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AN ADJUNCTION BETWEEN BOOLEAN ALGEBRAS AND A
SUBCATEGORY OF STONE ALGEBRAS

INIGO INCER

Abstract. We consider Stone algebras with a distinguished element e satisfying the
identity e → x = ¬¬x for all elements x of the algebra. We provide an adjunction
between the category of such algebras and that of Boolean algebras. This adjunction
turns out to involve the concept of assume-guarantee contracts, which has numerous
applications throughout engineering and computer science.

1. Introduction

The algebra of contracts [Benveniste et al., 2018, Incer Romeo, 2022] has been an ob-
ject of attention in computer science and engineering due to its capability to support
compositional design.

1.1. Definition. Given a Boolean algebra B, its contract algebra C(B) has elements
(a, g) ∈ Bop × B such that a ∨ g = 1B. The contract algebra C(B) is a lattice with
operations

(a, g) ∧ (a′, g′) = (a ∨ a′, g ∧ g′),
(a, g) ∨ (a′, g′) = (a ∧ a′, g ∨ g′), and

(a′, g′) → (a, g) = ((a ∧ ¬a′) ∨ (g′ ∧ ¬g),¬g′ ∨ g).
(1)

The top and bottom elements of this lattice are, respectively, 1 = (0B, 1B) and 0 =
(1B, 0B). Given a Boolean algebra morphism f , we let Cf = f × f . We will refer to C as
the contract functor (its target category will be introduced in due time).

As contracts are increasingly used in engineering and computer science1, we are moti-
vated to understand more precisely the nature of contract algebras. Such is the purpose
of this paper: to understand what makes the contract functor unique. We will introduce
a subcategory of Stone algebras and will show that the contract functor is the left adjoint
of the functor that maps these algebras to their closures. This defines the contract functor
in terms of a universal property.
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This paper is an extended version of the preprint [Incer, 2023] and is organized as
follows. Section 2 contains preliminary information about assume-guarantee contracts.
We introduce augmented Stone algebras and discuss some of their properties in Section 3.
Section 4 proves that the contract functor is part of an adjunction between Boolean
algebras and augmented Stone algebras. Section 5 discusses implications and potential
extensions of this work.

2. Preliminaries on assume-guarantee contracts

The complexity of large-scale systems engineering has motivated the development of com-
positional theoretical frameworks to support system design. One such frameworks is the
theory of assume-guarantee contracts, proposed by Benveniste et al. [Benveniste et al.,
2008], which formalizes—and was inspired in—several design methodologies commonly
practiced in industry. It is typical in the practice of engineering to develop large systems
by interconnecting components developed by third parties. These components often come
with a datasheet that states what the component provides and under what expectations
on its context of operation a component may be relied upon to deliver its guarantees.
For example, a processor’s datasheet will state guarantees on the performance of its com-
munication peripherals and assumptions on temperature ranges, input voltages, oscillator
frequencies, etc., under which said performance is guaranteed. In other words, component
datasheets come in assume-guarantee form.

One problem with the design methodologies applied in systems industries today (e.g.,
aerospace, automotive, etc.) is that specifications are expressed informally in natural
languages, limiting the analysis that can be effected on them. Assume-guarantee contracts
were introduced to enable a design process whereby multiple parties develop components
independently, and analysis carried out in advance can guarantee that the interconnection
of these components is safe and yields a system with desired properties. This methodology
has the potential to alleviate frictions in supply chains, as integrators and suppliers can
now exchange, in addition to mutually-binding legal contracts, a technical contract that
ensures the integrator that the system will meet its objectives if the supplier generates a
correct implementation of the technical contract.

2.1. Original formulation. Contracts were originally defined using the behavioral
approach to system modeling. Behavioral modeling, with its origins in both computer
science and control systems2, is the idea that a component in a design should be repre-
sented by the behaviors we can witness from it. If the components are software routines,
they would be represented as sets of execution traces. If the components are electrome-
chanical, they would be represented as sets of the solutions to the equations that describe
their dynamics. Thus, behavioral modeling implies the existence of a universe of behaviors
B. A component in the system is defined as a subset of B.

2A brief overview of behavioral modeling can be found in Section 2.3 of [Incer Romeo, 2022].
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In behavioral modeling, a property is also defined as a set of behaviors. In contrast
to components, whose elements are the behaviors that we can witness from them, prop-
erties (also called trace properties) contain behaviors that we approve of because they
are deemed safe or secure or because they mean our design has reached its destination.
Given a component M and a property P , we say that M satisfies P , denoted M |= P , if
M ⊆ P , i.e., if every behavior of M is a behavior that we approve of (because it is safe,
secure, performant, etc.).

Behavioral modeling is compositional. Given components M and M ′. The system
obtained by interconnecting these two objects is given by

M ∥M ′ def
= M ∩M ′.

