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DAGGER CATEGORIES VIA ANTI-INVOLUTIONS AND
POSITIVITY

LUUK STEHOUWER AND JAN STEINEBRUNNER

Abstract.

Dagger categories are an essential tool for categorical descriptions of quantum physics,
for example in categorical quantum mechanics and unitary topological field theory. Their
definition however is in tension with the “principle of equivalence” that lies at the heart
of category theory, thereby inhibiting generalizations to higher categories. In this note
we propose an alternative, coherent description of dagger categories based on the well-
studied notion of anti-involutions d : C → Cop, which coherently square to the identity
functor η : d2 ∼= idC . A general anti-involution need not be the identity on objects,
but we instead consider certain isomorphisms dx ∼= x, which we call Hermitian fixed
points as they generalize the notion of a Hermitian inner product on a vector space. We
define a “positivity notion” on (C, d, η) in terms of such Hermitian fixed points. This
terminology is motivated by the dagger category of Hilbert spaces, in which case the
positivity notion consists of the positive definite pairings. Our main result is that the
2-category of anti-involutive categories with a positivity notion is biequivalent to the
2-category of dagger categories.
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1. Dagger categories

Hilbert spaces play an important role in the mathematical study of physical systems and
in particular in the notion of unitary topological quantum field theory. In the context of
unitary TFTs it is especially important to understand Hilbert spaces from a categorical
perspective.
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When considering the category of finite dimensional Hilbert spaces and bounded opera-
tors Hilbfd, one is faced with a fundamental problem: the forgetful functor Hilbfd → VectfdC
is an equivalence of categories. It is essentially surjective because every finite-dimensional
vector space admits a Hilbert space structure and it is fully faithful because every lin-
ear map between finite dimensional Hilbert spaces is bounded. We conclude that in this
framework, category theory cannot tell apart Hilbert spaces and vector spaces. To re-
solve this, we need to remember how to take the adjoint A∗ : H ′ → H of an operator
A : H → H ′. In other words, we should think of Hilbfd as a dagger category:

A dagger category is a category C equipped with a functor † : Cop → C satisfying
† ◦ †op = IdC and †(x) = x for all objects x ∈ C. A dagger functor F : (C, †) → (D, ‡) is a
functor F : C → D such that F (f †) = F (f)‡ holds for all morphisms f : x→ y in C.

While dagger categories are key to categorical approaches to quantum physics, they
also come with an inherent difficulty: the condition †(x) = x behaves poorly under
equivalences of categories, and so attempts to transport dagger structures under those
will fail in general. Dagger categories are hence sometimes humorously referred to as an
“evil” concept [1], as they violate this principle of equivalence. For example, there is no
dagger structure on Vectfd which makes the equivalence Hilbfd → Vectfd into a dagger
functor. Indeed, let (V, ⟨., .⟩) be a Hilbert space and (V, 2⟨., .⟩) the same vector space with
a scaled inner product. Then the morphism idV : (V, ⟨., .⟩) → (V, 2⟨., .⟩) is not preserved
under †. However, its image in Vectfd is the identity on the vector space V and so must
be preserved under †.

However, there is still a well-behaved “dagger category theory” obtained by requiring
all coherence isomorphisms to be unitary. A morphism u : x → y in a dagger category
(C, †) is called unitary if u† : x→ y is an inverse to u, i.e. if u ◦ u† = idy and u

† ◦ u = idx.
There also is a notion of isometries: these are morphisms i : x→ y satsifying only i† ◦ i =
idx.

We can define a 2-category †Cat of dagger categories as follows. Objects are dagger
categories, morphisms are dagger functors, and 2-morphisms are natural transformations
α : F → G such that each αx : Fx → Gx is an isometry. Requiring that the natural
transformations are isometries ensures that all invertible 2-morphisms are unitary, and
hence the 2-category recovers the appropriate notion of equivalence of dagger categories:

1.1. Lemma. [2, Lemma 5.1] We say that a dagger functor F : C → D is a dagger
equivalence if it satisfies the following equivalent conditions:

� F is an equivalence in the 2-category †Cat. (i.e. there is a dagger functor G : D → C
such that F ◦G and G◦F are unitarily naturally isomorphic to the respective identity
functors.)

� F is fully faithful and surjective up to unitaries. (i.e. for each d ∈ D there is a c ∈ C
such that F (c) is unitarily isomorphic to d.)

One can make sense of a large collection of categorical notions by replacing ‘isomor-
phism’ with ‘unitary isomorphism’, such as limits and adjoints [3]. This also tells us how
to transport dagger categories along equivalences:
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1.2. Theorem. [4, Theorem 3.1.3.] Let (C, †) be a dagger category and F : C → D an
equivalence in Cat such that idC → F−1F and F−1FF−1 → F−1 are unitary. Then there
is a unique dagger structure on D making F into a dagger equivalence.

We provide another example of a dagger structure that cannot be transported along
an equivalence: since the notion of unitary isomorphism is potentially stricter than iso-
morphism, the skeleton skD ↪→ D of a dagger category D can in general not be made into
an equivalence of dagger categories. Namely, if D has two objects that are isomorphic,
but not unitarily, then only one of them can be in skD, and therefore skD ↪→ D cannot
be surjective up to unitaries. Instead, the skeleton has to be replaced by a category with
one object for each unitary isomorphism class of D.

The purpose of this note is to compare this 2-category theory of dagger categories with
the 2-category theory of their coherent analogue: anti-involutive categories. Additionally,
we precisely describe which information is lost in the comparison process. We define an
anti-involutive category to be a category C equipped with a functor d : Cop → C that
squares to the identity functor up to chosen higher coherence.1 Abstractly, the 2-category
ICat of anti-involutive categories may be thought of as the homotopy fixed point category
of the involution C 7→ Cop on the 2-category Cat. Any dagger category gives rise to
an anti-involutive category with trivial higher coherence, and this defines a 2-functor
T: †Cat → ICat. However, we will see that anti-involutive categories only suffice to
capture the behaviour of “indefinite” dagger categories (Definition 4.3).

1.3. Theorem. There is a 2-adjunction

T: †Cat ⇄ ICat :Herm

and it restricts to an equivalence between the full 2-subcategory of indefinite complete
dagger categories and the full 2-subcategory of those anti-involutive categories where each
object admits at least one fixed point structure.

To fully capture dagger categories, we will introduce some extra structure on an anti-
involutive category. More specifically, we define a Hermitian fixed point h : x→ dx in Def-
inition 3.1 as a homotopy Z/2-fixed point under Z/2-action on the maximal subgroupoid
induced by d. The main concept we introduce to reconcile anti-involutive categories with
dagger categories is a “positivity notion” on an anti-involutive category (Definition 5.4),
which is a certain collection of Hermitian fixed points on its objects. The intuition behind
a positivity notion is two-fold:

1. is specifies the isomorphisms dx ∼= x necessary to make d the identity on objects;

2. it specifies a collection of Hermitian pairings on the category that we prefer to call
positive, compare Example 5.10.

1This is sometimes called a category with duality.
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We then define PCat to be the 2-category of anti-involutive categories equipped with a
positivity notion. This approach is in part motivated by LeFanu Lumsdaine’s mathover-
flow answer [1], which suggests to encode dagger categories by keeping track of a coherent
involution and “unitary fixed point data”. Our main theorem states that these indeed
form an equivalent notion to dagger categories.

