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A TOPOLOGICALLY ENRICHED PROBABILITY MONAD ON THE
CARTESIAN CLOSED CATEGORY OF CGWH SPACES

PETER KRISTEL AND BENEDIKT PETERSEIM

Abstract. Probability monads on categories of topological spaces are classical objects
of study in the categorical approach to probability theory, with important applications
in the semantics of probabilistic programming languages. We construct a probability
monad on the category of compactly generated weakly Hausdorff (CGWH) spaces, a (if
not the) standard choice of convenient category of topological spaces. Because a general
version of the Riesz representation theorem adapted to this setting plays a fundamental
role in our construction, we name it the Riesz probability monad. We show that the Riesz
probability monad is a simultaneous extension of the classical Radon and Giry monads
that is topologically enriched. Topological enrichment corresponds to a strengthened
continuous mapping theorem (in the sense of probability theory). In addition, restricting
the Riesz probability monad to the Cartesian closed subcategory of weakly Hausdorff
quotients of countably based (QCB) spaces results in a probability monad which is
strongly affine, ensuring that the notions of independence and determinism interact as
we would expect.
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1. Introduction and results

1.1. Background: probability monads. Probability monads are one of the centre-
pieces of category-theoretically informed approaches to probability theory. As such, they

We gratefully acknowledge Tobias Fritz, for his encouragement, and his helpful comments in the early
stages of this work. Our gratitude also extends to Eveliina Peltola for her thought-provoking impulses.
Finally, we thank the anonymous reviewer for their many insightful comments and suggestions.

Received by the editors 2024-04-26 and, in final form, 2024-11-05.
Transmitted by Tom Leinster. Published on 2024-11-29.
2020 Mathematics Subject Classification: 60B05, 18C15, 18F60, 54D50.
Key words and phrases: Categorical probability, probability monads, measures on topological spaces,

Riesz representation theorem, compactly generated weakly Hausdorff spaces.
© Peter Kristel and Benedikt Peterseim, 2024. Permission to copy for private use granted.

1983



1984 PETER KRISTEL AND BENEDIKT PETERSEIM

have found important applications in the context of probabilistic (features of) program-
ming languages [JP89, HKSY17, VKS19]. The fundamental idea of a probability monad
is that forming the space of probability measures should yield a monad on a suitable base
category of “sample spaces”. This was first proposed by Giry in [Gir81], who constructed
two probability monads: the Giry monad on the category Meas of measurable spaces and
a probability monad on the category Pol of Polish spaces (i.e. completely metrisable, sepa-
rable topological spaces), also referred to as the Giry monad. Since then, many variations
of this idea have been studied [Kei08, FP19, FPR21, VB22]; see also [nLa24] for a quick
overview.

The present work is partially based on the fourth chapter of the second author’s
Master’s thesis [Pet24], with a simplified construction, streamlined towards the results we
now present.

1.2. Overview and main results. In this paper, we consider the category of compactly
generated weakly Hausdorff spaces, or CGWH spaces for short (see Definition 2.17).

1.2.1. The Riesz probability monad. We construct a monad, (P , δ, I), on this cat-
egory with the property that, for any CGWH space X, the set underlying P(X) is the
set of k-regular (see Definition 4.6) Baire probability measures on X. The component of
the natural transformation δ : 1 ⇒ P at X is the map that sends x ∈ X to the Dirac
measure supported at x. The multiplication I : P2 ⇒ P is given at X conceptually as
the P(X)-valued valued integral,

I : P(P(X)) → P(X), π 7→
∫
P(X)

µ dπ(µ).

We will give a precise definition in Section 5. As our construction is based on a version
of Riesz representation theorem, we call P the Riesz probability monad.

1.2.2. The Baire probability monad. An important Cartesian closed subcategory
of CGWH is the category QCBh of weakly Hausdorff quotients of countably based (QCB)
spaces (Definition 2.29). The Riesz probability monad P restricts to a commutative
enriched monad on QCBh, and whenever X is a QCB space, P(X) consists exactly of the
Baire measures on X. For this reason, we call the resulting monad P on QCBh the Baire
probability monad. (Note that this monad is distinct from the “Baire monad” considered
in [VB22].)

1.2.3. The Baire probability monad is strongly affine.Weakly Hausdorff QCB
spaces do not only form a well-behaved category, they are also well-behaved objects in
that they share many countability properties with Polish spaces (see Proposition 2.31).
One consequence of this is that product measures on QCB spaces are particularly simple
to understand in this situation (see Lemma 5.11), from which we deduce that the Baire
probability monad on QCBh is strongly affine (see Section 6.9 for the definition and
significance of this property).
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1.2.4. Relation to classical probability monads. The Baire probability monad
on QCBh further restricts to the classical Giry monad on the category Pol on Polish spaces
(see Section 6.6). Likewise, the Riesz probability monad restricts to the well-known Radon
monad on the category CompHaus of compact Hausdorff spaces (see Section 6.4). The
situation is summarised in Figure 1.2.4.

CGWH

QCBh CompHaus

Pol

“Riesz monad”

“Baire monad”

“Radon monad”

“Giry monad”

Figure 1: Relations between different probability monads. The hooked arrows are fully
faithful functors. Each of these can be (trivially) extended to a morphism of monads.

1.2.5. The role of Cartesian closedness. There are several reasons why we choose
CGWH, along with its smaller variant QCBh, as our base categories. First, CGWH spaces
serve as a common Cartesian closed substitute for topological spaces, which raises the
question whether the well-known probability monads defined on categories of topological
spaces [VB22, FPR21] admit an analogue on CGWH. Secondly, the fact that CGWH and
QCBh are Cartesian closed makes them suitable for treating the semantics of higher-order
probabilistic programming languages, as done in [HKSY17], where the category QBS of
quasi-Borel spaces is employed instead. In contrast to quasi-Borel spaces, which were in-
troduced as a Cartesian closed replacement for the category of measurable spaces, CGWH
spaces are much more well-studied objects. In this sense, our choice of base category is
more straightforward. Moreover, an important feature distinguishing the Baire probabil-
ity monad on QCBh from the probability monad on quasi-Borel spaces is that it is strongly
affine. Failure of the strongly affine property in the setting of quasi-Borel spaces leads to
somewhat counter-intuitive phenomena, which we are thus able to avoid; see Section 6.9
for details. We do not know whether the Riesz probability monad is also strongly affine.

1.2.6. Topological enrichment. Finally, the Riesz and Baire probability monads are
enriched monads (over their respective base categories), and since we are working with cat-
egories of topological spaces, this means that they are topologically enriched. Topological
enrichment has a natural probabilistic interpretation as a strengthened continuous map-
ping theorem (see Section 5.6). Table 1 gives an overview of several probability monads
which have been proposed and how ours differs from these.
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Name Base Category Type of Measure
Strongly
Affine?

Enriched
over CCC?

Reference

Giry Meas Any ✓ ✗ [Gir81]
– QBS see [HKSY17] ✗ ✓ [HKSY17]
Giry Pol Borel ✓ ✗ [Gir81]
Radon CompHaus Radon ✓ ✗ [Swi74]
Riesz CGWH k-regular ? ✓ (this paper)
Baire QCBh Baire ✓ ✓ (this paper)

Table 1: Comparison of the Riesz and Baire probability monad to other examples from
the literature. The Baire probability monad is the only one that is both enriched over a
Cartesian closed base category (CCC) and known to be strongly affine.

1.3. Outline of the construction. Our construction of the Riesz and Baire proba-
bility monads can briefly be summarised as follows. Throughout this paper, K will denote
the field of real or complex numbers.

1.3.1. k-regular Baire measures.We first define the setM(X) ofK-valued k-regular
Baire measures on a CGWH space X (Definition 4.6). When X is a QCB space, every
K-valued Baire measure is k-regular (Lemma 4.7), so M(X) is simply the set of Baire
measures on X.

