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ENRICHED STRUCTURE–SEMANTICS ADJUNCTIONS AND

MONAD–THEORY EQUIVALENCES FOR

SUBCATEGORIES OF ARITIES

RORY B. B. LUCYSHYN-WRIGHT AND JASON PARKER

Abstract. Lawvere’s algebraic theories, or Lawvere theories, underpin a categorical
approach to general algebra, and Lawvere’s adjunction between semantics and algebraic
structure leads to an equivalence between Lawvere theories and finitary monads on the
category of sets. Several authors have transported these ideas to a variety of settings, in-
cluding contexts of category theory enriched in a symmetric monoidal closed category. In
this paper, we develop a general axiomatic framework for enriched structure–semantics
adjunctions and monad–theory equivalences for subcategories of arities. Not only do
we establish a simultaneous generalization of the monad–theory equivalences previously
developed in the settings of Lawvere (1963), Linton (1966), Dubuc (1970), Borceux-Day
(1980), Power (1999), Nishizawa-Power (2009), Lack-Rosický (2011), Lucyshyn-Wright
(2016), and Bourke-Garner (2019), but also we establish a structure–semantics theorem
that generalizes those given in the first four of these works while applying also to the re-
maining five, for which such a result has not previously been developed. Furthermore, we
employ our axiomatic framework to establish broad new classes of examples of enriched
monad–theory equivalences and structure–semantics adjunctions for subcategories of ar-
ities enriched in locally bounded closed categories, including various convenient closed
categories that are relevant in topology and analysis and need not be locally presentable.

1. Introduction

Syntactic presentations of categories of general algebraic structures (or algebras) were
delineated by Birkhoff [8] in terms of operations and equations, with the complication that
a given syntactic presentation cannot be recovered as an isomorphism-invariant attribute
of its category of algebras A , even when A is equipped with its underlying-set functor
U : A → Set and so is viewed as a category over Set. Lawvere [27] decisively overcame this
complication through the insight that the derived operations carried by the algebras in A
are precisely natural transformations Un ⇒ U (n ∈ N) and thus constitute the morphisms
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of a category StrU , called the algebraic structure of U (or of A ), which is an equivalence-
invariant attribute of any category A over Set. Lawvere’s decisive methodological advance
was to axiomatize a notion of algebraic theory (or Lawvere theory) as a small category T
whose objects are the finite powers T n of an object T , and to define the category T -Alg of
T -algebras as the category of all functors A : T → Set that preserve finite products. In
Lawvere’s terminology, the category T -Alg over Set is called the semantics of T . Each
Lawvere theory T can then be recovered (up to isomorphism) as the algebraic structure
of its semantics. Up to equivalence, the categories of algebras of Lawvere theories are
precisely Birkhoff’s categories of algebras, since each of the latter is equivalent to the
semantics of its algebraic structure.

Lawvere thus established a dual equivalence between the category of Lawvere theories
and the category of algebraic categories over Set. Calling a category over Set tractable if
its algebraic structure is small, Lawvere established an adjunction between the category of
tractable categories over Set and the opposite of the category of Lawvere theories, in which
the left adjoint sends each tractable category over Set to its algebraic structure, while the
fully faithful right adjoint sends each Lawvere theory to its semantics. The resulting
structure–semantics adjunction therefore provides a reflective embedding of (the opposite
of the category of) Lawvere theories into tractable categories over Set, whose essential
image consists of the algebraic categories over Set. It has been known since the work
of Linton [29] that these are equivalently the categories of algebras of finitary monads
on Set, so that by employing Lawvere’s structure–semantics adjunction together with its
counterpart for monads, one obtains an equivalence between the categories of Lawvere
theories and of finitary monads, the classic monad–theory equivalence of finitary algebra.

Linton [29] also established a structure–semantics adjunction between the category
of infinitarily tractable categories over Set and the opposite of the category of varietal
theories (i.e. infinitary Lawvere theories), leading to an equivalence between varietal the-
ories and arbitrary monads on Set. Dubuc [16] then generalized these results to the
enriched setting by establishing, for a complete and well-powered symmetric monoidal
closed category V , a structure–semantics adjunction between the category of V -tractable
V -categories over V and the opposite of the category of V -theories, from which he de-
duced an equivalence between V -theories and arbitrary V -monads on V . Borceux and
Day [11] later established a structure–semantics adjunction for V -enriched Lawvere the-
ories with natural number arities, for a symmetric monoidal closed π-category V . Power
[38] subsequently generalized the classic finitary monad–theory equivalence to the locally
presentable enriched setting, by establishing an equivalence between (finitary) Lawvere
V -theories and finitary V -monads on V for a locally finitely presentable closed category
V .