1.4. Theorem. There the above adjunction lifts to a biequivalence of 2-categories

†Cat ≃ PCat

that commutes with the forgetful functors to Cat.

There has been plenty of previous work on several notions of involutions on categories,
mostly about covariant (sometimes op-monoidal) involutions. A partial list includes [5, 6,
7, 8, 9, 10, 11, 12, 13]. Even though some of these references relate categories with weak
involution to dagger categories, most references work with categories with more structure,
such as (symmetric) monoidal or C-linear categories. We think of our formulation of
the relationship between anti-involutive categories and dagger categories as the most
elementary relationship, which could be enhanced with more structure if so desired. In
fact, the second author in [14] obtains a (symmetric) monoidal version of this theorem.

One of the key uses of our main theorem is that it allows us to compute categories
of dagger functors from ordinary functor categories together with information about the
anti-involutions and the positivity notions.

1.5. Theorem. Let (C, †) and (D, †) be two dagger categories. Then F 7→ †D ◦ F ◦ †C
defines an anti-involution on the category of all (not necessarily dagger) functors F : C →
D. The inclusion of the dagger functors into the fixed points

Fun†((C, †), (D, †)) ↪→ (Fun(C,D))fix

is fully faithful and its essential image consists of those functors that preserve the positivity
notions.

In Section 6, we similarly describe symmetric monoidal dagger functors as certain fixed
points on the category of symmetric monoidal functors. (This uses the aforementioned
variant of our main theorem, proved in [14].) Inspired by the approach of [15] we use
this to study unitary TQFTs, and we will give a concrete example by classifying unitary
2-dimensional TQFTs.
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2. Anti-involutive categories

As a first approximation to a more categorically well-behaved version of dagger categories,
we can weaken the condition that † : C → Cop squares to the identity functor on the nose
and we also no longer require it to be the identity on objects. Instead, we give a natural
isomorphism † ◦ †op ∼= IdC satisfying some compatibility conditions. Here given a functor
F : C → D, we denoted the canonical induced functor Cop → Dop by F op, but we will
often abuse notation and write it as F .

A category with anti-involution is exactly a fixed point for the Z/2-action on the
bicategory of categories given by C 7→ Cop, see [16, section 2.2] or [17, Appendix A.2].
This results in the following concrete definition:

2.1. Definition. For C a category, an anti-involution is a functor d : C → Cop and a
natural isomorphism η : idC ⇒ dop ◦ d such that ηd(c) : d(c) → ddd(c) and d(ηc) : ddd(c) →
d(c) are inverses. We call the triple (C, d, η) an anti-involutive category.

2.2. Remark. In fact we could require that dop ◦ d = idC and η = ididC . This would lead
to a biequivalent 2-category, also see [18, Section 3] where such stricter involutions are
studied in the context of linear logic. However, we will not pursue this strictification here,
because many examples are not strict, and it is not in the spirit of this paper.

2.3. Example. If (C, †) is a dagger category, define an anti-involution as d := †. Since
dc = c for every object c of C, we can set ηc = idc, which gives an anti-involutive category
since id†

c = idc.

2.4. Definition. An involutive functor F : (C1, d1, η1) → (C2, d2, η2) consists of a functor
F : C1 → C2 and a natural isomorphism φ : F op ◦ d1 ∼= d2 ◦ F such that the following
square commutes for all x ∈ C1:

F (x) (F ◦ dop1 ◦ d1)(x)

(dop2 ◦ d2 ◦ F )(x) (dop2 ◦ F op ◦ d1)(x)

(η2)F (x)

F ((η1)x)

φd1(x)

dop2 (φx)

The composition of involutive functors (F : C1 → C2, φ) ◦ (G : C2 → C3, ψ) is defined to
come equipped with the natural transformation

F ◦G ◦ d1(x)
F (ψx)−−−→ F ◦ d2 ◦G(x)

φG(x)−−−→ d3 ◦ F ◦G(x)
which is easily shown to satisfy the required condition. An involutive natural transforma-
tion α : (F : C1 → C2, φ) ⇒ (G : C1 → C2, ψ) is a natural transformation α : F ⇒ G such
that the following square commutes for all x ∈ C1:

(F ◦ d1)(x) (G ◦ d1)(x)

(d2 ◦ F )(x) (d2 ◦G)(x)

φx

αd1(x)

ψx

d2(αx)
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The composition of involutive natural transformations is involutive. Let ICat denote the
2-category of anti-involutive categories, involutive functors, and involutive natural trans-
formations.

Note that similar to isometric natural transformations for dagger categories, an invo-
lutive natural transformation αc admits a left inverse, but not necessarily a right inverse.

2.5. Remark. The observation in Example 2.3 that every dagger category is canonically
an anti-involutive category extends to give a 2-functor T: †Cat → ICat. More precisely,
if F : (C, †) → (D, †) is a dagger functor, we can take φc = idF (c). The condition that this
defines a natural transformation F ◦ † ⇒ † ◦ F is equivalent to F being a dagger functor.
The remaining condition between η and φ is satisfied, since all morphisms involved are
the identity.

Finally, let α : F ⇒ F ′ be a natural transformation. Then α is an involutive natural
transformation between the induced involutive functors if and only if αc is an isometry for
all objects c, which is how we defined 2-morphisms in †Cat. We recall that that αc need
not be invertible, but it is invertible if and only if it is unitary. Clearly these constructions
preserve composition of functors and both horizontal and vertical composition of natural
transformations.

2.6. Lemma. An involutive functor (F, φ) : (C, d, ρ) → (D, d, η) is an equivalence in ICat
(i.e. it has an involutive inverse up to involutive natural transformation) if and only if
the underlying functor F : C → D is an equivalence of categories.

Proof. The only if direction holds because if (G,ψ) is an involutive inverse functor, then
G is an inverse of F up to natural isomorphism.

For the if direction, pick some G : D → C and natural transformations α : F ◦G ∼= IdD
and β : G ◦ F ∼= IdC. Recall that without loss of generality, we can assume this is an
adjoint equivalence, i.e. α and β satisfy the snake identities. It suffices to provide the
data ψ that makes G into an involutive functor and show that α and β become involutive
natural transformations. Define ψ at an object y of D as

Gdy
Gdαy−−−→ GdFGy

Gφ−1
Gy−−−→ GFdGy

βdGy−−−→ dGy.

By definition of being an involutive functor, we have to show the diagram

Gy Gd2y GdFGdy GFdGdy

d2Gy dGFdGy dGdFGy dGdy

Gρy

ηGy

Gdαdy

GφGdy

βdGdy

dβdGy

dGφGy

dGdαy
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commutes. For this, first note that

Gy d2Gy

Gy GFGy GFd2Gy

Gd2y Gd2FGy GdFdGy

ηGy

Gαy

Gρy

βGy

GFηGy

GρFGy

βd2Gy

GφdGy

GdφGy

Gαd2y

commutes. Indeed, the left upper triangle commutes by the snake identity, the right upper
square commutes by naturality of β, the left lower square commutes by naturality of α
and the lower right square commutes because F is an involutive functor. Replacing the
morphisms Gρy and ηGy in the first diagram by this second diagram leads us to conclude
that it suffices to show that the following diagram commutes. We omitted the choice of
input object y in D from the notation for reasons of space.