One way to interpret this is by thinking of the behaviors of the system M ∥ M ′ as those
that satisfy the constraints imposed by both M and M ′.

Now that we have the notions of components and properties, we can discuss contracts.
The purpose of a contract is to attach an assume-guarantee specification to a component.
We want to state what the component guarantees and under what assumptions on its
context of operation it can deliver these guarantees. Thus, in the original definition
[Benveniste et al., 2008], a contract is a pair (A,G), where A,G ⊆ B are trace properties
over B that represent, respectively, the assumptions and guarantees of the contract.

Contracts make predicates over components. A component E is said to be an environ-
ment for the contract (A,G) if E |= A, i.e., if E satisfies the assumptions of the contract.
A component M is said to be an implementation of the contract if ∀E ⊆ A. M ∥ E |= G,
i.e., if M provides the guarantees of the contract when operating in an environment of
the contract. Observe that this last statement simply means that M ⊆ G ∪ ¬A, i.e.,
component M is required to satisfy its guarantees G only when the assumptions A are
satisfied.

The semantics of assume-guarantee reasoning are embedded in the definitions of envi-
ronments and implementations. We say that contracts (A,G) and (A′, G′) are equivalent
if they have the same environments and the same implementations. This means these
contracts are equivalent when

A = A′ and G∪ ¬A = G′ ∪ ¬A′.

In particular, a contract (A,G) is equivalent to (A,G∪¬A). The latter contract has the
largest set of guarantees that a contract equivalent to (A,G) can possibly have. These
contracts are said to be in saturated or canonical form. Observe that a contract (A′′, G′′)
is in saturated form if G′′ = G′′∪¬A′′, which is equivalent to the condition A′′∪G′′ = B.

Due to the equivalence relation of contracts, we can provide a definition of assume-
guarantee contracts over a universe of behaviors B by choosing one representative for each
equivalence class, namely, the saturated contract. Our contracts over B are thus elements
of the following set:

{(A,G) | (A,G ⊆ B) ∧ (A∪G = B)} . (2)
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2.2. Operations.Contracts are useful not only because they allow us to express assume-
guarantee specifications of components and systems, but because they allow us to ma-
nipulate them. The algebra of contracts has binary operations with an analog in system
design. For example, the binary operation of composition takes the contracts of compo-
nents that are being interconnected and yields the contract for the system obtained from
such interconnection. The operation of quotient solves the following problem: suppose
we have a contract that a system under implementation should satisfy, and we also have
the contract for a design element that will be used in the system; the quotient gives the
most relaxed contract for the component that needs to be added to the system so that
it satisfies the desired top-level objective. Information about various contract operations
and how they are related can be found in [Incer Romeo, 2022, Chapter 6].

2.3. Languages and contracts. The definition of contracts given by (2) requires the
expression of assumptions and guarantees as sets of behaviors. As writing properties as
sets is impractical in engineering applications, we seek a description of contracts in terms
of languages. We follow [Incer Romeo, 2022, Chapter 7] to do this.

As before, suppose B is the universe of behaviors modeled in the system. Let L be
a language used to represent properties in the system. Many such languages are typical
in engineering. Some examples are Linear Temporal Logic [Pnueli, 1977] and Signal
Temporal Logic [Maler and Nickovic, 2004]. We require L to contain the logical operators
∧, ∨, and ¬. We assume the existence of a denotation map Den: L → 2B commuting
with the logical operators:

Den(ϕ ∧ ψ) = Den(ϕ)∩Den(ψ),

Den(ϕ ∨ ψ) = Den(ϕ)∪Den(ψ), and

Den(¬ϕ) = ¬Den(ϕ) = B \Den(ϕ).

If we understand two elements of L to be equal if they have the same denotation (as
in Tarski-Lindenbaum algebras), L is a Boolean algebra. This motivates the following
definition of assume-guarantee contracts over an arbitrary Boolean algebra:

2.4. Definition. Let B ∈ Obj(Bool). A contract over B is an element of the set

C(B) = {(a, g) ∈ Bop ×B | a ∨ g = 1} . (3)

Even though contracts are generally understood as requirements having a specific form
(i.e., a requirement coming in assume-guarantee form), this definition suggests that con-
tracts can be more expressive than traditional requirements. An engineering requirement
is a predicate over behaviors. Either the behavior satisfies or does not satisfy the require-
ment, such as being performant or safe. Let 2 be the 2-element lattice {SAT, UNSAT} with
UNSAT ≤ SAT. For l ∈ L, we define the requirement

B → 2 b 7→

{
SAT, if b ∈ Den(l)

UNSAT, otherwise.
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Here the value SAT means the requirement expressed by l is satisfied; UNSAT means that
it is not. In contrast, a contract (a, g) ∈ C(L) maps behaviors to the lattice 3 :=
{FAIL, ACTIVE, IDLE}, where FAIL ≤ ACTIVE ≤ IDLE, as follows:

B → 3 b 7→


IDLE, if b ∈ Den(¬a ∧ g)
ACTIVE, if b ∈ Den(a ∧ g)
FAIL, if b ∈ Den(a ∧ ¬g).