A theme of contemporary interest in enriched category theory is the study of classes
of enriched monads and theories defined relative to a subcategory of arities, i.e. a full
subcategory that is dense (in the enriched sense). This concept dates back to work
of Linton [30] and Diers [14], and was used to define the theories and monads with
arities studied by Berger, Melliès, and Weber [7]. It also relates to the work [26] of Lack
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and Rosický, wherein they establish a monad–theory equivalence between Lawvere Φ-
theories and Φ-accessible V -monads for a class of weights Φ satisfying their Axiom A.
In [32], the first author studied enriched J -theories and J -ary monads for a system of
arities J ↪→ V , which is a (possibly large) subcategory of arities that is closed under
the monoidal structure. Generalizing the above monad–theory equivalences of Lawvere,
Linton, Dubuc, and Power, the paper [32] establishes a monad–theory equivalence for
eleutheric systems of arities in symmetric monoidal closed categories.

Building on work by Power [38], Nishizawa-Power [37], and Berger-Melliès-Weber [7],
Bourke and Garner [12] subsequently established a monad–theory equivalence for arbitrary
small subcategories of arities in locally presentable enriched categories. Specifically, given
a small subcategory of arities J ↪→ C in a locally presentable V -category C enriched in
a locally presentable closed category V , they showed that the category of J -theories is
equivalent to the category of J -nervous V -monads on C .

Neither of the monad–theory equivalences of the first author [32] or Bourke-Garner
[12] generalizes the other. While the first does not require that V be locally presentable
or that the subcategory of arities J be small, it nevertheless requires that J be a system
of arities that is eleutheric, and it also requires that C = V . And while the second does
not require that C = V or that J be eleutheric, it does require that C and V be locally
presentable, and that J be small. Moreover, neither work provides a general treatment
of enriched structure–semantics adjunctions that would specialize to those established by
Lawvere, Linton, Dubuc, and Borceux-Day.

Motivated by these considerations, in the present paper we develop a general ax-
iomatic framework for studying enriched structure–semantics adjunctions and monad–
theory equivalences for subcategories of arities, which generalizes all of the aforemen-
tioned results and also yields substantial new classes of examples. Given a V -category C
enriched in a symmetric monoidal closed category V that we generally only assume has
equalizers, a subcategory of arities is a (possibly large) full sub-V -category j : J ↪→ C
that is dense in the enriched sense. In particular, we do not generally assume that J is
small, or that C and V are (co)complete. A J -pretheory is a V -category T equipped
with an identity-on-objects V -functor τ : J op → T , and a J -theory is a J -pretheory
satisfying a further condition involving j-nerves. These concepts, for which we adopt
the terminology of Bourke and Garner [12], originate with Linton [30] and Diers [14] in
the unenriched setting, and were also employed by Nishizawa and Power [37] for finitary
enriched Lawvere theories. We base our study of structure–semantics adjunctions and
monad–theory equivalences on axiomatic assumptions on the subcategory of arities re-
lated to the existence of free algebras. Specifically, we say that a subcategory of arities
j : J ↪→ C is amenable if every J -theory has free algebras (in a suitable enriched sense),
and is strongly amenable if every J -pretheory has free algebras. As we outline in more
detail below, we establish wide classes of examples of amenable and strongly amenable
subcategories of arities, including all the subcategories of arities employed in the works
of Lawvere [27], Linton [29], Dubuc [16], Borceux-Day [11], Power [38], Nishizawa-Power
[37], Lack-Rosický [26], Lucyshyn-Wright [32], and Bourke-Garner [12].
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Given an amenable subcategory of arities j : J ↪→ C , we establish a structure–
semantics adjunction between the opposite of the category ThJ (C ) of J -theories and
the category J -Tract(C ) of J -tractable V -categories over C . This adjunction is idem-
potent, and restricts to a dual equivalence between ThJ (C ) and the full subcategory

J -Alg!(C ) ↪→ J -Tract(C ) consisting of the strictly J -algebraic V -categories over C .
We establish an intrinsic characterization of J -algebraic V -categories over C in terms of
criteria that generalize the conclusions of Weber’s nerve theorem [42, Theorem 4.10] and
so generalize the Bourke-Garner notion of J -nervous V -monad, a term that we adopt
also in the present setting. We also show that a V -category over C is J -algebraic iff it is
monadic by way of a J -nervous V -monad. Strikingly, our characterization theorem for
J -algebraic V -categories over C does not directly mandate monadicity in any evident
way but nonetheless entails it, so providing a novel J -nervous monadicity theorem. We
obtain an equivalence ThJ (C ) ≃ MndJ (C ) between the category of J -theories and the
category MndJ (C ) of J -nervous V -monads on C , and this equivalence commutes (up
to isomorphism) with semantics in an appropriate sense.

