the universal property of [Y, GZ];
that is, 7 = w,, z, which proves “only if”. [

3.8. PROPOSITION. Let G be a magmal comonad on a magmal ¥ -category €. Suppose
(Y,v) € €Y is such that [Y, Z] and [GY,GZ] exist for all Z € €. The Wood G-fusion
morphisms w, z are invertible for all Z if and only if undg : €¢ — € creates all cloaks
by (Y,v). In this case, for any (Z,() € €,

[(Y,0),(Z, Q] = ([Y. Z],w, z o [1,€]) -

PROOF. Lemma 3.7 gives “if”. Suppose all w(y,,)y are invertible. We will use facts
involved in the Beck monadicity theorem [26] in dual form for comonads. We have the
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cosplit equalizer (3.9). From Lemma 3.7, the parallel pair in equalizer (2.4) is taken by
Ug to the cosplit pair

[1,62]
[V,GZ] [V,GGZ] (3.14)
LGl

which, by applying [Y, —] to (3.9), has the cosplit equalizer

[1,62]
Y,GZ] "IV, GGZ] . (3.15)
[1,G¢]

v, 2] —=

Since undg is comonadic, there exists a unique G-coalgebra ([Y, Z], k) and an equalizer

[176Z]
_—
(Y. GZ], k1) — (Y, G*Z], k2) (3.16)

([Y, 2], 1) —2

in €Y, where (using Lemma 3.4) the coactions k; and ko are transported from the coac-
tions dpy,z1 on G[Y, Z] and v,z on G[Y,GZ] under the invertible Wood fusion mor-
phisms. So we have condition (ii) for undg to create the cloak. For condition (i), note that
commutativity of (2.5) in Lemma 2.4 with k = [1, (] shows that ev}, : ([, Z], k)®(Y,v) —
(Z,() is the G-coalgebra morphism for the unique solution to diagram (3.12). =

4. Fusion for opmagmal monads

Let T be an opmagmal monad on the magmal ¥ -category %. The monad structure
involves a unit 7 : 1¢ — T and a multiplication p : TT" — T. The opmagmal structure
involves a natural family of morphisms Th.xy : T(X ® Y) - TX ® TY. We denote
the magmal category of Eilenberg-Moore T-algebras by €7 with strong magmal forgetful
functor undy : €7 — €. The tensor product for €7 is defined by

(TX % X)@(TY 5 Y) = (T(X@Y) 2TX®TY“—®B>X®Y) .
For X € ¢ and (Y, 3) € 7, we call the composite v = vy s:

TX®Y)BTXxeTY 2 rx ey (4.17)

a T-fusion morphism (as featured in [7]).

Suppose T : € — € has a right adjoint functor G. As discussed in [15], G becomes
a comonad on % and there is an isomorphism of categories €7 =~ €“ over €. These
matters involve the calculus of mates (in the sense of [21]) as does the fact that G’ becomes
a monoidal comonad and the isomorphism €7 =~ ¥“ becomes strong monoidal.
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4.1. PROPOSITION. Suppose T is an opmagmal monad on the magmal ¥V -category € .
Suppose G is a right adjoint magmal comonad for T. Let (Y,8) € €T correspond to
(Y,v) € €9. The T-fusion morphism vx g is invertible for all X € € if and only if the
Wood G-fusion morphism w, z is invertible for all Z € €.

PROOF. Apply the Yoneda Lemma to the following commutative diagram where o : TG —
1 is the counit of T' H G.

CTXR®Y,Z) = €(X,G[Y, Z])
f(l@o’y,l
Z(108,1) C(TXQTGY,Z) %(1,G5)
(1®Tv,1)
CTXRTY,Z) %(Ga,1) ¢ (X, |GY,GZ])
©(Ga2,1) C(TX®GY),Z) %(1,[v,1])
¢ (T(1Qv),1
CI(X®Y).2) ¢ (X, [v,G2))
where o : TG — 14 is the counit of T - G. n

4.2. EXAMPLE. Let % be a braided closed monoidal category. Let H be a monoid in
the monoidal category of comagma in 4. Then — ® H : € — % is an opmagmal monad
with right adjoint [H, —] : € — % . Proposition 4.1 relates Wood fusion for the magmal
comonad [H, —] with the fusion morphism

HOHXLHoHOH % HoH

for H. We say H is Hopf when its fusion morphism is invertible. This is equivalent to
— ® H Hopf and to [H, —] Hopf-Wood.

5. Procomonads

Let 7 be a symmetric closed monoidal category which is complete and cocomplete. Let
M = ¥-Mod be the bicategory of ¥ '-categories and #-modules in the terminology of
[33, 12] and elsewhere; modules are also called “bimodules” by Lawvere [24], and first
“profunctors” [4] and then “distributors” [5| by Bénabou. The bicategory 9t has homs
enriched in 7-Cat; the hom (7, B) is the ¥ -functor ¥ -category [BP ® o7, ¥]. Com-
position of #-modules M : &/ - % and N : 8 - € is defined by coends

(N o M)(C, A) — JB M(B,A)® N(C, B) .
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Each ¥ -functor F' : &/ — A gives ¥-modules F, : &/ - A and F* : 8 -» o with
F, - F* in 9M; indeed, F,(B,A) = #(B,FA) and F*(A,B) = #Z(FA,B). A module
M : of - A is called Cauchy when it has a right adjoint in 9. A module M : o - A
is called convergent or representable when M =~ F), for some ¥ -functor F : o/ — 4.