Gd2FG GdFdG GFd2G

Gd2 GdFGdFG GdFGFdG GFdGFdG d2G

GdFGd GFdGdFG dGFdG

GFdGd dGd dGdFG

GdαdFG

Gαd2

GdφG

GdFβdGGdαFdG GFdβdG
βd2G

GφdG

Gdαd

GdFGφG

GdFGdα

GφGFdG

βdGFdG
dβdG

GφGdFG GFdGφG

GFdGdα βdGdFG

GφGd

βdGd

dGφG

dGdα

Every quadrilateral in the diagram commutes by the interchange law and the upper two
bent arrows are equal by the snake identity. We are led to conclude that (G,ψ) is an
involutive functor.

It remains to show that α and β are involutive natural transformations. Writing out
the definition of the involutive structure on F ◦G this entails that for α we have to show
that the diagram

FGdFGy FGdy

FGFdGy dy

FdGy dFGy

αdFGy

FGdαy

αdyFGφGy

αFdGyFβdGy dαy

φGy



2020 LUUK STEHOUWER AND JAN STEINEBRUNNER

commutes. The two bent arrows are equal by the snake identity and the other two parts
commute by the interchange law. The proof that β is involutive is analoguous.

The following example shows that the underlying anti-involution of a dagger category
does not preserve enough information.

2.7. Example. Let HermC denote the category where objects are finite dimensional com-
plex vector spaces with a non-degenerate sesquilinear form such that

⟨v, w⟩ = ⟨w, v⟩

and morphisms are all linear maps. In other words, these are Hermitian vector spaces
that are not necessarily positive definite inner product spaces. It becomes a dagger category
when the dagger is defined by taking the adjoint with respect to the pairing.

The category of finite dimensional Hilbert spaces is a full dagger subcategory Hilb ⊂
HermC characterised by the condition that the sesquilinar form be positive definite. This
inclusion is not a dagger equivalence, as it is not surjective up to unitaries. Indeed, objects
in HermC are classified, up to unitary isomorphism, by their signature (p, q) and the full
subcategory only contains those of signature (p, 0).

However, the inclusion F : Hilb → HermC is an equivalence of anti-involutive cate-
gories. It is fully faithful and essentially surjective because every finite-dimensional vector
space admits some Hilbert space structure. By Lemma 2.6, this is an equivalence of anti-
involutive categories.

Concretely, we could construct a (highly noncanonical) inverse of this equivalence
as follows. Pick for every finite-dimensional Hermitian vector space (V, ⟨., .⟩) a basis
αV : V ∼= Cn once and for all. Define the functor G : HermC → Hilb on objects by
G(V, ⟨., .⟩) = (Cn, ⟨., .⟩st) where ⟨., .⟩st is the standard Hilbert space structure. On mor-
phisms we set G(f : V1 → V2) := α−1

V2
◦ f ◦ αV1. There is an associated canonical natural

isomorphism α : idHermC =⇒ F ◦ G given by α(V, ⟨., .⟩) = αV : (V, ⟨., .⟩) → (Cn, ⟨., .⟩st).
Now, G is not a dagger functor since αV is in general not unitary. But even though the
anti-involutions d on both categories are the identity on objects, we can use the recipe in
the above lemma to equip G with a non-trivial structure of an involutive functor:

φV : G(dV ) = G(V ) = Cn α†
V−→ V

αV−→ Cn = G(V ) = dG(V )

Then the condition that φ has to satisfy for G to be an involutive functor boils down to
φ†
V = φV , which is easy to check. Hence (G,φ) is an involutive inverse of the involutive

functor F .

3. Hermitian fixed points and Hermitian completion

In the last section, we proposed the notion of an anti-involutive category as a better-
behaved analogue of the notion of a dagger category so that every dagger category has
an underlying anti-involutive category. However, in example 2.7 we found that there
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are important examples of dagger categories that are equivalent as anti-involutive cate-
gories but not as dagger categories. Heuristically, the example gives us the idea that the
dagger category of finite-dimensional Hilbert spaces is not equivalent to the dagger cate-
gory of finite-dimensional Hermitian vector spaces because in the former fewer Hermitian
structures are allowed. Therefore we study an abstraction of the notion of a Hermitian
structure, which we learned from [15, Definition B.14].

3.1. Definition. A Hermitian fixed point in a category C with anti-involution (d, η) on
an object c is an isomorphism h : c→ dc such that

c d2c dc
h

ηc

dh

commutes. The adjoint f † : c2 → c1 of a morphism f : c1 → c2 with respect to Hermitian
fixed points h1 : c1 → dc1 and h2 : c2 → dc2 is the composition

c2
h2−→ dc2

df−→ dc1
h−1
1−−→ c1.

3.2. Example. Take C = VectfdC to be the category of finite-dimensional vector spaces.
Recall that the complex conjugate V of a vector space V is defined to be the same abelian
group but with complex conjugate scalar multiplication. This extends to a functor (.) :

VectfdC → VectfdC . Set d = (.)
∗
so that there is an obvious η given by the evaluation map. It

is straightforward to check that η satisfies ηV ∗ = ηV
∗. A Hermitian fixed point consists of a

vector space V and an isomorphism V → V
∗
satisfying a condition. Such an isomorphism

is equivalent to a nondegenerate sesquilinear pairing and the condition is equivalent to the
Hermiticity axiom

⟨v, w⟩ = ⟨w, v⟩.
The adjoint is given by the usual adjoint of a linear map.

Hermitian fixed points naturally form a category Cfix in which morphisms f : (c1, h1) →
(c2, h2) are morphisms c1 → c2 satisfying the compatibility relation

c1 c2

dc1 dc2

f

h1 h1

df

Let f : (c1, h1) → (c2, h2) be a morphism in Cfix. Note that the condition f has to satisfy
exactly says that f † is a left inverse of f . Therefore Cfix is exactly the wide subcategory of
isometries of the dagger category Herm(C) that we shall define now. The construction is
closely related to the ‘unitary core of a †-isomix category’, which appears in the context
of †-linear logic [11, Definition 5.12]. One could think of Herm(C) as the ‘co-free dagger
category on an anti-involutive category’. This idea is made precise by the 2-adjunction
that we will establish in theorem 4.9.
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3.3. Definition. The Hermitian completion Herm C of the anti-involutive category (C, d,
η) is the category in which objects are Hermitian fixed points (c, h) and morphisms (c1, h1)
→ (c2, h2) are simply given by morphisms f : c1 → c2.

3.4. Lemma. The adjoint on the category Herm C makes it into a dagger category.

Proof. Let (c, h) be an object of C with Hermitian structure h : c→ dc. We have that

id†
c = h−1 ◦ d(idc) ◦ h = h−1 ◦ iddc ◦h = idc .

If f : (c1, h1) → (c2, h2) and g : (c2, h2) → (c3, h3), then (g ◦ f)† = f † ◦ g† follows from the
fact that

c3
h3∼= dc3

dg−→ dc2
h−1
2∼= c2

h2∼= dc2
df−→ dc1

h1∼= c1

is equal to

c3
h3∼= dc3

d(g◦f)−−−→ dc1
h1∼= c1

by functoriality of d. Now f †† is the composition

c1
h1∼= dc1

dh−1
1∼= d2c1

d2f−−→ d2c2
dh2∼= dc2

h−1
2∼= c2.

Using the fixed point property of a Hermitian structure, this composition is equal to

c1
ηc1∼= d2c1

d2f−−→ d2c2
η−1
c2∼= c2.

By naturality of η this composition is equal to f .