When the subcategory of arities j : J ↪→ C is strongly amenable, the above structure–
semantics adjunction extends to (the opposite of) the category PrethJ (C ) of J -pretheo-
ries. We also obtain an idempotent adjunction between J -pretheories and arbitrary V -
monads on C , which generalizes the monad–pretheory adjunction established by Bourke
and Garner [12] in the locally presentable enriched setting. Under the additional assump-
tions that V is complete and cocomplete and that C is complete, we also show that
PrethJ (C ),ThJ (C ), and MndJ (C ) are all cocomplete, with small colimits therein being
algebraic, i.e. sent to limits in V -CAT/C by the respective semantics functors.

We now discuss the classes of examples of amenable and strongly amenable subcate-
gories of arities that we shall establish. We show that every eleutheric [32, 34] subcategory
of arities j : J ↪→ C in an arbitrary V -category C enriched in a closed category V with
equalizers is amenable, and that (in this context) J -nervous V -monads coincide with
the J -ary V -monads of [32, 34]. We thus recover the monad–theory equivalence of the
first author [32], and the several earlier equivalences that it generalizes, as well as the
above structure–semantics adjunctions of Lawvere, Linton, Dubuc, and Borceux-Day.

Under suitable (co)completeness assumptions on C and V , we then show that if j :
J ↪→ C is contained in some eleutheric and bounded subcategory of arities [34], then
J is strongly amenable. Most of our examples of eleutheric subcategories of arities also
satisfy this further boundedness condition, and hence are strongly amenable. In particular,
we remark that any small subcategory of arities in a locally presentable V -category C
enriched in a locally presentable closed category V is contained in some bounded and
eleutheric subcategory of arities, and hence is strongly amenable, which allows us to
recover results of Bourke and Garner [12], including their monad–pretheory adjunction
and monad–theory equivalence.

As another new class of examples, we show that if j : J ↪→ C is any small subcategory
of arities in a V -sketchable V -category C enriched in a locally bounded closed category
V , then J is strongly amenable. Locally bounded closed categories include not only all
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locally presentable closed categories, but also all symmetric monoidal closed topological
categories over Set, including many convenient categories in topology and analysis. V -
sketchable V -categories are the V -categories of structures in V describable by enriched
limit theories. In particular, V itself is (trivially) V -sketchable, and we deduce that every
small subcategory of arities in a locally bounded closed category V is strongly amenable.
Since every locally presentable closed category V is locally bounded and every locally
presentable V -category C is V -sketchable, we thus obtain another way of recovering
results of Bourke and Garner [12].

We now briefly discuss some further related works that a priori neither generalize nor
specialize the present work. In [41], Street establishes a general 2-categorical structure–
semantics adjunction for monads in a 2-category; however, it is neither clear nor known
that the J -nervous V -monads considered in the present paper can be described as (pre-
cisely) the monads in a suitable 2-category. In [4], Arkor and McDermott extend Street’s
work in [41] by developing a 2-categorical treatment of relative monads. In the PhD
thesis [3], Arkor defines a 2-categorical notion of theory and uses results from [4] to es-
tablish an equivalence between theories and (relative) monads in a general 2-categorical
setting. Arkor then shows that this equivalence specializes to obtain certain instances
of the monad–theory equivalence established by the first author in [32], as well as the
monad–theory equivalence established by Bourke and Garner in the locally presentable
setting in [12]. It is a priori possible that some of our results herein could be placed
in the 2-categorical context of Arkor’s thesis, but this is not yet known. Furthermore,
Arkor’s thesis does not treat structure–semantics adjunctions (although this is mentioned
therein as a direction for future work). Earlier, in the PhD thesis [5], Avery also defined
a general notion of theory in a 2-categorical setting and established structure–semantics
adjunctions for such theories; however, in view of the discussion in [5, 6.6, p. 119], the
latter work does not demonstrate that its framework encompasses the enriched Lawvere
theories of Nishizawa and Power [37], which are examples of the more general J -theories
considered in the present paper. Also, Fujii [19] defined a general framework for notions of
algebraic theory formulated as monoids in a monoidal category, but it is neither clear nor
known that the J -theories considered in the present paper can be described in general
as (precisely) the monoids in a monoidal category.