We write .# for the ¥ -category with one object 0 and hom .#(0,0) = I (the tensor
unit of #'). Then M(7,€) = [€°P, ¥], the category of ¥ -presheaves on €. Composition
with N € M(A,€) transports to a left adjoint ¥ -functor

N : [BP, V]| — €7, V]
where

N(F)(0) = JB F(B)® N(C,B) sothat N(%(—,B)) = N(—,B) . (5.18)

In fact, N — N is the object function of a biequivalence between the bicategory Ot
and the 2-category P of ¥ -presheaf categories, left adjoint #'-functors, and ¥ -natural
transformations.

A ¥V -procomonad is a comonad in 9t and so consists of a ¥ -category %, a #-module
I' : € » €, a V-natural transformation ¢ : I' = 1lg, and a ¥ -natural transformation
0 : I' = T' oI satisfying the coassociativity and counital conditions. We say I' = (T, ¢, J)
is a ¥ -procomonad on €. For any ¥ -category o, we obtain a #-comonad 9t(1,,,[") on
the #-category M (o7, ¢). Then we have the #-category M(a7, €)™ 1« 1) of Eilenberg-
Moore Mi(1,,)-coalgebras. In particular, when &/ = .#, we obtain a ¥-comonad r
on the presheaf ¥-category [¢°P, ¥] and its ¥ -category [€°P, #|' of Eilenberg-Moore
[-coalgebras.

The following definition agrees with the category 4 defined by Thiébaud [39] in the
case ¥ = Set.

5.1. DEFINITION. The ¥ -category of I'-algebras in € is defined by the pullback (5.19) in
¥V -Cat of the underlying ¥ -functor along the Yoneda embedding x.

Cgl—‘ &F [cgop ’ /y] r

undl Jund (5.19)

¢ ————— ¢, 7]

So such a I'-algebra consists of an object C' € € equipped with a coaction morphism
v 1 —T(C,C), subject to the two axioms (5.20). We will write vx : €(C, X) — I'(C, X)
for the natural family corresponding to v under the Yoneda bijection. Similarly we have

v E(X,0) > T(X,0).
— 2, T(C,C)®T(C,C)

I
Wl K ”l fﬂc (5.20)

[(C,C) w7 ¢(C.C) r(C,C)— [ I(X,0)®(C, X)

dc,c
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We will call any ¥ -functor into €, isomorphic over € to und : €% — ¥, Thiébaud
algebraic over % .

5.2. EXAMPLE. The construction ¢" includes the Eilenberg-Moore constructions for both
¥ -monads and ¥ '-comonads.

1. f T = (T,n,p) is a #-monad on the ¥ -category ¢ and we take I' = T™ so that
['(X,Y) = €(TX,Y) with counit £ and comultiplication § induced by the unit 7
and multiplication u then 61 =~ €7, the ¥ -category of T-algebras.

2. If G = (G,¢,6) is a #-comonad on the #-category € and we take I' = G, so that
'Y, Z) = €(Y,GZ) with counit and comultiplication induced by those of G then
€' ~ €, the ¥ -category of G-coalgebras.

The two main closure properties Thiébaud proved in [39] were that Thiébaud alge-
braicity is closed under pullback and exponentiation. We now look at that.

Given a #-functor W : & — ¥ and a ¥ -procomonad I' on %, we have the ¥-
procomonad 'y = W* o T o W, on Z; it is the lifting of I' through W, in 9 (see Section
2 of [31]).

5.3. PROPOSITION. The following square is a pullback.

N

undJ/ lund

PROOF. Using Yoneda, we deduce that 'y (D', D) =~ I'(W D', W D). The remaining de-
tails are routine. n

5.4. COROLLARY. Thiébaud algebraicity is the closure under pullback of comonadicity.

Given ¥ -categories &/ and %, each ¥ -procomonad I' on % defines a #-procomonad
' on [«/, %] via the commutative diagram (5.21).

F,(zf

[, €] [, €|

[Lw]{ T[ld,x]* (5.21)
(7, [6°, V)| e [ [, V]

It is the lifting of [1,/, ], through [1./, k], and satisfies the simple formula:
J ['(F'A FA)
A

5.5. PROPOSITION. [, €' =~ [«/,€"] over [/, €.
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PROOF. The pullback (5.19) is preserved by exponentiation [«7, —] by «7. The Eilenberg-
Moore construction of coalgebras in #-Cat is also preserved by exponentiation. So we
have the pullback

[”Qfa cgl"] I [%7 [(gop’ /V]][ldj]

[1g¢7und]l lund

o, €| ——— [, [€°P, V]] .

[1&?7;]
The result now follows from Proposition 5.3 with W = [1,, X], the definition (5.21) of
', and the second item of Example 5.2. [

An object 2" of a monoidal bicategory M (see [12]|) is magmal when a 1-morphism
P:2Z®2%Z — Z is specified. For example, every monoidale (called pseudomonoid by
[12] and elsewhere) in 91 has an underlying magmal object.

