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CAUCHY COMPLETENESS AND ADJOINTS IN DOUBLE
CATEGORIES

SUSAN NIEFIELD

Abstract. We consider Cauchy completeness in the double categories of toposes,
topological spaces, locales, and other suplattice based settings. We also present a uniform
approach to the relationship between adjoints and projectivity in double categories with
applications to (not-necessarily commutative) rings, rigs, and quantales.

1. Introduction

This article is in memory of Bill Lawvere and a tribute to his insightful contributions to
the study of adjoint functors, algebraic theories, elementary toposes, enriched categories,
synthetic differential geometry, and much more. He will also be remembered for his
generosity and willingness to share his ideas with other mathematicians at all levels.
Although he has influenced my work in many ways, I have chosen a topic for this article
which has roots in one of his many important ideas, namely the identification of metric
spaces as enriched categories.

The observation that a metric space X can be viewed as an enriched category was
made by Lawvere and presented in his 1973 paper [L73]. Writing the distance formula
dX(x, x

′) = X(x, x′), the triangle inequality and reflexivity

X(x′, x′′) +X(x, x′) ≥ X(x, x′′)

0 ≥ X(x, x)

give the composition and identity of X as a category enriched in the extended interval
poset ([0,∞],≥) which is a symmetric monoidal closed category via +, 0, and truncated
subtraction. Thus, we get the category of generalized or Lawvere metric spaces with
morphisms f :X // Y such that

X(x, x′) ≥ Y (fx, fx′)

i.e., Lipschitz functions with constant 1. As Lawvere points out, the other metric space
axioms can be added, as needed, but much can be done in this more general setting.

An important result in [L73] is the following characterization of Cauchy completeness.
A bimodule from X to Y , denoted m:X //• Y , is a function X × Y // [0,∞] satisfying
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∧
y

Y (y, y′) +m(x, y) ≥ m(x, y′) and
∧
x

m(x, y) +X(x′, x) ≥ m(x′, y)

Composition with a bimodule n:Y //• Z is defined by

(n•m)(x, z) =
∧
y

n(y, z) +m(x, y)

and idX = X(−,−) is the identity bimodule on X. As for any enriched category, a
morphism f :X // Y defines an adjoint pair of bimodules f∗:X //• Y and f ∗:Y //• X,
i.e., f∗f

∗ ≥ idY and idX ≥ f ∗f∗. Moreover, every left adjoint bimoduleX //• Y is induced
by a morphism X // Y if and only if Y is Cauchy complete (see [L73]; Page 163).

In the subsequent two decades, the notions of Cauchy completion and Cauchy com-
plete objects in V-Cat were developed by Kelly [K82], Walters [W81], Borceaux/ Dejean
[BD86], and Carboni/Street [CS86], where V is a symmetric monoidal closed category.
More recently, Paré [P21] considered Cauchy completeness for double categories with com-
panions and conjoints, concentrating on the double category Ring of commutative rings,
homomorphisms and bimodules. Following this double category approach, we will see
that Cauchy completeness arises in many other familiar cases, including locales, toposes,
topological spaces, posets, suplattices, quantales, and more.

We begin in Section 2, with a review of double categories and Cauchy completeness
for several examples from the 1980s. In the next two sections, we show that some familiar
constructions can be viewed in this context. We conclude in Section 5, with a non-
commutative generalization of Paré’s result for rings, which we then apply to the double
category of quantales, homomorphisms and bimodules.

2. Preliminaries for Cauchy Completeness

In this section, we recall the definition of a Cauchy complete object in a double category
and recall some of the examples of interest in the 1980s.

2.1. Definition. A double category is an internal pseudo category

D1 ×D0 D1
• // D1

oo id•
s //

t
// D0

in the 2-category CAT of locally small categories. It consists of objects (those of D0), two
types of morphisms: horizontal (those of D0) and vertical (objects of D1 with domain and
codomain given by s and t), and cells (morphisms of D1)

Xt Ytft
//

Xs

Xt

v

��

Xs Ys
fs // Ys

Yt

w

��
• •φ (⋆)
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Composition and identity morphisms are given horizontally in D0 and vertically via • and
id•, respectively.