We now outline the paper. In §2 we provide a precise summary of our main results
and examples, with references to later definitions and theorems, while §3 pertains to
notation and background material. In §4 and §5 we establish the structure–semantics
adjunction and monad–theory equivalence for an amenable subcategory of arities, and we
also establish some additional results for small and strongly amenable subcategories of
arities. §6 is devoted to establishing several classes of examples of amenable and strongly
amenable subcategories of arities, as previewed above.

In a subsequent paper [36], we shall show (under mild assumptions on C and V ) that
small and strongly amenable subcategories of arities j : J ↪→ C admit many further
useful results pertaining to presentations of J -nervous V -monads, which will provide
very convenient methods for constructing such monads. After adapting techniques from
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the authors’ work [35] to the more general context of the present paper, we shall then
show that the strong amenability of a small subcategory of arities j : J ↪→ C is actually
equivalent to J “supporting presentations” in a certain natural sense. This result will
provide further proof of concept for the axiomatics developed in the present paper.

Acknowledgment. The authors thank the anonymous referee for various helpful sug-
gestions and for pointing out an error in an earlier version of Proposition 4.8.

2. Summary of main results and examples

For the reader’s convenience, we begin with a precise summary our main results and
examples. Most of the concepts involved have been mentioned in §1, and for convenience
we include superscripts referring the reader to the definitions of terms defined later in the
paper, as well as references to the theorems we now summarize.

2.1. Theorem. Let J ↪→ C be a (possibly large) subcategory of arities(§4) in an arbitrary
V -category C enriched in a symmetric monoidal closed category V with equalizers.

1. Suppose that J is amenable(4.12). Then we have an idempotent structure–semantics
adjunction between J -theories(4.1) and J -tractable(4.14) V -categories over C (4.27,
4.28):

ThJ (C )op J -Tract(C ).
Sem

Str

⊣

From this idempotent adjunction, we obtain an equivalence

ThJ (C ) MndJ (C )
m

t

∼

between J -theories and J -nervous(5.9) V -monads on C , which commutes with se-
mantics in an appropriate sense (5.13).

2. Suppose that V is complete and cocomplete, and that J is small and strongly amena-
ble(4.12). Then we also have the following:

(a) There is an idempotent structure–semantics adjunction between J -pretheories(4.1)

and J -tractable V -categories over C (4.27):

PrethJ (C )op J -Tract(C ).
Sem

Str

⊣

(b) There is an idempotent adjunction between J -pretheories and V -monads on C
(5.7):

PrethJ (C ) Mnd(C ).
m

t

⊢
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(c) If C is complete, then each of PrethJ (C ), ThJ (C ), and MndJ (C ) has small
algebraic colimits (5.15).

(d) Any small subcategory of arities contained in J is strongly amenable (5.18).

2.2. Theorem. We have the following classes of examples of amenable and strongly
amenable subcategories of arities:

1. Let V be a symmetric monoidal closed category with equalizers. Then every (possibly
large) eleutheric(6.1.1) subcategory of arities J ↪→ C in an arbitrary V -category C is
amenable (6.1.9).

2. Under the assumptions of 6.2.1, every subcategory of arities J ↪→ C that is contained
in some bounded(6.2.2) and eleutheric subcategory of arities is strongly amenable (6.2.4).
In particular, given a locally bounded closed category(6.2.3) V , every small and eleutheric
subcategory of arities J ↪→ C in a locally bounded V -category(6.2.3) C is strongly
amenable, as is every subcategory of arities contained in J (6.2.4, 6.2.5).

3. Let V be a locally bounded closed category. Then every small subcategory of arities
J ↪→ C in a V -sketchable(6.3.2) V -category C is strongly amenable (6.3.11). For
example, this includes every small full sub-V -category of V that contains the unit
object (6.3.12).

3. Notation and background

We use the methods of enriched category theory throughout the paper; one can consult
the texts [22, 15] or [10, Chapter 6] for details. We mainly use the notation of Kelly’s
text [22]. Throughout the paper, we let V = (V0,⊗, I) be a symmetric monoidal closed
category such that V0 is locally small and has equalizers; we typically just refer to V
as a closed category. Since we do not assume that V0 is complete, we cannot in general
form V -functor V -categories [A ,B] for V -categories A and B, even when A is small.
We shall therefore make use of the method of universe extensions described in [22, §3.11,
3.12], whereby V is embedded (via a symmetric strong monoidal functor) into a symmetric
monoidal closed category V ′ that is U -complete and U -cocomplete with respect to some
larger universe U of sets for which V0 is U -small, where the given embedding preserves all
limits and all U -small colimits that exist in V . All of the V -categories that we consider
are assumed to be U -small. Given a V ′-category A , we write A0 for its underlying
ordinary category (which is locally U -small).