1.3.2. A Riesz representation theorem. We then prove a Riesz representation the-
orem (Theorem 4.8),

M(X) = Cb(X)′,

identifyingM(X) with the continuous dual space Cb(X)′ of the space Cb(X) of continuous
bounded functions onX, equipped with its natural CGWH topology (Definition 3.4). This
natural CGWH topology on Cb(X) is not the Banach space topology, unless X is compact
(see Section 3.3 for further motivation regarding this choice of topology).

1.3.3. The endofunctor M. The space Cb(X) is an example of a linear CGWH space
(Definition 3.1), a notion similar to, but generally distinct from, that of a topological
vector space. Due to the Cartesian closedness of CGWH, the continuous dual space V ′ of
a linear CGWH space V acquires a natural CGWH topology, under which it becomes the
natural dual V ∧ of V (Definition 3.10). Thus, under the identification M(X) = Cb(X)∧,
the space of k-regular measures becomes a CGWH space andM an endofunctor on CGWH.

1.3.4. The monad structure. The endofunctor M = Cb(−)∧ now being given by a
double-dualisation-type operation allows us to endow it with a CGWH-enriched monad
structure in a seamless way. The resulting Riesz monad M restricts to a (commutative
enriched) monad on the category QCBh of weakly Hausdorff QCB spaces. Since M(X)
consists exactly of the Baire measures on X when X is a QCB space, we call the resulting
monad the Baire monad.
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1.3.5. Passing to probability measures. Finally, passing to the subspace

P(X) ⊆ M(X)

of probability measures yields the Riesz and Baire probability monads on CGWH and
QCBh, respectively (Theorem 6.3).

1.4. A monads-probability dictionary. Probability monads clarify various struc-
tural aspects of probability: there is an interesting correspondence between properties of
(or structure on) monads and certain phenomena in probability theory, summarised in
Table 2. Our addition to this dictionary is the role of topological enrichment.

Monads Probability Theory
Section/
Reference

unit
Dirac measures/

deterministic random variables
6.1

multiplication
expectation of random
probability measure

6.1

Kleisli morphism Markov kernel [Fri20]

symmetric monoidal structure/
commutativity

product measures/
Fubini’s theorem

5.10

strongly affine property
independence of deterministic

random variables
(of any other random variable)

6.9

topological enrichment
strengthened

continuous mapping theorem
5.6

Table 2: A monads–probability dictionary.

2. Compactly generated weakly Hausdorff (CGWH) spaces

In this section, we give an exposition of the category of CGWH spaces. A thorough
account is given in [Str09].

2.1. Warning. In the literature, the term “compactly generated (CG) space”, and its
occasional synonym “k-space”, have various (slightly different) meanings. Our conventions
agree with [Str09]. For clarity, we give all relevant definitions below.
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2.2. Definition. Let X be a set. A topology on X is compactly generated, or CG,
if a subset U ⊆ X is open if and only if f−1(U) ⊆ K is open for all continuous maps
f : K → X, where K is compact Hausdorff.

If X is equipped with a CG topology, then X is said to be a compactly generated
space, or CG space. We write CG for the category of CG spaces with continuous maps
as morphisms.

Let τ be a topology on a set X. We say that U ⊆ X is k(τ)-open if f−1(U) ⊆ K is
open in K for all compact Hausdorff spaces K and all continuous maps f : K → X. The
following fundamental lemma is easily verified directly.

2.3. Lemma. The collection of k(τ)-open sets forms a topology on X. Additionally, every
τ -open set is k(τ)-open.

Observe that a topological space (X, τ) is CG if and only if k(τ) = τ . The space
kX := (X, k(τ)) is called the k-ification of (X, τ).

The following result shows that the k-operator on topologies is idempotent.

2.4. Lemma. Let K be a compact Hausdorff space. A map f : K → X is τ -continuous,
if and only if, it is k(τ)-continuous. Thus k(k(τ)) = k(τ), and (X, k(τ)) is a CG space.

Proof. If f : K → X is k(τ)-continuous, then it is also τ -continuous, because every
τ -open set is k(τ)-open.

Now, suppose that f : K → X is τ -continuous. It follows immediately from the
definition that if U is k(τ)-open, then f−1(U) is open, whence f is k(τ)-continuous.

In addition to idempotency, we also have monotonicity.

2.5. Lemma. Let X be a set and let τ1 ⊆ τ2 be two topologies on X. Then k(τ1) ⊆ k(τ2)

Proof. Let U ∈ k(τ1). Let K be a compact Hausdorff space and let g : K → (X, τ2)
be continuous. Then g is also continuous as a map K → (X, τ1). By definition of k(τ1),
this implies that g−1(U) is open in K. Since K and g were arbitrary, we conclude that
U ∈ k(τ2).

2.6. Limits and colimits of CG spaces. We now show that CG is bicomplete. First,
we describe colimits in CG.

Let X be a set, and let {Yi}i∈I be a family of CG spaces.

2.7. Lemma. Let {fi}i∈I be a family of maps fi : Yi → X. Let τ be the final topology
with respect to {fi}. Then τ is a CG topology.

Proof. The final topology τ with respect to {fi}i∈I is the finest topology such that all
maps fi are continuous. By Lemma 2.3 we have that k(τ) is at least as fine as τ . Thus,
it suffices to prove that all maps fi are continuous with respect to k(τ).

So, let U ⊆ X be k(τ)-open. Let K be a compact Hausdorff space, and f : K → Yi

a continuous map. We have that fi ◦ f : K → X is continuous, so f−1f−1
i (U) is open.

Because Yi is CG this implies that f−1
i (U) ⊆ Yi is open.
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Given Lemma 2.7, it follows that to obtain a colimit in CG one simply takes the colimit
in the category of topological spaces, and observes that the resulting topological space is
CG.

Next, we describe limits in CG in a dual manner.

2.8. Definition. Let {fi}i∈I be a family of maps fi : X → Yi. Let τ be the initial
topology with respect to {fi}i∈I . The initial CG-topology on X with respect to {fi}i∈I is
k(τ).

It’s clear that the initial CG-topology is CG. In fact, more is true.

2.9. Lemma. The initial CG-topology with respect to the family of maps fi : X → Yi is
the coarsest CG-topology making all the fi continuous.

Proof. The initial topology τ is the coarsest topology making all the fi continuous. So
if τ ′ ⊆ k(τ) is any CG-topology making all fi continuous, then τ ⊆ τ ′ and since τ ′ is a
CG-topology, k(τ) ⊆ k(τ ′) = τ ′ (see Lemmas 2.4 and 2.5). Therefore, k(τ) = τ ′ and k(τ)
is indeed the coarsest topology making all the fi continuous.

Using this, we describe limits in CG as follows.

2.10. Lemma. Let X• : I → CG be a diagram of CG spaces. Let |X| be the limit of |X•|
as taken in the category of sets (where | · | : CG → Set is the forgetful functor), and let τ
be the initial CG-topology with respect to the family of maps fi : |X| → |Xi| (the universal
cone). Then the space X = (|X|, τ) is the limit of X• in CG.

Proof. Let Y be any CG space and let gi : Y → Xi (i ∈ I) be a cone over X•.
By the universal property of |X| as the limit of |X•| in Set, there exists a unique map
u : |Y | → |X| such that gi = fi ◦ u for all i ∈ I. We need to show that u is continuous as
a map Y → X. Since Y is CG, the final topology τu with respect to u is a CG topology
on X (Lemma 2.7). To verify continuity of u, it suffices to show that τu contains (i.e. is
finer than) the topology of X. Because X carries the coarsest CG-topology making all
fi continuous (Lemma 2.9), this reduces the claim to showing that all fi are continuous
with respect to τu. But this is to say that for all i ∈ I and all open U ⊆ Xi, we have that
u−1(f−1(U)) is open in Y , which follows from the continuity of the gi and our assumption
that gi = fi ◦ u.

2.11. Corollary. The category CG of CG spaces is bicomplete. Limits are formed as
described in Lemma 2.10, and colimits are formed as in the category of topological spaces,
by equipping the colimit of the underlying diagram of sets with the final topology (with
respect to the universal co-cone).