2.2. Remark. A cell (⋆) is called special if fs and ft are identity morphisms. The vertical
morphisms and special cells form a bicategory denoted by Vert(D).

2.3. Example. Rel has sets and functions as objects and horizontal morphisms. Vertical
morphisms v:Xs

//• Xt are relations, i.e., subsets v ⊆ Xs × Xt. Vertical identities and
composition are given by the diagonal relations and the usual relation composition. There
is a cell (⋆) if and only if (xs, xt) ∈ v implies (fs(xs), ft(xt)) ∈ w. More generally, one can
consider the double category Rel(E) of objects, morphism, and relations in any regular
category E , in the sense of Barr [B71].

2.4. Example. Pos has partially-ordered sets as objects and order-preserving maps as
horizontal morphisms. Vertical morphisms v:Xs

//• Xt are order ideals v ⊆ Xop
s × Xt,

with id•
X = {(x, x′)|x ≤ x′} and composition and cells as in Rel.

2.5. Example. Cat has small categories as objects and functors as horizontal morphisms.
Vertical morphisms v:Xs

//• Xt are profunctors (also called bimodules or distributors)
v:Xop

s ×Xt
// Sets, and cells (⋆) are natural transformations v // w(fs−, ft−).

2.6. Definition. A companion for f :X // Y in D is a vertical morphism f∗:X //• Y
together with cells

X Y
f
//

X

X

id•X
��

X X
idX // X

Y

f∗

��

• •α

Y Y
idY
//

X

Y

f∗

��

X Y
f // Y

Y

id•Y
��

• •β

whose horizontal and vertical compositions are identity cells. A conjoint for f is a vertical
morphism f ∗:Y //• X together with cells

X X
idX
//

X

X

id•X
��

X Y
f // Y

X

f∗

��

• •ρ

X Y
f
//

Y

X

f∗

��

Y Y
idY // Y

Y

id•Y
��

• •σ

whose horizontal and vertical compositions are identity cells.

2.7. Remark. If f has a companion and a conjoint, then f∗ is left adjoint to f ∗ in the
vertical bicategory Vert(D).

2.8. Definition. An object Y is called Cauchy complete if every left adjoint v:X //• Y
in Vert(D) is the companion of some horizontal morphism f :X // Y of D.

As noted in the introduction, this agrees with the usual definition of a Cauchy com-
plete metric space for the double category Met of Lawvere metric spaces, morphisms, and
bimodules, (see [L73]). The following examples can also be found in the early literature.
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2.9. Example. Every morphism f :X //Y of Rel has a companion f∗ = {(x, y)|y = f(x)}
and conjoint f ∗ = {(y, x)|y = f(x)}, and every set is Cauchy complete in Rel, as is every
object of Rel(E), for every regular category E (see [FS90]).

2.10. Example. Every morphism f :X //Y of Pos has a companion f∗ = {(x, y)|f(x) ≤
y} and conjoint f ∗ = {(y, x)|y ≤ f(x)}, and every poset is Cauchy complete in Pos (see
[CS86]).

2.11. Example. Every functor f :X // Y in Cat has a companion f∗ = Y (f(−),−) and
a conjoint f ∗ = Y (−, f(−)). It is well known that a category Y is Cauchy complete if
and only if idempotents split in Y (see [K82]). Moreover, this was generalized to V-Cat,
for a suitable symmetric monoidal closed category V (see [LT22]).

3. Locales, Toposes, and Spaces

In this section, we show that every topos and locale is Cauchy complete, and it is precisely
the sober spaces that are in an appropriate double category of topological spaces.

Our interest in companions and conjoints (as well as “cotabulators” in the sense of
[GP99]) for toposes, locales, and topological spaces goes back to their implicit appearance
in the construction of exponentials of locally closed inclusions [N81] using Artin-Wraith
glueing [J77]. This was achieved in [N12a] by a construction for double categories with
“glueing” which applied to the following three double categories.