In particular, a magmal object in #’-Cat is called a magmal 7 -category as in Defini-
tion 2.1. A module M : ¢ - 2 between magmal ¥ -categories is called magmal when it
is equipped with a #’-natural family M5 of morphisms

MQ;[C)’E; - M(D,C)®M(D',C") > MDD, C®C);
such families, by the universal property of coend and Yoneda’s Lemma, are in bijection
with #-natural families of morphisms
" D,D’
Myé o M(D,C)®M(D',C"Y® 2(D",D® D) > M(D",C®C") ;
and in bijection with #-natural families of morphisms
Rexel
M, C(CRC,C"YQM(D,C)® M(D',C") - M(D®D',C") .
A module morphism o : M = N is magmal when
ADeD’,CRC’ © Mz;[c){g = NQ;g:g: o (apc®ap ) .

A V-functor S : ¥ — & is magmal as in Definition 2.1 if and only if the module S, is.
Using the Yoneda Lemma, we see that this amounts to a #-natural family of morphisms

Sy = Spccr : SCQSC' — S(C®C')

as in diagram (2.2). Call S strong magmal when all Sy ¢ v are invertible.
If € is a small magmal ¥ -category then the presheaf ¥ -category € = [€°P, ¥] has
the Day convolution magmal structure

ERE €
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defined by

XY
(F+F")Z = C(Z,XQY)®FXQF'Y

The Yoneda embedding % : € — % is strong magmal and has the (bicategorical) universal
property of the magmal small cocompletion of €”: for any small-cocomplete magmal 2",
the category of [strong-lmagmal ¥ -functors ¢ — 2 is equivalent (via left Kan extension
along k) to the category of colimit-preserving [strong-|magmal ¥ '-functors ¢ — 2.
A procomonad I = (I, £, §) on a #-category 2" is magmal when I, €, § are all magmal.
Let I' be a magmal procomonad on the magmal ¥-category €. Then I is a magmal
comonad on €. To obtain I’ we use the isomorphisms

UVXY
D(F)+I'(F') ~ J FUQFVRIX,U)T(Y,V) ¢ (- XQ®Y)
and
B Uv
F(F*F’);J FUQFVQI(-URV),

to transport SUV lry @ 1pv @ Iy to obtain sz’F/ : T(F)+I[(F') — L(F+F"). Using
(2.3), we obtain a magmal structure on % T. This restricts along the fully faithful 7-
functor X' : € — € ! to a magmal structure on 6" which is defined by

(X, 15, X)) ® <Y, 5T, Y)>

XY

= <X®Y, 158% 1(X, X)®F(YY)2—XY>F(X®YX®Y)> .

5.6. DEFINITION. Suppose S : € — Z is a V¥ -functor between magmal ¥ -categories.
Suppose Z is left cloaked by Y in €. We say S preserves the left cloaking of Z by Y when
S|Y, Z] provides a left cloaking of SZ by SY . If this holds for all'Y,Z then we say S is
strong left cloakal; by Proposition 2.3, it follows that S s magmal, but it is not necessarily
strong magmal.

5.7. PROPOSITION. For any magmal ¥ -category €, the convolution magmal presheaf V' -
category % is left cloakal. For H, K € ‘5 the left cloaking of K by H s given by

~

[H, KU = L[HV,K(U@V)] ~ ¢(HKU®-)) .

In particular, (XY, %Z]X = €(X ®Y,Z) so that the Yoneda embedding x : € — A
preserves any left cloakings € admits.

PROOF. This follows mutatis mutandis the proof by Day [9] in the monoidal case. ]
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5.8. DEFINITION. The fusion morphisms for magmal procomonad I' are the Wood fusion
morphisms for the magmal comonad I' restricted to representables.

Let us make this definition more explicit. According to Definition 3.1, Wood fusion
for I' is the composite

[p,1]

W, = D[H, K] % [[H,TK] % [1,TK] (5.22)

for (H,p)e 4 T and K € €. For X,Z € € and (Y,v) e 67, put K = xZ, H = %Y, and
p = v, then we write wx,, » instead of (w, x)x. Using Yoneda, we obtain

TxY)X =2T'(X,Y),

(C[xY, 22X = JU CURY,Z)QT(X,U) ,

[[xY,TxZ]X = 6((-,Y),T(X®—, 7)),
[V, TxZ]X =T(X®Y,Z) .
5.9. PROPOSITION. Let I' be a magmal procomonad on the magmal ¥ -category €. Sup-
pose (Y, I 5 T(Y,Y)) e €T, The diagram (5.23) commutes.

YeUeY,2)®T(X,U) YXvz I(XQ®Y,2)

[ 11UJ Tng (5.23)
(T eUeY,2)T(X,U)®I(Y,Y) — (" €UV, Z2)®(X,U)®T(Y,V)

iny

PROOF. Replace the end vertex T'(X ® Y, Z) of the diagram by the Yoneda isomorphic
€€ (—,Y),['(X®—,Z)). The morphism wy, transports to the composite

(v ,1)

f%U@YZ ®F(XU)—>‘€(( Y),T(X®—,2)) C(E(-Y),(X®—, 7)) .