2.12. Warning. As a particular case of the limits of CG spaces constructed in Lemma
2.10, the product X × Y of two CG spaces X and Y does not generally coincide with the
product X×TopY as taken in the category Top of topological spaces, see [Eng89, Example
3.3.29]. Similar warnings apply to the various σ-algebras one may consider on such product
spaces; these will play a crucial role later on. A priori, Ba(X × Y ), Ba(X ×Top Y ) and
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Ba(X) ⊗ Ba(Y ) might not agree. However, these σ-algebras do importantly all coincide
for weakly Hausdorff QCB spaces (see Lemma 5.11).

2.13. CG is Cartesian closed. Let X and Y be CG spaces. We now show that there
is always an exponential object, denoted either Y X or C(X, Y ), in CG. The set underlying
Y X = C(X, Y ) is the set of continuous maps X → Y . Its topology can be described as
follows [BT80, Definition 0.1].

2.14. Definition. For every compact Hausdorff space K, every continuous map g : K →
X and every open subset U ⊆ Y , let

W (K, g, U) := {f ∈ C(X, Y )| f(g(K)) ⊆ U}.

Let τ be the topology on C(X, Y ) generated by all sets of the form W (K, g, U). We define
Y X to be the space of continuous maps equipped with the topology k(τ), and call k(τ) the
compact-open CG-topology.

The following theorem is standard and can be found in [BT80, Theorem 4.4], [Day72,
Theorem 3.1] or [ELS04, Theorem 3.6].

2.15. Theorem. The category CG is Cartesian closed. For all CG spaces X, Y , the ex-
ponential Y X is given by the space C(X, Y ), equipped with the compact-open CG-topology.

2.16. The weak Hausdorff property. The appropriate substitute for the Hausdorff
property in the context of CG spaces turns out to be the following.

2.17. Definition. A topological space X is weakly Hausdorff (WH) if every compact
subspace of X is Hausdorff.

A CG space that is also weakly Hausdorff is called a CGWH space. We write CGWH
for the full subcategory of CG whose objects are CGWH spaces.

2.18. Remark. If (X, τ) is a WH space, then a subset U ⊆ X is k(τ)-open if, and
only if, U ∩ K is open in K for all compact subsets K ⊆ X. Thus, in this case, we
do not need to quantify over all continuous maps from compact Hausdorff spaces into
X; consequently, some of the different definitions mentioned in Warning 2.1 of CG space
collapse. Moreover, we should point out that if X is a CGWH space, and Y is a CG space,
then the compact-open CG-topology on Y X (Definition 2.14) agrees with the k-ification
of the compact-open topology on Y X ; a fact that we will use implicitly later.

A CG space X is weakly Hausdorff if, and only if, the diagonal,

(=X) := {(x, y) ∈ X ×X | x = y},

is closed in the product X × X in CG [McC69, Proposition 2.3]. This is completely
analogous to the fact that a topological space X is Hausdorff if, and only if, the diagonal
is closed in the Top-product X ×Top X.
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2.19. The weak Hausdorff quotient. CGWH spaces form an exponential ideal in
CG (Theorem 2.22), by means of the weak Hausdorff quotient, or WH quotient, for short.

2.20. Definition. Let X be a CG space. The WH quotient of X is X/ ∼WH, where
∼WH is the smallest closed (as a subset of X ×X) equivalence relation on X. (Here, the
product is taken in CG, as always.)

Let us verify that the WH quotient deserves this name.

2.21. Lemma. Let X be a CG space. The WH quotient X/∼WH is a CGWH space.

Proof. The WH quotient X/∼WH is CG by Lemma 2.7. It remains to show that X/∼WH

is also WH. By [McC69, Proposition 2.3], it suffices to verify that the diagonal is closed
in (X/∼WH)× (X/∼WH). Let p : X → X/∼WH be the canonical projection. By [McC69,
Proposition 2.2], the product p× p : X ×X → (X/∼WH)× (X/∼WH) is a quotient map.
Hence, the diagonal is closed in (X/ ∼WH) × (X/ ∼WH) if, and only if, its preimage in
X ×X under p× p is closed. This preimage is given precisely by ∼WH which is closed by
definition.

2.22. Theorem. The category CGWH is an exponential ideal in CG. This means that
CGWH is a reflective subcategory of CG and for all CG spaces X and CGWH spaces Y ,
the exponential Y X is a CGWH space. The left adjoint to the inclusion CGWH ↪→ CG is
given by the WH quotient.

Proof. First, we verify that the WH quotient is indeed left adjoint to the inclusion
CGWH ↪→ CG. Let X be a CG space, let Y be a CGWH space and let f : X → Y be a
continuous map. We need to show that f factors uniquely over the canonical projection
p : X → X/ ∼WH to the WH quotient. By the universal property of the quotient, it
suffices to show that for all x, y ∈ X with x ∼WH y, we have f(x) = f(y). But this follows
from the fact that the equivalence relation,

s ∼ t :⇔ f(s) = f(t),

is closed in X ×X (since Y is WH and f is continuous), together with the definition of
∼WH as the smallest closed equivalence relation on X. This completes the proof that the
WH quotient is left adjoint to the inclusion CGWH ↪→ CG.

Finally, let X be a CG space and let Y be a CGWH space. It remains to show that
Y X is WH. The diagonal of Y X is given by,

(=Y X ) = {(f, g) ∈ Y X × Y X | ∀x ∈ X, f(x) = g(x)}.

Since point evaluation is continuous and Y is WH, this is an intersection of closed sets,
which is hence closed.
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2.23. Corollary. The category CGWH is Cartesian closed and bicomplete. Limits are
formed as in CG (see Lemma 2.10) and colimits are formed as the WH quotient of colimits
in CG (see Corollary 2.11).

2.24. Examples of CGWH spaces.As we have seen, CGWH spaces are closed under a
rich variety of constructions. Complementing this, we give two large classes of examples of
CGWH spaces. First, note that compact Hausdorff spaces are trivially CGWH. Moreover:

2.25. Example. Closed subspaces, as well as open subspaces of CGWH spaces are again
CGWH spaces in the subspace topology [Str09, Lemma 2.26].

Since a locally compact Hausdorff space is open in its one-point compactification, we
obtain a further class of examples.

2.26. Example. Locally compact Hausdorff spaces are CGWH spaces.

Recall that a topological space X is said to be sequential if every map f : X → Y to
some further topological space Y which is sequentially continuous (i.e. it sends convergent
sequences to convergent sequences) is continuous. Using the observation that convergent
sequences can be identified with continuous from N∪{∞} (the one-point compactification
of the natural numbers), one finds another large class of examples [Str09, Proposition 1.6].

2.27. Example. Every weakly Hausdorff sequential topological space is a CGWH space.

This includes in particular every metrisable space. A further class of weakly Haus-
dorff sequential spaces, given by weakly Hausdorff QCB spaces, will be introduced in
Section 2.28 below. These spaces form a Cartesian closed category subcategory of CGWH
particularly well-suited for our cause and deserve a separate treatment.

2.28. QCB spaces. QCB spaces were first considered in the context of domain theory
and computable analysis [MS02, Sch02, BSS07]. These spaces find a striking balance
between offering a rich categorical structure while simultaneously being amenable to the
type of countability arguments often required in measure-theoretic contexts.

2.29. Definition. A topological space X is a QCB space (short for “quotient of a count-
ably based space”) if there exists a second-countable space Y together with a quotient map
Y ↠ X. The category of weakly Hausdorff QCB spaces will be denoted by QCBh.

The following important fact can be found in [ELS04, Corollary 7.3, Remark 7.4], using
that CGWH spaces form an exponential ideal in the category of all compactly generated
spaces [Rez17, Proposition 8.10].

2.30. Theorem. The category QCBh is Cartesian closed and has all countable limits and
colimits. These limits and colimits are formed as in CGWH, and the same is true for the
exponential objects in QCBh (i.e. spaces of continuous maps).