3.1. Example. Objects and horizontal morphisms of Loc are locales and locale homo-
morphisms, in the sense of [J82]. Vertical morphisms are left exact (i.e., finite meet
preserving) functions, and there is a cell

Xt Ytft
//

Xs

Xt

v

��

Xs Ys
fs // Ys

Yt

w

��
• •≥

if and only if w(fs)∗ ≤ (ft)∗v, or equivalently, (ft)
∗w ≤ v(fs)

∗. Then Loc has compan-
ions and conjoints by definition of a locale homomorphism as an order preserving map
f∗:X // Y which has a left exact left adjoint f ∗.

3.2. Proposition. Every locale Y is Cauchy complete in Loc.

Proof. Suppose v:X //• Y is left adjoint to w:Y //• X in Loc. Then vw ≥ id•
Y and

id•
X ≥ wv, and so v is right adjoint to w as poset maps. Since v is left exact, it follows

that f = v is a locale homomorphism such that f∗ = v.
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3.3. Example. Objects and horizontal morphisms of Topos are elementary toposes, in
the sense of Lawvere [L71] and Tierney [T73], and geometric morphisms. Vertical mor-
phisms are left exact (i.e., finite limit preserving) functors, with cells

Xt Ytft
//

Xs

Xt

v

��

Xs Ys
fs // Ys

Yt

w

��
• •

φoo

where φ is a natural transformation w(fs)∗ // (ft)∗v, or equivalently, (ft)
∗w // v(fs)

∗.
Then Topos has companions and conjoints by definition of a geometric morphism as a
limit preserving functor f∗:X // Y whose left adjoint f ∗ is left exact.

3.4. Proposition. Every topos Y is Cauchy complete in Topos.

Proof. Suppose v:X //• Y is left adjoint to w:Y //• X in Topos. Then we have cells

Y Y
idY
//

Y

Y

vw

��

Y Y
idY // Y

Y

id•Y
��

• •αoo

X X
idX
//

X

X

id•X
��

X X
idX // X

X

wv

��
• •

βoo

such that (vβ)(αv) = idv and (βw)(wα) = idw, and so v is right adjoint to w as functors.
Since v is left exact, it follows that f = v is a geometric morphism such that f∗ = v.

3.5. Example. Objects and horizontal morphisms of Top are topological spaces and
continuous maps. Vertical morphisms X //• Y are finite intersection preserving maps
O(X) //O(Y ). There is a cell

Xt Ytft
//

Xs

Xt

v

��

Xs Ys
fs // Ys

Yt

w

��
• •⊇

if and only if f−1
t w ⊆ vf−1

s on the open set lattices. Given f :X //Y continuous, we know
f−1:O(Y ) //O(X) preserves finite intersections and arbitrary unions, and hence, has a
finite intersection preserving right adjoint f∗:O(X) //O(Y ). Thus, we get a companion
f∗ and conjoint f ∗ = f−1, for every f :X // Y .

Let O: Top // Loc denote the functor assigning the open set lattice O(X) to a space
X and the locale homomorphism f :O(X) // O(Y ) such that f ∗ = f−1 to a continuous
map f :X // Y . Then the functor O has a right adjoint taking a locale L to its space
pt(L) of points of L. Moreover, Y is a sober space (i.e., every irreducible closed set is the
closure of a unique point) if and only if the unit ηY :Y //pt(O(Y )) is an isomorphism, or
equivalently, every locale homomorphism f :O(X) // O(Y ) corresponds to a continuous
map f :X // Y (see [J82] for details).



14 SUSAN NIEFIELD

3.6. Proposition. A space Y is Cauchy complete in Top if and only if it is sober.

Proof. A space Y is Cauchy complete in Top if and only if every left adjoint vertical
morphism v:X //• Y is a companion of a continuous map f :X // Y . Since every such
map v:O(X) //• O(Y ) is a locale homomorphism, this is equivalent to the sobriety of
Y .

4. Suplattices, Quantales, and Modules

In this section, we show that there are familiar suplattice based double categories in which
every object is Cauchy complete.