3.5. Example. The Hermitian completion of (C = VectfdC , d = (.)
∗
) is the dagger category

of Hermitian vector spaces we considered in example 2.7. So HermVectfdC = HermC

3.6. Remark. Unlike for finite-dimensional vector spaces, (.)
∗
does not define an anti-

involution on infinite-dimensional vector spaces. Indeed, even though there is still a well-

defined bidual map η : V → V
∗∗
, it is only injective but not surjective. Hence the dagger

category of all Hilbert spaces can not be constructed in a similar fashion as the last ex-
ample. It would be interesting to study a weakened version of anti-involutive categories
in which η is not necessarily an isomorphism and Hermitian fixed points h : c → dc are
not necessarily isomorphisms. The technical disadvantage of such a theory would be that
we might have to restrict the morphisms in the Hermitian completion to those that admit
an adjoint, for example the bounded operators for Hilbert spaces. An alternative approach
would be to work with a certain category of topological vector spaces and use a continuous
linear dual.
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3.7. Example. Let TC ∈ ICat be a dagger category C seen as an anti-involutive category.
The Hermitian completion Herm(TC) concretely consists of pairs (c, τ), where τ : c→ c is
invertible and self-adjoint. For f : (c1, τ1) → (c2, τ2) the new adjoint ∗ on the Hermitian
completion is defined as f ∗ = τ2 ◦ f † ◦ τ−1

1 . For example, starting with the dagger category
of Hilbert spaces, new objects are triples (V, (−,−), A) consisting of a Hilbert space and
a self-adjoint invertible linear operator on V . The adjoints of morphisms between such
objects are defined using the Hermitian pairing (−, A−) on V . The resulting dagger
category is unitarily equivalent to the dagger category of Hermitian vector spaces.

3.8. Example. Again take C = VectfdC to be the category of finite-dimensional vector
spaces. Now define d to be the dual (−)∗ : C → Cop and η : V → V ∗∗ the evaluation
map. Then a Hermitian fixed point on a vector space V is equivalent to a nondegenerate
symmetric bilinear form on V . More generally, we could take C to be finite-dimensional
complex representations of a finite group G. Since for a general G-representation V , there
is no G-equivariant isomorphism V ∼= V ∗ there are representations that do not admit the
structure of a Hermitian fixed point at all.

3.9. Lemma. Let (C, dC, ηC), (D, dD, ηD) be two anti-involutive categories. Then there is
an anti-involutive structure on the category Fun(C,D) of functors between them, such that
the category of Z/2-fixed points Fun(C,D)fix is the category HomICat(C,D) of 1-morphisms
in ICat.

Proof. The functor category Fun(C,D) becomes an anti-involutive category via

dF := dD ◦ F ◦ dC.

Namely, we can define the anti-involution on natural transformations α : F1 ⇒ F2 between
functors F1, F2 : C → D as the whiskering

dα := iddD •α • iddC ,

where we denoted horizontal composition of natural transformations with •. This defines
a functor Fun(C,D) → Fun(C,D). Define the natural transformation η : idFun(C,D) ⇒ d2

on F ∈ Fun(C,D) by

F
ηD•idF •ηC−−−−−−→ d2DFd

2
C,

which is natural by the exchange law. Finally, we have to show that ηdF = dη−1
F for

all F ∈ Fun(C,D). This amounts to showing that ηD • iddDFdC •ηC is the inverse of
iddC •ηD • idF •ηC • iddD . This holds because, since ηD is part of an anti-involution it
satisfies that ηD • iddD is inverse to iddC •ηD and similarly for ηC.

A Hermitian fixed point in Fun(C,D) is equivalent to an involutive functor. Indeed,
let ψ : F ⇒ dDFdC be a Hermitian fixed point on F . Writing out the condition results in
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the commutative diagram

Fc dDFdCc

Fd2Cc d2DFd
2
Cc

ψc

F ((ηC)c)

(ηD)
Fd2Cc

dDψdCc

for every object c. A diagram chase shows that under mapping ψ to the composition φ
defined by

φ : FdC
ψ•iddD====⇒ dDFd

2
C

iddDF •η−1
C

=======⇒ dDF

this becomes the condition that (F, φ) is an involutive functor. So we see that HermFun(C,
D) is the category with objects involutive functors and as morphisms all natural trans-
formations. A natural transformation is involutive if and only if it is an isometry in
HermFun(C,D).

3.10. Example. Let h : c → dc be a Hermitian fixed point. Then (dh)−1 : dc → d2c is a
Hermitian fixed point structure on dc. Indeed, taking d of the diagram saying that h is a
fixed point and using that dηc = η−1

dc yields

dc d3c d2c
ηdc d2h

dh

Using that (d2h)−1 = d(dh−1), this diagram indeed expresses the fact that (dh)−1 : dc→ d2c
is a Hermitian fixed point. Note that by construction h : c→ dc is a unitary isomorphism
between the objects (c, h) and (dc, (dh)−1) in the dagger category Herm C.

3.11. Remark. We expect the discussion above to be closely related to [7, Section 6] as
follows. This reference considers covariant op-monoidal involutions which in certain rigid
monoidal categories should be related to monoidal anti-involutions after composing with a
choice of dual functor. This relationship is shown in [14, Section 2.2] in the symmetric
monoidal case. The notion of Hermitian sesquilinear pairing in [7, Definition 6.2] should
be related to our notion of Hermitian fixed point and [7, Lemma 6.3] should be related to
our Hermitian completion.

3.12. Definition. We extend the construction of definition 3.3 to a 2-functor

Herm: ICat −→ †Cat

as follows. For an involutive functor (F, φ) : (C, d, η) → (D, d, ρ) we define

HermF : Herm C → HermD

on objects by HermF (c, h) = (F (c), hF := φc ◦F (h)), and on morphisms by HermF (f) =
F (f). For an involutive natural transformation α : (F, φ) → (F ′, φ′) we define Hermα :
HermF → HermF ′ by (Hermα)c := αc.



DAGGER CATEGORIES VIA ANTI-INVOLUTIONS AND POSITIVITY 2025

3.13. Lemma. The above yields a well-defined 2-functor.

Proof. We have already checked that Herm(C, d, η) is indeed a dagger category, so next
we need to verify that Herm(F, φ) is a dagger functor. First, note that hF := φc ◦
F (h) : F (c) → F (dc) ∼= dF (c) is indeed a hermitian structure because of the diagram:

F (c) F (dc) dF (c)

F (ddc)

ddF (c) dF (dc) dF (c)

F (h) φc

F (ηc)

ηF (c)

F (dh)

dφc dF (h)

φdc

hF

d(hF )

Here the triangle commutes because h is a hermitian fixed point, the trapezoid commutes
because φ is part of an involutive functor, and the rectangle commutes because φ is a
natural transformation.

HermF is certainly functorial seeing as morphisms in Herm C are simply composed by
composing them in C. To show it is a dagger functor, let

f : (c1, h) → (c2, h
′)

be a morphism in Herm C. Then

HermF (f †) = F (c2
h′−→ dc2

df−→ dc1
h−1

−−→ c1) = F (h)−1F (df)F (h′)

Recall that since F is involutive, the diagram

F (dc2) F (dc1)

dF (c2) dF (c1)

φc2

F (df)

φc1

dF (f)

commutes. Looking at the definition of hF , h
′
F , we obtain

HermF (f †) = HermF (f)†.

