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FACTORIZATION SYSTEMS FOR RESTRICTION CATEGORIES

ROBIN COCKETT, G.S.H. CRUTTWELL, JONATHAN GALLAGHER, AND
DORETTE PRONK

Abstract. This paper describes the notion of a (latent) factorization system for a restric-
tion category. Analogous to factorization systems for ordinary categories, a description in
terms of a Galois connection based on an orthogonality relation is given. The orthogonality
relation involving a unique cross-map (or lifting), however, is between a pair, consisting of a
map together with a restriction idempotent, and a map. This gives a significantly different
character to the theory.

A restriction category in which the idempotents split is precisely a partial map category
whose partiality is given by the system of monics which split the restriction idempotents.
A restriction factorization on such a partial map category is completely characterized by a
factorization on the total maps which is stable with respect to the system of monics; that
is, pullbacks of both E and M-maps along these special monics are (respectively) E and
M-maps.

Examples of latent factorization systems are discussed. In particular, one source of latent
factorizations is provided by lifting latent factorizations from the base of a latent fibra-
tion into the total category: this is a generalization of the observation that one can lift a
factorization from the base of an ordinary fibration into the total category.

1. Introduction

For the authors of this paper, the issue of what a factorization system looks like in a restric-
tion category arose while studying latent fibrations in [5]. Latent fibrations are the analogue
of fibrations for restriction categories. In an analogous manner to an ordinary fibration, we
had reasoned, a latent fibration should induce a factorization system on the maps of the “to-
tal” category. The desire to understand the analogue of this observation for latent fibrations
led to the development of the notion of factorization system for restriction categories, which
we call a latent factorization system. As the name suggests – and, indeed, somewhat to
our frustration – the notion of a latent factorization was not as completely obvious as we
initially thought it might be. This ultimately led us to splitting the development of latent
factorization systems away from the development of latent fibrations and to create, as far as
is possible, a self-contained exposition. However, the development of latent fibrations and
latent factorizations was synergistic, as the latter used an important bit of technology from
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the former: namely the notion of precise diagrams.
Although we did not realize it at the time, there was already a well-understood source of

examples of a latent factorization system, for range categories [3] are, in fact, just restriction
categories with a (special) latent factorization. In retrospect, this example – if we had but
realized it was an example – would have already told us that the notion of factorization in
a restriction category was going to have a rather different feel from a factorization in an
ordinary category.

The paper [3] was, of course, developed with Pieter Hofstra. His remarkable gift for
clarity of thought and careful exposition is all over that paper (and indeed its sequel [4]). In
as much as this paper provides a new perspective on range categories, we feel it appropriate
to dedicate this work to Pieter even if we cannot hope to match his clarity of exposition.

To see that range categories provide a source of examples of restriction categories with
a latent factorization, recall that a restriction category, in which the idempotents split, is
precisely a partial map category, [2], in which partiality is given by the system of monics
which split the restriction idempotents. A latent factorization on such a partial map category
should be – and we shall prove that it actually is – completely characterized by a factorization
on the total maps which is stable with respect to pulling back along maps in the system of
monics. That is, pullbacks of both E and M-maps along these special monics exist and
are (respectively) E and M-maps. That a split range category provides an example of this
was proven in [3, Theorem 4.7]. Notice, however, this is a rather special case of a latent
factorization because the M-maps for range categories also provide the system of monics –
which is not necessarily the case for a general latent factorization.

Factorization systems in ordinary categories are often formulated as factorizations satis-
fying an orthogonality relation involving a unique cross-map (or lifting) [1]. One of our first
objectives was to give an analogous description of latent factorizations. Indeed, obtaining this
correspondence guided the manner in which a latent factorization was defined. As restric-
tion categories are not self-dual, the notion of orthogonality for restriction categories takes
a correspondingly non-self-dual character. In particular, in contrast to the orthogonality
relation for mere categories, which is between maps, the orthogonality relation in restriction
categories is between a pair, consisting of a map and a restriction idempotent, and a map.
The theory then runs a parallel, albeit more complicated path to the corresponding theory
for mere categories.

That the notion of a latent factorization system, which we introduce in Definition 3.8, is
the correct one must be justified. A basic requirement is that when the restriction category
is total, a latent factorization should reduce to the standard notion of a factorization: this
is, indeed, the case. A more significant requirement is that in a split restriction category it
should be synonymous with having a factorization system on the subcategory of total maps
viewed as an M-category. In fact, this should be not merely any factorization system but
rather an M-stable factorization system. It is this last requirement which has a far reaching
effect on the form of a latent factorization system.

Proposition 4.1, below, shows that if one has a latent factorization on a restriction cate-
gory X then this extends uniquely to a latent factorization on its category of split restriction
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idempotents Splitr(X). Proposition 4.3 shows that a latent factorization on a split restric-
tion category induces an M-stable factorization on its category of total maps. Proposition
4.4 says that having an M-stable factorization on an M-category, (X,M), induces a latent
factorization system on the partial map category, Par(X,M), which is, of course, a split re-
striction category. Furthermore, these last two transitions are inverse to each other. These
observations are collected into Theorem 4.5 which states that to have an M-category with an
M-stable factorization system is precisely to have a split restriction category with a latent
factorization.

As mentioned above, this work was originally motivated by the desire for an analogous
result for latent fibrations to that of ordinary fibrations, which says that, for a fibration, a
factorization on the base always lifts to a factorization on the total category. In the last
section we turn to this issue and show in Proposition 5.3 that latent factorizations “fit” with
the notion of a latent fibration in the sense that they lift along latent fibrations.

2. Restriction preliminaries

A restriction category (see [2] for details) is a category equipped with a restriction
combinator which given a map f : A −→ B, returns an endomorphism on the domain f : A
−→ A which satisfies just four identities1:

[R.1] ff = f [R.2] f g = g f [R.3] f g = fg [R.4] fg = fgf

The prototypical restriction category is the category of sets and partial maps, Par. The
restriction of a partial map in Par is the partial identity on the domain which is defined
precisely when the partial map is defined.

In a restriction category f is always an idempotent: an idempotent, e = ee, in a restriction
category is a restriction idempotent when e = e. It is not the case that every idempotent
need be a restriction idempotent. The restriction idempotents on an object A form a meet
semilattice (with the meet given by composition) which we denote by O(A). The elements
of the semilattice O(A) are the predicates of the object A which are determined by the
restriction.

Restriction categories are always full subcategories of partial map categories (see [2,
Proposition 3.3]) and this means that parallel maps in a restriction category can be partially
ordered: this can be expressed directly using the restriction by setting f ≤ g if and only if
fg = f ; this gives a partial order on parallel maps called the restriction order which is an
enrichment. If parallel partial maps agree where they are both defined, they are said to be
compatible; thus, f is compatible with g in a restriction category, written f ⌣ g, if and
only if fg = gf . This is also an enrichment but into symmetric reflexive relations: in [6]
the partial order and compatibility – there called “linking” relations – are combined into a
single enrichment into “cohesive” sets.

1Note that we are writing composition in diagrammatic order in this paper, so that f , followed by g, is
written as fg.
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A map f : A −→ B in a restriction category is said to be total in case f = 1A. Total
maps compose and form a (non-full) subcategory, Total(X) ⊆ X.