4. The structure–semantics adjunction

Throughout §4, we fix a subcategory of arities j : J ↣ C , i.e. a fully faithful and
dense V -functor, in an arbitrary V -category C . For most purposes we can (and shall)
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assume that j is the inclusion J ↪→ C of a full sub-V -category. For example, the full
sub-V -category C ↪→ C is a (generally large) subcategory of arities.

We have the nerve V ′-functor Nj : C → [J op,V ] defined by NjC = C (j−, C)
(C ∈ C ), which is fully faithful because j : J ↪→ C is dense. A j-nerve is then a
presheaf J op → V in the essential image of Nj, and we write j-Ner(V ) ↪→ [J op,V ] for
the full sub-V ′-category of the V ′-category [J op,V ] consisting of the j-nerves. The fully
faithful Nj : C → [J op,V ] thus corestricts to an equivalence Nj : C

∼−→ j-Ner(V ), so
that j-Ner(V ) is a V -category.

4.1. Definition. A J -pretheory1 is a V -category T equipped with an identity-on-
objects V -functor τ : J op → T . A J -theory is a J -pretheory (T , τ) with the further
property that each T (J, τ−) : J op → V (J ∈ obT = obJ ) is a j-nerve. A morphism
of J -pretheories from a J -pretheory (T , τ) to a J -pretheory (U , υ) is a V -functor
H : T → U satisfying H ◦ τ = υ (from which it follows that H is identity-on-objects).
We then have the ordinary category PrethJ (C ) of J -pretheories and their morphisms, as
well as the full subcategory ThJ (C ) ↪→ PrethJ (C ) of J -theories. Note that PrethJ (C ) is
just the full subcategory of the coslice category J op/V -CAT consisting of the V -functors
that are identity-on-objects.

4.2. Definition. Let T be a J -pretheory. A concrete T -algebra2 is an object A of
C equipped with a V -functorM : T → V that extends the j-nerve C (j−, A) : J op → V
along τ : J op → T , i.e. that satisfies M ◦ τ = C (j−, A). We shall denote a concrete
T -algebra by (A,M) or simply by A. The V ′-category T -Alg! of concrete T -algebras is
then defined by the following pullback diagram in V ′-CAT:

T -Alg! [T ,V ]

C [J op,V ].

MT

[τ,1]UT

Nj

(4.2.i)

Note that MT : T -Alg! → [T ,V ] is fully faithful, as a pullback of the fully faithful Nj.

Although in general T -Alg! is only a V ′-category, we shall principally be interested in
cases where it is a V -category; see Definition 4.12 below.

1Bourke and Garner [12] use the dual notion of pretheory (under additional assumptions on J ,C ,V ),
while our notion of pretheory accords with the notion of pretheory previously studied (in the unenriched
context) by Linton [30, Page 20] under the name clone, and later by Diers [14] under the name theory.

2This definition was also employed by Bourke and Garner [12] (in their locally presentable setting),
and goes back to Linton [30] and Diers [14].
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4.3. Definition. Let T be a J -pretheory. The V ′-category T -Alg of (non-concrete)
T -algebras3 is defined by the following pullback diagram in V ′-CAT:

T -Alg [T ,V ]

j-Ner(V ) [J op,V ].

[τ,1]WT

Thus, a (non-concrete) T -algebra is a V -functor M : T → V whose restriction along τ
is a j-nerve.

4.4. In the setting where C = V , a system of arities (in V ) is a fully faithful strong
symmetric monoidal V -functor j : J ↣ V (see [32, Definition 3.1]), so that J is in
particular a symmetric monoidal V -category. Every system of arities j : J ↣ V is a
dense V -functor by [32, Proposition 3.10], and thus is a subcategory of arities. In view
of [32, Proposition 3.8] every system of arities is equivalent (in a suitable sense) to a full
sub-V -category J ↪→ V that contains the unit object I and is closed under the monoidal
product ⊗. Given a system of arities J ↪→ V , the V -category J has tensors by objects
of J , which are formed as in V . It readily follows that a V -functor F : J op → V is a j-
nerve iff it preserves J -cotensors (i.e. cotensors by objects of J ). This observation then
immediately entails the following result, which shows for a system of arities j : J ↣ V
that a J -pretheory T is a J -theory in the sense of Definition 4.1 iff it is a J -theory
in the sense of [32, Definition 4.1], and that a V -functor M : T → V is a non-concrete
algebra for a J -theory T in the sense of Definition 4.3 iff it is a T -algebra in the sense
of [32, Definition 5.1].

