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WEAK VERTICAL COMPOSITION

In memory of Pieter Hofstra

EUGENIA CHENG AND ALEXANDER S. CORNER

Abstract. We study semi-strict tricategories in which the only weakness is in vertical
composition. We construct these as categories enriched in the category of bicategories
with strict functors, with respect to the cartesian monoidal structure. As these are a form
of tricategory it follows that doubly-degenerate ones are braided monoidal categories.
We show that this form of semi-strict tricategory is weak enough to produce all braided
monoidal categories. That is, given any braided monoidal category B there is a doubly-
degenerate “vertically weak” semi-strict tricategory whose associated braided monoidal
category is braided monoidal equivalent to B.
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Introduction

It is well-known that every weak 2-category is equivalent to a strict one [11], but that
the analogous result for weak 3-categories does not hold [4]. Rather, coherence for weak
3-categories (tricategories) needs more nuance. One way of viewing this is that we need
to take account of possible braidings that arise and cannot be strictified into symmetries.
The original coherence result of Gordon–Power–Street [4] says, essentially, that every
tricategory is equivalent to one in which everything is strict except interchange. The
intuition is that “braidings arise from weak interchange”. However, from close observation
of how the Eckmann–Hilton argument works, Simpson [13] conjectured that weak units
would be enough, and this result was proved for the case n = 3 by Joyal and Kock [5].
Their result involves a weak unit I in an otherwise completely strict monoidal 2-category.
They showed that the category End(I) of endomorphisms on I is naturally a braided
monoidal category, and that every braided monoidal category is equivalent to End(I) for
some monoidal 2-category. Regarding this as a (degenerate) 3-category, this means that
everything in the 3-category is strict except horizontal units.

In this work we will address a third case, in which everything is strict except vertical
composition, that is composition along bounding 1-cells; this amounts to considering
categories strictly enriched in the category of bicategories and strict functors, with respect
to cartesian product. We write this category as Bicats. On the one hand this might be
regarded as a peculiar mixture of weakness and strictness, but as pointed out in [9, 10] the
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strict functors make for a much better behaved category—unlike the category involving
weak functors, it is complete and cocomplete. The category Bicats is further studied in
[2]. Although these properties of Bicats are not our primary motivation for using strict
functors, they may result in useful consequences of our main theorem.

Note that we need fully weak vertical composition, not just weak units; Kock [8] proved
that strict associativity in both the horizontal and vertical directions yields commutativity.

It follows from the result for general tricategories that any doubly-degenerate Bicats-
category “is” naturally a braided monoidal category; that is, its single hom-category of
2-cells and 3-cells has the structure of a braided monoidal category with the monoidal
structure given by vertical composition and braiding constructed from a weak Eckmann–
Hilton argument. We will show that every braided monoidal category is equivalent to one
arising in this way. The proof closely follows the idea of Joyal and Kock’s, using clique
constructions. Joyal and Kock use train track diagrams to give just enough “rigidity” to
the structure of points in 3-space, and they describe this as preventing the points from
being able to simply commute past each other via an Eckmann–Hilton argument. We
are aiming for a different axis of strictness and so instead of points in R2 with cliques
arising from train track diagrams, we use use points embedded in the interior of I2 (where
I denotes the unit interval) with cliques arising from horizontal reparametrisations. The
idea is that the fundamental groupoid of the configuration space of points in I2 is naturally
a doubly-degenerate tricategory with weak horizontal and vertical composition but strict
interchange. We can make horizontal composition strict by imposing an equivalence
relation, but we follow Joyal and Kock in implementing this using cliques.

Then, starting with a braided monoidal category B we show how to construct a doubly-
degenerate “vertically weak” tricategory ΣB whose associated braided monoidal category
is braided monoidal equivalent to B. Analogously to [5] the 2-cells will be configurations
of points in I2 labelled by objects of B, such as

b1

b2

b3

b4

subject to the appropriate horizontal equivalence relation. Then vertical composition is
given by stacking the boxes vertically and scaling them equally; as for concatenation of
paths in a space, this is only weakly associative. Horizontal composition is strict because
of the equivalence relation.

As in [5] the morphisms (that is, 3-cells of the doubly-degenerate tricategory) are
constructed via cliques. The idea is that we want to interpret the configuration of labelled
points as a tensor product in B, and then take morphisms between those objects in B,
but there is no consistent way to do that. We can interpret a single point labelled by a

as the object a:

a
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and a vertical pair as shown below is then “obviously” a vertical tensor product of the
two singletons

a

b

so it can be interpreted as a⊗ b. However with more than two objects it is unclear what
parenthesisation we should take. Worse, this configuration

a b

appears to be a horizontal composite in the doubly-degenerate tricategory, but it is then
not clear if we should interpret it as a ⊗ b or b ⊗ a in B. Whichever choice we make for
constructing 3-cells we will not get strict interchange – interchange will need to invoke
the braiding in B.

We address all these issues by following [5] and using cliques. First we consider the
free braided monoidal category on the objects of B, and embed that as configurations of
points in I2 entirely on the central vertical line. Then, for a general labelled configuration
of points, instead of picking one interpretation as a tensor product in B, we consider
the clique of all such interpretations; moreoever, each interpretation must be equipped
with a braid recording a path from the configuration in I2 to the vertical configuration of
points corresponding to that particular tensor product in B. Clique maps are then those
maps in B that are just coherence maps (and braidings) commuting with the “linearising”
braids. We then take clique maps between those as the 3-cells in our doubly-degenerate
tricategory. The non-strictness of the interchange is then absorbed into the cliques.

Joyal and Kock are starting from a different framework of train tracks, but once we
set up our framework to replace the train tracks the rest of the construction and proof is
very similar. The main construction and result of the paper are then as follows.

Main construction.Given a braided monoidal categoryB we define a doubly-degenerate
vertically weak tricategory ΣB whose 2-cells are certain cliques of configurations of points
of I2 labelled by objects of B, and whose 3-cells are pulled back from B via a clique con-
struction.

Main theorem.Given any braided monoidal categoryB, the underlying braided monoidal
category of ΣB is braided monoidal equivalent to B.

There are several critical subtleties to this, which is why we have to leave vertical asso-
ciativity weak but can use fully doubly-degenerate structures, where Joyal and Kock were
able to have all associativity strict but could not use fully doubly-degenerate structures.
Furthermore, neither [5] nor the present work address the totalities of the structures in
question; the totality of braided monoidal categories is a 2-category, and so for a compari-
son of totalities, a bicategory of doubly-degenerate Bicats-categories must be constructed.
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We will address this in the sequel, exhibiting a biequivalence of appropriate bicategories.
This method generalises, by omitting the “slide” cliques, to prove the corresponding result
for doubly degenerate Trimble 3-categories [14]; this will also be in future work. In fact,
our original aim was to make the construction for Trimble 3-categories, but in doing so
we realised that we could alter the construction slightly to make it work for the vertically
weak tricategory case.

The structure of the paper is as follows. In Section 1 we define the type of semi-strict
tricategories we will be studying, which are categories enriched in the category of bicat-
egories and strict functors. We will characterise the doubly-degenerate ones as certain
categories with two monoidal structures, one weak and one strict, satisfying strict inter-
change, and show that each one has an associated braided monoidal category. Note that
these categories with two monoidal structures are a particularly strict form of 2-monoidal
category [1]. In general in a 2-monoidal category interchange is only required to be lax; it
is known that braided monoidal categories can be built from 2-monoidal categories where
interchange is weak, but in this work we deal with the case where interchange is strict.