The value FAIL means that the behavior satisfies the assumptions of the contract, but
not the guarantees. We deem this a violation of the contract. ACTIVE means that the
behavior satisfies both the assumptions and the guarantees of the contract. This is what
we expect during the normal operation of a component. IDLE means that the behavior
does not satisfy the assumptions of the contract. By (3), when the assumptions are not
satisfied, the guarantees are satisfied automatically, thus matching the intuition behind
assume-guarantee reasoning.

3. Contracts and Stone algebras

The purpose of this paper is to provide a universal characterization of contracts. This
section introduces augmented Stone algebras as an abstraction of contracts. We will show
eventually that contracts appear in an adjunction involving augmented Stone algebras
and Boolean algebras. First, we recall some definitions.

3.1. Definition. [Borceux, 1994, Definition 1.2.1] A Heyting algebra (H, 0, 1,∧,∨,→)
is a bounded lattice (H, 0H , 1H ,∧,∨) such that, for every x ∈ H, the functor

(—) ∧ x : H → H y 7→ y ∧ x

has the right adjoint
x→ (—) : H → H z 7→ (x→ z).

3.2. Remark. In a Heyting algebra H, we define the pseudo-complement of an element
x ∈ H as

¬x def
= (x→ 0).

We define the closure of x as Clos(x)
def
= ¬¬x and say that x is closed3 if x = Clos(x). We

say that x is dense if Clos(x) = 1.

3.3. Definition. [Borceux, 1994, Proposition 1.2.11] A Boolean algebra is a Heyting
algebra (B,∧,∨, 1B, 0B,→) satisfying the identity ¬x ∨ x = 1B for all x ∈ B.

3Closed elements are also called regular in the literature [Borceux, 1994, Definition 1.2.12].
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3.4. Definition. [Birkhoff, 1967, p. 130] A Stone algebra is a Heyting algebra (S,∧,∨, 1S,
0S,→) satisfying the identity ¬x ∨ Clos(x) = 1S for all x ∈ S.

The identity ¬x ∨ x = 1 is usually called the law of excluded middle. The identity
¬x ∨Clos(x) = 1 is known as weak excluded middle and De Morgan’s law 4. De Morgan’s
law has important applications in topology through the notion of extremally disconnected
spaces, defined as spaces whose lattice of open sets satisfies De Morgan’s law [Johnstone,
1982, p. 102]. For example, [Gleason, 1958] shows that projective spaces exactly coincide
with extremally disconnected spaces in the category of compact Hausdorff spaces with
continuous maps.

These are some useful facts about Heyting algebras:

3.5. Proposition. Let H be a Heyting algebra. For all x, y ∈ H, the following hold:

(i) x ≤ Clos(x);

(ii) Clos(Clos(x)) = Clos(x);

(iii) Clos(x ∧ y) = Clos(x) ∧ Clos(y);

(iv) Clos(x→ y) = Clos(x) → Clos(y);

(v) x admits a factorization x = c ∧ d, where c ∈ H is closed and d ∈ H is dense.
Moreover, c = Clos(x).

Proof. (i)-(iv) are shown in [Borceux, 1994, Prop. 1.2.8]. To prove (v), set xc = Clos(x)
and xd = (xc → x). Then

xc ∧ xd = xc ∧ (xc → x) = xc ∧ x
(i)
= x.

xc is closed due to (ii). We also have

Clos(xd)
(iv)
= Clos(xc) → Clos(x)

(ii)
= Clos(x) → Clos(x) = 1,

so xd is dense.
To prove the second part, suppose x = c ∧ d, where c is closed and d dense. We have

Clos(x) = Clos(c ∧ d) (iii)
= Clos(c) ∧ Clos(d) = Clos(c) = c.

4De Morgan’s law is shown to have several equivalent formulations in [Johnstone, 1979a] and in
[Johnstone, 1979b].
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3.6. Proposition. Let B be a Boolean algebra. The contract algebra C(B) is a Stone
algebra but not necessarily a Boolean algebra.

Proof. First we will show that C(B) is a Heyting algebra. For (a, g), (a′, g′) ∈ C(B),
Definition 3 yields the order (a, g) ≤ (a′, g′) iff a′ ≤ a and g ≤ g′. From this order, the
meet and join given by (1) follow immediately. We verify the absorption laws of lattices:

(a, g) ∧ ((a, g) ∨ (a′, g′)) = (a, g) ∧ (a ∧ a′, g ∨ g′) = (a, g)

(a, g) ∨ ((a, g) ∧ (a′, g′)) = (a, g) ∨ (a ∨ a′, g ∧ g′) = (a, g).