2.1. Partial isomorphisms and inverse categories.Amap s : A −→ B in a restriction
category is a partial isomorphism if there is a map s(−1) : B −→ A, the partial inverse
of s, with ss(−1) = s and s(−1)s = s(−1). We recall:

2.2. Lemma. In any restriction category:

(i) Partial inverses are unique;

(ii) Partial isomorphisms are closed under composition;

(iii) Restriction idempotents are precisely partial isomorphisms which are idempotent;

(iv) If s is a partial isomorphism then ss(−1)s = s and s(−1)ss(−1) = s(−1);

(v) If s1, s2 : A −→ B are partial isomorphisms then s1 ⌣ s2 if and only if s
(−1)
2 s1 is a

restriction idempotent.

Proof.

(i) Suppose both u and v are partial inverses to s then we have: u = uu = usu = us =
usv = uv so u ≤ v and similarly v ≤ u so they are equal.

(ii) The partial inverse of st is (st)(−1) := t(−1)s(−1) and for identity maps 1
(−1)
A = 1A.

(iii) It is clear that restriction idempotents are partial isomorphisms; conversely, if e is an
idempotent which is a partial isomorphism then e = ee(−1) = eee(−1) = ee = eee =
ee = e.

(iv) ss(−1)s = ss = s and similarly, s(−1)ss(−1) = s(−1)s(−1) = s(−1).

(v) Assume s
(−1)
2 s1 = s

(−1)
2 s1 then s2s1 = s2s

(−1)
2 s1 = s2s

(−1)
2 s1 = s2s

(−1)
2 s1s2 = s2s1s2 =

s1s2 so that s1 ⌣ s2. Now assume s1s2 = s2s1 then s
(−1)
2 s1 = s

(−1)
2 s2s1 = s

(−1)
2 s1s2 =

s
(−1)
2 s1s

(−1)
2 s2 = s

(−1)
2 s1 s

(−1)
2 and so s

(−1)
2 s1 is a restriction idempotent.

A restriction category in which all maps are partial isomorphisms is called an inverse
category. The partial isomorphisms of any restriction category form a subcategory (which
includes all restriction idempotents) and is an inverse category. Inverse categories are to
restriction categories as groupoids are to ordinary categories.

There are two additional characterizations of inverse categories:
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2.3. Theorem. [Theorem 2.20 in [2]] The following are equivalent:

(i) X is an inverse category (that is, a restriction category in which all maps are partial
isomorphisms);

(ii) X is a category with an involution ( )∗ : Xop −→ X which is stationary on objects so
that (f (−1))(−1) = f , ff (−1)f = f , and ff (−1)gg(−1) = gg(−1)ff (−1);

(iii) X is a category in which each map f : A −→ B has a unique map f (−1) : B −→ A
satisfying ff (−1)f = f and f (−1)ff (−1) = f (−1).

In a category with such an involution the restriction of a map f : A −→ B may be
defined by f := ff (−1). The restriction of the partial inverse of f we shall often write as
f̂ := f (−1) = f (−1)f : this we shall see below is an example of a range combinator. In an
inverse category all idempotents are restriction idempotents by Lemma 2.2 (iii).

2.4. Restriction functors. There are various sorts of morphisms between restriction
categories which can be considered: the most basic is that of a restriction functor, F : X
−→ Y, which is a functor between restriction categories which in addition preserves the
restriction structure, that is F (f) = F (f). Restriction functors so defined preserve total
maps, restriction idempotents, and partial isomorphisms.

In this paper we will also consider restriction semifunctors; a restriction semifunctor
F from X to Y is a semifunctor X −→ Y (that is, a map on objects and arrows which pre-
serves domains, codomains, and composition, but not necessarily identities) which preserves
restrictions. In this case, while F (1X) is not the identity, it is still a restriction idempotent
since

F (1X) = F (1X) = F (1X).

2.5. Open maps and range categories. A ready source of examples of restriction cat-
egories with a latent factorization is given by range restriction categories. This subsection
recalls this idea.

A map f : A −→ B in a restriction category is open in case there is a poset morphism
f! : O(A)/f −→ O(B) between restriction semilattices which is Frobenius left adjoint to the
map induced by the restriction f ∗( ) : O(B) −→ O(A)/f : e 7→ fe. Being a Frobenius left
adjoint means that in addition to the usual conditions the adjunction satisfies the Frobenius
identity (see [9, A.1.5]):

e′ ∧ f!(e) = f!(f
∗(e′) ∧ e)

Recall that it is automatic that f!(f
∗(e′)∧ e) ≤ e′ ∧ f!(e), so the content of the identity is in

the reverse inequality.
Explicitly this means, see [3, Lemma 2.6], that f : A −→ B is an open map in case there

is a map ∃f : O(A) −→ O(B); e 7→ f!(fe) such that:

[Open.1] ∃f (fe′) ≤ e′ [Open.2] ef ≤ f∃f (e) [Open.3] e′∃f (e) ≤ ∃f (fe′e).
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Here the first identity is the counit of the adjunction, the second is the unit, while the third
is the direction of the Frobenius identity which is not automatic.

A category is a range (restriction) category in case it is a restriction category in which
all maps are open. In this case one obtains a combinator, see [3], which given a map f : A
−→ B returns a restriction idempotent on the codomain f̂ : B −→ B, where f̂ := ∃f (1A),
which satisfies:

[rR.1] f̂ = f̂ [rR.2] ff̂ = f [rR.3] f̂ g = f̂ g [rR.4]
̂̂
fg = f̂ g

We observe:

2.6. Lemma. In a restriction category one may equivalently define an open map as a map

f : A −→ B with a combinator (̂ ) on the arrows {f ′|f ′ ≤ f} satisfying [rR.1-3].

Proof. Let us start by showing that [rR.1-3] imply [Open.1-3]. We define ∃f (e) := êf and

we must start by showing this defines a monotone map, that is if e ≤ e′ then êf ≤ ê′f . But
we have

êf ê′f = êf ê′f = êf ê′f = êe′f êf = êe′f = êf

establishing the inequality. For the remaining conditions:

∃f (fe′) ≤ e′ := f̂ e′f = f̂ e′ = f̂ e′ ≤ e′

f∃f (e) := f êf ≥ ef êf = ef = ef

e′∃f (e) := e′êf = êfe′ = êfe′ = êfe′f =: ∃f (fe′e).

Now let us show that [Open,1-3] imply [rR.1-3]:

f̂ := ∃f (1B) = ∃f (1B) =: f̂

f f̂ := f∃f (1B) = f∃f (1B)f ≥ 1Bff = f but also ff̂ ≤ f

f̂g := ∃f (fg1B) = g∃f (1B) =: f̂ g.

Notice that [rR.4] just defines the composite effect of an open map on idempotents.

