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A FINITARY ADJOINT FUNCTOR THEOREM

To the memory of Věra Trnková

JIŘÍ ADÁMEK AND LURDES SOUSA

Abstract. Graduated locally finitely presentable categories are introduced, examples
include categories of sets, vector spaces, posets, presheaves and Boolean algebras. A
finitary functor between graduated locally finitely presentable categories is proved to
be a right adjoint if and only if it preserves countable limits. For endofunctors on
vector spaces or pointed sets even countable products are sufficient. Surprisingly, for set
functors there is a single exception of a (trivial) finitary functor preserving countable
products but not countable limits.

1. Introduction

A functor between locally presentable categories is a right adjoint iff it is accessible and
preserves limits [1, Thm. 1.66]. We introduce a wide class of locally finitely presentable
categories, called graduated, and prove that a finitary functor between them is a right
adjoint iff it preserves countable limits. Graduation essentially means that every finitely
presentable object is assigned a grade in N so that proper subobjects and proper strong
quotients have lower grades. Examples of graduated categories include categories of

(1) sets, posets, Boolean algebras, M -sets for finite monoids M , and left modules over
finite semirings;

(2) vector spaces, presheaves in SetA
op

where A has finite connected components, and
relational structures of finitary signatures.

Our paper has been inspired by Tendas who proved the following result for locally finitely
presentable categories having (a) only countable many finitely presentable objects (up to
isomorphism) and (b) finite hom-sets for them: a finitary functor between such categories
preserves limits iff it preserves countable limits [3, Remark 2.10]. The examples in (1)
above satisfy these conditions, those of (2) do not in general. Besides, our proof (com-
pletely different from that of Tendas) can also be used to include the categories of metric
spaces and complete metric spaces to our list of examples.
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A second inspiration of our paper is Trnková’s result concerning the question when
functors preserving products automatically preserve limits [5]. Can one reduce countable
limits to countable products? The answer is affirmative for endofunctors of categories
such as vector spaces or pointed sets. Surprisingly such a reduction is almost, but not
completely, possible for set functors. Indeed, the functor

C01 defined by o( o and X ( 1 for all X ©� o
preserves all products but not countable limits. This is the single exception: a finitary set
functor preserving countable products but not countable limits is naturally isomorphic to
C01.

Acknowledgement. The authors are grateful to Giacomo Tendas for useful discussions.

2. Graduated categories

In this section graduated locally finitely presentable categories are introduced, and exam-
ples are presented. In the subsequent section we prove that a finitary functor between
graduated categories is a right adjoint iff it preserves countable limits.

2.1. Remark. The following properties of locally finitely presentable categories K are
used in the proof of our main theorem:

(1) K is complete and cocomplete ([1, Rem. 1.56]).

(2) K has (strong epi, mono)-factorizations ([1, Prop. 1.62]).

(3) There is only a set of finitely presentable objects up to isomorphism.

(4) For every directed colimit ci � Ci
// C �i " I� in K and every finitely presentable

object K, each morphism from K to C factorizes through some ci.

(5) Every object of K is a directed colimit of finitely presentable objects.

Moreover, we are going to require the following property (that most of “everyday”
locally finitely presentable categories have, but not all):

(6) Every subobject and every strong quotient of a finitely presentable object is finitely
presentable.

2.2. Definition. A locally finitely presentable category is graduated if to every finitely
presentable object A a natural number

gradeA

(the grade) is assigned satisfying the following:

Every (proper) subobject and every (proper) strong quotient of
A is finitely presentable, and has grade at most (smaller than,
resp.) gradeA.



A FINITARY ADJOINT FUNCTOR THEOREM 1921

2.3. Remark. In particular, isomorphic finitely presentable objects have the same grade.
Moreover, if A and B are finitely presentable objects of the same grade, every monomor-
phism and every strong epimorphism between them is invertible.

2.4. Examples. The following categories are graduated.

1. Set and Setp, the category of pointed sets. Put

gradeA � cardA.

2. The presheaf category SetA
op

where A has finite connected components. A presheaf
A�Aop // Set is finitely presentable iff the sets As (s " obj A) are finite, and all
but finitely many are empty. (Indeed, the above condition implies that A is finitely
presentable due to the object-wise computation of directed colimits of presheaves.
Conversely, given a finitely presentable presheaf A, let Ai �i " I� be the collection of
all subfunctors mapping all but finitely many components of Aop

to the empty set.
Each Ai fulfils the above condition. Since A is a directed colimit of that collection,
it is one of those subfunctors.)