It suffices to show that the two paths around (5.23) agree after we precompose the
diagram with each injection

_ U
CURY,Z)@T(X,U) 20 J CURY,Z)®T(X,U)

and postcompose with each projection

C(C(—Y)I(X®— 2) 2% [¢V,Y),I(X®V,2)].

Now we need to show that two paths

CURY,Z)QT(X,U) - [€(V,Y),T(X®V,Z)]
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are equal. By Yoneda, it suffices to check them equal after taking 7 = U ® Y and
evaluating at the identity (that is, on precomposing with

Juey @lrxp) : IN(X,U) = €UQRY,URQY)R[(X,U) ) .
Two commutative diagrams then show that both paths reduce to the morphism
[NX,U) — [F(V,Y),T(X®V,URY)]
corresponding to
(X, 0)@C(V,Y) 2L (X, U)@T(V,Y) B T(XeV,U®Y)
under the closed-monoidal adjunction — ® €(V,Y) 4 [€(V,Y), —] for ¥. =

5.10. COROLLARY. Suppose Z 1is left cloaked by Y in the magmal ¥ -category € and
(Y,v) € €*. Then the fusion morphism (5.23) becomes the composite (5.24).

(X,[Y,Z]) TXvZ NXQ®Y,2)

1®vl TF(l,ev) (5.24)
DX, [Y,Z)) ®T(Y,Y) 1~ (X ®Y,[Y. Z]®Y)

PROOF. We leave this as an exercise for the reader. m

5.11. DEFINITION. We call I Hopf at (Y,v) when wx,z is invertible for all X, Z.

5.12. LEMMA. Suppose (Y,v) efﬁr is such that |Y,Z] € € exists for all Z € €. Then I’
is Hopf at (Y,v) if and only if T is Hopf at X" (Y, v).

PROOF. “If” is clear since wy,z is defined as a special case of Wood fusion for f‘.ACon—
versely, suppose wy,z : (X, [V, Z]) 2 T(X ®Y,Z) for all X, Z € €. For K € €, one
easily calculates that [£Y, K] =~ K(—®Y), so

_ rU
I[xY, K] = KUQY)Q®T(-,U)
J(‘UZ
~ CURY,Z)®KZQT(—,U)
JPUZ
Jr\Z
= KZ@F(_a [Y7 Z])
Jr\Z
~ | KZ@TL(-®Y,Z)
J

~ T(K)(-®Y)
~ [xV,T(K)],

where the fifth isomorphism uses the invertible I'-fusion morphisms w_,z. The composite
is (5.22) for H = XY and p = v™. "
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Suppose Z is left cloaked by Y in the magmal ¥ -category € and (Y,v),(Z,() € €".
Suppose T is Hopf at (Y,v). Then we have ([Y, Z],w) € " defined by commutativity of
(5.25).

cl lW[Y,Z]vz (5.25)
F(Zv Z)Imr([}/, Z] ®KZ)

Via Example 5.2, we obtain our unification of [7] and [40] as an application of Propo-
sition 3.8 with G =T, using Lemmas 3.6 and 5.12.

5.13. THEOREM. Let I be a magmal procomonad on a magmal ¥V -category €. Suppose
(Y,v) € €T is such that [Y,Z] € € ewists for all Z € €. Then T is Hopf at (Y,v) if and
only if und : €% — € creates all cloaks by (Y,v). In this case, for any (Z,() € €¥,

[(Yo0), (2,01 = ([Y, Z],0)
where w is defined by (5.25).

5.14. REMARK. In general the ¥ -functor und : 6* — € has neither left nor right adjoint.
Example 5.2 is where it does.

A. Lifting adjunctions and doctrinal adjunction

After my talk on Wood fusion in the Australian Category Seminar on 8 February 2023,
Steve Lack and Richard Garner suggested that the results I presented were obtainable
from adjoint lifting theorems and that I should look at Peter Johnstone’s paper [16]. This
section addresses that suggestion.

Richard Wood [40] already referred to William Keigher [17|. Johnstone states he
learned of [17] after writing [16].

We revisit the Adjoint Triangle Theorem of Eduardo Dubuc [13] in Appendix B. Now
we will see that other adjoint lifting results can be viewed as consequences of doctrinal
adjunction (in the sense of Max Kelly in [20]) involving examples as in Theorem 9 of [31]
and Theorem 1 of [32].

Let Mnd€ denote the bicategory of monads in a bicategory € essentially as defined in
[31]. An object is a pair (A, s) consisting of an object A € € and a monoid s (called a
monad on A) in the endomonoidal category €(A, A). The unit and multiplication of s will
be denoted by n: 14 = s and p: sos = s. A morphism (u, ) : (4,s) — (B,t) (called a
monad morphism) consists of a morphism u : A — B equipped with a 2-morphism

A—2 A
ul LN lu (A.26)
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in € compatible with 7, x4 in the obvious way. A 2-morphism o : (u, ¢) = (v,?) : (4,s) —
(B,t) is a 2-morphism ¢ : u = v in € such that cso¢ = ¥ oto. Composition is performed
by pasting. There is a forgetful pseudofunctor

Mnd€ — €, (4,s)— A . (A.27)

A morphism in Mnd°?€ = (Mnd€°P)°P is called a monad opmorphism: the 2-morphism in
(A.26) is reversed. A morphism in Mnd“¢€ = (Mnd&*)* is called a comonad morphism.
A morphism in Mnd®°P€ = (Mnd€®°P)°°P ig called a comonad opmorphism.