As discussed in Section 1, 0 = (1B, 0B) and 1 = (0B, 1B) are, respectively, the smallest
and biggest elements of C(B). Thus, C(B) is a bounded lattice. That the functor
(—)∧(a, g) : C(B) → C(B) is the left adjoint of the functor (a, g) → (—): C(B) → C(B)
is shown in [Incer Romeo, 2022, Proposition 6.8.3]. Thus, C(B) is a Heyting algebra.

We now verify whether the contract algebra of B is a Boolean algebra or Stone algebra.
The pseudocomplement of C(B) is given by

¬(a, g) def
= (a, g) → 0 = (g,¬g).

We verify the law of excluded middle:

(a, g) ∨ ¬(a, g) = (a, g) ∨ (g,¬g) = (a ∧ g, 1B).

Thus, C(B) is a Boolean algebra only when a ∧ g are always equal to 0B. This only
happens when 0B = 1B. However, C(B) satisfies De Morgan’s law:

¬(a, g) ∨ ¬¬(a, g) = (g,¬g) ∨ (¬g, g) = (0B, 1B).

Thus, C(B) is a Stone algebra.

As discussed in Section 2, when the elements a, g of a contract (a, g) evaluate to 0B or
1B, the contract (a, g) evaluates to either 0, (1B, 1B), or 1—which we called Fail, Active,
and Idle, respectively. 0 and 1 are the bounds of the lattice. What is (1B, 1B)?

3.7. Remark. The contract (1B, 1B) is the smallest dense element of C(B). Observe
that Clos(a, g) = (¬g, g). Thus, for the contract (a, g) to be dense, we must have g = 1B.
This means that the largest dense contract in C(B) is (0B, 1B) = 1, and the smallest is
(1B, 1B). We will call this contract e.

3.8. Proposition. In a Heyting algebra H, the following conditions are equivalent:

(i) H contains a smallest dense element e.

(ii) There exists an element e ∈ H such that e→ x = Clos(x) for all x ∈ H.
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Proof. (i) ⇒ (ii). Suppose that H has a minimum dense element e. Let x ∈ H. By
Proposition 3.5.v, we can write x as x = xc ∧ xd with xc = Clos(x) closed and xd dense.
We have

e→ x = e→ (xc ∧ xd) = (e→ xc) ∧ (e→ xd)

= (e→ xc)
Prop. 3.5.i

≤ Clos(e→ xc)
Prop. 3.5.iv

= Clos(e) → Clos(xc) = Clos(xc) = xc

≤ e→ xc,

where the third equality follows from the assumption that e is the minimum dense element.
We have shown that e→ x = Clos(x).

(ii) ⇒ (i). Let e satisfy (ii) and d ∈ H be dense. Then 1 = Clos(d) = e → d, which
means that e ≤ d. Therefore, e is the minimum dense element.

We use this result to define a class of Stone algebras.

3.9. Definition. A Stone algebra satisfying either condition of Proposition 3.8 will be
called an augmented Stone algebra. We will refer to its element e as the closure element.

3.10. Notation. Let Bool be the category of Boolean algebras, and augStone that of
augmented Stone algebras. Morphisms of augmented Stone algebras are Heyting algebra
morphisms that map the closure element in the domain to the closure element in the
codomain. We define Clos : augStone → Bool as the functor that maps an augmented
Stone algebra to its Boolean algebra of closed elements, i.e., for S ∈ Obj(augStone),
Clos(S) = {¬¬x | x ∈ S}.

3.11. Example. Any Boolean algebra B is an augmented Stone algebra with eB = 1B.
The contract algebra C(B) is an augmented Stone algebra with e = (1B, 1B). The locale
of open sets of Sierpiński space is an augmented Stone algebra.5

We will use the following fact of Stone algebras.

3.12. Proposition. Let S be a Stone algebra. If x ∈ S is closed, x→ y = ¬x ∨ y.

Proof. For a ∈ S, we have a ≤ x → y ⇔ a ∧ x ≤ y ⇔ (a ∧ x) ∨ ¬x ≤ y ∨ ¬x ⇔
(a ∧ x) ∨ ¬x ∨ (¬x ∧ a) ≤ y ∨ ¬x⇔ a ≤ y ∨ ¬x.

We are ready to characterize the functor C.