4.5. Proposition. Let j : J ↣ V be a system of arities, and let T be a J -pretheory.

1. A V -functor M : T → V is a (non-concrete) T -algebra iff M ◦ τ : J op → V
preserves J -cotensors.

2. T is a J -theory iff τ : J op → T preserves J -cotensors.

3. Suppose that T is a J -theory. Then a V -functor M : T → V is a (non-concrete)
T -algebra iff M preserves J -cotensors.

4.6. Let T be a J -pretheory. Given an object (A , G) of the slice category V ′-CAT/C ,
it readily follows from the definition (4.2) of T -Alg! that morphisms P : (A , G) →(
T -Alg!, UT

)
in V ′-CAT/C correspond naturally and bijectively to V ′-functors P1 : A →

3This definition was also employed by Bourke and Garner [12] in their locally presentable setting.
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[T ,V ] that make the following square commute:

A [T ,V ]

C [J op,V ].

P1

[τ,1]G

Nj

By transposition, morphisms P : (A , G) →
(
T -Alg!, UT

)
in V ′-CAT/C therefore corre-

spond to V ′-functors P2 : T → [A ,V ] for which P2 ◦ τ = C (j−, G?) : J op → [A ,V ].

4.7. A discrete isofibration is a functor G : X → Y with the property that for any
isomorphism f : Y

∼−→ GX in Y , there is a unique isomorphism f ′ : X ′ ∼−→ X in X with
G(f ′) = f . A faithful functor is a discrete isofibration iff it is uniquely transportable in
the sense of [2, Definition 5.28]. For example, every strictly monadic functor is a discrete
isofibration (see e.g. [2, Proposition 20.12]). We shall say that an enriched functor (i.e. a
V - or V ′-functor) is a discrete isofibration if its underlying ordinary functor is a discrete
isofibration. Given an identity-on-objects V -functor τ : A → B and a V ′-category C , it
is well known (and not difficult to prove) that the V ′-functor [τ, 1] : [B,C ] → [A ,C ] given
by precomposition with τ is a discrete isofibration. In particular, if T is a J -pretheory,
then [τ, 1] : [T ,V ] → [J op,V ] is a discrete isofibration. Discrete isofibrations are also
stable under pullback (see, e.g., the proof of [12, Lemma 14]), so that UT : T -Alg! → C
is a discrete isofibration for each J -pretheory T .

By [2, Proposition 5.36], every faithful functor factors as an equivalence followed by a
discrete isofibration. By taking a pseudo-inverse, it follows that for every faithful functor
G : X → Y there is an equivalence L : X ′ ∼−→ X such that GL : X ′ → Y is
isomorphic to a discrete isofibration. We now extend this to the enriched setting by
using the following basic transport-of-structure principles for V -categories. Firstly, the
2-functor (−)0 : V -CAT → CAT = Set-CAT is locally a discrete isofibration in the sense
that for all V -categories X and Y the functor (−)0 : V -CAT(X ,Y ) → CAT(X0,Y0) is
a discrete isofibration. Secondly, the functor ob : V -CAT0 → SET is a cloven fibration,
where V -CAT0 is the underlying ordinary category of V -CAT and SET is the category
of large sets: Explicitly, the ob-cartesian morphisms are the fully faithful V -functors,
and for each V -category X and each morphism f : S → obX in SET we obtain an
ob-cartesian morphism fX : f ∗(X ) → X in V -CAT0 with ob fX = f as follows: The
V -category f ∗(X ) has ob f ∗(X ) = S and f ∗(X )(s, t) = X (f(s), f(t)) for all s, t ∈ S,
with composition and identities as in X , and the V -functor fX is given on objects by
f and on homs by identities. In particular, every V -functor F : B → X factors as an
identity-on-objects V -functor E : B → (obF )∗(X ) followed by a fully faithful V -functor
M = (obF )X : (obF )∗(X ) → X .

4.8. Proposition. Let G : X → Y be a V -functor whose underlying ordinary functor is
faithful. Then there is a V -category X ′ and an equivalence of V -categories L : X ′ ∼−→ X
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such that GL : X ′ → Y is isomorphic to a discrete isofibration G′ : X ′ → Y .