A.1. EXAMPLE.

1. Let T' be an opmagmal monad on the magmal ¥ -category % as in Section 4. For
(X, ) e €7, T-fusion supplies a monad morphism

C—T @

V- o

2. Let G be a magmal comonad on the magmal ¥ -category % as in Definition 2.1. For
(Y,v) € €%, Wood fusion supplies a comonad opmorphism

X

_

G
w_ p

=

4
[v,— —_— l[Y:—]
Tﬁg .

X

Part of doctrinal adjunction is the fact that, if (u,¢) : (A,s) — (B,t) is a monad
morphism and f — w is an adjunction, then (f, QAS) 1 (B,t) — (A, s) is a monad opmorphism
where (/zAS : ft = sf is the mate of ¢ : tu = us. The other part is obtained by examining
adjunctions

(f,0) = (u,9) : (A,5) = (B, 1) (A.28)

in Mnd¢. Since pseudofunctors preserve adjunctions, we use (A.27) to deduce that f 4 u
in € and that the counit o« : fu = 14 and unit 5 : 1 = uf must be 2-morphisms in Mnd¢.
Using only the first of these, a little diagram shows that 6 has inverse the mate

o ft I ptuf 120 fust 2, 57 (A.29)

of ¢. Yet, if this mate of ¢ has an inverse at all, one sees that both « and 8 are 2-morphisms
in Mnd€. This proves:
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A.2. PROPOSITION. A morphism (u, @) : (A,s) — (B,t) has a left adjoint in Mnd€ if
and only if u: A — B has a left adjoint and the mate (A.29) of ¢ is invertible.

Let Fun® denote the lax morphism bicategory of €. An object is a morphism X & A
in €. A morphism (u,v,u) : x — y is a diagram

X——A
l — l (A.30)
Y B

—

in €. A 2-morphism (¢,7) : (u,v,u) = (v,w,v) : * — y is a pair of 2-morphisms in €
satisfying oz ov = woyas. A morphism (u, v, u) is called strong when v is invertible. Let
sFun€ denote the sub-2-category of Fun€ obtained by restricting to the strong morphisms.

Let us look at adjunctions (f,7, f) = (u,v,u) in Fun€. As before, because of the
existence of forgetful pseudofunctors, we must have adjunctions f < u and f 4 @ in €
such that the counits and units form 2-morphisms (o, @) and (3, 3) in Fun€. The first of
these yields that the mate © of v is a left inverse for 7 while the second yields that v is
a right inverse for 7. On the other hand, any inverse for © does render (o, @) and (3, 3)
2-morphisms.

A.3. PROPOSITION. A morphism (u,v, ) : x — y has a left adjoint in Fun€ if and only
if bothu: A — B and u: X — Y have left adjoints and the mate U of v is invertible.
Any left adjoint in Fun€ is in sFun€. Any (f, 7, f) in sFun€ has a right adjoint in Fun¢
if and only if f and f have right adjoints in €.

Now suppose € admits the construction of algebras in the bicategorical sense: for each
monad (A, s), there is an Eilenberg-Moore s-algebra z; : A®* — A with action &, : szs — x4
for which the functor

C(X, A%) — (X, A (X B 4%) s (2., szoh 2 2,h)
is an equivalence for all X € €. Then we have a pseudofunctor
EM : Mnd¢€ — sFun¢ (A.31)

defined as follows. For each monad (A4,s), we put EM(A,s) = z,. For each monad
morphism (u, ¢) : (4, s) — (B,t), we have a t-algebra

tuz, 25 usw, 2 uw, (A.32)

so there exist (uniquely up to isomorphism) a morphism @ : A* — A" and an isomorphism
x4 ~ ux, such that v becomes a t-algebra isomorphism from (4w, &) to the t-algebra
(A.32). We put EM(u, ¢) = (u, v, u) : x5 — xy; it is a strong morphism. For a 2-morphism
o (u,¢) = (v,¢) : (A, s) - (B,t), there is a unique 2-morphism & : 4 = v such that
(0,0): (u,v,u) = (v,w, V) : x5y — x; is a 2-morphism in Fun€; we put EMo = (0, 7).
Here is a restatement of an observation of Appelgate [1]; also see Lemma 1 of [16].
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A.4. PROPOSITION. The pseudofunctor (A.31) is an equivalence on homcategories.
PROOF. Take (u,v,u) : s — x; in sFun€ and let 7 : y;u — 4y, be the mate of v™! :
urs — x;u under the adjunctions ys 4 x5 and y; < x;. Now put

¢ = (tu = zyu 25 2y, —2> urgys = us) . (A.33)

Recalling how the unit and multiplication of the monads are obtained from the unit and
counit of the generating adjunctions, we routinely check that (u, @) : (A,s) — (B,t) is a
morphism of Mnd€ (a string diagram proof is attractive) and that EM(u, ¢) = (u,v, ).
From the definition of EM on 2-morphisms we see, for each (0,) : EM(u, ¢) = EM(v, ) :
xs — x4, that o : (u, ) = (v,) is the unique 2-morphism of Mnd€ with EMo = (0,5).m

A.5. REMARK. In the above proof, notice that, since composing with x; is conservative,
¢ is invertible if and only if 7 is. This is Lemma 3 of Johnstone [16].