4.1. Example. Slat denotes the double category whose objects are complete lattices,
called suplattices. Horizontal and vertical morphisms are sup and order preserving maps,
respectively, and cells are of the form

Xt Ytft
//

Xs

Xt

v

��

Xs Ys
fs // Ys

Yt

w

��
• •≤

Since every sup-preserving map is order preserving and has an order preserving right
adjoint, it follows that Slat has companions and conjoints. Moreover, every left adjoint
vertical morphism is easily seen to be the companion of a sup preserving map, and so
every object is Cauchy complete.

Recall that a quantale X is a complete lattice together with a binary operation, with
unit e, and which distributes over suprema on both sides. A quantale homomorphism
f :X // Y is a sup preserving map satisfying f(x)f(x′) = f(xx′) and f(e) = e. Although
the name “quantale” was introduced by Mulvey [M86], they were originally called “closed
posets” in [NR85], following a suggestion of Lawvere.

4.2. Example. Quant is the double category whose objects and horizontal morphisms are
quantales and their homomorphisms. Vertical morphisms v:X //• Y are order preserving
maps satisfying v(x)v(x′) ≤ v(xx′) and e ≤ v(e), with cells as in Slat. Clearly, every
horizontal morphism f :X //Y is its own companion. Moreover, its right adjoint g:Y //X
satisfies g(y)g(y′) ≤ g(yy′) and e ≤ g(e), since f(e) ≤ e and

f(g(y)g(y′)) = f(g(y))f(g(y′)) ≤ yy′

We claim that every quantale Y is Cauchy complete. Suppose v:X //• Y is a vertical
morphism with right adjoint w:Y //• X. Then v is clearly sup preserving, being a left
adjoint, and v(x)v(x′) ≤ v(xx′) and e ≤ v(e). For the reverse inequalities, we know that
v(e) ≤ e, since e ≤ w(e), and v(xx′) ≤ v(x)v(x′), since

xx′ ≤ w(v(x))w(v(x′)) ≤ w(v(x)v(x′))
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Therefore, v is a quantale homomorphism with companion v∗ = v, and so Y is Cauchy
complete.

Suppose Q is a quantale. Recall that a left Q-module is a suplattice X together with
a sup preserving map Q ⊗ X // X satisfying a(bx) = (ab)x and ex = x. A Q-module
homomorphism f :X // Y is a sup preserving map satisfying af(x) = f(ax)

4.3. Example. Q-Mod is the double category whose objects and horizontal morphisms
are Q-modules and their homomorphisms. Vertical morphisms v:X //• Y are order pre-
serving maps satisfying av(x) ≤ v(ax), with cells as in Slat. These maps played a role
in the characterization [N16] of projective Q-modules. Clearly, every horizontal mor-
phism f :X // Y is its own companion. Moreover, its right adjoint g:Y // X satis-
fies ag(y) ≤ g(ay), since f(ag(y)) = af(g(y)) ≤ ay. We claim that every Q-module
Y is Cauchy complete. Suppose v:X //• Y is a vertical morphism with right adjoint
w:Y //• X. Then v is clearly sup preserving, being a left adjoint, and av(x) ≤ v(ax). For
the reverse inequalities, we know that v(ax) ≤ av(x), since ax ≤ aw(v(x)) ≤ w(av(x)).
Therefore, v is a Q-module homomorphism with companion v∗ = v, and so Y is Cauchy
complete.

5. Adjoints for Bimodules and Matrices

Recently, Paré [P21] showed that an (S,R)-bimodule M :R //• S has a right adjoint in
Ring if and only ifM is finitely generated and projective as an S-module, where Ring is the
double category of commutative rings with unit, homomorphisms, and (S,R)-bimodules;
and these bimodules correspond to non-unitary homomorphisms R // Matp(S), where
Matp(S) is the ring of p × p matrices with coefficients in S. On the other hand, finitely
generated projective modules M over a commutative ring S are those for which the
functor − ⊗S M :SMod // SMod has a left adjoint. In [NW17], we presented a general
proof characterizing the latter which we applied to commutative quantales, rings, and
rigs.