In addition, QCB spaces share many of their measure-theoretically desirable count-
ability properties with Polish spaces [BSS07, Theorem 4.5, Propositions 4.7 and 4.8].
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2.31. Proposition. Every QCB space X is

1. sequential,

2. hereditarily separable, i.e. every subset of X is separable (in the subspace topology),

3. and hereditarily Lindelöf, i.e. for each subset S ⊆ X, every cover of S has a count-
able subcover.

Hence, we may view (weakly Hausdorff) QCB spaces as a natural Cartesian closed
generalisation of Polish spaces.

A particular consequence of weakly Hausdorff QCB spaces being closed under count-
able limits in CGWH is the following.

2.32. Lemma. Closed subspaces of weakly Hausdorff QCB spaces are QCB spaces (in the
subspace topology).

Proof. Let X be a weakly Hausdorff QCB space and let A ⊆ X be a closed subset.
Then A is the equaliser of the canonical projection,

p : X → X/A,

and the canonical map,
∗ : X → X/A, x 7→ [a],

sending every point in X to the unique equivalence class of any point a ∈ A. Since
equalisers are limits and both X and X/A are weakly Hausdorff QCB spaces, where we
use use the fact that A is closed to conclude that X/A is weakly Hausdorff (see [Str09,
Corollary 2.21]), the claim follows from Theorem 2.30.

2.33. Convergent sequences in mapping spaces. We will use the following fact
concerning the topology of the mapping spaces Y X to relate the Riesz monad to the
Radon monad on compact Hausdorff spaces; see Section 6.4.

2.34. Lemma. Let Y be a metric space and let X be a compact Hausdorff space. Then
Y X is metrisable and carries the uniform topology.

Proof. By definition, the topology on Y X is given by the k-ification of the compact-open
topology (see Definition 2.14). When X is compact, the latter agrees with the uniform
topology, which is metrisable and hence agrees with its k-ification.

The next lemma will be needed in order to understand the convergent sequences in
the CGWH space Cb(X); see Lemma 3.7.

2.35. Lemma. Let Y be a metric space and let X be any CGWH space. Then a sequence
(fn) converges in C(X, Y ) = Y X if, and only if, it converges uniformly on compact subsets
of X.
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Proof. The convergent sequences in a topological space agree with those of its k-ification.
(This can be seen by identifying convergent sequences with maps from the one-point
compactification of the natural numbers.) The topology on Y X is given by the k-ification
of the compact-open topology. This is the topology of uniform convergence on compact
subsets, which yields the claim.

3. Linear CGWH spaces

Subsequently, we will exclusively consider vector spaces over either the real or complex
numbers, which we generically denote by K. If X is a CGWH space, we denote by
C(X) = C(X,K) = KX the space of continuous maps into K. The space C(X) is a prime
example of a linear CGWH space.

3.1. Definition. A linear CGWH space is a CGWH space V together with two contin-
uous maps (addition and scalar multiplication),

+ : V × V → V,

· : K× V → V,

such that V forms a vector space with respect to the operations · and +. (As usual, the
products are taken in CGWH.)

3.2. Warning. CGWH spaces are, by definition, topological spaces and the definition
of a linear CGWH space is very similar to that of a topological vector space. However,
with respect to the same topology and vector space structure, a linear CGWH space is
not necessarily a topological vector space [Pet24, Example 2.2.9]. Continuity of addition
is only required with respect to the product × in CGWH, which is in general a weaker
requirement than continuity with respect to ×Top. In the other direction, a Hausdorff
topological vector space is also not necessarily a linear CGWH space with respect to the
same topology and vector space structure, as exemplified by the weak-∗ dual of an infinite
dimensional Hilbert space [FR72, Proposition 1].

What does hold is that Hausdorff topological vector spaces always become linear
CGWH spaces when equipped with the k-ification of their topology. In particular, ev-
ery Hausdorff topological vector space whose underlying topological space is already a
CGWH space is a linear CGWH space with respect to the same topology. Importantly,
this includes all metrisable topological vector spaces, such as Fréchet and Banach spaces.

3.3. Cb(X) as a linear CGWH space. Let X be a CGWH space. We now describe
the linear CGWH space structure on the space Cb(X) of continuous bounded (K-valued)
functions on X. While the Banach space topology on Cb(X) does yield such structure,
this is not the topology on Cb(X) which we will consider, as it generally forgets too much
information about the topology of X to possibly be useful in our context. For instance,
the dual of the Banach space Cb(X) can be identified with the space of certain finitely
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additive set functions on X (see [BR07, Theorem 7.9.8]), whereas we are interested in
(suitably regular) countably additive measures.

Fortunately, there is a natural CGWH topology on Cb(X) due to Cartesian closedness
of this category. To see this, note that, as a set, Cb(X) is the directed union over functions
uniformly bounded by some natural number,

Cb(X) =
⋃
n∈N

(nD)X ,

where D = {λ ∈ K | |λ| ≤ 1} ⊆ K is the unit disk and (nD)X is the exponential in CGWH.
Interpreting this directed union as a sequential colimit leads to the following definition.

3.4. Definition. We define the linear CGWH space Cb(X) of bounded continuous (K-
valued) functions on a CGWH space X as the filtered colimit (in the category of CGWH
spaces),

Cb(X) := colimn∈N (nD)X ,

of the diagram,
DX ↪→ (2D)X ↪→ (3D)X ↪→ ...,

where D ⊆ K is the unit disk.

Theorem 2.30 now directly implies:

3.5. Lemma. Let X be a weakly Hausdorff QCB space. Then Cb(X) is a weakly Hausdorff
QCB space as well.

Another pleasant consequence of topologising Cb(X) as a colimit over exponential
objects is the following.

3.6. Lemma. Let X, Y be CGWH spaces. Then the pullback mapping,

C(X, Y ) → C(Cb(Y ), Cb(X)), f 7→ (g 7→ g ◦ f),

is continuous. In other words, Cb is a CGWH-enriched functor.

Proof. It suffices to show that the uncurried map,

C(X, Y )× Cb(Y ) → Cb(X), (f, g) 7→ g ◦ f,

is continuous. Since Cb(Y ) is a sequential colimit over the spaces C(Y, nD) (by definition),
it further suffices to verify the continuity of

C(X, Y )× (nD)Y → Cb(X),

for each n ∈ N. This map in turn factors through the inclusion C(X,nD) ↪→ Cb(X),
reducing our claim to the continuity of

C(X, Y )× (nD)Y → (nD)X , (n ∈ N)

which follows from the Cartesian closedness of CGWH.
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Next, we give a simple description of the convergent sequences in Cb(X). When X
is a QCB space, this completely characterises the topology of Cb(X), since in this case,
Cb(X) is a sequential space by Lemma 3.5.

3.7. Lemma. Let X be a CGWH space. Then a sequence (fn) of continuous bounded
functions converges to f in Cb(X) if, and only if, (fn) is uniformly bounded and converges
in the compact-open topology to f .

Proof. A convergent sequence in Cb(X) can be identified with a continuous map

N ∪ {∞} → Cb(X)

from the one-point compactification of the natural numbers to Cb(X). The image of such
map being compact, [Str09, Lemma 3.7] implies that every convergent sequence lies in
one of the spaces (nD)X (for some n ∈ N) and is hence uniformly bounded. Moreover, a
sequence converges in (nD)X if, and only if, it converges in the compact-open topology
(see Lemma 2.35).

The following lemma will be needed later, to show that on a compact Hausdorff space,
every Baire measure is k-regular; see Lemma 4.7.

3.8. Lemma. Let X be a CGWH space and let ϕ be a not-necessarily-continuous func-
tional on Cb(X). Assume that for every uniformly bounded net of continuous functions
(fi) on X which converges to 0 in the compact-open topology, ϕ(fi) → 0. Then ϕ is
continuous.