An inverse category is self-dual, thus, it has in addition a corestriction combinator, f̂ :=
f ∗f : B −→ B, introduced above. This one can easily check is a range combinator. It follows
from this that partial isomorphisms in any restriction category are always open. In the
category of sets and partial maps every map is open: so this is a range category. However,
most restriction categories are not range categories and, thus, not every map will be open.
A prototypical example in which not every map is open is the category of topological spaces
with maps with domain of definition open sets. This example motivated the terminology
O(X). However, from any restriction category one can always extract the subcategory of
open maps: this subcategory will be a range category which, in particular, contains all the
restriction idempotents.
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2.7. M-categories and split restriction categories. A restriction category is split,
if all its restriction idempotents split. Given an arbitrary restriction category, X, one may
always split its restriction idempotents to obtain, Splitr(X), a split restriction category. The
2-category of split restriction categories, restriction functors, and total natural transforma-
tions (i.e., natural transformations in which each component is a total map) is 2-equivalent
to the 2-category of M-categories [2]. M-categories are categories with a system of monic
maps M which is closed to composition and pullbacks along any map. Functors between
M-categories must not only preserve the M-maps but also the pullbacks along M-maps. Nat-
ural transformations between M-functors are natural transformations which, in addition, are
Cartesian (or tight) for transformations between M-maps – that is, the naturality squares for
M-maps are pullbacks. The 2-equivalence is given on the one hand, by moving from an M-
category (X,MX) to its partial map category Par(X,MX) and on the other hand by moving to
theM-category consisting of the total map category of the split restriction category, Total(E),
with the restriction monics, Monic(E), (Total(E),Monic(E)). The restriction monics can be
variously described as partial isomorphisms which are total, restriction sections, or, more
interestingly, as left adjoints – “maps” – with respect to the partial order enrichment.

2.8. Precise diagrams. We shall call a commuting triangle of maps

A
g

��
k
��
B

f
// C

precise in case g = k. More generally a commuting diagram in a restriction category is
precise if the maps leaving the starting node have the same restriction as the map to the
final node expressed by the whole diagram. We refer to k as the left factor (and f the right
factor) of the triangle. Observe that:

2.9. Lemma. In any restriction category:

(i) A commuting triangle
A

g

��
k
��
B

f
// C

is precise if and only if kf = k.

(ii) A commuting triangle with right factor a restriction idempotent or, more generally, a
partial isomorphism

A
g

��
k
��
B α

// C



152 R. COCKETT, G. CRUTTWELL, J. GALLAGHER, D. PRONK

is precise if and only if k = gα(−1) (when α is a restriction idempotent this means
k = g).

(iii) The commuting triangle
A

f
��

f

��
A

f
// B

is always precise.

Proof.

(i) We have the calculations:

(⇒) If g = k then as g = kf we have kf = kfk = gk = kk = k.

(⇐) If kf = k then g = kf = kf = k.

(ii) We use (i) above: when the triangle is precise we have gα(−1) = kαα(−1) = kα = k.
Conversely, if k = gα(−1) we have

kα = kαk = gα(−1)αk = gα(−1)k = gα(−1)k = kk = k

showing the triangle is precise.

(iii) ff = f is precise with left factor f because f = f .

3. Orthogonality and latent factorization systems

Fundamental to ordinary factorization systems is the orthogonality relation between E- and
M-maps: in this section we develop the analogous story for restriction categories. Inter-
estingly, the notion of an orthogonality relation for a restriction category is not a relation
between maps but rather between a pair, consisting of a map and a restriction idempo-
tent, and a map. While this difference is quite fundamental, a parallel theory to that of
factorizations in mere categories will still emerge from the details.

3.1. Definition. In a restriction category X we say (f, e) ⊥r g – pronounced (f, e) is
(restriction) orthogonal to g – where f, e, g ∈ X, e is a restriction idempotent on the
codomain of f such that e = e and fe = f , when for all lax squares with eh2 = h2, there is
a unique cross map γ:

A

≥h1

��

(f,e) // B

h2

��
C g

// D

⇒

A
≥

h1

��

(f,e) // B

γ~~
h2

��
C g

// D
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with γg = h2 and γ = h2 (in other words, the lower triangle is precise).

We shall call a composite fg split at e when fe = f and eg = g: this is clearly related to
composition in the idempotent splitting. We shall indicate the split composition as (f, e)g; a
composition fg which is split at e is precise when g = e. Note that in the definition above,
the composite fh2 is required to split at e.

This relation gives a Galois connection between classes E of pairs of the form (f, e) above
and classes of maps M. We then make the following definitions:

3.2. Definition. In a restriction category:

� We write E ⊥r M to indicate that every member of (f, e) ∈ E is restriction orthogonal
to every member in m ∈ M (that is ∀(f, e) ∈ E ,m ∈ M, (f, e) ⊥r m).

� Given any class of maps M we may form the class of pairs

⊥M = {(f, e)|∀m ∈ M, (f, e) ⊥r m}

and similarly, given E a class of pairs we may form

E⊥ = {m|∀(f, e) ∈ E , (f, e) ⊥r m}.

� Two classes E ⊥r M are maximally orthogonal in case E =⊥M and E⊥ = M.

� A class of pairs E is maximal if E = ⊥(E⊥) and, similarly, a class of maps M is
maximal if M = (⊥M)⊥.

It is standard from the theory of Galois connections that if E ⊥r M is a possibly non-
maximal pair of restriction orthogonal classes, then ⊥M ⊥r E⊥ is the maximal pair of classes
with E ⊆⊥M and M ⊆ E⊥.

3.3. Lemma. In any restriction category:

(i) For any maximal E, if α is a partial isomorphism then (α, α̂) ∈ E;

(ii) If (f, e) is restriction orthogonal to all maps, then f is a partial isomorphism and e = f̂ ;

(iii) Any maximal E is closed to split composition; that is, if (f, e), (f ′, e′) ∈ E and ef ′ = f ′

then (f, e)(f ′, e′) := (ff ′, e′) ∈ E;

(iv) Any maximal E is closed to right extension by partial isomorphisms; that is, if (f, e) ∈
E and α is a partial isomorphism then (fα, êα) ∈ E;

(v) Any maximal M is closed to composition and contains all isomorphisms;

(vi) Any maximal M is closed to left extension by partial isomorphisms; that is, if m ∈ M
and α is a partial isomorphism with α̂m = m then αm ∈ M.
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Proof.

(i) We show that setting γ := h2α
(−1)h1 provides the desired cross map for any square so

that

A

≥h1

��

(α,α̂) // B

h2

��
C

f
// D

⇒

A
≥

h1

��

(α,α̂) // B

γ~~
h2

��
C

f
// D

where we have:

αγ := αh2α
(−1)h1 ≤ αα(−1)h1 = αh1 ≤ h1

γf := h2α
(−1)h1f ≥ h2α

(−1)αh2 = α̂h2 = h2 whence γf = h2 since γ ≤ h2

γ ≥ γf = h2 but γ = h2f (−1)h1 ≤ h2 whence γ = h2.

Uniqueness of this map is straightforward.

In the special case when f is a partial isomorphism, we note that there is an alternative
simpler expression for γ as h2f

(−1) because γ = γf = γff (−1) = h2f
(−1).

(ii) If (m, d) ⊥r m then we have

A
(m,d) // B

d
��

A m
// B

⇒

A
≥

(m,d) // B

d
��γ

��
A m

// B

with γ = d = d. However, then γm = d and mγ ≤ 1 so mγ = mγ = mγ = md = m.
So m is a partial isomorphism with m̂ = d.

(iii) We have:

A

≥h1

��

(f,e)(f ′,e′) // B

h2

��
C m

// D

⇒

A

≥h1

��

(f,e) // B′

f ′h2

��
C m

// D

⇒

A
≥

h1

��

(f,e) // B′

γ
~~

f ′h2

��
C m

// D

⇒

B′

γ

��

(f ′,e′) // B

γ′
~~

h2

��
C m

// D

and it is easily shown that γ′ supplies the required cross map.