3.13. Proposition. C is a functor C : Bool → augStone.

5Sierpiński space is rich in topological properties. We leave as an open question whether some of these
topological properties can be explained by the existence of a minimum dense element.
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Proof. Given B ∈ Obj(Bool), we know that C(B) ∈ Obj(augStone) from Proposi-
tion 3.6 and Remark 3.7. Given a map f ∈ homBool(B,B

′), from the paragraph after
Definition 1.1, we have C(f)(a, g) = (fa, fg) ∈ C(B′), as f(a) ∨ f(g) = f(a ∨ g) = 1B′ .
Moreover, C(f)(1) = 1, C(f)(0) = 0, and C(f)(e) = e. We also have

C(f)((a, g) ∧ (a′, g′)) = C(f)(a ∨ a′, g ∧ g′) = (f(a) ∨ f(a′), f(g) ∧ f(g′))
= C(f)(a, g) ∧C(f)(a′, g′),

C(f)((a, g) ∨ (a′, g′)) = C(f)(a ∧ a′, g ∨ g′) = (f(a) ∧ f(a′), f(g) ∨ f(g′))
= C(f)(a, g) ∨C(f)(a′, g′),

and

C(f)((a′, g′) → (a, g)) = C(f)((g′ → g) → (a ∧ ¬a′), g′ → g)

= ((fg′ → fg) → (fa ∧ ¬fa′), fg′ → fg)

= C(f)(a′, g′) → C(f)(a, g).

This shows that Cf ∈ homaugStone(CB,CB
′).

4. An adjunction between Bool and augStone

Now we show that C is the left adjoint of the functor Clos : augStone → Bool. Let
B ∈ Obj(Bool) and S ∈ Obj(augStone). For (a, g) ∈ C(B), we let π1(a, g) = a and
π2(a, g) = g, and for x ∈ B, we let ∆x = (¬x, x).

4.1. Proposition. Let f ∈ homBool(B,Clos(S)). The assignment

αB,S : f 7→ fπ2 ∧ (fπ1 → eS)

is a set morphism αB,S : homBool(B,Clos(S)) → homaugStone(C(B), S).

Proof. Let f ∗ = αB,Sf and c, c′ ∈ C(B), where c = (a, g) and c′ = (a′, g′).

� f ∗(0) = f(0B) ∧ (f(1B) → eS) = 0S.

� f ∗(1) = f(1B) ∧ (f(0B) → eS) = 1S.

� f ∗(e) = f(1B) ∧ (f(1B) → eS) = eS.

� f ∗ (c ∧ c′) = f ∗(a ∨ a′, g ∧ g′) = f(g ∧ g′) ∧ (f(a ∨ a′) → e)

= f(g) ∧ f(g′) ∧ (f(a) → e) ∧ (f(a′) → e) = f ∗c ∧ f ∗c′.
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� f ∗ (c ∨ c′) = f ∗(a ∧ a′, g ∨ g′) = f(g ∨ g′) ∧ (f(a ∧ a′) → e)

= (f(g) ∧ (f(a) ∧ f(a′) → e)) ∨ (f(g′) ∧ (f(a) ∧ f(a′) → e)) .
Since a′ ∨ g′ = 1B, we have ¬a′ ≤ g′. Thus,

f ∗ (c ∨ c′) = (f(g) ∧ (f(a) ∧ f(a′) → e))∨
(f(g′) ∧ (f(a) ∧ f(a′) → e)) ∨ (¬f(a′) ∧ (f(a) ∧ f(a′) → e))

= (f(g) ∧ (f(a) ∧ f(a′) → e)) ∨ (f(g′) ∧ (f(a) ∧ f(a′) → e))

∨ ¬f(a′).

The last equality follows from the fact that ¬f(a′) ≤ f(a) ∧ f(a′) → e. Since f(a′)
is closed, we apply Proposition 3.12 to conclude that

f ∗ (c ∨ c′) = (f(g) ∧ (f(a) → e)) ∨ (f(g′) ∧ (f(a) ∧ f(a′) → e)) . (4)

By applying an analogous procedure, we obtain

f ∗ (c ∨ c′) = (f(g) ∧ (f(a) ∧ f(a′) → e)) ∨ (f(g′) ∧ (f(a′) → e)) .

Conjoining this expression with (4) yields

f ∗ (c ∨ c′) = (f(g) ∧ (f(a) → e)) ∨ (f(g′) ∧ (f(a′) → e))

= f ∗c ∨ f ∗c′.

� f ∗ (c′ → c)

= f(g′ → g) ∧ (f ((a ∧ ¬a′) ∨ ¬(g′ → g)) → e)

= f(g′ → g) ∧ (¬f(a ∧ ¬a′) ∧ f(g′ → g) ∨ e) (by Proposition 3.12)

= f(g′ → g) ∧ (f(a ∧ ¬a′) → e)

= f(g′ → g) ∧ f(¬a′ → g) ∧ (f(a ∧ ¬a′) → e)

The last equality follows from the fact that ¬a′ ≤ g′. We have

f ∗ (c′ → c)

= (f(g′) ∧ e→ f(g) ∧ (f(a) → e)) ∧ (¬f(a′) → f(g) ∧ (f(a) → e)),

which holds because f(g′ → g) = (f(g′)∧e→ f(g)∧ (f(a) → e)). We finally obtain

f ∗ (c′ → c) = (¬f(a′) ∨ f(g′) ∧ e) → (f(g) ∧ (f(a) → e))

= f(g′) ∧ (f(a′) → e) → (f(g) ∧ (f(a) → e))

= f ∗c′ → f ∗c.