In this section, we show that if V is a bicomplete symmetric monoidal closed category,
then we can drop the commutativity assumption in the [NW17] characterization and add
the condition that M :R //• S has a right adjoint in the double category Bim(V) whose
objects are (not-necessarily commutative) monoids, horizontal morphisms are monoid
homomorphisms, vertical morphisms M :R //• S are (S,R)-bimodules, and cells are bi-
module homomorphisms in V . Taking V to be the categories of suplattices, abelian groups,
and commutative monoids, we see that we can directly relate the above mentioned pro-
jectivity condition to the existence of an adjoint for quantales, rings, and rigs; and extend
this to the not-necessarily commutative case. Finally, we also obtain the above mentioned
matrix representation for quantales and rigs.

Recall that given K:Q //• R, L:Q //• S, and M :R //• S, one can define bimodules
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M ⊗R K:Q //• S and SMod(M,L):Q //• R by the coequalizer

M ⊗R⊗K
M⊗λR //
ρR⊗K

//M ⊗K // //M ⊗R K

where λR and ρR are the actions of R on K and M , respectively, and the equalizer

SMod(M,L) // // [M,L]
[λS ,L] //

f
// [S ⊗M,L]

where f is the adjoint transpose of

S ⊗M ⊗ [M,L]
S⊗ε // S ⊗ L

λS // L

along the adjunction (S⊗M)⊗− ⊣ [S⊗M,−] in V . Thus, we get an adjunction between
the bimodule categories

(R,Q)-Mod(V)
M⊗R− //oo

SMod(M,−)
(S,Q)-Mod(V)

Given a set I and a monoid S, let I ·S denote the coproduct S-modules

I ·S =
∐
i∈I

S

5.1. Theorem. The following are equivalent for an (S,R)-bimodule M which admits an
S-module presentation I ·S // // J ·S // //M .

(a) M :R //• S has a right adjoint in Bim(V).

(b) −⊗S M : (Q,S)-Mod(V) // (Q,R)-Mod(V) has a left adjoint, for all Q.

(c) −⊗S M : (Q,S)-Mod(V) // (Q,R)-Mod(V) preserves limits, for all Q.

(d) The canonical (S,R)-homomorphism θM :SMod(M,S)⊗S M // SMod(M,M) is an
isomorphism.

Proof. For (a) ⇒ (b), suppose M is left adjoint to N . Then there are cells R
η //N ⊗S M

and M ⊗R N
ε // S such that the diagrams

M M ⊗R N ⊗S M
M⊗Rη //M

M

idM

%%JJ
JJJ

JJJ
JJJ

JJJ
JJ

M ⊗R N ⊗S M

M

ε⊗SM

��

N N ⊗S M ⊗R N
η⊗RN //N

N

idN

%%JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ N ⊗S M ⊗R N

N

N⊗Sε

��



CAUCHY COMPLETENESS AND ADJOINTS IN DOUBLE CATEGORIES 17

commute. To show that −⊗R N is left adjoint to −⊗S M , let K be a (Q,R)-module, L
be a (Q,S)-module, and take ηK and εL given by

K
K⊗Rη //K ⊗R N ⊗S M and L⊗S M ⊗R N

L⊗Sε // L

Then we have commutative diagrams

L⊗S M L⊗S M ⊗R N ⊗S M
L⊗SM⊗Rη //L⊗S M

L⊗S M

idL⊗SM

((RR
RRR

RRR
RRR

RRR
RRR

RRR
L⊗S M ⊗R N ⊗S M

L⊗S M

L⊗Sε⊗SM

��

K ⊗R N K ⊗R N ⊗S M ⊗R N
K⊗Rη⊗RN //K ⊗R N

K ⊗R N

idK⊗RN

((RR
RRR

RRR
RRR

RRR
RRR

RRR
K ⊗R N ⊗S M ⊗R N

K ⊗R N

K⊗RN⊗Sε

��

as desired.

Clearly, (b) ⇒ (c) holds.

To show (c) ⇒ (d), let I·S ////J·S //M be a coequalizer, and consider the commutative
diagram

SMod(M,M) SMod(J ·S,M)//

SMod(M,S)⊗S M

SMod(M,M)

θM ��

SMod(M,S)⊗S M SMod(J ·S, S)⊗S M// SMod(J ·S, S)⊗S M

SMod(J ·S,M)

θJ��

////

////

SMod(I ·S, S)⊗S M

SMod(I ·S,M)

θI��

where the rows are equalizers since SMod(−, L) takes coequalizers to equalizers, for all L,
and −⊗S M preserves equalizers by assumption (c). Since SMod(−, S) takes coproducts
to products and − ⊗S M preserves products, again using (c), we know θI and θJ are
isomorphisms, and it follows that θM is as well.