(iv) Note that (fα, êα) = (f, e)(eα, êα) where (eα, êα) ∈ E by (i), above, and the compo-
sition is split at e (with feα = fα) so, by (iii) above, this means that (fα, êα) is in
E .
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(v) To show M is closed to composition we have:

A

≥h1m1
��

(f,e) // B

h2

��
C ′

m2

// D

⇒

A
≥

h1m1
��

(f,e) // B

γ~~
h2

��
C ′

m2

// D

⇒

A

≥h1

��

(f,e) // B

γ
��

C m1

// C ′

⇒

A
≥

h1

��

(f,e) // B

γ′
~~

γ
��

C m1

// C ′

That isomorphisms are in M is immediate.

(vi) We have:

A

≥h1

��

(f,e) // B

h2

��
C αm

// D

⇒

A
≥

h1α
��

(f,e) // B

γ
~~

h2

��
C ′

m
// D

⇒

A
≥

h1

��

(f,e) // B

γα(−1)

{{
h2

��
C αm

// D

In order to show the last diagram has the correct form we have (using α̂m = m):

γα(−1)αm = γα̂m = γm = h2

fγα(−1) ≤ h1αα
(−1) = h1α ≤ h1

γα(−1) ≤ γ = h2

h2 = γα(−1)αm ≤ γα(−1).

Using Lemma 3.3 (i) and (ii) we observe:

3.4. Corollary. In any restriction category, the class E0 = {(α, α̂)|α is a partial iso} is
maximally restriction orthogonal to all maps.

We can now define what it means to factor a map relative to an orthogonal pair E ⊥r M:

3.5. Definition.Given two orthogonal such classes E ⊥r M, we say a map h has a precise
(E ,M)-factorization in case there is an (f, e) ∈ E and an m ∈ M such that e = m and
fm = h.

This has an expected uniqueness property:

3.6. Lemma. Given two orthogonal classes, E ⊥r M, if (f, e)m = h = (f ′, e′)m′ are two
different precise (E ,M)-factorizations of h, then there is a unique partial isomorphism α,
with α = e, (f ′, e′) = (fα, α̂) and αm′ = m.

Proof. For any precise factorizations of h we have the self cross maps given by:

A

f
��

(f,e) // B

m
��m~~

B m
// D

A

f ′

��

(f ′,e′) // B′

m′

��m′~~
B′

m′
// D
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However, given the two factorizations we also have the two cross maps

A

f ′

��

(f,e) // B

m
��α~~

B′
m′
// D

A

f
��

(f ′,e′)// B′

m′

��α′
~~

B m
// D

where we claim that the upper triangles commute on the nose. For this it suffices to show
fα = f ′. We certainly have fα ≤ f ′ which equivalently means fα = fαf ′. However, we

now observe that fα = f ′: for this first observe f ′ = f ′e′ = f ′m′ = f ′m′ = h, so that
fα = fαf ′ = fαf ′ = fmf ′ = fmf ′ = hf ′ = f ′.

The maps α and α′ now compose to give the self cross maps above and thus are partial
inverses from which the required properties are immediate.

We may reverse this result to obtain a characterization of precise factorizations for a pair
of maximally orthogonal classes:

3.7. Proposition. If E ⊥r M are maximally orthogonal and h = (f, e)m is a precise
(E ,M)-factorization, then every precise (E ,M)-factorization is of the form h = (fα, α̂)α(−1)m
for some partial isomorphism α with α = e.

Proof. First note that fαα(−1)m = fαm = fem = fm = h and by Lemma 3.3 (iii) (fα, α̂)

is in E . By Lemma 3.3 (v), as α̂(−1) = α = m, α(−1)m ∈ M, so this is a precise (E ,M)-
factorization. Conversely by Lemma 3.6 any precise (E ,M)-factorization is of this form.

Thus these “precise factorizations” can pass through intermediate objects which are
wildly different but, nonetheless, must have patches (determined by the partial isomorphism)
which are isomorphic. In this sense they are precisely what we expect latent factorizations
to be.

3.8. Definition. A latent factorization system on a restriction category consists of
two maximally orthogonal classes E ⊥r M of maps such that every map admits a precise
(E ,M)-factorization.

Before giving examples of latent factorization systems, it is useful to have different equiv-
alent forms for this definition (as for factorization systems of mere categories); to establish
these results we need to develop the theory further. To facilitate this development it is use-
ful to introduce a slightly finer notion of orthogonality between map/restriction idempotent
pairs:

3.9. Definition. We shall say that (f, e) ⊥r (g, d), where e = e, fe = f , d = d, and
gd = g, if for every square on the left, in which eh2d = h2 we have a unique cross map γ, as
indicated in the square on the right with γ = h2:

A

≥h1

��

(f,e) // B

h2

��
C

(g,d)
// D

⇒

A
≥

h1

��

(f,e) // B

γ~~
h2

��
C

(g,d)
// D
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It is clear that if (f, e) ⊥r g then certainly (f, e) ⊥r (g, d). The converse may not hold
as in the latter case h2 satisfies an additional property.

This allows us to state the following somewhat technical lemma:

3.10. Lemma.

(i) Whenever (m, d) ⊥r (m, d) then m is a partial isomorphism and d = m̂;

(ii) If (f, e)(f ′, e′) = (ff ′, e′) is a precise composite with (f, e) ⊥r m and (ff ′, e′) ⊥r m
then (f ′, e′) ⊥r m;

(iii) If for any h, (g, d)h = gh is a precise composite, (f, e) ⊥r h, and (f, e) ⊥r gh then
(f, e) ⊥r (g, d).

Proof.

(i) See Lemma 3.3 (ii): the same proof works. If (m, d) ⊥r (m, d) then we have

A
(m,d) // B

d
��

A m
// B

⇒

A
≥

(m,d) // B

d
��γ

��
A m

// B

with γ = d = d. However, then γm = d and mγ ≤ 1 so mγ = mγ = mγ = md = m.
So m is a partial isomorphism with m̂ = d.

(ii) By assumption the square on the right

B

k1
��

≥

(f ′,e′)// B′

k2
��

C m
// D

⇒

A

fk1
��

≥

(f,e) // B
(f ′,e′)// B′

k2
��

C m
// D

⇒

A

fk1
��

≥

(f,e) // B
(f ′,e′)// B′

k2
��γ

ww
C m

// D

has a unique cross map γ as does

A
(f,e) //

fk1
��

≥

B

f ′k2
��

C m
// D

⇒

A
(f,e) //

fk1
��

≥
B

f ′k2
��γ′~~

C m
// D

We claim that setting either γ′ := f ′k2k1m = f ′k2k1 or γ′ := f ′k2f
′γ = f ′γ works to

give cross maps. Starting with the first, γ′ := f ′k2k1 we have

γ′m := f ′k2k1m = f ′k2

fγ′ := ff ′k2k1 = ff ′k2fk1 ≤ fk1

γ′ := f ′k2k1 = f ′k2 k1mk1 = f ′k2k1m = f ′k2k1m = f ′k2
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Now setting γ′ := f ′γ we have:

γ′m := f ′γm = f ′k2

fγ′ := ff ′γ ≤ fk1

γ′ := f ′γ = f ′γ = f ′k2 = f ′k2.

We therefore have f ′k2k1 = f ′γ and thus

B

k1
��

≥

(f ′,e′)// B′

k2
��γ

~~
C m

// D

as required.