Proof.By assumption, ϕ is continuous on each space of continuous functions Cc.o.(X,nD)
with the compact-open topology, implying that it is also continuous on each (nD)X =
kCc.o.(X,nD). The claim follows, since Cb(X) is given as the colimit over these spaces.

3.9. The natural dual of a linear CGWH space. The Cartesian closedness of
CGWH suggests a canonical topology on the continuous dual space of a linear CGWH
space. When equipped with this topology, we call it the natural dual.

3.10. Definition. Let V be a linear CGWH space. The natural dual of V ,

V ∧ := {f ∈ C(V ) | f linear} ⊆ C(V ),

is the space of continuous linear functionals on V , topologised as a closed subspace of the
space of continuous maps C(V ).

As a direct consequence of Lemma 2.32, we obtain:

3.11. Lemma. If a linear CGWH space V is a QCB space, then so is its natural dual
V ∧.

The next lemma will be needed to compare the topology on the space M(X) of k-
regular measures (see Section 4.5) to the topology of weak convergence; see Theorem
6.5.
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3.12. Lemma. Let V be a Banach space, considered as a linear CGWH space. Then, on
the unit ball of V ∧, the topology of V ∧ coincides with the weak-∗ topology.

Proof. By a corollary of the uniform boundedness principle (see [Sch66, p. 86, 4.6]), the
weak-∗ topology on V ′ coincides with the compact-open topology on the unit ball of V ′.
Since the unit ball is compact in the weak-∗ topology, by the Banach-Alaoglu theorem, it
is hence also compact in the compact-open topology. On compact subsets, the compact-
open topology agrees with its k-ification, which is precisely the topology of V ∧.

4. A Riesz representation theorem

In this section, we show that the natural dual Cb(X)∧ of the space of continuous bounded
functions on a CGWH space X can be identified with a certain class of measures, the
k-regular Baire measures on X. When X is a QCB space, every Baire measure is k-
regular and we obtain a particularly natural version of the Riesz representation theorem:
the natural dual of Cb(X) can be identified with the space of Baire measures on X (see
Corollary 4.9).

4.1. Warning. In the following, the term “measure” will be reserved for countably ad-
ditive K-valued measures of bounded variation. We will not consider infinite measures
and do not necessarily assume measures to be positive. In general, we will follow the
measure-theoretic terminology of [BR07].

4.2. Baire, Borel and Radon measures. Let X be a topological space. We recall
the definitions of Baire, Borel and Radon measures (which unfortunately are not quite
uniform throughout the literature).

4.3. Definition. The Baire σ-algebra Ba(X) on X is the σ-algebra generated by all
continuous R-valued functions on X. A Baire measure is a K-valued measure on the
Baire σ-algebra.

A Borel measure on X is a measure on the Borel σ-algebra B(X) (which is the σ-
algebra generated by all open sets). A Radon measure on X is a Borel measure µ on
X such that for each A ∈ B(X) and ϵ > 0, there is a compact subset K ⊆ A such that
|µ|(A \K) < ϵ.

When X is sufficiently well-behaved, the notions of Baire and Radon measure essen-
tially coincide:

4.4. Theorem. On a Polish space, the Baire and Borel σ-algebras agree; moreover the
notions of Baire, Borel, and Radon measure coincide. On a compact Hausdorff space,
every Baire measure admits a unique extension to a Radon measure.

Proof. For the statement about Polish spaces, see [BR07, p. 70, Theorem 7.1.7], for the
one on compacta, see [BR07, p. 81, Theorem 7.3.4].
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4.5. k-regular measures. Let X be a CGWH space.

4.6. Definition. A k-regular measure on X is a Baire measure µ on X for which the
integration map,

Cb(X) → K, f 7→
∫
X

f dµ,

is continuous, where Cb(X) carries its natural CGWH topology (see Definition 3.4). We
denote the set of k-regular measures on X by M(X).

The condition of k-regularity is a very weak regularity condition to impose on Baire
measures, as the following lemma shows.

4.7. Lemma. Let X be either a compact Hausdorff space or a weakly Hausdorff QCB
space. Then every Baire measure is a k-regular measure.

Proof. We consider both cases separately.
1. Let X be a compact Hausdorff space and let µ be a Baire measure on X. Let (fi)

be a net of continuous functions on X uniformly bounded by C > 0 converging uniformly
on compact subsets to 0. By Lemma 3.8, it suffices to show that∫

fi dµ → 0.

Let ϵ > 0. By Theorem 4.4, µ has a unique extension to a Radon measure µ̃ on X. Let
ϵ > 0. Then, since µ̃ is a Radon measure, there exists a compact subset K such that
|µ̃|(X \K) < ϵ. Now, by the compact convergence of (fi), there is an index i0 such that
for all i ≥ i0,

sup
x∈K

|fi(x)| < ϵ.

Now, for all i ≥ i0,∣∣∣ ∫ fi dµ
∣∣∣ ≤ ∫

|fi| d|µ̃| =
∫
K

|fi| d|µ̃|+
∫
X\K

|fi| d|µ̃|

≤ sup
x∈K

|fi(x)||µ̃|(K) + C|µ̃|(X \K)

< (|µ|(X) + C) ϵ.

This shows convergence and, in conclusion, that µ is k-regular.
2. Let X be a weakly Hausdorff QCB space and let µ be a Baire measure on X. We

want to show that

Iµ : Cb(X) → K, f 7→
∫
X

f dµ,

is continuous. Since X is a QCB space, so is Cb(X) (by Lemma 3.5). Hence, Cb(X) is
a sequential space (by Proposition 2.31) and it suffices to show that Iµ is sequentially
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continuous. So let fn → f be a convergent sequence in Cb(X). By Lemma 3.7, (fn − f)
is uniformly bounded. Therefore, by the dominated convergence theorem,

|Iµ(fn)− Iµ(f)| ≤
∫
X

|fn − f | d|µ| → 0,

showing that Iµ is indeed sequentially continuous.

4.8. Representation Theorem. The mapping,

M(X) → Cb(X)∧, µ 7→
∫
X

− dµ,

is a bijection between the set of k-regular measures on X and the set of continuous linear
functionals on Cb(X).

Proof. Assume first that X is Hausdorff. We need to show that for every ϕ ∈ Cb(X)∧,
there exists a unique Baire measure µ such that

ϕ(f) =

∫
f dµ,

for all f ∈ Cb(X). By a general version of the Riesz representation theorem for Hausdorff
spaces [BR07, p. 111, Theorem 7.10.1], this is the case if, and only if, for every monotoni-
cally decreasing sequence (fn) in Cb(X) converging pointwise to zero, we have ϕ(fn) → 0.
So let (fn) be such a sequence. By Dini’s theorem, (fn) converges to 0 uniformly on
compact subsets of X. Moreover, since it is monotonically decreasing, (fn) is uniformly
bounded by the constant supx∈X f0(x). Hence, by Lemma 3.7, (fn) converges to 0 in
Cb(X) and by continuity of ϕ, ϕ(fn) → 0, which completes the proof of the Hausdorff
case.

We now turn to the general case, assuming only that X is a weakly Hausdorff CG
space. This will follow from applying the Hausdorff case to a certain Hausdorff space X̃
with the property that Cb(X) = Cb(X̃).

Recall that a topological space Y is functionally Hausdorff if for any two points
y1, y2 ∈ Y with f(y1) = f(y2) for all f ∈ C(Y ), we have y1 = y2. Functionally Hausdorff
CG spaces form a reflective subcategory of CGWH. The functionally Hausdorff reflection
X̃ of X is given by the quotient of X by the equivalence relation that identifies two points
if the values of any real-valued function at both points coincide. Moreover, functionally
Hausdorff CG spaces form an exponential ideal in CGWH, i.e. for any CG space X and
any functionally Hausdorff space Y , we have that Y X is functionally Hausdorff. This
implies that Y X̃ = Y X , or any CG space X and any functionally Hausdorff space Y , and
therefore we also have C(X) = C(X̃) and Cb(X) = Cb(X̃), both as sets and as topological
spaces. Hence, a k-regular measure on X is equivalently a k-regular measure on X̃ and
a continuous linear functional on Cb(X) is equivalently a continuous linear functional on
Cb(X̃). Since any functionally Hausdorff space is in particular a Hausdorff space, the
general case now follows from the Hausdorff case applied to X̃, as desired.
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As a direct consequence of Lemma 4.7 and Theorem 4.8, we obtain:

4.9. Corollary. For X a weakly Hausdorff QCB space, the natural dual of Cb(X) can
be identified with the space of Baire measures on X.