Proof. By 4.7, there is an equivalence of (ordinary) categories K : A
∼−→ X0 and a

discrete isofibration H : A → Y0 with G0K ∼= H. Factoring K as an identity-on-objects
functor E : A → (obK)∗(X0) followed by a fully faithful functor M = (obK)X0 :
(obK)∗(X0) → X0 with the notation of 4.7, we find that E is an isomorphism and M
is an equivalence. But the functor (−)0 : V -CAT0 → CAT0 commutes with the cloven
fibrations ob : V -CAT0 → SET and ob : CAT0 → SET and preserves the cleavages, so
(obK)∗(X0) underlies a V -category X ′ := (obK)∗(X ), and M underlies a fully faithful
V -functor L := (obK)X : X ′ → X . But L is also essentially surjective on objects
since M is so, and hence L is an equivalence. On the other hand H ∼= G0K = G0ME =
G0L0E : A → Y0 and E : A → X ′

0 is an isomorphism, so the V -functor GL : X ′ → Y
has (GL)0 = G0L0

∼= HE−1 : X ′
0 → Y0, noting that HE−1 is a discrete isofibration

since H is so. But (−)0 is locally a discrete isofibration (4.7), so there is a V -functor
G′ : X ′ → Y with G′

0 = HE−1 and G′ ∼= GL.

4.9. Let T be a J -pretheory. In view of Definitions 4.2 and 4.3, we obtain a comparison
V ′-functor T -Alg! → T -Alg as in the following commutative diagram in V ′-CAT, whose
left square is thus (also) a pullback:

T -Alg! T -Alg [T ,V ]

C j-Ner(V ) [J op,V ].

WT [τ,1]UT

Nj

MT

We now show that this comparison V ′-functor is an equivalence4. It is fully faithful, as a
pullback of the fully faithful Nj : C

∼−→ j-Ner(V ). It is also essentially surjective, because
if M : T → V is a non-concrete T -algebra, then M ◦ τ : J op → V is a j-nerve, and
so there is some A ∈ obC with M ◦ τ ∼= C (j−, A). Since [τ, 1] is a discrete isofibration
(4.7), it then follows that M is isomorphic to the image of a concrete T -algebra under
the comparison V ′-functor. So T -Alg! ≃ T -Alg in V ′-CAT/C when we equip T -Alg with

the composite V ′-functor T -Alg
WT

−−→ j-Ner(V )
∼−→ C .

4.10. Let G : A → C and F : J → A be V -functors. Applying Diers’ notion
of relative adjunction [14] in the present setting of a V -enriched subcategory of arities
j : J ↪→ C , we say that F is a j-relative left adjoint for G if F is equipped with
isomorphisms A (FJ,A) ∼= C (jJ,GA) V -natural in J ∈ J , A ∈ A . Equivalently, a
j-relative left adjoint for G is a V -functor F : J → A equipped with a V -natural

4Bourke and Garner established an analogous result [12, Proposition 25] in their locally presentable
setting.
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transformation η : j ⇒ GF such that

A (FJ,A)
GFJ,A−−−→ C (GFJ,GA)

C (ηJ ,1)−−−−→ C (jJ,GA)

is an isomorphism for all J ∈ obJ and A ∈ obA . In this situation, we say that
η : j ⇒ GF exhibits F as a j-relative left adjoint for G, or that η is the unit of the
j-relative adjunction. We also say that G is a j-relative right adjoint for F .

In particular, if G has a left adjoint F : C → A with unit η : 1 ⇒ GF , then ηj : j ⇒
GFj exhibits Fj : J → A as a j-relative left adjoint for G, and 1 : Fj ⇒ Fj exhibits F
as a left Kan extension of Fj along j (since F preserves colimits and 1C = Lanjj by the
density of j). Conversely, if η : j ⇒ GF exhibits F : J → A as a j-relative left adjoint
for G and the left Kan extension LanjF : C → A exists, with unit φ : F

∼
=⇒ (LanjF ) j,

then there is a unique V -natural transformation η : 1 ⇒ GLanjF that makes the triangle

j

GF G (LanjF ) j

η
ηj

Gφ

=
(4.10.i)

commute, and moreover η exhibits LanjF as left adjoint to G. The V -natural transfor-
mation η is obtained using the fact that 1 : j ⇒ j presents 1C as Lanjj (because j is
dense).

4.11. Let T be a J -pretheory, so that T is equipped with an identity-on-objects
V -functor τ : J op → T . Note that

T is a J -theory iff τ op : J → T op is a j-relative left adjoint.