(iii) As (g, d)h = gh is a precise composite d = h. Consider the sequence of squares:

A

≥h1

��

(f,e) // B

h2

��
C

(g,h)

// D

⇒

A

h1

��
≥

(f,e) // B

h2m
��

C
gh
// E

⇒

A

h1

��

≥

(f,e) // B

h2m
��γ��

C
gh
// E

In the leftmost square h2 = eh2h and fe = f , gh = g and this gives the next square
for which by assumption there is a cross map γ. We may also form the sequence of
squares:

A

≥h1

��

(f,e) // B

h2

��
C

(g,h)

// D

⇒

A

h1g
��

≥

(f,e) // B

h2h
��

C
h
// E

⇒

A

h1g
��

≥

(f,e) // B

h2h
��γ′~~

D
h
// E

and the second by assumption has a cross map γ′. We claim that setting either γ′ :=
h2h = h2 or γ′ := γg satisfy the requirements of a cross map as, for γ′ := h2 we have:

γ′h := h2h

fγ′ := fh2 ≤ h1g

γ′ := h2 = h2h = h2h

and for γ′ := γh we have:

γ′h := γgh = h2h

fγ′ := fγg ≤ h1g

γ′ := γg ≤ γ = h2h

h2h = γ′gh ≤ γ′.
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This means h2 = γ′ = γg and hence we have the required cross map

A

≥h1

��

(f,e) // B

h2

��
C

(g,h)

// D

⇒

A
≥

h1

��

(f,e) // B

h2

��γ~~
C

(g,h)

// D

We are now ready to prove:

3.11. Theorem. For classes E ,M in a restriction category, the following are equivalent:

(i) (E ,M) is a latent factorization system;

(ii) E ⊥r M, E is closed to right and M to left extensions by partial isomorphisms (in the
sense of Lemma 3.3), and every map in X admits a precise (E ,M)-factorization;

(iii) E and M satisfy

[ℓF.1] E is closed to split composition and right extension by partial isomorphisms;

[ℓF.2] M is closed to composition and left extension by partial isomorphisms;

[ℓF.3] Every map in X admits a precise factorization h = (f, e)m and for any other
precise factorization h = (f ′, e′)m′ there is a unique partial isomorphism α such
that α = e, α̂ = e′ and fα = f ′, αm′ = m.

Proof.

(ii) ⇒ (i) Note it is immediate that (i) ⇒ (ii) from Lemma 3.3; we want to establish the
converse. For this it is necessary to show that E ⊥r M maximally. We thus must show
that if (f, e) ⊥r M then (f, e) ∈ E and, similarly, if E ⊥r m then m ∈ M.

For the former: we know that we can precisely factorize f = (f ′, e′)m so that (f, e) =
(f ′, e′)(m, e) is a split composition. By Lemma 3.10 (ii) it follows that (m, e) ⊥r M.
However, this means (m, e) ⊥r (m, e) from which it follows, by Lemma 3.10 (i), that m
is a partial isomorphism and e = m̂. But this makes (f, e) a right extension of (f ′, e′)
by m and thus (f, e) ∈ E .
For the latter suppose E ⊥r m then we may precisely factorize m = (g, d)m′. It follows
by Lemma 3.10 (iii) that E ⊥r (g, d) but then (g, d) ⊥r (g, d) so that, by Lemma 3.10
(i), g is a partial isomorphism and d = ĝ. However, this makes m a left extension of
m′ ∈ M by g; thus, m ∈ E .

(i) ⇒ (iii) Is immediate from Lemma 3.3 and Proposition 3.7.
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(iii) ⇒ (ii) It remains to show that E ⊥r M. Suppose therefore we have m ∈ M and
(f, e) ∈ E and the leftmost square below:

A

h1

��

≥

(f,e) // B

h2

��
C m

// D

⇒

A

h1

��

≥ fh2h1

��

(f,e) // B

h2

��
C m

// D

⇒

A

h1 ≥

  

(f1,e1)
��

(f,e) // B

(f2,e2)
��

A′

m1

��

B′

m2

��

α
oo

C m
// D

⇒

A

h1

≥

��

(f,e) // B

h2

��

γ

��
C m

// D

Next we may obtain a commuting square inscribed inside the first square and then we
may precisely factorize the vertical maps (h1 = (f1, e1)m1 and h2 = (f2, e2)m2). This
gives two different factorizations of fh2 and so there is a partial isomorphism α which
mediates them. This gives the cross arrow γ := f2αm1. The only thing we need to
check is that γ = h2; for this we have:

h2 = (f2, e2)m2 = (f2, e2)m2 = (f2, e2)e2 = (f2, e2)

= (f2, e2)α = (f2, e2)αα̂ = (f2, e2)αm1

= (f2, e2)αm1 = γ.

Finally we must show this γ is unique: suppose therefore there is a γ′ which also serves
as a cross map. Then we may precisely factorize γ′ = (γ′

0, e
′
0)m0, and this gives:

A

(f1,e1)
��

(f,e) // B

(f2,e2)
��

(γ′
0,e

′
0)

~~
A′

m1

��

X
m0

~~

α2oo

m0~~

B′

m2

��

α1oo

C m
// D

where α1α2 = α and so γ′ = f2α2α1m1 = f2αm1 = γ.

We are now ready to consider various examples of latent factorization systems.

3.12. Example.

(1) In any trivial restriction category (that is, for every f : A −→ B, f = 1A) the notion
of restriction orthogonality reduces to the usual notion of orthogonality for the mere
category and the notion of a precise factorization reduces to a factorization. This means
that a latent factorization on such a restriction category is precisely an (orthogonal)
factorization system in the usual sense.
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(2) Every restriction category has at least one latent factorization system: the trivial latent
factorization system. This has E0 as the partial isomorphisms with their range, thus
E0 = {(α, α̂)|α is a partial isomorphism} and M consists of all maps. This is a maximal
orthogonality by Corollary 3.4. A factorization of a map h is given whenever one has a
partial isomorphism β with β = h; (β(−1), β̂) followed by βh is then a factorization (in
particular, β := h works).

Note that as the notion of restriction category is not self-dual there may be no factor-
ization, in general, in which the M maps are partial isomorphisms. The next example,
in fact, shows what the latent factorization with the M-maps partial isomorphism must
be if it exists.

(3) The prototypical example of a latent factorization is given by a range structure, [3]. Here

the class E consists of the pairs (f, f̂) while the class of M-maps consists of all partial

isomorphisms. A factorization of a map h is then a precise composite h = (f, f̂)m.
To see this is a latent factorization we shall use the characterization Theorem 3.11(iii).
Clearly, partial isomorphisms are closed to composition and left extension by partial
isomorphisms. We must show that E is closed to composition and right extension by
partial isomorphisms; however, note that the latter is implied, in this case, by the former
as for any partial isomorphism α, (α, α̂) ∈ E . For the former we must show that the

split composite (f, f̂)(g, ĝ) = (fg, ĝ) has (fg, ĝ) = (fg, f̂g) which follows as f̂ g =
̂̂
fg =

ĝ. Clearly any h has a precise factorization as h = (h, ĥ)ĥ so all that remains is to
show that any two precise factorizations of a map h are partially isomorphic. Suppose,
therefore, that h = (f1, f̂1)α1 = (f2, f̂2)α2 are two precise factorizations of h then we

claim α = α1α
(−1)
2 makes them partially isomorphic. To see this we have:

αα2 := α1α
(−1)
2 α2 = α1α̂2 = α1f̂2α2 = α1ĥ = α1f̂1α1 = α1α̂1 = α1

f1α := f1α1α
(−1)
2 = hα

(−1)
2 = f2α2α

(−1)
2 = f2α2 = f2

α := α1α
(−1)
2 = α1α̂2 = α1

̂̂
f2α2 = α1ĥ = α1 = f̂1

α̂ = α(−1) := α2α∗
1 = α2α

(−1)
1 = α2α̂1 = α2ĥ = α2 = ĥ2.