Put
gradeA �=

s"A
cardAs.

3. Pos, the category of posets. For the graduation we apply the lexicographic order on
N2

and use the induced subposet N̂ of all pairs �n, k� " N2
with k & n

2
. This poset

is isomorphic to N under the mapping φ� N̂ //N assigning to �n, k� the number of
all smaller members of N̂:

�n, k� �0, 0� �1, 0� �1, 1� �2, 0� . . .
φ�n, k� 0 1 2 3 . . .

The grade of a poset �X,R�, where R N X
2
is the order relation, is

grade�X,R� � φ�¶X¶, ¶R¶�.
Given a proper subobject �X ¬

, R
¬�  �X,R� we either have ¶X ¬¶ $ ¶X¶, or ¶X ¬¶ �

¶X¶ and ¶R¬¶ $ ¶R¶; thus grade�X ¬
, R

¬� $ grade�X,R�.
Consider a strong quotient of �X,R�: it is easy to see that it is invertible in Pos iff
it is carried by a bijection. Thus given a proper strong quotient �X,R�� �X ¬

, R
¬�,

we have ¶X ¬¶ $ ¶X¶, which yields grade�X ¬
, R

¬� $ grade�X,R�.
4. Bool, the category of Boolean algebras. Every finitely presentable Boolean algebra

is finite, and we put
gradeA � cardA.



1922 JIŘÍ ADÁMEK AND LURDES SOUSA

5. Ω-Rel, the category of relational structures of a signature Ω � �Ωn�n"N. Objects
are pairs A � �X, �ωA�� consisting of a set X with relations ωA N X

n
for all ω " Ωn.

Finitely presentable objects are such that both X and8ω"Ω ωA are finite sets. Put

gradeA � cardX �=
ω"Ω

cardωA.

If B is a proper subobject of A, and has the same elements, then ωB â ωA for some
ω, thus gradeB $ gradeA. This inequality also holds if B has less elements than A.
The argument for proper quotients B is similar: a strong quotient e�A� B whose
underlying map is bijective is indeed an isomorphism in Ω-Rel.

6. M -Set, the category of sets with an action of M , for all finite monoids M . Every
finitely presentable M -set A is finite, and we put

gradeA � cardA.

In contrast, M -Set is not graduated for the monoid M � �N,�, 0�: That monoid
defines a finitely presentable M -set N (with monoid action given by addition). The
proper M -subset N � r0x is isomorphic to it, so it cannot have a lower grade.

7. S-Mod, the category of left modules, for every finite semiring S: here also gradeA �

cardA. Since free finitely generated semirings are finite, also all finitely presentable
objects are finite.

Again this does not hold for infinite semirings. For example the category Ab � Z-
Mod of abelian groups is not graduated: the proper subobject 2Z 0 Z fulfils
2Z 	 Z.

8. K-Vec, the category of vector spaces over a field K. Put

gradeA � dimA.

3. The finitary adjoint functor theorem

For every locally finitely presentable category K we denote by Kfp the full subcategory of
all finitely presentable objects.

3.1. Lemma. Every object K of a graduated locally finitely presentable category is the
directed colimit of the diagram of all its finitely presentable subobjects.

Proof. Since our category K is locally finitely presentable, K is the canonical filtered
colimit of the diagram

DK�Kfp � K //K, �A a
�� K�( A
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(see [1, Prop. 1.22]). Let ma � a
¬
� a be a (strong epi, mono)-factorization for each

a�A //K:

A B

A
¬

B
¬

K

f
¬

ma mb

a
¬

f

b
¬

For every connecting morphism f � �A, a� // �B, b� of DK the diagonal fill-in property
yields a corresponding monomorphism f

¬
�A

¬ //B
¬
.

We thus obtain a diagram D
¬

K of objects A
¬
and connecting morphisms f

¬
. For each

finitely presentable object A the strong epimorphism a
¬
proves that A

¬
is finitely pre-

sentable (since K is graduated). Thus D
¬

K is a directed diagram of finitely presentable
subobjects of K.

Conversely, every finitely presentable subobject m
¬
�A

¬ // A has the form ma for
a � m

¬
. Thus D

¬

K is the diagram of all finitely presentable subobjects of K. Its colimit
is, obviously, ma�A

¬ //K for �A, a� " Kfp � K.