Since f ∗ commutes with the binary operations and distinguished elements, the conclusion
of the proposition holds.



AN ADJUNCTION BETWEEN Bool AND augStone 2051

4.2. Proposition. Let f ∗ ∈ homaugStone(C(B), S). The assignment

βB,S : f
∗ 7→ f ∗∆

is a set morphism βB,S : homaugStone(C(B), S) → homBool(B,Clos(S)). Moreover, αB,S

and βB,S are inverses.

Proof. Let b, b′ ∈ B and set f = βB,Sf
∗. We verify that f is a morphism in Bool:

� f(0B) = f ∗∆0B = f ∗0 = 0S.

� f(1B) = f ∗∆1B = f ∗1 = 1S.

� f(b ∧ b′) = f ∗(¬(b ∧ b′), b ∧ b′) = (f ∗∆b) ∧ (f ∗∆b′) = fb ∧ fb′.

� f(b ∨ b′) = f ∗(¬(b ∨ b′), b ∨ b′) = (f ∗∆b) ∨ (f ∗∆b′) = fb ∨ fb′.

� f(b′ → b) = f ∗(¬(b′ → b), b′ → b) = f ∗ ((¬b′, b′) → (¬b, b)) = fb′ → fb.

Regarding the second part, let (a, g) ∈ C(B). We have

(αB,SβB,Sf
∗)(a, g) = (αB,Sf

∗∆)(a, g) = (f ∗∆π2 ∧ (f ∗∆π1 → eS))(a, g)

= f ∗(¬g, g) ∧ (f ∗(¬a, a) → eS) = f ∗ ((¬g, g) ∧ ((¬a, a) → e))

= f ∗ ((¬g, g) ∧ (a, 1)) = f ∗(a, g)

and

(βB,SαB,Sf)(b) = (fπ2∆ ∧ (fπ1∆ → eS))(b) = f(b) ∧ (f(¬b) → eS)

= f(b) ∧ (f(b) ∨ eS) = f(b).

4.3. Corollary. The functor C is fully faithful.

Proof. Let B and B′ be Boolean algebras. The maps ∆: B → Clos(C(B)) and
π2 : Clos(C(B)) → B are inverses in Bool. Therefore,

homBool(B,B
′) ∼= homBool(B,Clos(C(B′))) ∼= homaugStone(C(B),C(B′)),

where the second isomorphism follows from Proposition 4.2.
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4.4. Remark. While C is fully faithful, C does not establish a surjection between the
objects of Bool and augStone. Let B0 be the Boolean domain (i.e., a Boolean algebra
with only two elements, 0 and 1). The cardinality of its contract algebra is |C(B)| = 3.
The smallest Boolean algebra B1 of cardinality larger than 2 has four elements: 0, 1, a,¬a
for some atom a ∈ B1. Its contract algebra has cardinality |C(B1)| = 9. However, the
algebra {0, e, x, 1} with e ≤ x is an augmented Stone algebra and has 4 elements. Our
argument shows that there is no Boolean algebra that C maps to an algebra of this
cardinality.

4.5. Theorem. The functor C is the left adjoint of Clos.

Proof. Let B ∈ Obj(Bool) and S ∈ Obj(augStone). By Propositions 4.1 and 4.2,
αB,S : homBool(B,Clos(S)) → homaugStone(C(B), S) and βB,S : homaugStone(C(B), S) →
homBool(B,Clos(S)) are inverses. It remains to show these isomorphisms are natural in
both arguments. Let ρ ∈ homBool(B

′, B) and σ ∈ homaugStone(S, S
′). We want to show

that the following diagram commutes:

homBool(B,Clos(S)) homaugStone(C(B), S)

homBool(B
′,Clos(S ′)) homaugStone(C(B′), S ′)

αB,S

βB,S

σ◦()◦ρ σ◦()◦C(ρ)
αB′,S′

βB′,S′

Let f ∈ homBool(B,Clos(S)) and (a′, g′) ∈ C(B′). We have

(αB′,S′(σfρ)) (a′, g′) = (σfρπ2 ∧ (σfρπ1 → eS′))(a′, g′)

= σfρ(g′) ∧ (σfρ(a′) → eS′)

= σ (fρ(g′) ∧ (fρ(a′) → eS))

= σ (fπ2 ∧ (fπ1 → eS)) (ρ(a
′), ρ(g′))

= σαB,S(f)C(ρ)(a′, g′).