Thus this does indeed give a latent factorization.

Recall that every inverse category is a range category and so has the latent factorization
as above. It is not unique but it is the smallest factorization system with respect to the
order given by inclusion of E-map pairs.

We will see more examples of latent factorization systems in the next section.

4. Latent factorizations in split restriction categories

Given a restriction category X with a latent factorization system (E ,M), we wish to show
that splitting the restriction idempotents yields a split restriction category Splitr(X) which
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itself has a latent factorization system inherited from X, defined as follows:

E ′ = {e1
(f, e)−−−−→ e2|(f, e) ∈ E , e1f = f, ee2 = e} and M′ = {e1

me2−−−→ e2|m ∈ M, e1m = m}.

In particular, it is immediate from this definition that the embedding of X into Splitr(X)
preserves both E and M.

To show (E ′,M′) is a latent factorization system on Splitr(X) we will use the charac-
terization given in Theorem 3.11(ii). It is easy to see that M′ is closed to left extensions
by partial isomorphisms and that E ′ is closed to right extensions by partial isomorphisms
as this is so in X. It is also immediate that we can precisely factorize any map as given
an h : e1 −→ e2 we may factorize it in X, so h = (f, e)m with e = m, (f, e) ∈ E , and
m ∈ M, and then modify the factorization to (f,me2)me2. It is clear that this is precise
and that me2 : me2 −→ e2 ∈ M′: we must show that (f,me2) : e1 −→ me2 ∈ E ′. First
note that fme2 = fme2f = he2f = hf = ff = f where in the penultimate step we use
f = fe = fm = fm = h. Next we note that (f,me2) is the right extension of (f, e) by me2
where it is useful to note eme2 = m me2 = me2. This means (f,me2) ∈ E .

It remains to prove that E ′ ⊥r M′ in Splitr(X). Toward this end consider the square in
Splitr(X)

e1

h2

��
≥

(f,e) // e2

h2

��
e3 me4

// e4

⇒

e1

h2

��
≥

(f,e) // e2

h2

��
e3 m

// e4

⇒

e1

h2

��

≥

(f,e) // e2

h2

��
γ

~~
e3 m

// e4

⇒

e1

h2

��

≥

(f,e) // e2

h2

��
γ

~~
e3 me4

// e4

where (f, e) ∈ E and m ∈ M. In the third square we know γ = h2 so that e2γ = γ, and we
need to show that γe3 = γ. Toward this end we show that γe3 satisfies all the requirements
of a cross map:

γe3m = γm = h2

fγe3 = h2e3 = h2

γe3 ≤ γ = h2

h2 = γm = γe3m ≤ γe3.

This shows that γe3 = γ and that the maps in the third square are well-defined. For the
final diagram we note that γme4 = h2e4 = h2 and that this gives the desired cross map.

We have now shown:

4.1. Proposition. If X is a restriction category with a latent factorization system (E ,M)
then the latent factorization extends to a latent factorization system (E ′,M′), as defined
above, on Splitr(X) so that the embedding X −→ Splitr(X) preserves the factorization systems.

Notice that the latent factorization system (E ′,M′) has the class M′ defined in a slightly
unexpected manner in order to ensure that every map admits a precise factorization. Also
notice that the factorization that was used in the proof – and certainly it could have been
chosen differently – makes the M′-component a total map.
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4.2. Definition. An M-stable (E ,M)-factorization system on an M-category; that is, a
category with a stable system of monics M in the sense of [2], consists of a normal factoriza-
tion system which is, in addition, stable with respect to pulling back along M-maps. Thus,
given an M-pullback square, as on the left below, it can be factorized, as on the right:

A×B B′

m′

��

f ′
// B′

m
��

A
f

// B

⇒

A×B B′

m′

��

e(f ′) // Im(f ′)

m′′

��

m(f ′) // B′

m

��
A

e(f)
// Im(f)

m(f)
// B

and we require that whenever the square is a pullback both the squares on the right are
pullbacks.

Note that because the pullback along any map of an M-map, if it exists, is always an
M-map, it follows that it suffices to demand that pullbacks along M-maps of E-maps are
always E-maps.

4.3. Proposition. If X is a split restriction category with a latent factorization system
(E ,M) then this induces an M-stable factorization (Et,Mt) on Total(X) where

Et = {A f−−→ B|(f, 1B) ∈ E , 1A = f} and Mt = {A m−−→ B|m ∈ M,m = 1A}
Proof. First we note that a latent factorization when restricted to idempotents which
are identities produces two classes of maps which are clearly orthogonal. The extension
properties show that Mt is closed to composition on the left with isomorphisms and that
Et is closed to composition on the right with isomorphisms. Finally, we must show that we
can factorize into total maps given a precise factorization g = (f, e)m. This is achieved by
splitting e : B −→ B into re : B −→ B′ and se : B′ −→ B, with e = rese and sere = 1B′ ,
and modifying (f, e)m into the precise factorization g = (fre, 1

′
B)sem, using Proposition 3.7.

This factorization has fresem = fem = fm = g and then as g is total fre is total and, as the
factorization, is precise sem = 1B′ and so sem is a total map. This provides a factorization
system on the total maps of X.

It remains to show that this is an M-stable factorization. Consider, therefore, a pullback
of an M-map. It has the form:

D
mfefre //

mfe

��

C

me

��
A

rfe

AA

fe

MM f∈Et
// B

e

QQ

re

]]

We have to show that (mfefre, 1C) is in E . Toward this end observe that (mef , ef), being
a partial isomorphism with its range, is in E . Similarly, (re, 1C) ∈ E as re is the retraction
of me. Split composing (f, 1B)(re, 1C) gives (fr, 1C) ∈ E . Now note that fre = fe and this
means we can split compose (mfe, fe)(fre, 1C) to show that (mfefre, 1C) is in E as required.
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Next we observe that if we start with an M-category and an M-stable factorization system
then this induces a latent factorization system on the partial map category, Par(X,M):

4.4. Proposition. If (X,M) is anM-category with anM-stable factorization system (E ,M),

then Par(X,M) has a latent factorization system (Ê ,M̂).