3.2. Remark. Let I be a countably codirected poset: every countable subset has a lower
bound.

(1) Given a decomposition I � �k"N Ik, some Ik is initial, i.e. every element of I is
greater than or equal to some element of Ik. Indeed, assuming the contrary, for each k
we have a counter-example ik " I. The countable set rikxk"N has a lower bound j " I.
But this is a contradiction: j ©" Ik for any k.

(2) Given a diagram D� I //K, for every initial subset J N I the limits of D and of its
restriction D©J� J //K, are the same. More precisely: the limit cone πi�L //Di �i " I�
of D yields a limit cone πj�L //Dj �j " J� of D©J , and vice versa.

(3) For a diagram D� I // K with invertible connecting maps, a cone is a limit cone
iff all the cone maps are invertible.

3.3. Theorem. Let F �K // L be a finitary functor between locally finitely presentable
categories with K graduated. Then F is a right adjoint if and only if it preserves countable
limits.

Proof. (1) By the Adjoint Functor Theorem [1, Thm. 1.66], it is sufficient to prove that
F preserves limits. We prove below that it preserves countably codirected limits. This
is sufficient: it is easy to see that the limit of every diagram D�D // K is a countably
codirected limit of limits of diagrams D©D¬

, where D¬
ranges over countable subcategories

of D. We use the fact that F preserves monomorphisms (since it preserves pullbacks).
(2) Let I be a countably codirected poset and D � �Di�i"I a diagram in K with a
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limit cone �πi�i"I :
L

Di Djdij

πi πj

�i&j in I�...

For every cone in L
Q

FDi FDjFdij

qi qj
...

we prove that a unique factorization through �Fπi� exists.
We can restrict ourselves to cones with Q finitely presentable in L. Indeed, due to

Remark 2.1(5), that result then extends to all cones of FD.

(2a) Existence. First we show that for every morphism q�Q // FK with K " K and
Q finitely presentable there is a least subobject m�M  K with M finitely presentable
such that q factorizes through Fm. For that, we express K as a directed colimit of all its
finitely presentable subobjects (Lemma 3.1), and use that F preserves that colimit. Thus
q factorizes through Fm�FM // FK for some subobject m�M  K with M " Kfp.
We claim that there exists a least such subobject: one contained in every subobject
m

¬
�M

¬
 K with M

¬
" Kfp such that q factorizes through Fm

¬
.

Indeed, first choose an arbitrary finitely presentable subobject m0�M0  K such that
q � Fm0 �u0 for some u0�Q //FM0. If m0 is not the least one, then there exists a finitely
presentable subobject m�M  K such that

q � Fm � u (for some u) and m0 â m.

Form the intersection, m1, of m0 and m as follows:

M1

M0 M

K

m
¬

0 m
¬

m0 m

m1

Since F preserves this pullback and Fm0 � u0 � Fm � u, we see that q factorizes through
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Fm1:

Q

FM1

FM0 FM

FK

Fm
¬

0 Fm
¬

Fm0 Fm

Fm1

¿!u0 u

Since m0 â m1, we know that m
¬

0 is not invertible. Therefore, M1 is a proper subobject
of M0, and we get

gradeM1 $ gradeM0.

We now iterate this procedure: either M1 is the desired least subobject, or we find M2

with gradeM2 $ gradeM1, etc. After less than gradeM0 steps we obtain the desired least
subobject.

For each i " I let mi�Mi
// Di be the least subobject with Mi finitely presentable

such that
qi � Fmi � ri for some ri�Q // FMi.

Then the sets
In � ri " I; gradeMi � nx

fulfil I � �
n"N

In. By Remark 3.2, some Ik is initial in I. Thus the diagram D0 � �Di�i"Ik
has the same limit as D.

Next we prove that each connecting morphism dij�Di
// Dj �i & j in Ik� of D0

restricts to a morphism mij�Mi
// Mj. That is, we have a commutative square as

follows:

Mi Mj

Di Dj

mi mj

mij

dij
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Let us form a (strong epi, mono)-factorization of dij �mi on the left:

Q

Mi Mj FMi FMj

M FM

Di Dj FDi FDj

e v

mj

m

mi

dij Fdij

Fmi

Fe Fv

Fmj

Fm

rj
ri

qj

We will find v making that diagram commutative. The right-hand diagram shows that qj
factorizes through Fm. This implies mj N m (by the minimality of mj). Therefore

gradeM ' gradeMj � k.