We will henceforth identify the set of k-regular measures M(X) with Cb(X)∧. In
particular, we topologise M(X) according to the topology on Cb(X)∧. In this way, we
obtain an endofunctor,

M : CGWH → CGWH, X 7→ M(X), f 7→ f∗.

The next step will be to endow this endofunctor M with the structure of a monad.

5. The Riesz and Baire monads

5.1. The Riesz monad. We now describe the monad structure of the Riesz monad M.
Unit and multiplication are given as follows.

5.2. Definition. Define the (families of) map(s),

δ• : X 7→ M(X), x 7→ δx, (X ∈ CGWH)

and

I : M(M(X)) → M(X), I(π)(f) :=
∫
M(X)

µ(f) dπ(µ). (X ∈ CGWH)

Note that under the identification of measures with functionals via Theorem 4.8, we
have that

I(π)(f) = π(µ 7→ µ(f)), (π ∈ M(M(X)), f ∈ Cb(X), X ∈ CGWH) (1)

as well as,

f∗µ = µ(− ◦ f). (f : X → Y, µ ∈ M(X), X, Y ∈ CGWH) (2)

Eq. (1) and (2) display M as a submonad of the double dualisation monad KK(−)
,

which is also know as the continuation monad in the context of programming language
theory.

As a first step towards showing that δ• and I equip M with the structure of a monad,
we will use this to verify:

5.3. Lemma. The families of maps δ• and I constitute natural transformations.
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Proof. We need to show δ• and I are continuous and make the necessary naturality
square commute.

1. The map δ• is continuous: Under the identification of measures and functionals,
we need show that the map

X → Cb(X)∧, x 7→ δ•

is continuous. This map factors as the composite,

X C(X)∧ Cb(X)∧
δ• (−)|Cb(X)

so its continuity follows from Cartesian closedness of CGWH and the fact that the inclusion
map Cb(X) → C(X) is continuous.

2. Naturality of δ•: We need to verify that for all CGWH spaces X, Y and any
continuous map f : X → Y the following diagram commutes:

X Y

M(X) M(Y )

f

δ• δ•

f∗

This is to say that for all x ∈ X,
f∗δx = δf(x),

which is true.
3. The map I is continuous: Being given by a certain evaluation-type map (see Eq.

(1)), the continuity of I follows from Cartesian closedness of CGWH.
4. Naturality of I: We want to show that the following diagram commutes:

M(M(X)) M(M(Y ))

M(X) M(Y )

(f∗)∗

I I

f∗

To show this, we calculate that, for all π ∈ M(M(X)) and all h ∈ Cb(X),

f∗ (I(π)) (h) = I(π)(h ◦ f) (Eq. (2))

= π(µ 7→ µ(h ◦ f)) (Eq. (1))

= π(µ 7→ f∗µ(h)) (Eq. (2))

= π(f∗ ◦ (µ 7→ µ(h)))

= (f∗)∗π(µ 7→ µ(h)) (Eq. (2))

= I((f∗)∗π)(h), (Eq. (1))

which completes the proof.
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5.4. Theorem. (M, δ•, I) is a monad on CGWH, the Riesz monad.

Proof. We need to verify the three monad laws. Let X is a CGWH space, µ ∈ M(X),
f ∈ Cb(X) and π ∈ M(M(X)).

1. First unit law:

I(δµ)(f) =
∫

ν(f) dδµ(ν) = µ(f).

2. Second unit law:

(I(δ•)∗µ)(f) =
∫

δx(f) dµ =

∫
f dµ = µ(f).

3. Associativity law: We need to show that for all Π ∈ M(M(M(X))), h ∈ Cb(X),

I (I(Π)) (h) =I (I)∗Π.

We calculate,

I (I(Π)) (h) = (I(Π)) (µ 7→ µ(h)) (Eq. (1))

= Π(ν 7→ ν(µ 7→ µ(h))) (Eq. (1))

= Π(ν 7→ (I(ν)) (h)) (Eq. (1))

= Π ([µ 7→ µ(h)]◦I)
= (I)∗Π(µ 7→ µ(h)) (Eq. (2))

= I((I)∗Π), (Eq. (1))

completing the proof.

5.5. The Baire monad. By Lemmas 3.11 and 3.5, M(X) is a QCB space whenever X
is a (weakly Hausdorff) QCB space, and in this case, M(X) consists exactly of the Baire
measures on X. The Riesz monad therefore restricts to a monad on QCBh, which we refer
to as the Baire monad.

5.6. Enriched structure: a strengthened continuous mapping theorem. A
basic fact concerning convergence of random variables in distribution is the continuous
mapping theorem [MW43], one version of which can be formulated as follows. Let f :
X → Y be a continuous map between metric spaces X, Y , and let (xn) be a sequence
of X-valued random variables converging in distribution to an X-valued random variable
x. Then f(xn) converges in distribution to f(x). In other words, any weakly convergent
sequence of Borel probability measures (µn) is mapped to a weakly convergent sequence
(f∗µn) under the pushforward operation f∗. WhenX, Y are Polish spaces we can formulate
this even more concisely as the continuity of the pushforward

f∗ : P(X) → P(Y ),

between spaces of probability measures with the topology of weak convergence.
Cartesian closedness enables a stronger statement in our setting, giving M(X) the

structure of an enriched monad.
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5.7. Proposition. Let X, Y be CGWH spaces. Then the map

C(X, Y ) → C(M(X), M(Y )), f 7→ f∗

is continuous.

Proof. This map factors as the composite,

C(X, Y ) C(Cb(Y ), Cb(X)) C(Cb(X)∧, Cb(Y )∧) = C(M(X),M(Y )).
(−)∗ (−)∧

The first of these maps is continuous by Lemma 3.6, while the continuity of the second
follows from the definition of the natural dual (−)∧ and the Cartesian closedness of CGWH.

As we will show in Section 6.6, when X is a Polish space, the space of probability mea-
sures P(X) with the weak topology is a closed subspace of of M(X). Hence, Proposition
6.6 can indeed be interpreted as a strengthened continuous mapping theorem, reducing
to the following statement in the case of Polish spaces.

5.8. Example. Let X, Y be complete separable metric spaces and let (fn) be a sequence
of continuous maps X → Y converging uniformly on compact sets to f : X → Y .
Moreover, let (xn) be a sequence of random variables on X converging in distribution to
a random variable x on X, i.e. the sequence (µn) of their distributions converging weakly
to the distribution µ ∈ P(X) of x. Then fn(xn) converges to f(x) in distribution, i.e. the
sequence of pushforwards ((fn)∗µn) converges weakly to f∗µ.

Note that, in contrast to the classical continuous mapping theorem, this is a statement
about simultaneous convergence in both (fn) and (xn).

Finally, we remark that Proposition 5.7 implies that M is an enriched monad. Re-
call that an V-enriched monad on a V-enriched category C is a V-enriched endofunctor
T on C equipped with two V-enriched natural transformations making the usual dia-
grams commute. Cartesian closed categories are canonically enriched over themselves,
and Proposition 5.7 now implies:

5.9. Corollary.The Riesz monad M is canonically a CGWH-enriched monad on CGWH.
Likewise, the Baire monad M is canonically an QCBh-enriched monad on QCBh.