For (d) ⇒ (a), suppose θ is invertible. We will show that M ⊣ SMod(M,S). Consider

η:R
f // SMod(M,M) θ−1// SMod(M,S)⊗S M

where f is the transpose of ρR:M ⊗R R //M , and the evaluation map

ε:M ⊗R SMod(M,S) // S

which is a left S-module homomorphism, since SMod(M,S) is a right S-module and a
right module homomorphism via the action of M on the left. Since

M ⊗R SMod(M,S)⊗S M M ⊗R SMod(M,M)
M⊗RθM //M ⊗R SMod(M,S)⊗S M

M

ε⊗SM

��

M ⊗R SMod(M,M)

M

ε

ttiiii
iiii

iiii
iiii

iiii
iiii

iii
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commutes, by definition of θM , so does that diagram

M M ⊗R SMod(M,S)⊗S M
M⊗Rη //M

M

idM

((RR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

R M ⊗R SMod(M,S)⊗S M

M

ε⊗SM

��

Also, taking g = f ⊗R SMod(M,S) and h = θ−1 ⊗R SMod(M,S), one shows that

SMod(M,S) SMod(M,S)⊗S M ⊗R SMod(M,S)
η⊗SMod(M,S) //SMod(M,S)

SMod(M,S)

idSMod(M,S)

''PP
PPP

PPP
PPP

PPP
PPP

PPP
PPP

PPP
PPP

PPP
PPP

PPP
PPP

PPP
PPP

SMod(M,S)⊗S M ⊗R SMod(M,S)

SMod(M,S)

ε⊗SMod(M,S)

��

SMod(M,M)⊗R SMod(M,S)

h 66mmmmmmm
SMod(M,M)⊗R SMod(M,S)

◦

��?
??

??
??

??
??

??
??

??
?

SMod(M,S)
g

++VVVV
VVVVV

VVV

commutes, to complete the proof.

Recall that when V is the the category Slat of suplattices, then Bim(V) is a double
category of quantales. Likewise, taking V to the category of abelian groups, respectively,
commutative monoids, we get a double category of rings, respectively, rigs. Note the
name “rig” was introduced by Lawvere [L92] and Schanuel [S91], to emphasize the lack
of negatives in these semirings.

Recall that coproducts agree with products in the category of over a quantale, and are
created by the underlying functor to the category of sets, we write the coproduct I ·S as
the product

SI =
∏
i∈I

S

5.2. Corollary. The following are equivalent for an (S,R)-module M over quantales
(respectively, rings or rigs).

(a) M :R //• S has a right adjoint in Bim(V).

(b) −⊗S M : (Q,S)-Mod(V) // (Q,R)-Mod(V) has a left adjoint, for all Q.

(c) M is projective (respectively, and finitely generated) as an S-module.
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Proof. Applying Theorem 5.1, we know that (a) ⇒ (b) holds, and (b) implies that
the canonical homomorphism θ:SMod(M,S)⊗S M // SMod(M,M) is an isomorphism.
Consider

θ−1(idM) =
∨
i∈I

φi ⊗mi

Then m =
∨
i∈I

φi(m)mi, for all m, by definition of θ. Define τ :SI //M and σ:M // SI

by

τ(s) =
∨
i∈I

simi and σ(m)i = φi(m)

Then τ and σ are left S-homorphisms, and τσ = idM , since

τ(σ(m)) =
∨
i∈I

φi(m)mi = m

and it follows that M is projective.