But the strong epimorphism e�Mi
//M yields

gradeM & gradeMi � k,

hence gradeM � k. Thus m and mj represent the same subobject of Dj: m � mj � v for
some isomorphism v�M //Mj. The desired morphism is

mij � v � e.

Indeed, mj �mij � mj � v � e � m � e � dij �mi. Moreover, since e is a strong epimorphism,
so is mij, and thus, since Mi and Mj have the same grade, mij is invertible �i & j in Ik�
(Remark 2.3).

Since the codirected diagram D̂ of objects Mi and morphisms mij �i & j in Ik� has
invertible connecting morphisms, F preserves its limit (see Remark 3.2(3)). The mor-
phisms ri�Q //FMi form a cone of FD̂: in the right-hand diagram above the upper part
commutes because Fmj is monic, and by post-composing by Fmj one gets qj � Fdij � qi.

If π̂i� L̂ //Mi �i " Ik� is a limit of D̂, we obtain a unique morphism

r�Q // FL̂ with ri � Fπ̂i � r �i " Ik�.
The natural transformation from D̂ to D0 with components mi�Mi

//Di �i " Ik� yields
(since D and D0 have the same limit) a morphism s� L̂ //L with mi � π̂i � πi � s �i " Ik�.
The desired factorization of �qi� through �Fπi� is given by

Fs � r�Q // FL.

Indeed, for i " Ik we have Fπi � �Fs � r� � Fmi � Fπ̂i � r � Fmi � ri � qi.
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(2b) Uniqueness. Given u, v�Q // FL merged by Fπi for every i " I, we prove
u � v. Form the directed colimit of all finitely presentable subobjects m�M  L of L
in K (see Lemma 3.1). Both u and v factorize through Fm for one of these subobjects,
since F preserves that directed colimit and Q " Lfp. Let u

¬
, v

¬
be the corresponding

factorizations:

Q FL FDi

FM

v

u

u
¬

v
¬

Fπi

Fm

The proof of u � v will be finished when we verify that there exists i " I such that πi �m
is monic. Indeed, then Fπi � Fm is monic, thus u

¬
� v

¬
, which implies u � v.

We proceed analogously to Item (2a). For each i " I we find the least subobject
m̄i� M̄i

//Di through which the composite πi �m factorizes:

M M̄i

L Di

π̄i

m

πi

m̄i

We conclude that there exists an initial subset Ik N I such that all M̄i for i " Ik have the
same grade.

Next for each i & j in Ik we factorize dij � m̄i as a strong epimorphism ē � M̄i
// M̄

followed by a monomorphism m̄:

M

M̄i M̄j

M̄

Di Djdij

m̄

m̄i m̄j

vē

π̄i π̄j

We conclude that πj �m (� m̄j � π̄j) factorizes through m̄. Arguing as in (2a), we obtain
a morphism v such that the above diagram commutes. For the morphism m̄ij � v � ē we
get the following commutative square

M̄i M̄j

Di Djdij

m̄i m̄j

m̄ij
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Moreover each m̄ij is invertible, due to gradeMi � gradeMj.

This defines a diagram D̂ of all M̄i �i " Ik�. Let L̂ be its limit with (invertible) limit
maps π̂i. This yields the following morphisms:

s� L̂ // L; πi � s � m̄i � π̂i

and
r�M // L̂; π̂i � r � π̄i.

In the following diagram

M

L̂ M̄

L Di

m

r
π̄i

π̂i

s

πi

m̄i �i"Ik�

the square and the upper triangle commute. So does the outward shape. This proves that
the left-hand triangle also commutes: use that all πi are collectively monic, because Ik is
an initial subset. Since m is monic, we conclude that r is also monic. Now π̂i is invertible,
and m̄i is monic for each i " Ik, thus the following morphism

πi �m � m̄i � π̂i � r

is monic.

3.4. Example. Preservation of finite limits is not sufficient for being a right adjoint even
for finitary set functors. Indeed, consider the subfunctor

H 0 ���N
assigning to every set X the set HX of all sequences a�N // X that are eventually
constant: there is n " N with a�n� � a�m� for all m ' n. Then H clearly preserves finite
products: a sequence in X � Y is eventually constant iff both of its projections (to X

N

and Y
N
) are. H also preserves equalizers. However, H does not preserve the product

A �5
n"N

An where An � r0, 1, . . . , nx.