Let f ∗ ∈ homaugStone(C(B), S) and b′ ∈ B′. We have

βB′,S′ (σf ∗C(ρ)) (b′) = σf ∗C(ρ)∆(b′)

= σf ∗(¬ρb′, ρb′)
= σf ∗∆(ρb′)

= (σβB,S(f
∗)∆ρ)(b′).
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5. Discussion and concluding remarks

Our objective in this paper was to provide a universal characterization of contracts. This
was done in Theorem 4.5, showing that contracts appear as the left adjoint of a closure
functor. As adjoint functors are unique, and the closure functor is canonical, this re-
sult shows that contracts are fundamental structures that come with Boolean algebras.
Considering the increasing importance of contracts in engineering applications, this result
validates the soundness of the definition of contracts that has been adopted. We point out
that it has also been recently shown that contracts can be understood as bounded Sugi-
hara monoids [Castiglioni and Ertola-Biraben, 2024]. There are two immediate directions
for future work.

5.1. The contract topos? One of the ways in which toposes may play a role in
engineering design is through their ability to carry syntax and semantics in the same
structure. To what extent can our present discussion be ported to the domain of toposes?
We saw that a given Boolean algebra has an associated contract algebra, which happens to
be a Stone algebra. Can we rewrite this last sentence by replacing the word algebra with
the word topos? Assuming that the contract topos exists for arbitrary Boolean toposes,
how is this construction generalized when the toposes are not Boolean?

5.2. A complex of Stone algebras? It is well-known that the inclusion functor is
the right adjoint of the closure, so we have the following diagram.

Bool augStone

ι

⊤

⊤
C

Clos (5)

5.3. Remark. The definition of contracts (Definition 2.4) is akin to that of the standard
simplex ∆1 := {(t0, t1) ∈ R2 | 0 ≤ ti ≤ 1, t0 + t1 = 1}. Also, (5) is reminiscent of the
beginning of a simplicial set, so we wonder how it could be extended to the right.

With an eye to address the latter point, it helps to consider the initial objects of
the two categories involved in (5). The initial element of Bool is 2 := {• → •}. The
initial element of augStone is 3 := {• → • → •}. This suggests that we seek other
subcategories of Stone algebras having as initial element n. For ease of definition, we will
refer to the bottom of the Stone algebras as e0.

� Let S0 be the subcategory of Stone algebras for which the following closure operator
is the identity:

Clos0 := ¬0¬0, where ¬0 := (—) → e0.

Clearly, S0 is just another name for Bool, and Clos0 for Clos.

� For n ≥ 1, let Sn be the subcategory of Stone algebras having distinguished elements
e1, . . . , en with e1 ≤ e2 ≤ . . . ≤ en for which the following closure operator is the
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identity:

Closn :=
n∧

i=0

¬i¬i = Closn−1 ∧ ¬n¬n, where ¬i := (—) → ei. (6)

This definition allows us to speak of degrees of closure. For an element x ∈ S ∈
Obj(Sn) (with n ≥ 0), we can say that x is i-closed if Closi(x) = x, and i-dense if
Closi(x) = 1. Nay, we can define the dimension of x to be the smallest i such that x is
i-closed.

Let us now list some useful facts to reason about these operators:

5.4. Proposition. Let H be a Heyting algebra and a ∈ H. Let ¬a := (—) → a. For all
x, y ∈ H, the following hold:

(i) if x ≤ y, ¬ay ≤ ¬ax;

(ii) x ≤ ¬a¬ax;

(iii) ¬a = ¬a¬a¬a;

(iv) ¬a(x ∨ y) = ¬ax ∧ ¬ay;

(v) ¬a¬a(x ∧ y) = ¬a¬ax ∧ ¬a¬ay.

Proof. The arguments are very similar to the proofs in [Borceux, 1994, Prop. 1.2.8].
They are as follows:

(i) Suppose x ≤ y. Then ¬ay ∧ y = y ∧ a ≤ a⇒ ¬ay ∧ x ≤ a⇔ ¬ay ≤ ¬ax.

(ii) x ∧ ¬ax = x ∧ a ≤ a⇒ x ≤ ¬a¬ax.

(iii) From (ii), it follows that ¬ax ≤ ¬a¬a¬ax. We also have ¬a¬a¬ax ∧ x ≤ ¬a¬a¬ax ∧
¬a¬ax ≤ a⇒ ¬a¬a¬ax ≤ ¬ax.

(iv) Let z ∈ H. Then

z ≤ ¬a(x ∨ y) ⇔ (z ∧ x) ∨ (z ∧ y) ≤ a

⇔ (z ∧ x) ≤ a and (z ∧ y) ≤ a

⇔ z ≤ ¬ax and z ≤ ¬ay ⇔ z ≤ ¬ax ∧ ¬ay.