In Section 2 we give some background on cliques that will be needed for the main
construction and proof; none of this section is new. In Section 3 we introduce the labelled
configuration spaces of points that we will use for the main construction, together with
their braided monoidal structure. The new content in this section is the definition of
slide cliques, which we use to ensure that our horizontal tensor product is strict. In
Section 4 we give the main construction, which starts with any braided monoidal category
B and produces a doubly-degenerate Bicats-category ΣB from it. In Section 5 we prove
the main theorem, which is that the braided monoidal category associated with ΣB is
braided monoidal equivalent to B, showing that all braided monoidal categories arise from
doubly-degenerate Bicats-categories. In Section 6 we give a brief account of future work.

How to read this paper quickly. To read this paper quickly, experts may proceed
by reading as follows:

1. The characterisation of doubly-degenerate Bicats-categories in Proposition 1.2.1.

2. The definition of slide cliques in Section 3.4.

3. The construction of ΣB: the underlying category (Section 4.1), the tensor products
(Section 4.4) and interchange (Section 4.5).

4. The main theorem, stated as Theorem 5.0.4.

Terminology conventions. We will use the general terminology convention where
“strict” means that coherence constraints are identities and “weak” means they are iso-
morphisms (which are called strong by some authors). All our braided monoidal categories
have a weak monoidal structure.



WEAK VERTICAL COMPOSITION 227

1. Doubly-degenerate Bicats-categories

In this section we will set up the framework of the semi-strict tricategories we will be
studying. First we perform a dimension shift to characterise them as categories with two
monoidal structures, and we then define the underlying braided monoidal category of such
a structure.

1.1. Bicats-categories. We write Bicats for the category of bicategories and strict
functors between them. Bicats has finite products; we will study categories enriched
in Bicats with respect to the cartesian monoidal structure. (We will not consider any
other monoidal structure on Bicats.) Note that we are using standard enrichment in a
monoidal category, not any kind of weak enrichment. We will refer to composition along
bounding k-cells as k-composition, but we will also refer to 0-composition as horizontal,
and 1-composition as vertical.

Thus a Bicats-category is a form of semi-strict tricategory with

• a set of 0-cells, and hom-bicategories giving 1-cells, 2-cells and 3-cells,

• 2-composition coming from the vertical composition in the hom-bicategories, thus
it is strictly associative and unital,

• 1-composition coming from the horizontal composition in the hom-bicategories, thus
it is weakly associative and weakly unital,

• 0-composition coming from the composition in the enriched category, thus it is
strictly associative and strictly unital,

• interchange between 1-composition and 2-composition is strict as it comes from
interchange in the hom-bicategories,

• interchange between 0-composition and any other kind is strict as it comes from the
functoriality of morphisms in Bicats, which is strict.

We will also refer to these as “vertically weak tricategories”, by which we mean that the
only weakness is in the vertical composition.

1.2. Doubly-degenerate Bicats-categories by dimension shift.A doubly-degenerate
Bicats-category has only one 0-cell and only one 1-cell. As usual we perform a “dimen-
sion shift” and look at the 2-cells and 3-cells as a category with extra structure. In this
case we have a category with two monoidal structures:

• a strict “horizontal” monoidal structure, coming from 0-composition of the original
tricategory, which we will write as a|b, and

• a weak “vertical” monoidal structure, coming from 1-composition, which we will
write as a

b
.
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These satisfy strict interchange, which with this notation can then be written as

a b

c d
=

a b

c d

In general there are three types of weakness in a tricategory:

• 0-composition (horizontal),

• 1-composition (vertical), and

• interchange between them.

but in the semi-strict structures we are studying only vertical composition is weak. The
following characterisation is straightforward but it will help later for us to make it explicit.

1.2.1. Proposition.A doubly degenerate Bicats-category is precisely a category equipped
with two monoidal structures, one weak and one strict, satisfying strict interchange.

Note that in general a degenerate V-category is just a monoid object in V, so a
1-degenerate Bicats-category is equivalently a monoid object in Bicats, and a doubly-
degenerateBicats-category is a monoid object inMoncats, the category of weak monoidal
categories with strict functors.

1.3. Underlying braided monoidal category. Classical coherence for tricategories
[4] shows that we can make everything strict except interchange. Joyal and Kock [5] study
making everything strict except horizontal composition (in fact everything is strict except
horizontal units). We are studying the remaining case, where everything is strict except
vertical composition. We will show that this situation is “weak enough” to produce
braided monoidal categories in the doubly-degenerate case.

We will follow the methods and techniques of [5] quite closely. So first, for any doubly-
degenerate Bicats-category A we exhibit its associated braided monoidal category UA.
A has an underlying category of 2-cells and 3-cells which by abuse of notation we also
write as A. Since it is, among other things, a form of doubly-degenerate tricategory, it
becomes a braided monoidal category with respect to the monoidal structure coming from
1-composition, which in this case is a weak monoidal structure. The braiding then comes
from the Eckmann–Hilton argument in the usual way (see for example [3]), but simplified
by the horizontal composition being strict. Note that there are two possible choices of
orientation for the braiding, depending on which way round the left and right units are
applied. We will pick the following convention:
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a

b

1

b

a

1

1
b

a

1

b a

b
1

1
a

b

1

1

a

b
a

strict horizontal units

strict interchange

∼ weak vertical units
∼ weak vertical units

strict interchange

strict horizontal units

The question then is whether all braided monoidal categories arise from a doubly-
degenerate Bicats-category in this way. We follow Joyal and Kock [5] and show that
given any braided monoidal category B there is a doubly-degenerate Bicats-category ΣB
such that UΣB is braided monoidal equivalent to B. This is evidently only an object-level
correspondence, rather than dealing with the totalities of such structures, but hints at
U and Σ giving an equivalence between the totalities; a full equivalence requires further
theory so we defer it to a future work.

2. Preliminaries on cliques

Our construction follows that of [5] in using cliques, so we include the definitions we
need here; none of this is new. As we have found the existing literature to be somewhat
piecemeal (following historical developments), we judge that there is broader benefit to
some exposition here.

2.1. Cliques and their morphisms. Cliques were mentioned briefly in [7], referred to
again with a little more development in [6] and then the theory was developed further in
[5]; they are also studied in [12] under the name ana-objects. Essentially, a clique is a
more categorically satisfactory way of implementing equivalence relations in which certain
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isomorphic objects are to be considered “the same”. Instead of identifying the objects
in question, we assemble them into cliques, which are, essentially, collections of objects
with uniquely specified isomorphisms between them. The cliques are then considered to
be objects of a new category, so that the entire clique is now considered to be a single
object, without us having to quotient out by anything. In a sense, the power of the
theory of cliques comes from the way morphisms are handled, which is typically a very
unsatisfactory aspect of performing quotients on a category.

So a clique in a category is essentially a family of objects equipped with uniquely
specified isomorphisms between them. The subtlety is that objects might be repeated,
hence we use an indexing category to specify the objects of a clique. Sometimes that
subtlety is not needed so it is not so crucial to emphasise the indexing category, hence in
the earlier definitions (for example [7]) the indexing category is not emphasised, but in
later works (for example [5]) the indexing category is prominent. The definition in [7] is
as follows, and this is often how we will think of cliques in practice.

2.1.1. Definition. A clique in a category C is a non-empty family

{xj | j ∈ J}

of objects of C together with a family

{xjk xj xk | (j, k) ∈ J × J}

of maps such that xjj = 1 and xjkxkl = xjl (so in particular xjk = x−1
kj )). The isomor-

phisms xjk are called connecting isomorphisms.
A morphism of cliques

f {xj | j ∈ J} {yk | k ∈ K}

is a family of maps
fjk xj yk

such that the following diagram commutes for all (j, j′) ∈ J2, (k, k′) ∈ K2:

xj yk

xj′ yk′

fjk

fj′k′

xjj′ ykk′

The following definitions of clique and clique morphism are equivalent to the above but
are expressed more abstractly; these definitions are given in [5] and the greater reference
to the indexing category facilitates the more advanced constructions. The idea is to define
a clique as a functor from a contractible groupoid, that is, non-empty indiscrete category.
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2.1.2. Definition. Given a set (or collection) J let J denote the groupoid whose objects
are given by J and whose morphisms are given by J × J , with the two projections giving
source and target. The identity on j is the morphism (j, j), and composition is given by
(j′, j′′) ◦ (j, j′) = (j, j′′). If J is non-empty then J is contractible. A clique in a category
C is a functor J C for some non-empty J .