Indeed,HAn contains the sequence sn � �0, 1, . . . , n, n, n, . . . �. Thus �sn�n"N " Πn"NHAn.
But no element of HA corresponds to �sn�.
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3.5. Remark. The theorem above can be extended beyond locally finitely presentable
categories. This enables us adding to our list of examples categories such as metric spaces
or complete metric spaces.

Let Met be the category of extended metric spaces (i.e., we allow the distance�) and
non-expansive maps. This category is not locally finitely presentable: no non-empty space
is finitely presentable [2, Rem. 2.7]. However, a slight modification on the conditions (1)-
(6) of Remark 2.1, with finite spaces in the place of finitely presentable objects, allows us
to recapture the proof of Theorem 3.3 for finitary endofunctors of Met (see Proposition
3.7 below). The grades are simple: we use the cardinality of the finite space.

Analogously, for the full subcategory of complete spaces CMet the choice of finite
(thus complete) spaces works.

3.6. Lemma. In Met and CMet regular monomorphisms are precisely the closed isomet-
ric embeddings.

Proof. Every regular monomorphism in Met or CMet is a closed isometric embedding.
Indeed, for two morphisms f, g�B // C the subspace A � rb " B; f�b� � g�b�x of B is
closed, and the inclusion map e�A //B is an equalizer of f and g.

Conversely, let e�A //B be a closed isometric embedding. Without loss of generality,
A is a subspace of B and e is the inclusion map. Define a space C by the following pushout

A

B B

C

e e

m0 m1

We can describe C as the set A � �B � A� � r0, 1x with the following metric dC : for
i � 0, 1 the subspace A � �B � A� � rix carries the metric determined by (the obvious
isomorphism to) the space �B, dB�, whereas elements �x, 0� and �y, 1� with x, y " B �A
have distance

dC��x, 0�, �y, 1�� � inf
a"A

rdB�x, a� � dB�a, y�x.
Since A is closed, dC��x, 0�, �y, 1�� ©� 0. It is easy to verify that dC is a well-defined
metric, and that the obvious embeddings

mi�B // C �i � 0, 1�
form a pushout of e with itself.

Clearly the embedding e is the equalizer of m0 and m1.
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3.7. Proposition. A finitary endofunctor on Met or CMet is a right adjoint iff it
preserves countable limits.

Proof. We present a proof for Met, that for CMet is analogous.
We first need to establish some properties which show that, in a sense, finite spaces

can substitute finitely presentable objects.
(i) In Met epimorphisms are the morphisms with a dense image. Thus Met has

the (epi, regular mono) factorization system, see [2, Ex. 3.16]. Observe that regular
monomorphisms into B with finite domains precisely represent the finite subspaces of B.

(ii) Every space is a canonical directed colimit of the diagram of its finite subspaces.
The colimit maps and connecting morphisms are regular monomorphisms.

(iii) LetD be a directed diagram of finite spaces with connecting maps regularly monic.
Then every morphism f �M //colimD, whereM is a finite space, factorizes through some
colimit map. Indeed, using (i) and (ii) we can assume that for the collection Di �i " I�
of objects of D, given i & j in I, the connecting map Di

// Dj is the inclusion map of

a subspace of Dj. Then colimD is simply the union�
i"I

Di with the induced metric. For

f �M //�
i"I

Di there exists j " I with f�M� N Dj. Since f is nonexpanding, and Dj

is a subspace of �
i"I

Di, it follows that the codomain restriction of f to f
¬
�M // Dj is

nonexpanding. This is the desired factorization through the colimit map Dj 0 colimD.
We are ready to follow the steps of the proof of Theorem 3.3.
(1) We only need to prove that the given finitary endofunctor F preserves countably

codirected limits. Then it preserves limits. Now Met has a cogenerator R (with the
Euclidean metric). Indeed, for every space X and every element x " X the distance
function

d�x,���X //R

is nonexpanding. Since d�x,�� ©� d�y,�� whenever x ©� y, R cogenerates Met. By the
Special Adjoint Functor Theorem, F is a right adjoint.

(2) Let li�L //Di�i " I� be a countably codirected limit of a diagram D. Using (ii)
above, it is sufficient to prove for every finite space Q that each cone qi�Q //FDi �i " I�
uniquely factorizes through �Fli�i"I .