To conclude that Herm is a 1-functor we need to check that for two composable involutive
functors (F1, φ1) and (F2, φ2) we have that Herm(F2) ◦ Herm(F1) = Herm(F2 ◦ F1). It
will suffice to check that both sides do the same on an object (c, h). The two resulting
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hermitian structures on F2F1(c) are

F2F1(c) F2F1(dc) dF2F1(c)

F2F1(c) F2F1(dc) F2dF1(c) dF2F1(c)

F2F1(h) (φ12)c

F2F1(h) (φ1)c (φ2)F1c

These are indeed the same: the right rectangle commutes because of how the coherence
isomorphism φ12 of the composite functor is defined.

Finally, we need to consider the effect of Herm on 2-morphisms. Here all there is to
check that Herm(α) is indeed an isometry. This follows from the diagram:

F (c) F ′(c)

F (dc) F ′(dc)

dF (c) dF ′(c)

αc

F (h) F ′(h)

φc

αdc

φ′
c

dαc

The squares commute because α is a natural transformation and because α is involutive
with respect to (F, φ) and (F ′, φ′). The vertical composites are the hermitian structures
hF and h′F , and therefore the diagram shows that αc is a one-sided inverse to α†

c =
h−1
F ◦ d(αc) ◦ hF .

4. Indefinite dagger categories

The 2-functors Herm and T are not inverses of each other for two reasons:

1. The anti-involutive category T(C, †) has the property that every object admits at
least one hermitian fixed point structure. This is not true for every anti-involutive
category, for instance the discrete category Z/2 with the non-trivial swap, and
therefore T is not surjective up to equivalence.

2. There exist dagger categories that are not unitarily equivalent, but become equiva-
lent as anti-involutive categories after applying T.

However, we will still be able to show that Herm and T restrict to a biequvialence
between certain full 2-subcategories. On the side of the anti-involutive categories we make
the following restriction, motivated by point 1 above:



DAGGER CATEGORIES VIA ANTI-INVOLUTIONS AND POSITIVITY 2027

4.1. Definition. Let C∃fix denote the full subcategory of the anti-involutive category C
on the objects c that admit some Hermitian fixed point h : c → dc. This is again an
anti-involutive category, also see example 3.10. Let ICat∃fix ⊂ ICat denote the full 2-
subcategory on those anti-involutive categories in which every object admits some Hermi-
tian fixed point structure.

To find the correct property on the dagger category side, we note:

4.2. Example. Consider the dagger category HermC as a category with anti-involution.
Its Hermitian completion is again dagger-equivalent to HermC. However, for Hilb it is
instead HermC which is not dagger-equivalent to Hilb. Recall that in Hilb an operator
T : V → V is called positive definite if it is of the form T = A†A for some isomorphism
A : V → W . Note that in Hilb not every self-adjoint automorphism is positive definite.
However, in HermC it turns out that every self-adjoint automorphism T : V → V can
be written as T = A†A for some isomorphism A : V → W to a suitable (possibly mixed
signature) Hermitian vector space. This is the essential property that HermC has and Hilb
lacks.

Motivated by the above example, we want to single out dagger categories in which
‘every self-adjoint automorphism is positive definite’, compare Remark 5.9. In analogy
with HermC, we think of such dagger categories as containing ‘all Hermitian forms, even
all the indefinite ones’.

4.3. Definition. We say that a dagger category D is indefinite if for any object x ∈ D
and any self-adjoint automorphism a = a† : x ∼= x there is another object y ∈ D and an
isomorphism f : x ∼= y such that a = f † ◦ f . We let †Catindef ⊂ †Cat denote the full
sub-2-category on the indefinite complete dagger categories.

4.4. Lemma. For any anti-involutive category (C, d, η) the dagger category Herm(C) is
indefinite.

Proof. A self-adjoint automorphism is an isomorphism a : (c, h) → (c, h) such that

a = a† = h−1 ◦ d(a) ◦ h.

We need to find an isomorphism f : (c, h) → (c′, h′) such that

a
?
= f † ◦ f = h−1 ◦ d(f) ◦ h′ ◦ f.

Indeed, this can always be achieved by setting c′ = c, f = idc, and h′ = h ◦ a. It just
remains to check that h′ is indeed a valid hermitian form on c. For this we consider

d(h′) ◦ ηc = d(a) ◦ d(h) ◦ ηc = d(a) ◦ h = h ◦ a = h′.
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We now begin to construct the unit and counit for the adjunction between T and
Herm.

4.5. Definition. For every anti-involutive category (C, d, η) we define an involutive func-
tor

(KC, φC) : T(Herm(C, d, η)) −→ (C, d, η)

by letting KC be the functor (c, h) 7→ c and f 7→ f , and letting φC : K
op
C ◦†T(Herm(C)) ∼= d◦KC

be the natural transformation given by

φ(c,h) := (h : c→ d(c)).

4.6. Lemma. The involutive functor (KC, φC) is well-defined, natural in C, and it is an
equivalence of anti-involutive categories onto the full subcategory C∃fix ⊂ C.

Proof. To check that φ is indeed a natural transformation we need to consider for each
morphism f : (c1, h1) → (c2, h2) the square:

c1 d(c1)

c2 d(c2).

φ(c1,h1)
=h1

φ(c2,h2)
=h2

f† d(f)

This indeed commutes by the definition of f †. This natural transformation further has to
satisfy that for each (c, h) the square

KC(c, h) (KC ◦ †op ◦ †)(c, h)

(dop ◦ d ◦KC)(c, h) (dop ◦Kop
C ◦ †)(c, h)

ηKC(x) φ(c,h)=h

dop(φ(c,h))

commutes. Upon closer inspection this is exactly the triangle that commutes because h
is is a Hermitian fixed point.

It follows from the construction that (KC, φC) is natural in C. Moreover, KC is certainly
fully faithful and essentially surjective onto the subcategory of C that admit a Hermitian
fixed point, so by Lemma 2.6 (KC, φC) is an equivalence in ICat.

4.7. Definition. For every dagger category (D, †) we define a dagger functor

UD : D −→ Herm(T (D))

by sending x to (x, id) and f : x→ y to f : (x, id) → (y, id).

The construction of UD is well-defined and natural in D. Moreover, UD is always
fully faithful and essentially surjective. However, the more subtle question is when U is
surjective up to unitaries.
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4.8. Lemma. The functor UD is an equivalence of dagger categories if and only if D is
indefinite.

Proof. As noted before UD : D −→ Herm(T (D)) is always an equivalence of categories,
so by Lemma 1.1 we only need to check when it is surjective up to unitaries. Suppose
(y, h) ∈ Herm(T (D)) is an object that is unitarily isomorphic to some object (x, idx)
in the essential image. Then we have an isomorphism f : (y, h) → (x, idx) satisfying
id(y,h) = f ∗ ◦f . (Here we write ∗ for the dagger on Herm(T (D)) to distinguish it from the
dagger † on D.) Spelling out the definition we see that id(y,h) = f ∗◦f = (h−1◦f †◦ idx)◦f ,
or equivalently h = f † ◦ f . Therefore UD is surjective up to unitaries if and only if every
self-adjoint automorphism h can be written as f † ◦ f with f invertible, i.e. if and only if
D is indefinite.

Recall that a 2-adjunction is a Cat1-enriched adjunction, i.e. an adjunction for which
the unit and counit satisfy the triangle identities strictly. [19]

4.9. Theorem. The functors U and K exhibit a 2-adjunction:

T: †Cat ⇄ ICat :Herm

and this restricts to a biequivalence between ICat∃fix and the full sub-2-category †Catindef
on the indefinite complete dagger categories.