2.1.3. Remark. A collection of objects in C together with unique specified isomorphisms
between them is a clique, but in general a clique may contain multiple copies of the same
object. In the former case the indexing category can be suppressed (as it is essentially
the same as the objects of the clique itself), but in the latter case it cannot. The slide
cliques we use will be of the former type, but the cliques we use in the main construction
will crucially need to be the latter.

2.1.4. Definition. A morphism of cliques {xj | j ∈ J} {yk | k ∈ K} is a natural
transformation

J ×K K

J Cx

y

2.1.5. Remark. Note that a clique morphism is completely determined by specifying
any one of its components, and moreover any morphism xj yk (for any j and k) will
specify a clique map. The subtlety is that clique maps specified by

xj yk

xj′ yk′

f

f ′

represent the same clique map whenever the square involving connecting isomorphisms
commutes. In practice this is typically how we will specify clique maps (by a single
component).

2.1.6. Definition. We write C̃ for the category of cliques in C and clique morphisms.

For composition, note that when clique maps are specified by a single component they
must be composed via the appropriate connecting isomorphisms. That is, given cliques

{xj | j ∈ J}, {yk | k ∈ K}, {zl | l ∈ L}

and clique maps specified by the following components

xj
f

yk, yk′
g

zl

the composite may be given by the following component:

xj yk

yk′ zl

f

g

ykk′∼
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as seen by the composite naturality square:

xj yk zl

xj yk′ zl

f

ykk′ ◦ f

g ◦ ykk′

g

xjj = 1 ∼ ykk′∼ zll = 1∼

Note that this means we might have two clique maps specified by identity morphisms,
but their composite is not specified by an identity because we have picked up a non-trivial
connecting isomorphism in the middle.

2.1.7. Remarks. Some observations about identities and isomorphisms in the category
of cliques will help us later. First note that the identity clique map

{xj | j ∈ J} {xj | j ∈ J}

has as its components the connecting isomorphisms, thus it may be represented by an
identity component on any object of the clique

xj

1xj
xj

or, more generally, if objects xj and xk are used to represent the source and target, then
the identity clique map is represented by the connecting isomorphism

xj
xjk

xk.

Thus an identity clique map can be specified by a non-identity morphism; conversely
a non-identity clique map can be specified by an identity morphism, as it might be a
morphism between different cliques that happen to have an object in common.

Also note that an isomorphism in the category of cliques is a clique morphism each of
whose components is an isomorphism; it is sufficient for any individual component to be
an isomorphism. In particular, cliques that are isomorphic in the category of cliques do
not have to have isomorphic indexing categories.

We will not need the following result but include it for completeness.

2.1.8. Proposition. [5] There is a canonical equivalence of categories

C ∼ C̃

given by sending an object x ∈ C to the singleton clique on the object x.



WEAK VERTICAL COMPOSITION 233

2.2. Cliques in braided monoidal categories. Eventually we will be taking cliques
in a braided monoidal category, and will need to know that a canonical braided monoidal
structure is induced on the category of cliques. The structure is exactly as expected,
with only the notation being slightly cumbersome; in practice we will mostly suppress the
notation.

If (C,⊗, I) is a monoidal category, then there is a canonical monoidal structure on the

category of cliques C̃, given in [5]. Its tensor product ⊗̃ is defined pointwise. That is,
given cliques x and y indexed by J and K respectively, the tensor product x⊗̃y is indexed
by J ×K and is defined as follows:

• objects: (x⊗̃y)j,k := xj ⊗ yk

• connecting isomorphisms: (x⊗̃y)(j,k)(p,q) := xjp ⊗ ykq

The unit Ĩ is the singleton clique ∗ I. Note that even if C is a strict monoidal category,
the monoidal structure induced on C̃ will be weak as it involves the weakness of cartesian
products of the indexing sets.

Furthermore, if C has a braiding then there is an induced braiding on C̃; the braiding

x⊗̃y y⊗̃x

has components given by the braiding in C

xj ⊗ yk yk ⊗ xj .

2.3. Induced functors between clique categories. As in [5] we will need two
constructions on functors. The first is the lowershriek, which can also be thought of as a
direct image.

2.3.1. Definition. (Lowershriek) Given a functor

F C D

we define a functor on clique categories

F! C̃ D̃

as follows. Given a clique J x C, F!x is the clique

J x C F D

This extends to a functor in the obvious way.

The next construction is of inverse image cliques and takes more technical build-up.
The idea is that given a clique in D we can attempt to take its “essential pre-image”
under a functor C F D, which might mean all the objects in C whose image under F is
isomorphic to an object in the clique in question in D. However, to make this algebraic



234 EUGENIA CHENG AND ALEXANDER S. CORNER

we should record the isomorphisms in question. To ensure this essential pre-image is non-
empty we need F to be essentially surjective, and to ensure that the resulting structure is
a clique we need F to be full and faithful. To express the construction precisely we make
use of the 2-fibred product.

C××DJ J

C D
F

x∼

which we will elucidate after the definition.

2.3.2. Definition. (Inverse image clique [5]) Given an equivalence of categories F :
C ∼ D we define a functor on clique categories

F ∗ : D̃ ∼ C̃

as follows. Suppose xJ D is a clique. Then the inverse image clique F ∗x is the clique:

C ××DJ C

where C ××D J denotes a 2-fibred product and the functor above is the projection to C. This
extends to a functor F ∗ which is also an equivalence of categories.

2.3.3. Remarks. As in [5] we will take the objects of C ××DJ to be triples (c, j, γ) where

• c ∈ C,

• j ∈ J , and

• γ : xj
∼ Fc ∈ D.

(In fact in [5] γ is given in the inverse direction, but we will use this direction as it better
matches our intuition for the braid diagrams we will draw.)

A morphism
(c0, j0, γ0) (c1, j1, γ1) ∈ C ××DJ

is then a morphism
c0

w c1 ∈ C

such that the following diagram commutes:

Fc0xj0

Fc1xj1

γ0

∼

γ1

∼

Fwxj0j1 ∼

Note that F being essentially surjective ensures that this 2-fibred product is non-
empty, and F being full and faithful ensures that it is contractible, so F ∗x is indeed a
clique.

An example may help at this point.
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2.3.4. Example. Take J = 1 so x : J D is a singleton clique, on an object d, say. As
F is essentially surjective we know there exists an object c with an isomorphism d

γ
Fc.

Now F ∗x is indexed by C ××D1 whose objects are all the pairs (c, γ) with

γ d ∼ Fc

Given any two such objects (c, γ) and (c′, γ′) we have a composite

Fc
γ−1

d
γ′

Fc′

and as F is full and faithful we know there is a unique morphism c w c′ making the
following diagram commute

Fcd

Fc′d

γ

∼

γ′

∼

Fw1 ∼

So C ××D1 is indeed non-empty, with a unique isomorphism between any pair of objects.
The clique F ∗x is obtained by projecting onto just the C component. Note that an object
c may appear more than once, if there are distinct isomorphisms

γ, γ′ d ∼ Fc

so we cannot suppress the indexing category.

Thus the inverse image clique can be thought of as an “algebraic essential inverse
image” where “algebraic” refers to the fact that we specify the isomorphisms exhibiting
objects to be in the essential inverse image. This will be a key construction enabling us
to keep track of all the possible ways of interpreting configurations of points as tensor
products, and to take into account when different ways have been invoked.

2.3.5. Remark. Note that while F! and F ∗ are functors, we will only use their action
on objects in this work. We will also not use the fact that F ∗ is an equivalence, but have
included this for completeness.