To prove (c) ⇒ (a), suppose M is projective. Then τσ = idM , for some τ :SI //M and
σ:M //SI . We will show that θM is an isomorphism and apply (d) ⇒ (a) of Theorem 5.1.
Consider the commutative diagram

SMod(SI , S)⊗S M SMod(SI ,M)
θ
SI

//

SMod(M,S)⊗S M

SMod(SI , S)⊗S M

��

��

SMod(M,S)⊗S M SMod(M,M)
θM // SMod(M,M)

SMod(SI ,M)

��

��

OOOO OOOO

where the vertical morphisms are induced by σ and τ . Since coproducts agree with
products and − ⊗S M preserves coproducts for modules over a quantale, it follows that
θSI , and hence, θM is an isomorphism.

Finally, to prove the corollary for rings and rigs, we replace the suprema by finite sums
making the sets I finite, and proceed as above.

We conclude with the analogue for quantales of Paré’s matrix representation of pro-
jective modules. The result for (not-necessarily commutative) rings and rigs is similar.

Given a set I and a quantale S, let MatI(S) denote the quantale of (I × I)-matrices
with coefficients in S, i.e., the quantale of S-valued binary relation on I, in the sense
of [HST14]. Now, every non-unitary homomorphism f :R //MatI(S) induces an (S,R)-
bimodule defined by

Mf = {s ∈ SI |sf(e) = s}

with left action as in SI and right action s r = sf(r).
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5.3. Theorem. Suppose R and S are quantales and M is an (S,R)-bimodule. Then
M is S-projective if and only if there is a set I and a non-unitary homomorphism
f :R //MatI(S) such that M ∼= Mf as an (S,R)-bimodule.

Proof.Given f :R //MatI(S), to show thatMf is S-projective, take σ to be the inclusion
σ:Mf

// SI , and define τ :SI //Mf by τ(s) = sf(e). Then τ(s) ∈ Mf , since f(e) =
f(e)f(e), and τ(σ(s)) = sf(e) = s, since σ is the inclusion and s ∈ Mf . Since M ∼= Mf ,
it follows that M is S-projective.

Conversely, M is S-projective. Then τσ = idM , for some τ :SI //M and σ:M // SI ,
and so taking mi = τ(ei), where ei denotes the image of the unit e under the ith coproduct
injection S // SI , we see that

m =
∨
j∈I

σj(m)mj

In particular, substituting mir and multiplying by r′ on the right, we get

mirr
′ =

∨
j∈I

σj(mir)mjr
′

Define f :R //MatI(S) by f(r)ij = σj(mir). Then f(rr′)ik = (f(r)f(r′))ik, since

σk(mirr
′) = σk

(∨
j∈I

σj(mir)mjr
′) = ∨

j∈I

σj(mir)σk(mjr
′) =

∨
j∈I

f(r)ijf(r
′)jk

and it follows that f is a (non-unitary) homomorphism.

To see M ∼= Mf , we will show that σ(M) = Mf . Given s ∈ Mf , we know that

s = sf(e) =
(∨
i∈I

siσj(mi)
)
j
=

(
σj(

∨
i∈I

simi)
)
j
= σ

(∨
i∈I

simi

)
and so s ∈ σ(M). Now, suppose s ∈ σ(M), say s = σ(m), where m ∈ M . Then

s = σ(m) = (σi(m))i =
(∨
j∈I

σj(m)σi(mj)
)
i
= σ(m)f(e) = sf(e)

as desired.

We conclude with a final remark. After showing that left adjoint bimodules are given
by non-unitary homomorphisms, Paré [P21] introduced the following double category
Ampli of commutative rings in which every ring is Cauchy complete. Horizontal morphisms
R // S are pairs (p, f), where f :R //Matp(S) is a non-unitary homomorphism, vertical
morphisms are the same as in Ring, but cells

S S ′
(q,g)

//

R

S

M

��

R R′(p,f) // R′

S ′

M ′

��
• •φ
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are of the form

S Matq(S
′)

(q,g)
//

R

S

M

��

R Matp(R
′)

(p,f) //Matp(R
′)

Matq(S
′)

Matq,p(M ′)
��

• •
φ
//

where Matq,p(M
′) is the set of q × p matrices with entries in M ′ and φ is an appropriate

additive map.

Although this construction of Ampli works well for (non-commutative) rigs and quan-
tales, we leave the latter for a future paper in which we develop the necessary properties
of non-finite dimensional matrices over quantales and, more generally, suplattices.
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