A.6. COROLLARY. A monad morphism (u, ) : (A,s) — (B,t) has a left adjoint in Mnd&
if and only if EM(u, ¢) has a left adjoint in Fun€.

The second sentence of Corollary A.7 is Theorem 4 of [16] and the dual of Corollary
2.3 of [17]. Furthermore, by way of Example A.1, it relates to Theorem 3.6 of [7] and to
our Proposition 3.8.

A.7. COROLLARY. A monad morphism (u,¢) : (A,s) — (B,t) has a right adjoint in
Mnd€ if and only if EM(u, ¢) has a right adjoint (r,p,7) in sFun€. In particular, if u
has a right adjoint r and ¢ s invertible then u has a right adjoint ¥ with s = rx;.

B. Liftings
We work in a bicategory €. We use the notation
o
rif(S,B)
H Ue% S <B34)
B
B

to depict a right lifting rif (S, B) (see [38]) of the 1-morphism B through the 1-morphism
S. The defining property is that pasting with (B.34) gives a bijection

C(H, o) (H,1if(S, B))

lle

C(#, B)(SH, B) .

(This concept is a dual of Kan extension.)

The right lifting is said to be respected by the 1-morphism & B, # when ey K
exhibits rif (S, B) - K as a right lifting of B - K through S. If S has a right adjoint T
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then rif(S, B) = T - B and so is respected by all 1-morphisms K. On the other hand, if
rif (S, 14) exists and is respected by S then S H rif(S, 14).
If BS Cis a 2-morphism and B and C have right liftings through S, we write

rif (S, B) 5, i (S, C) for the 2-morphism defined by

Srif(S,a)

(Srif(S, B) Srif(S, C) & ) _ <Srif(S, B pBo C) .

As with all cartesian morphisms, we have this simple property.

B.1. PROPOSITION. Suppose </ 5235 ¢ E A are 1-morphisms such that rif (U, C) :
H — B exists. Then

rif (S, rif (U, C)) = rif(US, C)

in the sense that one side exists if and only if the other does and €% is the pasted composite
of €5sw.p) and 5.

B.2. PROPOSITION. Suppose < S 2 3 E v E 9 ae 1-morphisms.  Sup-
pose n = 1y = M is a 2-morphism with nB € €( %, %) and nBK € &(9,A) regular
monomorphisms, and nC' € (A, B) and nC' € (2, AB) monomorphism for all & S %
and 7 %> B.

(i) For all B € €(A , %),

nMB
B—" MB M?B (B.35)
MnB

is an equalizer in €(H , A).

(11) Suppose right liftings rif (S, M B) and rif(S, M?B) exist and are respected by K. The
existence of a right lifting rif (S, B) respected by K is equivalent to the ezistence of
an equalizer

rif (S;nM B)
E——%  1if(S,MB) rif(S, M2B) (B.36)
rif (S,MnB)

preserved by the functor €( , o) i), (2,).

(111) In the situation of (ii), there is an isomorphism w : E = rif(S, B) whose composite
with 1if (S, nB) is k.
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PROOF. For (i), we know that nB is the equalizer of some pair a, 3 : MB — C. Take

¢: D — MB such that nMB - ¢ = MnB - ¢. Then
nC-a-¢p=Moa-ngMB-¢=Ma-MnB-¢=Ma-nB)-¢

and similarly nC' - g-¢ = M(S-nB)-¢. SonC-«a-¢ = nC - [ -¢. Since nC is a

monomorphism, we have o - ¢ = - ¢ so that ¢ = nB - ¢ for some ¥ which is unique

because 1B is also a monomorphism.
For (ii), using (i), we have

(A, )(A E)
~ {A 5 rif(S, MB) : rif(S,nyg) - o = 1if(S, Mng) - o}
~ {SAL MB: nyp-7=Mng-7} (B.37)

~ &(A,9AB)(SA,B)
~ (X, ) (A,rif(S, B)) .
naturally in A € €(¢, o).

For (iii), by Yoneda, there is an isomorphism w : E = rif(S, B) inducing the composite
isomorphism (B.37); this gives commutativity of the square

SE S Srif (S, M B)
Swl lEJSWB
SYif(S, B) —+ B ——3— MB..