3. Labelled configuration spaces

In this section we will set up the framework of labelled configuration spaces that we will
use for our main construction. This is analogous to the “train track” construction of [5].
As Joyal and Kock point out [5, Remark 3.12], we want to use configurations of points
in 2-space, but “some grid or background texture is needed, to prevent the points from
moving around each other (which would lead to the Eckmann-Hilton argument)”. In
our case, we need just the right kind of “background texture” to maintain weak vertical
composition but allow horizontal composition to be strict. We start with configurations
of points in a unit square. These can be stacked and reparametrised both horizontally
and vertically, but this construction would a priori be weak in both directions; we then
invoke a clique construction to make horizontal composition strict.
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3.1. Labelled configurations of points.Where [5] uses configurations of points in
R2, we use configurations of points in the interior of I2 where I is the unit interval [0, 1].
These can then be stacked horizontally and vertically and reparametrised, to produce
0-composition and 1-composition. This is weak in both directions (but with strict inter-
change) and naturally forms a doubly-degenerate Trimble-tricategory; we will study this
in a future work. In the present work we will eventually use cliques to make horizontal
composition strict. The topological content in this section is as in [5], since the interior
of I2 is homemorphic to R2.

Given a set O, let Cn(I
2,O) denote the space of configurations of n distinct points in

the interior of I2, each labelled by an element of O. For example:

x1

x2

x3

x4

We are interested in the disjoint union

C(I2,O) :=
∐

n≥0

Cn(I
2,O).

Thus C(I2,O) is the space of functions S O where S is a finite subset of (0, 1)2.
When O = 1 (the singleton set), the points are effectively unlabelled so C(I2,O) is
the standard space of configurations of points in a square, which we will write C(I2);
its fundamental groupoid Π1

(
C(I2)

)
is equivalent to the braid category (the free braided

monoidal category on one object). Similarly, Π1

(
C(I2,O)

)
is equivalent to the free braided

monoidal category on O, and we can put a braided monoidal structure on the former to
make this into a braided monoidal equivalence. As we will be relying on this structure we
will now elucidate it further.

3.2. Braided monoidal structure. We will consider the following braided monoidal
structure on Π1

(
C(I2,O)

)
. The tensor product is given by “stacking” boxes vertically and

scaling them linearly so that each box has equal height inside the resulting unit square.
For example given the following objects X and Y :

X

x1x2

x3

Y

y1 y2

the tensor product X ⊗ Y is given by the following configuration (where the dotted line
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is just there to show where the two boxes were “concatenated”):

x1x2

x3

y1 y2

Note that this tensor product is only weakly associative and unital, and the unit is the
empty box.

3.2.1. Remark.We find that a formal expression for this is easy to write down but adds
little, so we leave it to the reader.

Morphisms in this category are braids. (This can be taken as a definition of braids.)
So far we have a weak monoidal category. A braiding for this monoidal category is given
by braiding multiple strands past each other in the following sense: as in Section 1 we
can express this via an Eckmann–Hilton type construction, and we just have to pick a
consistent orientation. We will use the following orientation:

A

B

A

B A

B

A

B

weak horizontal units

strict interchange weak vertical units

weak horizontal units

strict interchange

We will represent this in braid diagrams as follows:

The braiding therefore amounts to the following braid:

Note that if we represented this more three-dimensionally it might look like the diagram
below, but we will continue to use the “flat” presentation.
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3.3. Equivalence with free braided monoidal category. As in [5] we will need
to embed the free braided monoidal category on a set O into the above braided monoidal
category of configurations of points labelled by O. As we are dealing with braided
monoidal categories whose monoidal structure is weak, we will work with the free weak
braided monoidal category on the object set O, which we will denote FO. So the objects
are parenthesised words in O and a formal unit, and the morphisms are braids labelled
by objects of O, and composites of coherence constraints (which we will generically refer
to as re-associations). We will use the universal property of FO to induce a braided
monoidal functor

FO F Π1

(
C(I2,O)

)

so we just have to define a map from the set O to the set of objects of Π1

(
C(I2,O)

)
. We

do this by sending each element x ∈ O to the configuration of a single point in the centre
of I2, labelled by x. We will refer to this as a “singleton box” which we can draw as:

x

Note that the induced functor F is strictly monoidal.
It may help to sketch more of the details:

• The empty word is mapped to the empty box, that is, the configuration of 0 points
in I2.

• The word (x1, x2) is the tensor product x1 ⊗ x2 so must be mapped to the con-
figuration obtained from two singleton boxes stacked vertically and reparametrised
equally. Thus we have the following, where, again, the dotted line merely depicts
where the two boxes were joined together.

x1

x2

• If X and Y are (parenthesised) words, then X⊗Y must be mapped to FX and FY

stacked vertically and reparametrised equally:

FX

FY

Thus all the configurations in the image of F have all their points in a vertical line running
down the center of the box. (This is not sufficient to be in the image, but is necessary.)
We will refer to this as a “vertical configuration”.
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On morphisms, F sends a braid between words to the corresponding braid connecting
the associated labelled configurations, according to the orientation for the braiding we
fixed when defining the braided monoidal structure of Π1

(
C(I2,O)

)
. The following is

then a mild variant of the result in [5], the only difference being that we replace R2 by
the interior of I2, and use the free braided weakly monoidal category rather than the free
braided strictly monoidal category.

3.3.1. Proposition. The functor FO F Π1

(
C(I2,O)

)
is a braided monoidal equiva-

lence of braided monoidal categories.

Proof. Coherence for braided monoidal categories tells us that for any words X, Y in
the objects of O, a morphism X Y in FO is precisely given by a braid connecting the
words, with consistent labels on the strands. Such a braid also precisely defines a mor-
phism FX FY in Π1

(
C(I2,O)

)
, since FX and FY are both vertical configurations.

So F is full and faithful.
For essential surjectivity note that given any object in Π1

(
C(I2,O)

)
, that is a labelled

configuration of points, we can make a path (necessarily an isomorphism) to a vertical
configuration, appropriately spaced to be in the image of F .

The functor F is a braided monoidal functor by construction, thus it is a braided
monoidal equivalence.

3.4. Horizontal slide maps. The weak monoidal structure we are considering on
Π1

(
C(I2,O)

)
is in the vertical direction. Eventually we also need a notion of horizontal

tensor product, but we will need it to be strict. To deal with this we introduce a notion
of “slide map” to allow the points to “slide” horizontally freely. We can picture this idea
like an abacus (as compared with the train-tracks of [5]): there are horizontal “rails” on
which points can slide freely, but they cannot swap places on a rail, and they cannot move
to a different vertical height.

There are two equivalent ways to make this construction: by an equivalence relation,
or using cliques. We will follow [5] and use cliques; this approach enables an efficacious
treatment of morphisms.

Write Cn(I
2) for the space of configurations of n distinct points in the interior of

I2, and consider its fundamental groupoid, the category Π1

(
Cn(I

2)
)
. So objects are

configurations of n points in the interior of I2, and morphisms are homotopy classes of
paths between them.

3.4.1. Definition. We define a slide path between points of Cn(I
2) to be any path be-

tween configurations that keeps the y coordinate of every point fixed. We define a slide map
to be a homotopy class of a slide path; these are thus particular morphisms in the category
Π1

(
Cn(I

2)
)
. We say that two configurations are slide-equivalent if they are isomorphic

in this category via a slide map. More generally for the labelled version a slide map in
Π1

(
C(I2,O)

)
is a map whose underlying unlabelled map is a slide map in Π1

(
C(I2)

)
.

So points can “slide” sideways via a slide map but they cannot cross over each other
(as that would require temporarily changing y coordinate). If two objects in Π1

(
Cn(I

2)
)
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are isomorphic via a slide map then they are uniquely so, as all slide paths are homotopic
to linear ones (that is, slide paths where the path of each individual point is linear). So
we can look at cliques where the connecting isomorphisms are given by these slide maps.