Proof. To establish the 2-adjunction T ⊣ Herm with unit U and counit K we need
to check the triangle identities. The first identity concerns for each (C, d, η) ∈ ICat the
composite functor

Herm(C)
UHerm(C)−−−−−→ Herm(T(Herm(C))) Herm(KC ,φC)−−−−−−−→ Herm(C).

The first functor sends (x, h) to ((x, h), id) and the second functor sends this to (x, (φC)(x,h)◦
KC(id)) = (x, h ◦ id) = (x, h). By construction the composite functor also the identity on
morphisms.

The second identity concerns for each (D, †) ∈ †Cat the composite functor

T(D)
T(UC)−−−→ T(Herm(T(D)))

KT(D),φT(D)−−−−−−−→ T(D).

The first functor sends x to (x, idx) and the second functor sends this to x. On morphisms
the composite is also the identity. It remains to check that the involutive data of the
composite functor is trivial. For the first functor this holds by definition. For the second
functor we have φT(D)(x, h) = h, but since we are applying this to the object (x, idx), it
is also trivial.

Finally, we would like to show that this adjunction restricts to a biequivalence between
†Catindef and ICat∃fix. The adjunction does restrict because Herm(C) is always indefinite
and T(D) always has fixed-point structures. The restriction is a biequivalence by lemma
4.8 and lemma 4.6, which state that on these subcategories the unit and counit become
equivalences.
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5. Choosing positive Hermitian structures

The goal of this section is to prove the main theorem, which relates dagger categories
with anti-involutive categories. In the previous section, we aqcuired an understanding
of the relationship between anti-involutive categories and indefinite categories We thus
need to discuss how to obtain dagger categories that are not indefinite from categories
with anti-involution. To achieve this we will restrict the collection of ‘allowed’ Hermitian
fixed points on the Hermitian completion to a smaller class of ‘positive’ Hermitian fixed
points. This will yield a smaller dagger subcategory for which the underlying category
with anti-involution is equivalent. For example, to get the dagger category Hilbfd we take
the Hermitian completion of Vectfd and then restrict to the subclass of Hermitian fixed
points that are positive definite as Hermitian pairings.

So let (C, d, η) be a category with anti-involution. For P any subset of the collection
of all Hermitian fixed points in C, let CP ⊆ Herm C denote the full subcategory on all
(c, h) ∈ P . Here P stands for ‘positive’ to remind us of the typical situation in vector
spaces in which we wanted to restrict the Hermitian fixed points to the positive definite
ones to obtain the dagger category of Hilbert spaces. The dagger from Herm C restricts
to a dagger on CP .

We are interested in understanding how many dagger categories we can get by this
procedure that are not unitarily equivalent. For this, first note that if P ⊆ P ′, inclusion
CP → CP ′ defines a dagger functor, which is fully faithful. However, even when P ̸= P ′ this
inclusion can still be a unitary equivalence. Namely, we will show that adding transfers
of Hermitian fixed points to P does not change the unitary equivalence class of CP :

5.1. Definition. Given a Hermitian fixed point h : c→ dc and an isomorphism g : c′ →
c, the transfer of h by g is the Hermitian fixed point defined on c′ by d(g) ◦ h ◦ g.

Note that this is indeed a Hermitian fixed point because the following diagram com-
mutes

c′ c dc dc′

d2c′ d2c dc dc′

g

d(g)◦h◦g

ηc′

h

ηc

dg

d2g

d(d(g)◦h◦g)

dh dg

.

5.2. Lemma. Two objects (c, h), (c′, h′) ∈ Herm C are unitarily isomorphic if and only if
h′ is a transfer of h.

Proof. An isomorphism α : (c′, h′) → (c, h) is unitary if and only if

α−1 = α† defn
= h′−1 ◦ dα ◦ h.

This happens if and only if h′ = dα ◦ h ◦ α.
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5.3. Definition. Given a category C, let π0(C) denote the collection of isomorphism
classes of objects. If C is additionally a dagger category, let πU0 (C) denote the collection
of unitary isomorphism classes of objects.

We can rephrase the above lemma by saying that πU0 (Herm C) is the collection of
Hermitian fixed points (c, h) modulo transfer. Note that a dagger functor is unitarily
essentially surjective if and only if it is surjective on πU0 . In particular, if P is a collection
of Hermitian fixed points and P ′ is the closure of P under transfers, then CP → CP ′ is
unitarily essentially surjective and hence an equivalence of dagger categories. Therefore
we can assume without loss of generality that P is closed under transfers.

Now let Pc ⊆ P denote the subset of Hermitian fixed points on the object c. Then
we will want to require that Pc ̸= ∅, so that every object has ‘some positive Hermitian
structure’. This will additionally ensure that CP → Herm C is essentially surjective.

This discussion motivates us to make the following definition.

5.4. Definition. Let (C, d, η) be a category with anti-involution. A positivity notion on
C is a collection of subsets

P = {Pc ⊂ HomC(c, d(c)) : c ∈ obj C}

such that:

� each Pc is non-empty,

� each (h : c→ d(c)) ∈ Pc is a Hermitian fixed point,

� P is closed under transfer.

5.5. Remark. A necessary and sufficient condition for an anti-involutive category to
admit a positivity notion is that every object admits some Hermitian fixed point structure.

5.6. Example. If C is a category with anti-involution in which every object admits some
Hermitian structure, we can take P to consist of all Hermitian fixed points. This is a
positivity notion and CP = Herm C.

5.7. Corollary. Positivity notions on an anti-involutive category C are in bijection with
subsets [P ] ⊂ πU0 (Herm C) such that the composite

[P ] ⊂ πU0 (Herm C) → π0(C)

is surjective.

Proof. It follows immediately by the lemma above that a subset [P ] ⊂ πU0 (Herm C) is
equivalent to a choice of Hermitian fixed points on some collection of objects of C that is
additionally closed under transfer. The condition that the given composite is surjective
is equivalent to requiring that for every object c there exists an isomorphic object c′ and
a Hermitian fixed point h : c′ → dc′ such that (c′, h : c′ → dc′) ∈ Pc′ . In case such (c′, h)
exists, we also get that Pc ̸= ∅ by transferring h to c. Conversely it is clear that the
desired composite is surjective if Pc ̸= ∅ for all c.
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5.8. Example. Recall that if (D, †) is a dagger category, a Hermitian fixed point on the
anti-involutive category T(D, †) is the same as a self-adjoint automorphism h : h : c →
c† = c. There is a canonical positivity notion on T(D, †), which is defined by

Pc := {h : c→ c | There is an automorphism a : c→ c with h = a† ◦ a}.

5.9. Remark. An endomorphism h : c→ c in a dagger category (or C∗-category) is called
positive if there is an endomorphism e : c → c with h = e† ◦ e. The set Pc ⊂ homC(c, c)
from example 5.8 is contained in the set of positive automorphisms. However, it is not
true in general that every positive automorphism is in Pc: it might happen that some
automorphism h : c → c can be written h = a† ◦ a for a : c → c some endomorphism, but
that a cannot be chosen to be invertible.

5.10. Example. We study the case of finite-dimensional vector spaces with d = (.)
∗
as

before. Note that πU0 (Herm(VectfdC )) = N× N given by the signature of the corresponding
Hermitian pairing. Here the signature of (V, (., .)) is the pair (p, q) so that there exists an
orthonormal basis {e1, . . . , ep+q} of V with

(ei, ei) = 1 (ej, ej) = −1

for i ≤ p and j > p. The forgetful map πU0 (Herm(VectfdC )) → π0(Vect
fd
C ) = N is addition.