Proof. We shall indicate a map in Par(X,M) by (m, f) : A −→ B where

A′

m
~~

f

&&
A B

Define the latent factorization classes in Par(X,M) based on the (E ,M) of X by:

Ê = {((m, gm′), (m′m′))|g ∈ E ,m,m′ ∈ M}
M̂ = {(m,h)|h ∈ M,m ∈ M}

Given an arbitrary partial map (m, f) it can be latently factorized as (m, e(f), (1Im(f), 1Im(f)))
followed by (1Im(f),m(f)) where e(f)m(f) is the (E ,M)-factorization of f :

A′

m
~~

f

&&
=

A B

A′

m
��

e(f)

''

Im(f)
m(f)

''
A Im(f) B

Thus letting the E-maps of the partial map category be spans (m, e(f)m0) we immediately
satisfy all the conditions of Theorem 3.11(ii) except the orthogonality requirement. Thus, it
remain to check orthogonality which is given by the following:

A′

m

uu
e(f)m0

))

A′×BH
′
2

m′′

ww

m′
oo

e(f ′)

((
A B H2

m2oo

h2

		

γ′

xx

H1

m1

::

h1

��

H1 ×C C ′
m′

1

oo

h′
1

��
C C ′

m
oo oo

m(g)
// D

where m′′ guarantees the laxness of the square of partial maps and the cross-map for the
latent factorization is γ = (m2, γ

′m) where γ′ is the cross map for the ordinary factorization
in X.
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We can combine these propositions to prove:

4.5. Theorem. For a split restriction category, X = Par(Total(X),M), to have a latent fac-
torization is precisely to have an M-stable factorization on the total map category, Total(X).

Proof. It suffices to show for the M-maps of a latent factorization that M̂t = M and that

for M-stable M′-maps that
(
M̂′

)
t
= M′. We have for the former:

M̂t = ̂{m ∈ M|m = 1} = {rm|rs = r, sr = 1,m ∈ M,m = 1}

This is contained in M as it is a left extension of elements in M by partial isomorphisms.
But also for any m ∈ M we can split m, so that rs = m and sr = 1, and then m = rsm
and sm is total and rsm is a left extension by a partial isomorphism. Thus m ∈ M̂t so
M̂t = M.

Conversely given M′ of a M-stable factorization on Total(X) then M̂′ = {rm′|r ∈
ParIso(X),m′ ∈ M′, r̂ = m′ = 1} and M̂′

t = {rm′ ∈ M̂′|rstr = rm′ = 1}. However,

this makes the maps r used in M̂′
t isomorphisms. However, M′ is part of an ordinary fac-

torization system, but M′ is certainly closed to composition on the left by isomorphisms.
Thus, M̂′

t ⊆ M′. However, considering the case when r = 1 immediately gives the other
containment, so M̂′

t = M′ as required.

4.6. Example.

(1) An example of an M-factorization (where M is chosen to be the class of all monics) is the
usual epi-mono factorization on sets. This follows immediately from Proposition 4.4 as
epic in the category of sets are closed to pulling back along any map. Thus, the category
of sets and partial maps is a range category [3] and so, as explained in Example 3.12(3),
this gives the latent factorization. The same argument, of course, works more generally
for any regular category as the regular monic factorization is always monic-stable.

(2) A special case of anM-stable factorization (E ,M) is the case whenM = M. As explained
in [3] this immediately makes the partial map category, Par(X,M) a range category.
Clearly regular categories provide a broad range of examples of this phenomenon (as
mentioned above). However, there are many examples which do not arise in this way.
A trivial example is given by the trivial restriction (f = 1A) of any ordinary category:
this is always a range category. A further example, which is non-trivial arises from the
factorization induced on (small) categories by taking the M maps to be full embeddings
and E to be the maps that are “bijective on object” functors. The partial map category
of partial functors with domains full embeddings is then a range category although it is
far from regular.

(3) A well-known factorization on topological spaces is into “quotient maps” followed by
“injective continuous maps” (see for example [7]). A quotient map is a surjection f : X
−→ Y which has the codomain’s topology determined by having U ⊆ Y open if and only if
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f−1(U) is open. An injective continuous map is just a continuous map whose underlying
set map is injective. It is not hard to see that quotient maps, in this sense, are closed
to pulling back along open maps, and thus to pulling back along open inclusions. This
means that in Topopen (the partial map category of topological spaces whose domains
are open inclusions) has a restriction factorization system which is non-trivial and not
a range.

(4) In this example we describe explicitly a factorization system on directed graphs which
is stable with respect to full subgraphs. This exhibits a non-trivial (non-range) restric-
tion factorization on the full subgraph partial map category of directed graphs. (The
factorization at the level of categories is the “bijective on object”–“full subcategory”
factorization.)

Consider the category of directed graphs, DGraph, whose objects are diagrams A :=

A
d0−−→−−→
d1

N in sets (in fact, in any category with finite limits), where A is the set of

arrows and N the set of nodes. The maps (fA, fN) : A −→ A′ are pairs with fA : A
−→ A′ and fN : N −→ N ′ such that fAdi = difN (for i = 0, 1). We let the M-maps be
the full subgraphs: these are determined intuitively by choosing a subset of the nodes
but leaving the arrows between those nodes unchanged. To describe this formally it is
useful first to describe full and faithful graph maps: a graph map (fA, fN) is full and
faithful in case

A
⟨d0,d1⟩//

fA
��

N ×N

fN×fN
��

A′
⟨d0,d1⟩
// N ′ ×N ′

is a pullback. (fA, fN) is a subgraph if fN is monic. From this formulation it is clear
that these maps are closed to composition. We must show that they are closed to pulling
back along any map. To see this consider the cube:

A1
⟨d0,d1⟩ //

fA

��

hA

��

N1 ×N1

fN×fN

��
hN×hN

��

A0
⟨d0,d1⟩ //

gA

��

N0 ×N0

gN×gN

��

A′
1 ⟨d0,d1⟩

//

f ′
A

��

N ′
1 ×N ′

1

f ′
N×f ′

N��
A′

0 ⟨d0,d1⟩
// N ′

0 ×N ′
0
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If this is a pullback in DGraph then the two side squares are pullbacks. If (gA, gN) is
full and faithful, the front face is a pullback. This immediately means the back face
(hA, hN) is a pullback and so pullbacks of full and faithful maps along any map are
full and faithful. Finally it is clear that hN must be monic if gN is monic, as monics
pullback. This show that pullbacks of full and faithful subgraphs along any map are full
and faithful subgraphs as desired.

Next we describe a factorization system on DGraph. The E-maps are those with their
node component an isomorphism while the M maps are the full and faithful graph maps
(that is those maps which make the first diagram above a pullback). Note that both
classes are closed to composition and include isomorphisms, so we must show the classes
are orthogonal and that every map can be factored. To show E ⊥ M consider the square
of maps in the cube above and assume this time that fN is an isomorphism and (f ′

A, f
′
N)

is full and faithful then

A0

⟨d0, d1⟩(f−1
N × f−1

N )(hN × hN )
−−−−−−−−−−−−−−−−−−→ N1×N1

f ′
N × f ′

N−−−−−−→ N ′
0×N ′

0 = A0
gA−−→ A′

0

⟨d0, d1⟩−−−−−→ N ′
0×N ′

0

Thus, as the bottom square is a pullback, there is a unique map c : A0 −→ A′
1 providing

the required cross map to establish orthogonality. Finally, to show there is a factorization
we simply factor a graph map through the pullback:

A

fA

��

⟨d0,d1⟩
**��

P

��

// N ×N

fN×fN

��
A′

⟨d0,d1⟩
// N ′ ×N ′

The upper triangle is then a E-map while the pullback square is an M-map, that is a
full and faithful graph morphism.

To show this factorization is M-stable we must show that pullbacks of E-maps along
M-maps are E . However, as E-maps are characterized by having fM an isomorphism,
the pullback of an E-map along any map is an E-map.