By applying the bijection
(A, B)SE,MB) =~ (&, o )(E,rif(S, MB))
we obtain the result stated. n

B.3. PROPOSITION. Suppose </ 525 Cad a5 L B are 1-morphisms.
Suppose M = rif(U,U) exists and is respected by all 1-morphisms # — JB. Suppose
the 2-morphism 1 : 14 = M, defined by €5 - Un = 1y, is such that nB € €(X, %) and
nBK € &(2,%5) are regular monomorphisms, and nC € &( &, B) and nC' € €(2,RB)
are monomorphisms for all & S B and 2 S B Suppose both Qp := rif(US,UB)

and Qup = rif(US,UMB) exist and are respected by & K, . Then rif (S, B) has the
same universal property as the equalizer of the pair of 2-morphisms from Qg to Qup in
&(A, ) corresponding (via the universal property of Qup) to the two paths in (B.38).
Moreover, rif(S, B) is respected by K if and only if the equalizer is preserved by €(K,1,).

0B UnB

USQp UB UMB

UUSQBl T: (B.38)
UMSQp—— Unif(U,USQp) ————— Urif(U,UB)

Urif(U,e¥3)




WOOD FUSION AND THIEBAUD ALGEBRAICITY 89

PROOF. By Proposition B.1, rif(S, M B) = rif(S,rif(U,UB)) = rif(US,UB) = @p and
rif (S, M2 B) = rif (S, rif (U,UMB)) ~ rif(US, UM B) = Qup; so they exist by assumption
and Proposition B.2 applies. Furthermore, the parallel pair in (B.36) transports across
these isomorphisms to the pair corresponding to the two paths in (B.38). [

B.4. COROLLARY. [Dubuc Adjoint Triangle Theorem [13]|| Suppose the 1-morphism % LR
€ has a right adjoint R with the unitn : 14 = RU a reqular monomorphism preserved by
the functors €(B, 1) for all 1-morphisms B with target . A 1-morphism </ 5, B has
a right adjoint if and only if the composite US has a right adjoint Q) and the coreflexive
pair of 2-morphisms

QUSsQU —2U°Y_ ou RUSQU

BQU QURaU <B39)

QU

GUn QURU

admits an equalizer preserved by the functors €(B, 1) for all 1-morphisms B with target
AB, where a, [ are the counit and unit for US — Q.

References

[1] APPELGATE, H. Acyclic models and resolvent functors. (PhD Thesis, Columbia
University, 1965).

[2] BARR, M. AND WELLS, C. Toposes, Triples and Theories. Grundlehren der math.
Wissenschaften 278, Springer-Verlag, 1985.

[3] BECK, J.M. Triples, algebras and cohomology. Reprints in Theory and Applications
of Categories 2 (2003) 1-59.

[4] BENABOU, J. Introduction to bicategories. Lecture Notes in Mathematics 47
(Springer-Verlag, 1967) 1-77.

[5] BENABOU, J. Les distributeurs. Seminaires de Math. Pure, Rapport No. 33 (Univ.
Catholique de Louvain, 1973).

[6] BERGER, J., SARACCO, P. AND VERCRUYSSE, J. Everybody knows what a normal
gabi-algebra is. https://arxiv.org/abs/2308.09449 (2023) 40pp.

[7] BRUGUIERES, A., LACK, S. AND VIRELIZIER, A. Hopf monads on monoidal cate-
gories. Advances in Mathematics 227(2) (2011) 745-800.

[8] CHIKHLADZE, D., LACK, S. AND STREET, R. Hopf monoidal comonads. Theory and
Applications of Categories 24(19) (2010) 554-563.


https://arxiv.org/abs/2308.09449

90 ROSS STREET

[9] DAY, B.J. On closed categories of functors. Lecture Notes in Math. 137 (Springer
1970) 1-38.

[10] DAY, B.J. Promonoidal functor categories. J. Austral. Math. Soc. Ser. A 23(3)
(1977) 312-328.

[11] DAy, B.J. Biclosed bicategories: Localisation of convolution. Macquarie Mathemat-
ics Report 81-0030 (Macquarie University, April 1981). https://arxiv.org/abs/
0705.3485

[12] DAY, B.J. AND STREET, R. Monoidal bicategories and Hopf algebroids. Advances
in Math. 129 (1997) 99-157.

[13] DuBuc, E. Adjoint triangles. Lecture Notes in Math. 61 (Springer-Verlag, 1968)
69-91.

[14] EILENBERG, S. AND KELLY, G.M. Closed categories. Proceedings of the Conference
on Categorical Algebra (La Jolla, 1965) (Springer-Verlag,1966) 421-562.

[15] EILENBERG, S. AND MOORE, J.C. Adjoint functors and triples. Illinois Journal of
Mathematics 9 (1965) 381-398.

[16] JOHNSTONE, P.T. Adjoint lifting theorems for categories of algebras. Bulletin
London Math. Soc. 59(1) (1975) 294-297.

[17] KEIGHER, W.F. Adjunctions and comonads in differential algebra. Pacific J. Math.
59(1) (1975) 99-112.

[18] KELLY, G.M. Many-variable functorial calculus. 1. Lecture Notes in Math. 281
(Springer, Berlin, 1972) 66-105.

[19] KELLY, G.M. An abstract approach to coherence. Lecture Notes in Math. 281
(Springer, Berlin, 1972) 106-147

[20] KeLLY, G.M. Doctrinal adjunction. Lecture Notes in Mathematics 420 (Springer-
Verlag, 1974) 257-280.

[21] KELLY, G.M. AND STREET, R. Review of the elements of 2-categories. Lecture
Notes in Mathematics 420 (Springer-Verlag, 1974) 75-103.