We provide some examples of positivity notions on this category with anti-involution.
One example is to take PV to be the collection of positive definite Hermitian inner products
on V . This is a positivity notion because every finite-dimensional vector space admits a
positive definite inner product. The resulting dagger category CP is the dagger category
of finite-dimensional Hilbert spaces. Another example is to take PV to consist of all
Hermitian inner products in which case CP is the dagger category of finite-dimensional
vector spaces with arbitrary Hermitian inner products.

There are also many more unusual positivity notions on VectfdC . Namely, for every
dimension d we can separately specify a nonempty collection of signatures (p, q) ∈ N× N
such that p + q = d we allow for Hermitian forms. Any such choice gives a dagger
category CP and two different choices are not dagger equivalent compatibly with the map
to Herm(VectfdC ). Note that it would be reasonable to restrict the allowed positivity notions
further by requiring compatibility with tensor products or direct sums, but we will not
pursue this further here.

5.11. Observation. Given an involutive functor (F, φ) : C → D and positivity notions
P on C and Q on D the following are equivalent:

1. For all (h : c→ d(c)) ∈ Pc, we have

HermF (c, h) = (φc ◦ F (h) : F (c) → d(F (c))) ∈ QF (c).

2. The map πU0 (Herm C) → πU0 (HermD) induced by F sends [P ] to a subset of [Q].



DAGGER CATEGORIES VIA ANTI-INVOLUTIONS AND POSITIVITY 2033

5.12. Definition. The 2-category PCat has as objects anti-involutive categories equipped
with a positivity notion. Morphisms are involutive functors that intertwine the positivity
notions in the sense of equivalent conditions in observation 5.11. The 2-morphisms are
the same as in ICat.

5.13. Remark. Note that the forgetful functor PCat → ICat is well-behaved: Positivity
notions can be transported along equivalences of categories and they can be restricted
along fully faithful functors. Therefore the forgetful functor has lifts for equivalences.
Moreover, if we restrict to fully faithful functors as morphisms in both 2-categories, then
the functor PCatff → ICatff is equivalent to the Grothendieck construction of the functor
(ICatff)op → PoSet that sends an anti-involutive category to its poset of possible positivity
notions.

We can also easily characterise the equivalences in the 2-category PCat. An involu-
tive functor (F, φ) : (C, P ) → (D, Q) is an equivalence in PCat, if and only if F is an
equivalence of categories (and hence (F, φ) is an equivalence in ICat by lemma 2.6), and
moreover the induced map of sets [P ] → [Q] is surjective. (This map is automatically
injective since F is fully faithful.) The latter condition says that every positive Hermitian
fixed point in (D, Q) is (up to transfer) of the form φc ◦ F (h) for h : c → d(c) a positive
Hermitian fixed point in (C, P ).

5.14. Theorem. Equipping T(D, †) with the positivity notion from example 5.8 defines
a lift Tp:

PCat

†Cat ICat.

forget
Tp

T

This 2-functor Tp is a biequivalence.

Proof. We define an inverse 2-functor

HermP : PCat → †Cat

by declaring HermP (C, d, η, P ) ⊂ Herm(C, d, η) to be the full sub-†-category on those her-
mitian fixed points (h : c→ d(c)) where h ∈ Pc. In other words, HermP is the subcategory
of hermitian fixed points which are positive. This is a well-defined 2-functor because Herm
is and because 1-morphisms in PCat preserve the positivity notions by definition.

The functor U : D → Herm(T(D)) from definition 4.7 that sends x to (x, idx), restricts
to a functor UP : D → HermP (TP (D)) since (x, idx) is always a positive hermitian fixed
point in TP (D). Therefore this defines a natural transformation U : id†Cat → HermP ◦TP

and as observed below definition 4.7 the dagger functor

UP : D → HermP (TP (D))

is always fully faithful (and essentially surjective). We would like to show that it is
surjective up to isometry. Let (h : x → x) be some object in HermP (TP (D)). Since h is
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positive we can write it as h = a ◦ a† for some positive Hermitian fixed point a : x → x
in TP (D). In other words, h is the transfer of (id : x → x) along a. By lemma 5.2 this
means that there is a unitary isomorphism (x, idx) ∼= (x, h). Therefore UP is a dagger
equivalence and hence an equivalence in the 2-category †Cat.

Finally, consider the involutive functor

(KC, φC) : T(Herm(C, d, η)) −→ (C, d, η)

that we constructed naturally for all (C, d, η) ∈ ICat in 4.5. Given a positivity notion P
on C, we also get a positivity notion on TP (HermP (C, d, η)). We would like to show that
KC preserves positivity notions. A positive Hermitian fixed point in TP (HermP (C, d, η))
is of the form p = a† ◦ a for some automorphism a : (x, h) → (x, h). Here h : x → d(x)
is a positive hermitian fixed point. Using the definition of the dagger in Herm(C) we can
write this as p = (h−1 ◦d(a)◦h)◦a. In order to show that (KC, φC) respects the positivity
notions we use condition (1) of observation 5.11, which says that φ(x,h) ◦KC(p) must be
positive. Using φ(x,h) = h : x→ d(x) we see that

φ(x,h) ◦KC(p) = h ◦ (h−1 ◦ d(a) ◦ h ◦ a) = d(a) ◦ h ◦ a.

This is the transfer of h along a and since h was positive, so is this. Therefore (KC, φC)
defines a natural morphism

TP (HermP (C, d, η, P )) −→ (C, d, η, P )

of anti-involutive categories with positivity notions. We already observed in lemma 4.6
that (KC, φC) is an equivalence in ICat. For it to also be an equivalence in PCat we need
to check that every positive fixed point in (C, d, η, P ) is hit (up to transfer) by (KC, φC).
We saw above that every morphism d(a) ◦ h ◦ a can be written as φ(x,h) ◦ F (p). Setting
a = idx we see that indeed every positive fixed point h can be hit by this.

5.15. Corollary. Let (C, †) and (D, †) be two dagger categories. Then F 7→ †D ◦F ◦ †C
defines an anti-involution on the category of all functors C → D. The inclusion of the
dagger functors into the fixed points

Fun†((C, †), (D, †)) ↪→ (Fun(C,D))fix

is fully faithful and its essential image consists of those functors that preserve the positivity
notions.

Proof. We have seen in 3.9 that given two anti-involutive categories (C, dC), (D, dD)
there is an anti-involution d on Fun(C,D) given by the expression F 7→ dD ◦ F ◦ dC.
Its fixed points are the category of which objects are involutive functors and morphisms
are involutive natural transformations. Specializing to the case where the anti-involutive
categories come from dagger categories, we see that

(Fun(C,D))fix ∼= HomICat(TC, TD).

The corollary now follows directly from the main theorem.
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6. Applications to unitary topological field theory

In this section, we will outline how this work applies to the question of how to define
unitary topological quantum field theory. Recall that Atiyah [20] introduced the notion
of a topological quantum field theory. A topological quantum field theory (TQFT) is
defined as a symmetric monoidal functor (Bordd,d−1,⊔) → (VectC,⊗) from the oriented
bordism category to vector spaces. With the purpose of defining unitary TQFT, he also
introduced a Hermitian axiom. This required Hilbert space pairings in such a way that
simultaneously reversing in- and output and orientation-reversing bordisms amounts to
taking adjoints of operators. A more precise formulation is: [21, 22]

6.1. Definition. A d-dimensional unitary TQFT is a symmetric monoidal dagger func-
tor

(Bordd,d−1,⊔) → (Hilb,⊗).