3.4.2. Definition. We define the slide cliques of the category Π1

(
C(I2,O)

)
to be those

cliques consisting of an entire slide-equivalence class of configurations, together with the
unique slide maps between them.

As mentioned in Remark 2.1.3 in this case objects of the clique are not repeated,
so the indexing category can be suppressed. Or, we can take J to be a set of slide-
equivalent unlabelled configurations of n points in I2, and then specifying a clique X :
J Π1

(
C(I2,O)

)
consists of picking n objects of O to use as labels for the points. An

object Xj in the clique is then the configuration j labelled by the chosen elements of O,
and the connecting map Xij is the (unique) slide map connecting the configurations i and
j.

We are now ready to use slide cliques to make our main construction.

4. The main construction

We will now start with a braided monoidal category B and show how to define a doubly-
degenerate Bicats-category ΣB from it. This construction is analogous to the construc-
tion given in [5], but with slide cliques instead of train tracks. By Proposition 1.2.1 we
need to construct a category with two monoidal structures, one weak, one strict, satisfying
strict interchange. We begin with the underlying category.

4.1. The underlying category of ΣB. The idea of this construction is as follows.
First we take the objects to be configurations of points in I2 labelled by objects of B,
subject to slide-equivalence to ensure horizontal strictness. We then want to “pull back”
morphisms from B, so we want to interpret each configuration of points as a tensor
product of objects of B, but there is no canonical way to do so, and no way that will
interact coherently with both horizontal and vertical stacking of boxes. If we just pick a
way we will get weak interchange as an artefact. Instead, we look at all possible ways of
interpeting the configuration as a word, each equipped with a braid relating the original
configuration to the word. These will form a clique in B, and taking clique maps between
them will deal with the coherence and absorb the weakness of the interchange.

4.1.1. Definition. Let B be a braided monoidal category with object set O. We define
a category ΣB as follows. The objects are the slide cliques of Π1

(
C(I2,O)

)
.

For morphisms, first note that we have the following canonical functors, induced from
the universal property of FO, where F is as constructed in Section 3.3, and G is induced
by mapping each object of O to itself in B:

Π1

(
C(I2,O)

)
F FO G B.
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We can then pass to cliques, and, since F is an equivalence, we can produce the following
composite functor (using the constructions of Section 2.3), which we call θ:

θ := Π̃1

(
C(I2,O)

)
F ∗

F̃O G! B̃.

Now, objects of ΣB are by definition certain objects of Π̃1

(
C(I2,O)

)
, so we can apply θ

to them. So, given objects objects X, Y ∈ ΣB we define

ΣB(X, Y ) := B̃(θX, θY ).

Identities and composition are inherented from B̃, and this completes the definition of the
category ΣB.

4.2. Unravelling the definition of ΣB. It is worth unravelling this definition to
get a better idea of the construction, which will in turn allow us to set up a system of
notation for calculating with the morphisms.

An object of ΣB is a slide clique of configurations of points in the interior of I2 labelled
by elements of O, with connecting maps given by the slide maps. So two configurations
are in the same clique if one can be obtained from the other by just “sliding” points
horizontally without ever changing any vertical coordinates.

For example if we start with the configuration X below, then:

• Y represents the same equivalence class.

• Z is not equivalent as the vertical coordinate of x3 is different.

• K is not equivalent, as the vertical coordinate of x1 or x2 would have to change in
order for them to move “past” each other.

X

x2x1

x3

Y

x2x1

x3

Z

x2x1

x3

K

x2 x1

x3

To describe the morphisms of ΣB we need to understand the functors F ∗ and G!. We
start with a slide clique X J Π1

(
C(I2,O)

)
. Then F ∗X is a clique in FO indexed by

the 2-fibred product C ××D J , where

C = FO
D = Π1

(
C(I2,O)

)

This 2-fibred product has objects of the form (c, j, γ), where
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• c ∈ FO, so is a parenthesised word in objects of O, for example
(
b1, (b2, b3)

)
,

• j ∈ J , so is an unlabelled configuration of points in I2,

• γ Xj
∼ Fc is an isomorphism in Π1

(
C(I2,O)

)
, which we will further elucidate

below.

To understand what γ is, note that Fc consists of some points in a vertical line, labelled
according to the objects making up c, and spaced according to its parenthesisation. Then
γ is a braid connecting the labelled points in I2 (the configuration Xj) to the labelled
points on the vertical line (the configuration Fc), with labels matching along strands.
Following the analogy with the construction in [5], we will refer to this as a “linearising
braid” as it “linearises” the configuration of points into a configuration all in a straight
line.

Here is an example:

• c =
(
b1, (b2, b3)

)

• j is this configuration of points

• γ is the following linearising braid; the points in the configuration of Fc are tech-
nically on a vertical line in the middle of a square, but we will depict them on an
interval for emphasis:

b1

b2 b3

γ

b1

b2

b3

FcXj

Note that all the information of (c, j, γ) is encapsulated in the diagram of the linearising
braid, at least in theory, as the placement of the objects bi on the vertical line uniquely
specifies their parenthesisation.

A map (c0, j0, γ0) (c1, j1, γ1) in the 2-fibred product is then a map w c0 c1 in
FO making this diagram commute in Π1

(
C(I2,O)

)
:

Fc0Xj0

Fc1Xj1

γ0

γ1

FwXj0j1
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Now w is a morphism of FO so is an abstract braid and/or re-association from the word
c0 to the word c1. Fw is this abstract braid/re-association realised as a braid from the
points of Fc0 to the points of Fc1. Xj0j1 is the connecting isomorphism between Xj0 and
Xj1, that is, the unique slide map between them. The diagram that needs to commute
can be pictured as below. As three sides of the square are isomorphisms we see that there
is only one possible braid Fc0 Fc1 that will make the diagram commute, and so we
refer to this as a “mediating braid”, as it mediates between the two linearising braids.

γ0

b1

b2 b3

b1

b2

b3

Fc0Xj0

γ1

b1

b2 b3

b1

b2

b3

Fc1Xj1

slide mediating braid

We can then depict the mediating braid as below, and we can see that the composite
braid of γ0 followed by the mediating braid is the braid γ1:

γ0
b1

b2 b3

b1

b2

b3

Fc0X0

b1

b2

b3

Fc1
mediating braid

Furthermore, as F is full and faithful we know that there is a unique morphism wc0 c1 ∈
FO whose image under F is the mediating braid.

This completes the description of the 2-fibred product indexing the clique F ∗X . The
clique itself is then the clique in FO produced from the projection from the 2-fibred
product onto the FO component, that is

FO××DJ FO
(c, j, γ) c

So the objects of the clique are words c, but as each word appears multiple times indexed
by different (j, γ) we find it best to think of the word together with the configuration in
I2 and the linearising braid.
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For example, consider the word c =
(
b1, (b2, b3)

)
. Here are two distinct ways in which

it arises in the clique F ∗X , indexed by different configurations and linearising braids:

b1

b2 b3

b1

b2

b3

FcXj0
γ0

b1

b2 b3

b1

b2

b3

FcXj1
γ1

The connecting isomorphisms in F ∗X are the mediating braids. For the above example
this is a non-trivial braid connecting Fc with itself, mediating between the braids γ0 and
γ1.

This completes our characterisation of the functor

Π̃1

(
C(I2,O)

)
F ∗

F̃O.

We then apply G!, which takes the clique F ∗X and evaluates the objects and the con-
necting isomorphisms in B. The words of FO are evaluated in B via the tensor product,
so for example the word

(
b1, (b2, b3)

)
is evaluated as

b1 ⊗ (b2 ⊗ b3).