Thus, directed graphs with full subgraph partial maps, DGraphfull, has a restriction
factorization system determined by the factorization into bijective on nodes followed by
full and faithful graph maps.

(5) The partial map category, DGraphfull, has more than one non-trivial restriction factor-
ization. A graph map may be factored into a (bijective on nodes) quotient followed by
a faithful graph map. This factorization works for the directed graphs of any regular
category which is stable with respect to full subgraphs. The factorization of an arbitrary
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graph map is given by:

A
e(h)
'' ''

fA

""

⟨d0,d1⟩

))

Im(f)
'' m(f)

''

⟨d0,d1⟩

##

f ′
A

''
P //

��

A′

⟨d0,d1⟩

��
N ×N

fN×fN
// N ′ ×N ′

The lefthand lower triangle is then a quotient map (identity on objects) while (f ′
A, fN)

is a faithful graph map. It is then straightforward to show this is M-stable with respect
to full subgraph embeddings and, thus, gives another latent factorization system on the
partial map category.

5. Factorizations induced on latent fibrations

An observation, which likely goes back to the early 1970’s and is recorded, for example, in
a slightly more general form in [8, Proposition II.5.7.1], is that factorization systems, E-M,
on the base category of an ordinary fibration can be lifted to a factorization, E ′-M′, on the
total category. The E ′-maps consist of all maps which lie above an E-map (this includes, in
particular, all the vertical maps). The M′-maps consists of those maps which are Cartesian
above M-maps:

5.1. Proposition. If p : E −→ B is a (standard) fibration, and B has an E-M factorization
then there is a unique induced factorization E ′-M′ on E, the total category, with M′ the
Cartesian maps above M and E ′ all maps above maps in E.
Proof. Set M′ = {f |p(f) ∈ M and f is Cartesian} and E ′ = {g|p(g) ∈ E}. Clearly
E ′ Iso ⊆ E ′ and Iso M′ ⊆ M′. Furthermore, that these two sets are orthogonal is immediate
using the fact that M′-maps are prone (the cross map is given by the lifting property of

Cartesian arrows). Finally any map can be factorized by f = p̃(e(f))p(m(f))∗, where we

note that p(p̃(e(f))) = e(f) and so p̃(e(f)) ∈ E ′. This proves that E ′-M′ is a factorization
system with the required properties.

It is unique as M′, which is completely determined as the Cartesian maps over M,
uniquely determines the factorization system.

The usual manner in which this observation is deployed is to use the trivial factorization
Iso-All on the base category in order to factorize maps in the total category into essentially
vertical maps followed by prone maps.

Our objective in this section is to prove that a latent factorization on the base of a latent
fibration induces a latent factorization on the total category in much the same manner.

Latent fibrations are explored in [5]. Here is the definition:
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5.2. Definition. Let E and B be restriction categories and p : E −→ B a restriction semi-
functor.

(i) An arrow f ′ : X ′ −→ X in E is p-prone in case whenever we have g : Y −→ X in E
and h : p(Y ) −→ p(X ′) in X such that hp(f ′) = p(g) is a precise triangle, then there is

a unique lifting of h to h̃ : Y −→ X ′ so that p(h̃) = h and h̃f ′ = g is a precise triangle:

Y

h̃
��

g

  
X ′

f ′
// X

7→

p(Y )

h
��

p(g)

##
p(X ′)

p(f ′)
// p(X)

(ii) p : E −→ B is a latent fibration if for each X ∈ E and each f : A −→ p(X) in B
such that f = fp(1X), there is a p-prone map f ′ : X ′ −→ X sitting over f (that is,
p(f ′) = f).

The term “prone” is used above – and in [5] – to emphasize that the analogue of a
“Cartesian” map in a latent fibration is significantly more elaborate. However, for a trivial
restriction category – one in which the restriction of all maps is the identity – the notion of
prone coincides with that of Cartesian.

Note that in Definition 5.2, if p is a restriction functor (so that p preserves identities)
then the condition f = fp(1X) is vacuous. However, if p is a genuine semifunctor, then
that condition is necessary, as if there is an arrow f ′ : X ′ −→ X sitting over f , then since
f ′ = f ′1X , p(f

′) = p(f ′)p(1X); i.e., f must satisfy f = fp(1X).

5.3. Proposition. If p : E −→ B is a latent fibration, and B has a latent factorization
system (E ,M), then there is an induced latent factorization system on E with

E ′ = {(g, e)|(p(g), p(e)) ∈ E} and M′ = {m|p(f) ∈ M and p(f) is prone}.

Proof. If g : E −→ E ′ is a map in E then we may factorize it into (f̃ ,m′) followed by m′

where m′ is prone over m and f̃ is the lift of f where (f,m)m is the precise factorization of
p(g):

E

f̃
��

g

  
F

m′
// E ′

7→

p(E)
p(g)

##
f
��

p(E) m
// p(E ′)

Note that E ′ is closed to right extension as E is, and M′ is closed to left extension as when
α has α̂m′ = m′ then αm′ is a mediating morphism so that αm′m′ = αm′ is prone and over
p(α)m which is in M as it is closed to left extension.

It remains to show that E ′ ⊥r M′; for this consider

E
(g,e) //

h1 ≥
��

F

γ̃
~~

h2 7→
��

E ′
m
// F ′

p(E)
(p(g),p(e))//

p(h1) ≥
��

p(F )

γ

{{
p(h2)
��

p(E ′)
p(m)

// p(F ′)
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where note that the lift of γ certainly makes the lower triangle of the first square commute. By
restricting to p(g)p(h1) we can make the square precise and gh1 is thus its lifting. However,
gγ̃ is also a lifting and so gh1 = gγ̃.

This proves the proposition.

We may use this result to give an alternative proof of Proposition 4.1 by noticing that
the underlying functor U : Splitr(X) −→ X (see [5] 3.2.7) is an example of a latent fibration
and, thus, by the above we can lift a latent fibration on X to one on Splitr(X). In this
case the lifting gives a bijection between latent factorizations on X and Splitr(X) as there
is clearly an inverse which takes the latent factorization induced on X from the embedding
I : X −→ Splitr(X).

6. Conclusion

The paper shows that – with some modifications – the theory of factorization systems has
a natural analogue for restriction categories. Significantly the self-dual nature of ordinary
factorization systems is lost in this analogy as restriction categories are not self-dual. This
asymmetry becomes apparent almost immediately when one tries to develop the appropriate
analogue of orthogonality. The notion of orthogonality presented here differs significantly
from the usual notion of orthogonality: this departure may be useful for emboldening re-
searchers who are studying factorization in other specialized contexts.

That range categories provide an important source of examples of latent factorization
systems was largely for us a post-hoc realization: the development here was largely driven
and motivated by the relation to latent fibrations. It is incumbent on us, therefore, to
re-emphasize the significance of the fact – implicit here from the examples, see 3.12(3),
4.6(2), and, of course, [3] – that range restriction categories can be equivalently described as
restriction categories with a latent factorization in which the M-maps are exactly the partial
isomorphisms. Having independent descriptions of a notion is always a good indicator of
mathematical significance. In this manner, the view of range restriction categories offered
by the existence of a special latent fibration, reinforces the mathematical importance of the
theory of range restriction categories ... to which Pieter Hofstra contributed significantly.

While we have provided quite a few examples of latent factorizations, there is always
room for more! We would always be happy to hear of new applications of this work.
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