(2a) Existence. For every space K and every morphism q�Q // FK there exists a
least subspace m�M  K with M finite such that q factorizes through Fm. This follows
from (ii) above and F preserving directed colimits and pullbacks, precisely as in the proof
of Theorem 3.3. We thus obtain for each i " I the least finite subspace mi�Mi 0 Di with
qi � Fmi � ri. Put In � ri " I; cardMi � nx. Some Ik is initial in I. The argument that
for i & j in Ik, we have mij�Mi

//Mj with dij �mi � mj �mij is as in Theorem 3.3, just

using the (epi, regular mono)-factorizations. We obtain a diagram D̂ of all Mi, i " Ik, and
all mij. The latter are bijections (because they are monic and cardMi � k � cardMj),
and being regular monomorphisms, they are invertible. The rest is completely analogous
to the proof of 3.3.
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(2b) Uniqueness. With the modifications of the proof of Theorem 3.3 we have seen in
item (2a), the proof of (2b) in loc. cit. works completely analogously.

4. Absolute intersections

In categories such as K-Vec and Setp finite intersections are absolute limits (preserved
by all functors). We prove this, using ideas of Trnková [4] who proved that nonempty
intersections in Set are absolute (see Remark 4.4).

4.1. Definition. A category K has absolute intersections provided that all monomor-
phisms split, and for every intersection of monomorphisms m and m

¬

C

B B
¬

A
m

¬

i
¬

e
¬

m

e

i

(1)

there exist splittings e of m and e
¬
of i

¬
with

e �m
¬
� i � e

¬
�B

¬ //B. (2)

4.2. Proposition. The pullback in the above definition is absolute.

Proof. Given a functor F �K // L and a commutative square in L as follows

U

FB FB
¬

FA

u u
¬

Fm Fm
¬

(3)

we prove that the desired factorization of �u, u¬� through �Fi, F i
¬� is

v � Fe
¬
� u

¬
�U // FC.

The uniqueness is clear since Fi is monic. Our task is to verify that the diagram below
commutes:

U

FB
¬

FB FC FB
¬

u u
¬

Fi F i
¬

u
¬

Fe
¬
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The left-hand triangle does:

Fi � �Fe
¬
� u

¬� � Fe � Fm
¬
� u

¬
by (2)

� Fe � Fm � u by (3)
� u as e �m � id.

The right-hand triangle commutes because Fm
¬
is monic, and we have

Fm
¬
� u

¬
� Fm � u by (3)
� Fm � Fe � Fm � u as e �m � id

� Fm � Fe � Fm
¬
� u

¬
by (3)

� Fm � Fi � Fe
¬
� u

¬
by (2)

� Fm
¬
� �Fi

¬
� Fe

¬
� u

¬� by (1).

4.3. Examples. (1) The category K-Vec has absolute intersections. Without loss of
generality we assume that in the pullback (1) the objects fulfil

B N A, B
¬
N A and C � B =B

¬
,

and the morphisms are the inclusion maps. We decompose the spaces B and B
¬
as follows:

B � B0 h C and B
¬
� B

¬

0 h C.

Then A has the following decomposition:

A � A0 hB0 hB
¬

0 h C.

The desired splittings are as follows:

C

B0 h C B
¬

0 h C

A0 hB0 hB
¬

0 h C

�0,id�

�0,id,0,id�

(2) The category Setp has absolute intersections. Without loss of generality we assume
that, again, the morphisms in the pullback (1) are inclusion maps. In particular, all
four objects have the same specified element c " C. Define e� �A, c� // �B, c� and
e
¬
� �B ¬

, c� // �C, c� by

e�x� � v x if x " B
c else

e
¬�z� � v z if z " C

c else.

These are the desired splittings.
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4.4. Remark. (1) We conclude that an endofunctor of K-Vec or Setp preserves (finite)
products iff it preserves (finite) limits. This also follows from results presented by Trnková
in [5] (Prop. 4 and Example B). In that paper Trnková studies categories K such that
every functor with domain K preserving products preserves limits. Besides vector spaces
and pointed sets, Trnková shows that examples of such categories K include sets with
monomorphisms and topological T1-spaces with closed maps.

(2) Every nonempty finite intersection in Set is absolute. Indeed, this is analogous
to the case Setp: given subsets m�B 0 A and m

¬
�B

¬
0 A with c " B = B

¬
, we define

e�A //B and e
¬
�B

¬ //B=B
¬
as in Example 4.3(2). Preservation of nonempty intersections

was proved by Trnková (cf. [4, Proposition 2.1]).