The connecting isomorphisms are all braids/re-associations in FO so are evaluated via
braiding and coherence constraints in B, as depicted below:

b1

b2 b3

b1 ⊗ (b2 ⊗ b3)
b1

b2

b3

b1

b2 b3

(b3 ⊗ b1)⊗ b2b1

b2

b3

slide
mediating
braid

resulting coherence map in B

We have been investigating the composite functor:

θ := Π̃1

(
C(I2,O)

)
F ∗

F̃O G! B̃
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applied to a slide clique X , and we have finally arrived at the clique θX , which we are
using to define morphisms in ΣB. Recall that we defined

ΣB(X, Y ) = B̃(θX, θY )

where X and Y are slide cliques of points in I2 labelled by objects of B. A morphism
X Y in ΣB is then a clique map in B̃

θX θY

thus it is represented by a morphism in B between any chosen representatives of the
cliques θX and θY . Picking a representative object of θX consists of picking

• one of the slide-equivalent configurations of X

• a parenthesisation (and ordering) of the objects labelling X , and

• a linearising braid.

We do the same for Y , evaluate the parenthesisations in B, and take any morphism f

between those resulting objects in B.
The subtlety is that two representatives f, f ′ are giving the same clique map if the

square involving connecting isomorphisms commutes. To make this precise we need to
introduce some more notation. Write α(X) and α′(X) for the two parenthesisations of
objects labelling X , with a connecting isomorphism that we will refer to as “mediat-
ing braid” although it involves a mediating braid as well as coherence constraints of B.
Similarly β(Y ), β ′(Y ). Now suppose we have clique maps represented by the two maps
below.

α(X) β(Y )

α′(X) β ′(Y )

f

f ′

Then f and f ′ represent the same clique map θX θY if the following square commutes

α(X) β(Y )

α′(X) β ′(Y )

f

∼

f ′

∼

mediating braid∼mediating braid ∼

For example, the following are three representatives of the same clique θX , as the
configurations of points only differ by a slide. The maps in B as shown are the connecting
isomorphisms for the clique, and thus each one also represents the identity map on this
clique. Here σ is the braiding in B, and we see that it can represent the identity map on
this clique, where it is just “compensating” for a crossing in the linearising braid.
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a

b
a⊗ b

a

b

a

b
a⊗ b

a

b

a

b
b⊗ a

a

b

1a⊗b

σ

By contrast the following are not in the same clique as the configurations differ by
vertical coordinates, not just horizontal ones. Thus the identity 1b⊗a as shown does not
represent an identity clique map, although it is an identity in B.

a

b
b⊗ a

a

b

a

b

b⊗ a
a

b

1b⊗a

Both of these scenarios will be key later. At this point it is evident that we need a
consistent notation for calculating with these morphisms, which we will now establish.

4.3. Notational conventions for ΣB. In this section we will lay out our method
and notation for working with ΣB. We will write objects as below; in the following
diagram we have drawn dashed horizontal lines to remind us that this is a slide clique,
but most of the time we will not include those lines.

a1

a2 a3

A morphism in ΣB is a clique map, and we will depict a representative of it between
particular objects as below; here for the source and target in ΣB we depict the represent-
ing configuration X , the linearising braid γ, and the configuration Fc together with its
realisation as a parenthesised word in B.



WEAK VERTICAL COMPOSITION 247

γ

a1

a2 a3

a1

a2

a3

Fc

a1 ⊗ (a2 ⊗ a3)

X

γ′

b1

b2

b2 ⊗ b1
b1

Fc′

b2

X ′

f

We will tend to suppress the distinction between different members of a slide clique,
as those play less role in the ensuing calculations on morphisms of ΣB; their main role is
to ensure that the horizontal tensor product is strict on objects.

When less specificity is needed we will represent general configurations and parenthe-
sisations as shown below. Here X represents a configuration of points labelled by objects
of B, and 〈X〉 represents a particular parenthesisation of the objects in question. Where
we need to refer to two different parenthesisations of the same objects, we will use more
specific notation such as α1(X), α2(X). The single (thicker) strand represents a chosen
linearising braid; this notation will later allow us to indicate a crossing of whole braids
(as in [5]):

X 〈X〉

A morphism will then be depicted via a particular representative of the clique map as
follows:

X 〈X〉

Y 〈Y 〉

f

When checking that two morphisms are the same we may need to take into account
that different representing objects of the cliques in question have been used. For example
we may want to check that the following are two representatives of the same morphism:

X α1(X)

Y β1(Y )

f1

X α2(X)

Y β2(Y )

f2
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To check this, we need to check that the following diagram commutes in B, where the
top and bottom morphisms are the unique connecting isomorphisms induced from the
respective linearising braids:

α1(X) α2(X)

β1(Y ) β2(Y )

coherence

coherence

f1 f2

In practice where there is no ambiguity we will abuse notation and write a morphism f

in ΣB and a chosen representative of it in the same way.

4.4. Tensor products on ΣB. We now show that ΣB has the structure of a doubly-
degenerate Bicats-category. By Proposition 1.2.1 we need to exhibit a strict “horizontal”
tensor product, a weak “vertical” tensor product, and strict interchange.

We define the tensor products on objects of ΣB as follows.

• Weak vertical tensor product is given by vertical stacking of boxes, and then equal
reparametrisation.

• Strict horizontal tensor product is given by horizontal stacking of boxes; reparametri-
sation then doesn’t matter as it is absorbed into the slide cliques.

• The unit for both tensor products is the empty box.

Note that the vertical tensor product is the canonical one induced from Π1

(
C(I2,O)

)
,

as follows.

4.4.1. Proposition. The (weak) vertical monoidal structure on Π1

(
C(I2,O)

)
transfers

to the slide cliques via ⊗̃.

Proof. Consider slide cliques X and Y . The clique X⊗̃Y is defined componentwise so
is not a priori a slide clique. We need to check that it is in fact a slide clique. Recall that
X⊗̃Y is

{Xj ⊗ Yk | j ∈ J, k ∈ K}

where X and Y are indexed by J and K respectively. Xj ⊗ Yk consists of the individual
configurations, stacked vertically and reparametrised equally. So a configuration is slide
equivalent to Xj ⊗Yk if and only if it can be expressed as two halves vertically, where the
top half is slide equivalent to Xj and the bottom half is slide equivalent to Yk. This is
precisely the definition of X⊗̃Y .
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We now make the definition of the horizontal tensor product more precise. Given con-
figurationsA andB of labelled points, these can be stacked horizontally and reparametrised
equally, and we write the resulting configuration as A|B. By abuse of notation we will
write the horiontal tensor product of slide cliques the same way. Now, given slide cliques
X and Y we define X|Y to be the slide clique of Xi|Yj for any i and j. For associativity
note that (X|Y )|Z is represented by (Xi|Yj)|Zk and X|(Y |Z) is represented by Xi|(Yj|Zk)
but that these are in the same slide clique, with connecting map given by the associator,
thus the associator represents the identity map, exhibiting this tensor product as strictly
associative. The unit laws follow similarly.

4.4.2. Remark. Note that this construction is not analogous to the vertical tensor prod-
uct construction in the following sense. If we put a horizontal monoidal structure on
Π1

(
C(I2,O)

)
and then use it to induce a monoidal structure on cliques, the tensor prod-

uct of two slide cliques will in general not be a slide clique, so the induced tensor product
on the category of cliques will not restrict to a tensor product on the slide cliques. For
example if we stack Xi and Yj horizontally, the slide clique of the resulting configuration
includes configurations that cannot be decomposed into two halves.

Now on morphisms the idea is very similar to [5]: we set both the vertical and horizontal

tensor products of morphisms to be the tensor product in B̃. We will now make this more
precise.