In [15, Definition 4.14], the authors define a reflection structure on a TQFT to be
Z/2-equivariance data for certain Z/2-actions (.) on the domain and target category.
They define reflection positive TQFTs as reflection TQFTs preserving a certain positivity
notion. Our approach in this paper is strongly motivated by Freed-Hopkins. It is shown
in [14, Section 2.2] that reflection structures on a TQFT are equivalent to anti-involutive

structures for the anti-involution (.)
∗
. The following corollary thus makes precise the

relationship between reflection positive and unitary TFT.
In [23, Appendix A], it is shown that our main theorem 5.14 generalises to (sym-

metric/braided) monoidal categories. In particular, we have the following analogue of
Corollary 5.15:

6.2. Corollary. Let (C, †,⊗) and (D, †,⊗) be two symmetric monoidal dagger cate-
gories. Then F 7→ †D ◦ F ◦ †C defines an anti-involution on the category of symmetric
monoidal functors C → D. The inclusion of the symmetric monoidal dagger functors into
the fixed points

Fun⊗,†((C, †,⊗), (D, †,⊗)) ↪→
(
Fun⊗(C,D)

)fix
is fully faithful and its essential image consists of those functors that preserve the positivity
notions.

Proof. Following the proof of Lemma 3.9, we can construct an anti-involution on the
category Fun⊗((C,⊗), (D,⊗)) of symmetric monoidal functors by setting

dF := †D ◦ F ◦ †C,

which in the case at hand will square to d2F = F because C and D are dagger categories.
Therefore we may set η = idF . As in Lemma 3.9, the groupoid of Hermitian fixed points
of (d, η) is the groupoid of anti-involutive symmetric monoidal functors as defined in [14,
Definition 2.2.12]. Now [23, Theorem A.8] shows that the groupoid of symmetric monoidal
dagger functors is equivalent to the groupoid of those anti-involutive symmetric monoidal
functors that preserve the positivity notions.
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As an example of how Corollary 6.2 can be applied to TQFTs, we will consider the
case of 2-dimensional unitary TQFTs. First, let us recall the folk-theorem that classifies
them as commutative Frobenius algebras.

6.3. Definition. We define the groupoid of commutative Frobenius algebras over C,
CFrobC to have objects

(A, µ : A⊗ A→ A, ν : 1 → A,∆: A→ A⊗ A, ε : A→ 1)

where (A, µ, ν) is a commutative algebra, (A,∆, ε) is a cocommutative coalgebra, and they
satisfy the Frobenius axiom

(µ⊗ idA) ◦ (idA⊗∆) = ∆ ◦ µ = (idA⊗µ) ◦ (∆⊗ idA).

Morphisms in this groupoid are maps A → B that are both algebra and coalgebra homo-
morphisms. (These are necessarily invertible.)

6.4. Theorem. [24], also see [25] There is an equivalence of groupoids

Fun⊗(Bord1,2,VectC) ≃ CFrobC

defined by sending Z : Bord1,2 → VectC to Z(S1), equipped with the Frobenius structure
given by

(Z(S1), µ = Z( ), ν = Z( ),∆ = Z( ), ε = Z( )).

To study 2-dimensional unitary TQFTs we equip Bord1,2 with the symmetric monoidal
anti-involution † that reverses bordisms and VectC with the symmetric monoidal anti-
involution (−)

∗
. Recall that this anti-involution VectC corresponds to the indefinite dagger

category Herm. From Corollary 6.2, we get an induced anti-involution on Fun⊗(Bord1,2,VectC)
defined by

Z 7−→ (−)∗ ◦ Z ◦ †.
The equivalence in Theorem 6.4 is equivariant with respect to this involution, if we equip
CFrobC with the involution:

d : (A, µ, ν,∆, ε) 7−→ (A
∗
,∆

∗
, ε∗, µ∗, ν∗),

with η : id ∼= d2 given by the same natural isomorphism as in (VectC, (−)
∗
). Here we

implicitly used that (−)∗ is symmetric monoidal to get isomorphisms A⊗ A
∗ ∼= A

∗ ⊗A
∗
.

Passing to fixed points we get an equivalence

Fun⊗,†(Bord1,2,Herm) ≃ CFrobfix
C .

A fixed point on the right is a commutative Frobenius algebra (A, µ, ν,∆, ε) with an
isomorphism α : A ∼= A

∗
of Frobenius algebras that “squares” to the identity. We can

encode the isomorphism in terms of a non-degenerated sesquilinear pairing ⟨., .⟩ : A⊗A→
C such that

⟨a, b⟩ = ⟨b, a⟩.
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That α is an isomorphism of Frobenius algebras then means that with respect to the
pairing ⟨., .⟩, µ is adjoint to ∆ and ν is adjoint to ε. Because of this it will suffice to
only encode the algebra structure and the pairing. We make the following definition, see
e.g. [26, Definition 3.3]:

6.5. Definition. A Hermitian commutative Frobenius algebra is a tuple (A, µ, ν, ⟨., .⟩)
of a commutative algebra (A, µ, ν) and a Hermitian pairing ⟨., .⟩ on A such that

(id⊗µ) ◦ (id⊗µ†) = µ† ◦ µ = (id⊗µ) ◦ (µ† ⊗ id)

where (−)† denotes the adjoint operator with respect to the pairing. A Hermitian com-
mutative Frobenius algebra is called unitary if ⟨., .⟩ is positive definite. A morphism of
Hermitian commutative Frobenius algebras is an isometry that is also an algebra homo-
morphism.

In summary, we obtain the following:

6.6. Corollary. There is an equivalence between 2d unitary TFTs and unitary com-
mutative Frobenius algebras.

Proof. If (A, µ, ν, ⟨., .⟩) is a Hermitian commutative Frobenius algebra, then (A, µ, ν, µ†, ν†)
is a commutative Frobenius algebra. Indeed, (A, µ†, ν†) is cocommutative coalgebra be-
cause (A, µ, ν) is a commutative algebra. Clearly (A, µ, ν, µ†, ν†) is a fixed-point of the
anti-involution on CFrobC defined above. Conversely all fixed points are of this form and
we in fact have an equivalence of groupoids. Combining the classification of ordinary
2-dimensional TQFTs 6.4 with Corollary 6.2, we see that there is an equivalence between
anti-involutive TQFTs and Hermitian commutative Frobenius algebras. Therefore the
corollary follows from Corollary 6.2 after realizing that the TQFT preserves positivity
notions if and only if A is a Hilbert space.

6.7. Remark. We illustrated how our theorem allows us to take the computation of non-
unitary TFTs as a black box and from it compute the groupoid of unitary TFTs. This
computation has been done by hand in the literature, see [27, 28, 29].

6.8. Remark. In [15] Freed–Hopkins define and then classify invertible fully extended
unitary (or in their setting reflection positive) TQFTs, but how to define general fully
extended unitary TQFTs remained open. In [30], based on the current article, a proposal
for a definition of a dagger n-category is given, together with the construction of a bordism
dagger n-category. This leads to a definition of a fully local unitary TQFT with values in
a target dagger n-category.
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Sandra Mantovani, Università degli Studi di Milano: sandra.mantovani@unimi.it
Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com
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