[22] KELLY, G.M. Basic concepts of enriched category theory. London Mathematical
Society Lecture Note Series 64 (Cambridge University Press, Cambridge, 1982); also,
Reprints in Theory and Applications of Categories, 10 (2005) 1-136.

[23] KLEISLI, H. Every standard construction is induced by a pair of adjoint functors.
Proc. Amer. Math. Soc. 16 (1965) 544-546.


https://arxiv.org/abs/0705.3485
https://arxiv.org/abs/0705.3485

WOOD FUSION AND THIEBAUD ALGEBRAICITY 91

[24] LAWVERE, F.W. Metric spaces, generalized logic and closed categories. Reprints in
Theory and Applications of Categories 1 (2002) 1-37.

[25] LiNnTON, F.E.J. The multilinear Yoneda lemmas: Toccata, fugue, and fantasia on
themes by Eilenberg- Kelly and Yoneda. Lecture Notes in Mathematics 195 (Springer,
Berlin, 1971) 209-229.

[26] MAC LANE, S. Categories for the Working Mathematician. Graduate Texts in
Mathematics 5 (Springer-Verlag, 1971).

[27] McCRUDDEN, P. Opmonoidal monads. Theory and Applications of Categories 10
(2002) 469-485.

[28] MOERDIJK, I. Monads on tensor categories. Journal of Pure Appl. Algebra 168
(2002) 189-208.

[29] PASTRO, C. Note on star-autonomous comonads. Theory and Applications of Cate-
gories 26(7) (2012) 194-203.

[30] PASTRO, C. AND STREET, R. Closed categories, star-autonomy, and monoidal
comonads. Journal of Algebra 321(11) (1 June 2009) 3494-3520.

[31] STREET, R. The formal theory of monads. Journal of Pure and Applied Algebra
2(2) (1972) 149-168.

[32] STREET, R. Two constructions on lax functors. Cahiers de topologie et géométrie
différentielle 13 (1972) 217-264.

[33] STREET, R. Enriched categories and cohomology with author commentary. Reprints
in Theory and Applications of Categories 14 (2005) 1-18.

[34] STREET, R. Absolute colimits in enriched categories. Cahiers de topologie et
géométrie différentielle 24 (1983) 377-379.

[35] STREET, R. Fusion operators and cocycloids in monoidal categories. Applied Cate-
gorical Structures 6 (2) (1998) 177-191.

[36] STREET, R. Quantum Groups: A Path to Current Algebra. Australian Mathematical
Society Lecture Series 19. Cambridge University Press, 2007.

[37] STREET, R. Skew-closed categories. Journal of Pure and Applied Algebra 217(6)
(June 2013) 973 988.

[38] STREET, R. AND WALTERS, R.F.C. Yoneda structures on 2-categories. J. Algebra
50 (1978) 350-379.

[39] THIEBAUD M. Self-dual structure-semantics and algebraic categories. Dalhousie
University, PhD (Halifax, August 1971).



92 ROSS STREET

[40] WooD, R.J. Coalgebras for closed comonads. Communications in Algebra 6(14)
(1978) 1497-1504.

Centre of Australian Category Theory
Department of Mathematics and Statistics
Macquarie University, NSW 2109
Australia

Email: ross.street@mq.edu.au

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

SUBSCRIPTION INFORMATION Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

INFORMATION FOR AUTHORS I#TEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

MANAGING EDITOR. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca
TEXNICAL EDITOR. Michael Barr, McGill University: michael.barr@mcgill.ca

ASSISTANT TEX EDITOR. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin_seal@fastmail.fm

TRANSMITTING EDITORS.

Clemens Berger, Université Cote d’Azur: clemens.berger@univ-cotedazur.fr

Julie Bergner, University of Virginia: jeb2md (at) virginia.edu

Richard Blute, Université d’ Ottawa: rblute@uottawa.ca

John Bourke, Masaryk University: bourkej@math.muni.cz

Maria Manuel Clementino, Universidade de Coimbra: mmc@mat.uc.pt

Valeria de Paiva, Topos Institute: valeria.depaiva@gmail.com

Richard Garner, Macquarie University: richard.garner@mq.edu.au

Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Rune Haugseng, Norwegian University of Science and Technology: rune.haugseng@ntnu.no
Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt

Joachim Kock, Universitat Autonoma de Barcelona: Joachim.Kock (at) uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au

Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk

Sandra Mantovani, Universita degli Studi di Milano: sandra.mantovani@unimi.it

Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com
Giuseppe Metere, Universita degli Studi di Palermo: giuseppe.metere (at) unipa.it
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz

Giuseppe Rosolini, Universita di Genova: rosolini@unige.it

Michael Shulman, University of San Diego: shulman®@sandiego.edu

Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-1j.si

James Stasheff, University of North Carolina: jds@math.upenn.edu

Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be
Christina Vasilakopoulou, National Technical University of Athens: cvasilak@math.ntua.gr



	Introduction
	Magmal comonads and cloaks
	Wood fusion morphisms
	Fusion for opmagmal monads
	Procomonads
	Lifting adjunctions and doctrinal adjunction
	Liftings