5. Set functors preserving countable products

We have seen that for endofunctors of Setp there is no difference between preservation of
countable products and countable limits. Is the same true for Set? Not quite:

5.1. Example. The functor C01 given by C01o � o and C01X � 1 for all X ©� o clearly
preserves products. But it does not preserve the intersection of the coproduct injections
of 1 � 1:

o o

1 1 1 1

1 � 1 1

C01

This is the unique such set functor (up to natural isomorphism), as we now prove.

5.2. Definition. (Trnková [6]) Let H be a set functor. An element x " HX is distin-
guished if for all parallel pairs f, g�X // Y we have Hf�x� � Hg�x�.
5.3. Example. (1) Every element x " Ho is distinguished.

(2) If x " HX is distinguished, so is Hf�x� " HY for each f �X // Y .

The following result can be derived from [4, Prop. I.4] and [6, Prop. II.6]. We present
a short proof for the convenience of the reader.

5.4. Proposition. Every set functor without distinguished elements preserves finite in-
tersections.

Proof. Let H�Set //Set have no distinguished element. By the above example, Ho �

o. We already know from Remark 4.4 that H preserves nonempty intersections. Thus
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we only need to consider disjoint subsets A1, A2 of B:

o

A1 A2

B

m1 m2

Suppose H does not preserve this pullback, then we prove that it has a distinguished
element. Since Ho � o and H does not preserve the above pullback, there exist ti " HAi

with Hm1�t1� � Hm2�t2� � t. The element t " HB is distinguished. Indeed, for every
pair f, g�B // Y we can choose a map h�B // Y coinciding on A1 with f and on A2

with g:
h �m1 � f �m1 and h �m2 � g �m2.

Then
Ff�t� � F �f �m1��t1� � Fh�Fm1�t1�� � Fh�t�

as well as
Fg�t� � F �g �m2��t2� � Fh�Fm2�t2�� � Fh�t�.

5.5. Theorem. Every set functor H ©� C01 preserving finite products preserves finite
limits.

Proof. Let H preserve finite products. We know that H1 � 1, and we put

H1 � ra1x.
Since H preserves the product o � o�o, we have

Ho � o or Ho � 1.

(a) Let Ho contain an element a0. Then, by Example 5.3, the element a1 � Ht�a0�
(for the unique map t� o // 1) is distinguished. For every set X ©� o we put

aX � Hf�a1� for each f � 1 //X

and prove
HX � raXx for all X.

Thus H is naturally isomorphic to the constant functor of value 1, and preserves limits.
Our equation HX � raXx holds for o and 1, so we can assume that cardX ' 2. We

first observe that H maps every constant function f �X // Y of value y, f � const y, to
the constant function of value aY :

H�const y� � const aY .
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Indeed, we have f
¬
� 1 // Y making the left-hand triangle below commutative

1 ra1x

X Y HX HY

! f
¬

f

H!

Hf

Hf
¬

Thus the right-hand triangle verifies the statement: since a1 is distinguished, Hf
¬�a1� �

aY . Choose x1 ©� x2 in X and put

fi � �id, constxi��X //X �X �i � 1, 2�.
The projections πl, πr make the following diagrams commutative for i � 1, 2:

X HX

X X �X X HX H�X �X� HX

id
fi

constxi

πl πr

id Hfi
constaX

Hπl Hπr

Since H preserves X �X, the pair Hπl, Hπr is collectively monic. This proves

Hf1 � Hf2�HX //H�X �X�.
Next consider the following map

g�X �X //X, g�u, v� � v x1 if v � x1

u else.

Then the diagram below commutes:

X X �X X

X
constx1 id

g

f1 f2

Apply H to it and get (using H�constx1� � const aX) that

idHX � const aX .

This proves HX � raXx.
(b) Let Ho � o. If a1 " H1 is distinguished, then, as in (a), we derive HX � raXx

for all X ©� o. Thus H is naturally isomorphic to C01.
If a1 is not distinguished, then H has no distinguished element (a " HX distinguished

implies Hf�a� distinguished for f �X // 1). Apply Proposition 5.4 to conclude that H
preserves finite limits.
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5.6. Corollary. A finitary set functor H ©� C01 is a right adjoint if and only if it
preserves countable products.
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