(v) x ∧ y ≤ x and x ∧ y ≤ y, so ¬a¬a(x ∧ y) ≤ ¬a¬ax and ¬a¬a(x ∧ y) ≤ ¬a¬ay, which
means that ¬a¬a(x ∧ y) ≤ ¬a¬ax ∧ ¬a¬ay.

We also have

¬a(x ∧ y) ∧ x ∧ y ≤ a⇔ ¬a(x ∧ y) ∧ x ≤ ¬ay = ¬a¬a¬ay

⇔ ¬a(x ∧ y) ∧ x ∧ ¬a¬ay ≤ a

⇔ ¬a(x ∧ y) ∧ ¬a¬ay ≤ ¬ax = ¬a¬a¬ax

⇔ ¬a(x ∧ y) ∧ ¬a¬ax ∧ ¬a¬ay ≤ a

⇔ ¬a¬ax ∧ ¬a¬ay ≤ ¬a¬a(x ∧ y).
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5.5. Proposition. Let S ∈ Obj(Sn) (with n > 0) and x, y ∈ S. The following properties
hold:

(i) ei → x = Closi−1(x) for all 1 ≤ i ≤ n;

(ii) Closi ◦ Closj(x) = Closmin{i,j}(x) for all 0 ≤ i, j ≤ n;

(iii) Clos0(x) ≥ Clos1(x) ≥ . . . ≥ Closn(x) = x;

(iv) Closi(x ∧ y) = Closi(x) ∧ Closi(y) for all 0 ≤ i ≤ n;

(v) Closi(x→ y) = Closi(x) → Closi(y) for all 0 ≤ i ≤ n;

(vi) for i ≤ j, x is j-closed if it is i-closed, and x is i-dense if it is j-dense;

(vii) for all i ≤ n, x admits a factorization x = c ∧ d, where c ∈ S is i-closed and d ∈ S
is i-dense. Moreover, c = Closi(x).

Proof.

(i) We observe that

ei → x = ei →
n∧

k=0

((x→ ek) → ek) =
n∧

k=0

((x→ ek) → (ei → ek))

=
i−1∧
k=0

((x→ ek) → (ek)) = Closi−1(x).

(ii) For 0 ≤ i, j < n, Closi ◦ Closj(x) = ei+1 → (ej+1 → x) = (ei+1 ∧ ej+1) → x =
e1+min{i,j} → x = Closmin{i,j}(x). If j = n and 0 ≤ i ≤ n, Closi ◦ Closj(x) =
Closi(x) = Closmin{i,n}(x). If i = n and 0 ≤ j < n, Closi ◦Closj(x) = (en → (ej+1 →
x)) ∧ ¬n¬nClosj(x) = Closj(x) ∧ ¬n¬nClosj(x) = Closj(x).

(iii) The result follows from (6) and Proposition 5.4.ii.

(iv) Follows from (6) and Proposition 5.4.v.

(v) The condition holds trivially for i = n. For i < n, Closi(x → y) = ei+1 → (x →
y) = (ei+1 ∧ x) → y = (ei+1 ∧ (ei+1 → x)) → y = (ei+1 → x) → (ei+1 → y) =
Closi(x) → Closi(y).

(vi) Both statements follow from (iii).

(vii) Let xc = Closi(x) and xd = xc → x. Then xc is i-closed by ii, and xd is i-dense by
v. We have x = xc ∧ xd by iii. Moreover, if x = c ∧ d, where c is i-closed and d is
i-dense, Closi(x) = c by (iv).
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This proposition shows that the closure operators have a great deal of structure. For
n ≥ 1, we have n functors Closi : Sn → Sn−1 (0 ≤ i < n). We also have the inclusion
functor ι : Sn−1 → Sn and know that Closn−1 ⊣ ι. Finally, by Proposition 3.13, for
S ∈ Obj(S0), it is the case that C(S) ∈ augStone. Let (a, g) ∈ C(S). Then

Clos1(a, g) = Clos0(a, g) ∧ ¬e¬e(a, g) = (¬g, g) ∧ (a, 1S) = (a, g).

This means that C(S) ∈ Obj(S1). We can thus write (5) as

S0 S1

ι

⊤

⊤
C

Clos (7)

How to generalize (7) for any n ≥ 1 is an open question. More specifically, we would
like to answer the following:

� Are there functors Ci satisfying the diagram below?

Sn−1 Sn
.
.
.

ι

Cn−1
⊤

C1

C0

Closn−1
⊤
⊤

Clos0
⊤
⊤

(8)

� Can these functors be understood as higher-dimensional contracts, i.e., as the analog
of higher-dimensional simplices—see Remark 5.3?

� Can these notions lead to a (co)chain complex and to (co)homology of Stone alge-
bras?
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