5.10. Commutativity: product measures and Fubini’s theorem. Any enriched
monad is canonically a strong monad [Rat13, Section 3]. One may therefore ask whether
M is a commutative strong monad, or equivalently [Koc72], a symmetric monoidal monad.
This does indeed hold in the case of the Baire monad (Theorem 5.13 below), and this fact
is closely related to product measures and Fubini’s theorem.

The first crucial observation in this direction concerns the Baire σ-algebra on a product
of QCB spaces.
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5.11. Lemma. Let X, Y be QCB spaces. Then,

Ba(X × Y ) = Ba(X)⊗ Ba(Y ),

where
Ba(X)⊗ Ba(Y ) = σ({A×B |A ∈ Ba(X), B ∈ Ba(Y )})

is the product σ-algebra of the Baire σ-algebras on each factor.

Proof. For the inclusion

Ba(X)⊗ Ba(Y ) ⊆ Ba(X × Y ),

let A = f−1(0) and B = g−1(0) with f ∈ C(X), g ∈ C(Y ). Since Ba(X) ⊗ Ba(Y ) is
generated by cartesian products of the form A×B, it suffices that A×B ∈ Ba(X × Y ),
which holds, as A×B = (f · g)−1(0).

For the reverse inclusion, it suffices to show that every continuous map X × Y → R
is measurable with respect to the product σ-algebra Ba(X) ⊗ Ba(Y ). We will show
the stronger claim that, in fact, every separately continuous function X × Y → R is
Ba(X) ⊗ Ba(Y )-measurable. In order to achieve this, we will apply certain point-set
topological results regarding so-called Rudin spaces.

A topological space Z is said to be a Rudin space if every separately continuous
function on Z × W , where W is any other topological space, is the pointwise limit of
a sequence of continuous functions on Z ×Top W . We will show that every QCB space
is a Rudin space. This implies the original claim, since every continuous function on
X ×Top Y is Ba(X)⊗Ba(Y )-measurable (by [BR07, Proposition 6.10.7] together with the
fact that QCB spaces are hereditarily Lindelöf, see Proposition 2.31) and pointwise limits
of measurable functions are measurable.

Let Z be any QCB space. By [Ban08, Theorem 6.2.(2)], Z is a Rudin space if Cp(Z) is
a Rudin space, where Cp(Z) is the space of continuous functions on Z with the pointwise
topology (i.e. the topology that it inherits from the Top-product of |Z|-fold many copies of
the real line). Now, Cp(Z) has a countable network, since it is the continuous image of the
QCB space C(Z) under the identity map. Moreover, as a topological vector space, Cp(Z)
is normal. Hence, by the Lindelöf property, Cp(Z) is paracompact. As a paracompact
space with a countable (in particular, σ-discrete) network, by [Ban08, Theorem 6.2.(3),
2.3.(1)], Cp(Z) is Rudin space and hence, so is Z. This shows that every QCB space is a
Rudin space, which completes the proof.

As a consequence, the measure-theoretic product measure µ⊗ ν is a Baire measure on
the product X × Y , for any Baire measures µ and ν on QCB spaces X, Y . Building on
this observation, we show that the formation of product measures constitutes a continuous
map.

5.12. Lemma. Let X, Y be weakly Hausdorff QCB spaces. Then the map,

⊗ : M(X)×M(Y ) → M(X × Y ), (µ, ν) 7→ µ⊗ ν,

is continuous.
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Proof. Identifying Baire measures with functionals, ⊗ is given by,

(µ⊗ ν)(f) = ν(y 7→ µ(x 7→ f(x, y))), (µ ∈ M(X), ν ∈ M(Y ), f ∈ Cb(X × Y )),

whereby the continuity of (µ, ν) 7→ µ⊗ ν follows from the cartesian closedness of QCBh.

Now, the family of maps

⊗ : M(X)×M(Y ) → M(X × Y ), (µ, ν) 7→ µ⊗ ν, ((X, Y ) ∈ QCBh × QCBh)

is a natural transformation and we have that:

5.13. Theorem. (M, δ•, I,⊗) is a symmetric monoidal monad on QCBh. Equivalently
[Koc72], M is a commutative strong monad with respect to the associated left strength,

λX,Y : X ×M(Y ) → M(X × Y ), (x, ν) 7→ δx ⊗ ν,

and right strength,

ρX,Y : M(X)× Y → M(X × Y ), (µ, y) 7→ µ⊗ δy.

Proof. We need to show that the following diagram commutes:

M(X)×M(Y )

M(M(X)× Y ) M(X ×M(Y ))

M(M(X × Y )) M(M(X × Y ))

M(X × Y )

λ ρ

M(ρ) M(λ)

I I

Let µ0 ∈ M(x), ν0 ∈ M(Y ) and f ∈ Cb(X × Y ). Then,

(I ◦M(ρ) ◦ λ(µ0, ν0))(f) = [I(M(ρ)(δµ0 ⊗ ν0))](f)

= [I(F 7→ (δµ0 ⊗ ν0)[(µ, y) 7→ F (µ⊗ δy)])](f) (Eq. (2))

= [I(F 7→ ν0(y 7→ F (µ0 ⊗ δy)])](f)

= ν0(y 7→ (µ0 ⊗ δy)(f)) (Eq. (1))

= ν0(y 7→ µ0(x 7→ f(x, y)))

=

∫
Y

∫
X

f(x, y)dµ0(x)dν0(y).

By symmetry, we also have,

(I ◦M(λ) ◦ ρ(µ0, ν0))(f) =

∫
X

∫
Y

f(x, y)dν0(y)dµ0(x).
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Hence, our claim reduces to,∫ ∫
f(x, y) dµ(x) dν(y) =

∫ ∫
f(x, y) dν(y) dµ(x). (3)

which follows from Fubini’s theorem, using Lemma 5.11.

6. The Riesz and Baire probability monads

6.1. Passing to probability measures. Up to this point, our discussion has focused
on K-valued measures. We now show how to apply this to the construction of two prob-
ability monads, the Riesz probability monad on CGWH and the Baire probability monad
on QCBh.

6.2. Definition. Let X be a CGWH space. We define the CGWH space of k-regular
probability measures as the closed subspace,

P(X) := {µ ∈ M(X) |µ probability measure} ⊆ M(X),

of M(X).

Note that P(X) is a QCB space whenever X is a (weak Hausdorff) QCB space (by
Lemma 2.32), in which case P(X) consists exactly of the Baire probability measures on
X. Since the pushforward of a probability measure is a probability measure, we obtain an
endofunctor P on CGWH and on QCBh. We equip P with the structure of a (symmetric
monoidal, in the case of QCBh) monad in the same way as for M. The unit of P is
therefore given by,

δ• : X 7→ P(X), x 7→ δx, (X ∈ CGWH)

the multiplication by,

I : P(P(X)) → P(X), I(π)(f) :=
∫
P(X)

µ(f) dπ(µ). (X ∈ CGWH)

and, in the case of the Baire probability monad, the symmetric monoidal structure on P
is given by,

⊗ : P(X)× P(Y ) → P(X × Y ), (µ, ν) 7→ µ⊗ ν, ((X, Y ) ∈ QCBh × QCBh)

In conclusion, we obtain, exactly as for M:

6.3. Theorem. (P , δ•, I) is a monad on CGWH, the Riesz probability monad, which
restricts to a symmetric monoidal probability monad (P , δ•, I,⊗) on QCBh, the Baire
probability monad.

6.4. Relation to the Radon monad on compact Hausdorff spaces.The monad
P restricts to the Radon monad on compact Hausdorff spaces (see [VB22, Section 6] for
a detailed definition of the Radon monad, and [Swi74] for the original account). This is
the content of the following theorem.
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6.5. Theorem. Let X be a compact Hausdorff space. Then every Baire measure on X
is k-regular (so that M(X) consists exactly of the Baire measures on X). Moreover, the
topology of P(X) coincides with the topology of weak convergence of measures, and P(X)
is a compact Hausdorff space.