Consider morphisms in ΣB
X1

f1 Y1

X2
f2 Y2

We will define the tensor products by picking representatives of f1 and f2 and using them
to specify a representative of the clique map that is the tensor product. So consider any
representatives

X1 〈X1〉

Y1 〈Y1〉

f1

X2 〈X2〉

Y2 〈Y2〉

f2

First we define the vertical tensor product

X1

X2

f1
f2

Y1

Y2

to be the map represented by f1 ⊗ f2 with the following linearising braids:



250 EUGENIA CHENG AND ALEXANDER S. CORNER

X1

X2

〈X1〉 ⊗ 〈X2〉

Y1

Y2

〈Y1〉 ⊗ 〈Y2〉

f1 ⊗ f2

This is well-defined: if we start with different representatives of f1 and f2 the resulting
tensor product gives the same clique map as the square we need to check is a tensor
product of individual squares for the clique maps f1 and f2.

Next we define the horizontal tensor product

X1|X2
f1|f2 Y1|Y2

to be the map represented by f1⊗f2, now with respect to the following linearising braids:

X1 X2
〈X1〉 ⊗ 〈X2〉

Y1 Y2
〈Y1〉 ⊗ 〈Y2〉

f1 ⊗ f2

Note that these linearising braids can be expressed formally in terms of units and inter-
change: the original linearising braids are stacked horizontally and then post-composed
with the following maps.

X1 X2

X1

X2

X1

X2

weak vertical units

strict interchange strict horizontal units

This is well-defined for the same reason as the vertical tensor product.
We now need to check associativity and unit constraints. For the weak vertical tensor

product everything is immediate as the constraints come from those in B. For the hor-
izontal tensor product the constraints also come from those in B but we now need the
tensor product to be strict; this follows because those constraints in B actually represent
identity clique maps. In more detail, first note that for objects X, Y, Z in ΣB, the objects
(X|Y )|Z and X|(Y |Z) are in the same slide clique, as the different parenthesisation just
means that each labelled point is repositioned horizontally, as indicated in the following
diagram:
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XY Z X Y Z

Now consider morphisms
X1 X2

Y1 Y2

Z1 Z2

f

g

h

According to our above definition (f |g)|h is represented by

(X1 ⊗ Y1)⊗ Z1
(f⊗g)⊗h

(X2 ⊗ Y2)⊗ Z2

whereas f |(g|h) is represented by

X1 ⊗ (Y1 ⊗ Z1)
f⊗(g⊗h)

X2 ⊗ (Y2 ⊗ Z2).

To show that these represent the same clique map we need to check that the square in-
volving connecting isomorphisms commutes, but in this case the connecting isomorphisms
are the associators in B, so the square does indeed commute. The argument for the unit
constraints is analogous.

4.5. Interchange for ΣB. Now we show interchange is strict. On objects it is clear
as, either way round, we get

a b

c d

On morphisms this proceeds exactly as in [5]. We need to compare the following two
possible ways of tensoring morphisms f, g, h, j:

f g

h j
and

f g

h j

each of which gives a morphism in ΣB as shown below.

a1 b1

c1 d1

a2 b2

c2 d2

According to our definitions of horizontal and vertical tensor product, the first is a clique
map represented by

(f ⊗ g)⊗ (h⊗ j)
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and the second is represented by

(f ⊗ h)⊗ (g ⊗ j).

As usual, to check that these represent the same clique map we need to check that the
square involving connecting isomorphisms commutes. Now, the linearising braids in ques-
tion are:

For
a1 b1

c1 d1

a1 b1

c1 d1

a1

b1
c1

d1

For
a1 b1

c1 d1

a1 b1

c1 d1

a1

b1

c1

d1

This latter linearising braid may equivalently be pictured as below (by moving the c1
strand down):

a1 b1

c1 d1

a1

b1

c1

d1

Thus we see that the connecting isomorphism is given by the braiding in B

b1 ⊗ c1
σ c1 ⊗ b1

together with the necessary coherence isomorphisms to make an isomorphism

(a1 ⊗ b1)⊗ (c1 ⊗ d1) (a1 ⊗ c1)⊗ (b1 ⊗ d1)

and similarly for the target objects a2, b2, c2, d2.
So the square we need to check is the following, which does indeed commute.

(a1 ⊗ b1)⊗ (c1 ⊗ d1) (a2 ⊗ b2)⊗ (c2 ⊗ d2)

(a1 ⊗ c1)⊗ (b1 ⊗ d1) (a2 ⊗ c2)⊗ (b2 ⊗ d2)

(f ⊗ g)⊗ (h⊗ j)

(f ⊗ h)⊗ (g ⊗ j)

braiding

and coherence

braiding

and coherence

Thus the two maps represent the same clique map as required, showing that interchange
is strict.

We have now proved the following theorem.
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4.5.1. Theorem.Given any braided monoidal category B, the category ΣB has the struc-
ture of a doubly-degenerate Bicats-category.

Note that when we use interchange to construct braidings for the main theorem, we
will be dealing with two special cases where two of the objects are identities, that is,
empty configurations. The following linearising braid then simplifies:

a b

c d

a

b

c

d

• If a and d are identities then we just have a braiding of c past b.

• If c and b are identities then the braid becomes trivial.

5. The main theorem

We now build up to our main theorem, giving a braided monoidal equivalence between
UΣB and B. Recall that UΣB is the underlying braided monoidal category of ΣB, with
respect to the vertical tensor product. We will start with just the underlying categories
before addressing the braided monoidal structure. Note that when a doubly-degenerate
Bicats-category A is expressed as a category with two monoidal structures, the underlying
category of UA is just the underlying category of A. Thus UΣB has the same objects
and morphisms as ΣB.

5.0.1. Proposition. There is an equivalence of the underlying categories

B ∼ UΣB.

Proof. First we construct the functor, which we will call W .

• On objects: we send an object b ∈ B to the slide clique of the singleton b in a box:

b

We will write this clique as b. Note that this clique also contains all configurations
where the dot is on the same vertical level but might have a different horizontal
position, such as:

b
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• On morphisms, a
f

b is sent to the clique map represented by f , as depicted below.

a a

b b

f

Functoriality is immediate.
We now show that W B UΣB is full and faithful. Consider objects a, b in B; we

need to show that the function on homs

B(a, b) UΣB(Wa,Wb)

is an isomorphism. We know that Wa = a and Wb = b, so

UΣB(Wa,Wb) = UΣB(a, b)

= ΣB(a, b) by definition of U

= B̃
(
θa, θb

)
by definition of Σ

where we recall that the functor θ is the composite

θ := Π̃1

(
C(I2,O)

)
F ∗

F̃O G! B̃.

We now examine the action of θ on the clique a. First note that every object of the
clique a is a singleton dot, so every possible linearising braid is trivial (a single strand),
and thus the clique F ∗a has only trivial mediating braids. The clique G!F

∗a (also written
θa) can then be represented by a ∈ B; other objects in the clique will include copies of
the unit IB, and the connecting maps are built from unit constraints. Similarly the clique
θb can then be represented by b, so

B̃
(
θa, θb

)
∼= B(a, b)

thus
UΣB(Wa,Wb) = B̃(θa, θb) ∼= B(a, b).

Moreover, via this isomorphism the action of the functor W

W B(a, b) UΣB(Wa,Wb) ∼= B(a, b)

sends a morphism f to itself, so we see that B W UΣB is full and faithful as claimed.
We now show that the functor W is essentially surjective. Consider any X ∈ UΣB.

We need to exhibit an object b ∈ B such that Wb ∼= X in UΣB. Recall that X is
by definition a slide clique of a configuration of points labelled by objects of B. Set
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b = 〈X〉, any parenthesisation of the objects of B labelling X . Then Wb is the clique of
the singleton

b

This is isomorphic to X in UΣB via a clique map represented by the identity map 1b in
B. (Note that it is represented by an identity map in B but is not the identity as a clique
map, so it is not the identity in UΣB.)