Proof. The fact that every Baire measure onX is k-regular was already shown in Lemma
4.7. For the second part of the statement, notice that, since X is compact, Cb(X) = C(X)
carries the uniform topology, by Lemma 2.34. Moreover, P(X) ⊆ C(X)∧ is closed in the
unit ball of the natural dual space C(X)∧ (see Definition 3.10), on which its topology
coincides with the weak-∗ topology (Lemma 3.12). Therefore, P(X) is compact (by
Alaoglu’s theorem) and its topology coincides with the topology of weak convergence of
measures.

6.6. Relation to the Giry monad on Polish spaces. In this section, we show that
the Baire probability monad P on QCBh restricts to the classical Giry monad on Polish
spaces. We begin by relating convergence in P(X) to weak convergence of measures.

6.7. Theorem. Let X be a Polish space. Then a sequence (µn) of probability measures
converges in P(X) if, and only if, it converges weakly.

Proof. Since P(X) is, by definition, a subspace ofM(X) = Cb(X)∧, Lemma 2.35 implies
that a sequence (µn) converges in P(X) if, and only if, it converges uniformly on compact
subsets of Cb(X). Hence, the “if” direction is immediate.

For the converse, suppose that µn → µ weakly. We want to show that µn → µ
uniformly on compact subsets of Cb(X). So let L ⊆ Cb(X) be compact and ϵ > 0. We
collect a number of observations which we then combine to obtain the required estimate.

1. By Prohorov’s theorem [BR07, p. 202, Theorem 8.6.2], the family {|µn − µ|} is
uniformly tight. This means that there exists a compact subset Kϵ ⊆ X such that for all
n ∈ N,

|µn − µ|(X \Kϵ) < ϵ. (4)

2. Since the family of functions L ⊆ Cb(X) is compact, it is uniformly bounded by
some constant C > 0.

3. The restrictions µn|Kϵ , µ|Kϵ are Radon measures on the compact Hausdorff space
Kϵ, and µn|Kϵ → µ|Kϵ weakly. By Lemma 3.12, the weak-∗ topology coincides with
the topology of compact convergence on the unit ball of the dual of C(Kϵ). Hence, the
sequence of functionals (µn|Kϵ) converges uniformly on compact subsets of C(Kϵ) to µ|Kϵ .

4. The image of L under restriction of functions to Kϵ,

L|Kϵ := {f |Kϵ | f ∈ L} ⊆ C(Kϵ),

is compact, since it is the image of the compact set L under continuous map f 7→ f ◦ ιKϵ ,
where ιKϵ : Kϵ → X is the inclusion map.
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5. Since (µn|Kϵ) converges uniformly on compact subsets of C(Kϵ) and L|Kϵ is compact,
we have that for sufficiently large n,

sup
f∈L

∣∣∣ ∫
Kϵ

f dµn −
∫
Kϵ

f dµ
∣∣∣ = sup

f∈L|Kϵ

∣∣∣ ∫ f dµn|Kϵ −
∫

f dµ|Kϵ

∣∣∣ < ϵ. (5)

Combining these observations, we obtain that for all f ∈ L and sufficiently large n,∣∣∣ ∫ f dµn −
∫

f dµ
∣∣∣ ≤ ∫

X\Kϵ

|f | d|µn − µ|+
∣∣∣ ∫

Kϵ

f dµn −
∫
Kϵ

f dµ
∣∣∣

≤ Cϵ+
∣∣∣ ∫

Kϵ

f dµn −
∫
Kϵ

f dµ
∣∣∣ (Eq. (4), 2.)

≤ (C + 1) ϵ, (Eq. (5))

which is what we wanted to show.

Using this, we now show that probability monad P restricts to the Giry monad on
Polish spaces.

6.8. Theorem. Let X be a Polish space. Then every Baire measure is a k-regular mea-
sure and hence, the notions of Baire, Radon and k-regular measure all coincide (see 4.4).
Moreover, the topology on P(X) is given by the topology of weak convergence of measures
and P(X) is again a Polish space.

Proof. That every Baire measure is k-regular was already shown in Lemma 4.7. Now, let
Pw(X) be the space of Baire (equivalently, Radon, by Theorem 4.4) measures on X with
the topology of weak convergence. As sets, Pw(X) = P(X). We want to show that the
respective topologies coincide, as well. First, note that the identity map P(X) → Pw(X)
is continuous, since a convergent net in P(X) is also weakly convergent. By [BR07,
p. 213, Theorem 8.9.4], our assumption that X is a Polish space implies that Pw(X) is
a Polish space, too. Hence, sequential continuity of the identity map Pw(X) → P(X),
which is provided by Theorem 6.7, implies continuity, so the two topologies coincide and
P(X) = Pw(X) also as topological spaces.

6.9. The Baire probability monad is strongly affine. A basic phenomenon in
probability theory is that a deterministic random variable is independent of any other
random variable. A measure-theoretic way to express this is the following. If one of the
marginals of a probability measure on a product is a point mass, then it is the product of
its marginals. Curiously, this deterministic marginal independence can fail for quasi-Borel
spaces [FGHL+23, Section 3]. Such (perhaps counter-intuitive) behaviour cannot occur
when working with weakly Hausdorff QCB spaces: the Baire probability monad on QCBh

is strongly affine [Jac16, Definition 1].
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6.10. Definition. Let T be a strong monad on a category C with finite products. Then
T is strongly affine if for all objects X, Y of C, the following diagram is a pullback square:

T (X)× Y Y

T (X × Y ) T (Y )

π2

s

T (π2)

η

Here, η is the unit of T and s is the right strength.

For the Baire probability monad P on QCBh, this will come down to the aforemen-
tioned phenomenon of deterministic marginal independence, as we now show. The proof
relies heavily on the fact that product measures are well-behaved on QCB spaces (they
agree with the usual measure-theoretic ones, see Lemma 5.11); this is not the case for
general CGWH spaces.

6.11. Theorem. The probability monad P on weakly Hausdorff QCB spaces is strongly
affine.

Proof. Let X and Y be weakly Hausdorff QCB spaces. We have to show that the
following diagram is a pullback square:

P(X)× Y Y

P(X × Y ) P(Y )

π2

δ•

(π2)∗

−⊗ δ−

By how pullbacks are constructed in QCBh (equivalently, CGWH), this is equivalent to
showing that the canonical map,

Φ : P(X)× Y → {(µ, y) ∈ P(X × Y )× Y | (π2)∗µ = δy}, (ν, y) 7→ (ν ⊗ δy, y),

is an isomorphism (where the codomain is equipped with the subspace topology). Note
first that Φ has a continuous left inverse, given by (µ, y) 7→ ((π1)∗µ, y). Hence, it suffices
to verify that Φ is surjective. Let µ ∈ P(X × Y ) and y ∈ Y such that (π2)∗µ = δy. We
want to show that there exists a ν ∈ P(Y ) such that µ = ν ⊗ δy. Our claim is now that
one may take ν := (π1)∗µ, i.e. that µ is the product of its marginals. Since X and Y are
QCB spaces, the Baire σ-algebra on the product coincides with the product of the Baire
σ-algebras on the factors (see Lemma 5.11):

Ba(X × Y ) = Ba(X)⊗ Ba(Y ) = σ({A×B | A ∈ Ba(X), B ∈ Ba(Y )}).

Therefore, our claim reduces to showing that for all A ∈ Ba(X), B ∈ Ba(X),

µ(A×B) = ν(A) · δy(B). (6)

The proof is now exactly as in the case of the Giry monad given in [Jac16, Example 1].
For the convenience of the reader, we reproduce it here. There are two cases:
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1. Suppose that y ̸∈ B. We show that both sides of (6) vanish. For the right hand side,
this is immediate, while for the left hand side, this follows from the monotonicity of
µ:

µ(A×B) ≤ µ(X ×B) = δy(B) = 0.

2. Suppose that y ∈ B. Then by what we have just shown, µ(A × (X \ B)) = 0, and
hence,

µ(A×B) = µ(A×B) + µ(A× (X \B)) = µ(A× Y ) = ν(A) · δy(B).

This completes the proof.
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