This is perhaps elucidated by a specific example. Suppose X is the slide clique of the
following labelled configuration:

b1

b2 b3

We choose b = b1 ⊗ (b2 ⊗ b3). Then Wb is the slide clique of the following singleton
configuration

b1 ⊗ (b2 ⊗ b3)

We can then exhibit an isomorphism X ∼ Wb in ΣB (and hence in UΣB). Such a
morphism in ΣB is by definition a clique map

θX θ(Wb) ∈ B̃

Each of these cliques can be represented by the object b = b1⊗(b2⊗b3) ∈ B so 1b is a valid
morphism; moreover as it is invertible it is an isomorphism of the cliques in question.

Note that θ(Wb) has a trivial linearising braid whereas θX in general has a non-trivial
one. The map in ΣB is depicted below.

b1

b2 b3

X

b1

b2

b3

b1 ⊗ (b2 ⊗ b3)

Wb
b1 ⊗ (b2 ⊗ b3)

b1 ⊗ (b2 ⊗ b3)b1 ⊗ (b2 ⊗ b3)

1b1⊗(b2⊗b3)
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We have exhibited b ∈ B and an isomorphism X ∼= Wb, so B UΣB is essentially
surjective as claimed. This completes the proof that W B UΣB is an equivalence of
categories.

5.0.2. Proposition. The functor B W UΣB is monoidal.

Proof. First we need to construct a constraint isomorphism

Wa⊗Wb
φab W (a⊗ b) ∈ UΣB

for any objects a, b ∈ B. The configurations for Wa⊗Wb and W (a⊗ b) are shown below:

Wa⊗Wb

a

b

W (a⊗ b)

a⊗ b

We can pick the constraint isomorphism to be the clique map represented by 1a⊗b as
shown below.

a

b
a⊗ b

a

b

a⊗ b
a⊗ b a⊗ b

1a⊗b

For the unit constraint
IUΣB

∼ WIB

note that IUΣB is the empty box, and WIB is the singleton labelled by IB so we can also
choose this map to be a clique map represented by the identity, as shown below:

IB

IB
IB IB

1IB

Note that neither of these maps is the identity in UΣB but both are clique maps repre-
sented by the identity in B, so are isomorphisms in the category of cliques.
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We now check the axioms for a monoidal functor. For interaction with the associator
we need to check that the following diagram commutes.

(Wa⊗Wb)⊗Wc Wa⊗ (Wb⊗Wc)

W (a⊗ b)⊗Wc Wa⊗W (b⊗ c)

W
(
(a⊗ b)⊗ c

)
W

(
a⊗ (b⊗ c)

)

assoc

W (assoc)

φab ⊗ 1Wc 1Wa ⊗ φbc

φa⊗b,c φa,b⊗c

It is hard to fit the expression of this diagram into the page, so we will take it in parts.
The left-hand side is a clique map that can be represented by the following composite of
identities:

(Wa⊗Wb)⊗Wc

a

b

c

a

b

c
(a⊗ b)⊗ c

W (a⊗ b)⊗Wc

a⊗ b

c

a⊗ b

c
(a⊗ b)⊗ c

W
(
(a⊗ b)⊗ c

) (a ⊗ b)⊗ c
(a⊗ b)⊗ c (a⊗ b)⊗ c

1(a⊗b)⊗c

1(a⊗b)⊗c

Similarly, the right-hand side can be represented by the following composite of identities:

Wa⊗ (Wb⊗Wc)
a

b
c

a

b
c

a⊗ (b⊗ c)

Wa⊗W (b⊗ c)
a

b⊗ c

a

b⊗ c

a⊗ (b⊗ c)

W
(
a⊗ (b⊗ c)

) a⊗ (b⊗ c)
a⊗ (b⊗ c) a⊗ (b⊗ c)

1a⊗(b⊗c)

1a⊗(b⊗c)
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The top and bottom (horizontal) arrows are each represented by the associator

(a⊗ b)⊗ c a⊗ (b⊗ c)

and so the diagram does indeed commute. The unit diagrams follow similarly.

5.0.3. Proposition. The monoidal functor B W UΣB is braided.

Proof. To show that the monoidal functor W is braided we need to show that the
following diagram commutes (where we are writing σ for the braiding in B and also for
the one in UΣB).

Wa⊗Wb W (a⊗ b)

Wb⊗Wa W (b⊗ a)

φab

φba

σ W (σ)

We need to examine what the braiding σ in UΣB is. It comes from the weak Eckmann–
Hilton argument, which is the following combination of unit constraints and interchange:

a

b

a

b

a

b

a

b

a

b

a

b

strict horizontal units

strict interchange

weak vertical units

strict interchange

strict horizontal units
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By definition, the morphisms of UΣB are those of ΣB, so these morphisms are all clique
maps in B̃.

To build up this composite we begin with the unit constraints in ΣB. The horizontal
unit constraints are identities; the vertical unit constraints are not identities but we can
choose the representatives to be identities, as shown below.

a

aa

a
a a

1a

For each step we need to take a vertical or horizontal tensor product of the constraint
maps in question using the constructions defined in Section 4.4, or perform interchange
on them.

Note that interchange is strict, but our expression of it involves a change of representing
object, so although it is the identity clique map it will be represented by the appropriate
connecting isomorphism, as given in Section 4.5.

Thus the braiding in UΣB is the clique map represented by the following composite:
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a

b
a⊗ b

a

b

a

b
a⊗ b This is the identity as a clique

map, but with a change of repre-
senting objects, so we represent the
clique map by the connecting iso-
morphism σ.

a

b

a

b
b⊗ a

This is not the identity as the ob-
jects in UΣB are different, but the
clique map is represented by the
identity.

a

b

a

b

b⊗ a
This interchange has identities in
the positions that generally require
a braiding in the connecting iso-
morphism, so can in fact be repre-
sented by an identity morphism.

a

b

a

b

b⊗ a
a

b

a

b

b⊗ a
a

b

1a⊗b

σ

1b⊗a

1b⊗a

1b⊗a

strict horizontal units

interchange

∼weak vertical units

interchange

As this composite is just σ, we see that both paths round the square in question are σ,
so the diagram commutes. So B W UΣB is a braided monoidal equivalence as claimed.

We have proved the main theorem.

5.0.4. Theorem. [Main Theorem] Given any braided monoidal category B there is a
doubly-degenerate Bicats-category ΣB whose underlying braided monoidal category UΣB
is braided monoidal equivalent to B.

5.0.5. Remark. It is worth noting why this proof does not work for structures with a
strict vertical tensor product as well as a strict horizontal one. Such structures would be
doubly-degenerate strict 3-categories, so we know that not all braided monoidal categories
arise in this way, thus an analogous proof of the main theorem should fail for such struc-
tures. The issue here would be in the Σ construction. We defined the objects of ΣB to
be the slide cliques of configurations of points labelled by the objects of B; the horizontal
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slide cliques ensure that horizontal composition is strict. If we try to use horizontal and
vertical slide maps at the same time, to make vertical composition also strict, we will not
get a clique as there will not be uniquely specified isomorphisms between configurations
that are now considered equivalent. Thus the Σ construction cannot be made in the first
place.

6. Future work

Evidently this result is only an object-level result and not a result on totalities, but we
judge this to be a worthwhile beginning, as in [5]. In future work we assemble doubly-
degenerate Bicats-categories into a bicategory and show that U and Σ as defined in the
present work extend to a biequivalence of this bicategory with the bicategory of braided
monoidal categories, braided monoidal functors, and braided monoidal transformations.
The result in this paper provides the biessential surjectivity. The subtlety required for
the totality is a notion of weak functor between doubly-degenerate Bicats-categories.

In future work we will also prove the analogous results for doubly-degenerate Trimble
3-categories. The ideas are essentially the same, except that we don’t need the concept of
slide cliques as we don’t need to make the structures strict horizontally; rather, we need a
way to extract a plain monoidal category structure from one parametrised by an operad,
and that is where the cliques come in.
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Jiri Rosický, Masaryk University: rosicky@math.muni.cz
Giuseppe Rosolini, Università di Genova: rosolini@unige.it
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