Now assuming that T is a J -theory, we write

ST : T op −→ C

to denote the j-relative right adjoint for τ op. Explicitly, this V -functor ST is characterized
uniquely up to isomorphism by the statement that T (J, τ−) ∼= C (j−, ST J), V -naturally
in J ∈ T op. We also define a V -functor

TT : J −→ C

as the composite J
τop−→ T op ST−−→ C , which is, up to isomorphism, the unique V -functor

such that T (τJ, τ−) ∼= C (j−, TT J), V -naturally in J ∈ J . We write

uT : j =⇒ ST ◦ τ op = TT

to denote the unit of the j-relative adjunction, and we call uT the unit of the J -theory
T . Explicitly, the component uT

J : J → TT J at each J ∈ obJ is the image of the
identity morphism 1J : J → J under the bijection T0(J, J) = T0(J, τJ)

∼−→ C0(J, TT J).
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Writing y : T op → [T ,V ] for the Yoneda embedding, since Nj◦ST
∼= [τ, 1]◦y : T op →

[J op,V ] and [τ, 1] is a discrete isofibration (4.7), we can replace y : T op → [T ,V ] by
an isomorphic V ′-functor y′ : T op → [T ,V ] that satisfies Nj ◦ ST = [τ, 1] ◦ y′. We then
obtain a fully faithful V ′-functor YT : T op → T -Alg! by applying the universal property
of T -Alg! as a (strict) pullback:

T op

T -Alg! [T ,V ]

C [J op,V ].

MT

[τ,1]UT

Nj

ST

y′

YT

In other words, YT : T op → T -Alg! is the morphism of V -CAT/C corresponding to
y′ : T op → [T ,V ] via 4.6. From [22, Proposition 5.16] we then have NYT

∼= MT :
T -Alg! → [T ,V ] (so that YT is also dense, because MT is fully faithful). We write

ϕT : J −→ T -Alg!

for the composite V ′-functor J
τop−→ T op YT−−→ T -Alg!. Note that UT ◦ ϕT = TT : J →

C .

We now give one of the central definitions of the paper:

4.12. Definition. A J -pretheory T is admissible if the V ′-category T -Alg! of con-
crete T -algebras is a V -category5 and the V -functor UT : T -Alg! → C has a left adjoint.
The subcategory of arities J ↪→ C is amenable (resp. strongly amenable) if every
J -theory (resp. J -pretheory) is admissible. We write PrethaJ (C ) for the full subcategory
of PrethJ (C ) consisting of the admissible J -pretheories.

4.13. Assumption. We shall assume for the remainder of §4 that the subcategory of
arities J ↪→ C is amenable.

A V -category over C is an object of the (strict) slice category V -CAT/C , i.e. a V -
category A equipped with a V -functor G : A → C . We denote such a V -category over
C by (A , G) or even just A .

4.14. Definition. A V -functor G : A → C with codomain C is J -tractable if C
admits the weighted limit {C (J,G−), G} for each J ∈ obJ . A V -category (A , G)
over C is J -tractable if the associated V -functor G : A → C is J -tractable. We
write J -Tract(C ) for the full subcategory of V -CAT/C consisting of the J -tractable
V -categories over C .

5We shall see in Remark 5.6 that this first requirement is redundant.
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We show in 4.24 that a V -functor G : A → C is J -tractable iff G has a structure
J -theory in the sense of 4.22. The following fact is an immediate consequence of the
relevant definitions:

4.15. Proposition. Let G : A → C be a J -tractable V -functor. Then the object of V -
natural transformations [A ,V ] (C (J,G−),C (K,G−)) exists in V for all J,K ∈ obJ .

4.16. Remark. In [16, §2], Dubuc defines a V -functor G : A → C to be strongly
tractable if the (pointwise) right Kan extension RanGG of G along itself exists, which (by
the dual of [22, 4.18]) is equivalent to C admitting the weighted limit {C (C,G−), G} for
each C ∈ obC . So G is strongly tractable in Dubuc’s sense iff G is C -tractable (for the
subcategory of arities C ↪→ C ) in the sense of Definition 4.14.

4.17. Lemma. Let G : A → C be a V -functor with a j-relative left adjoint F : J → A .
Then G : A → C is J -tractable. In particular, if G : A → C has a left adjoint, then G
is J -tractable.

Proof. For each J ∈ obJ we have C (J,G−) ∼= A (FJ,−) : A → V , and hence C
admits the weighted limit {C (J,G−), G} because {C (J,G−), G} ∼= {A (FJ,−), G} ∼=
GFJ by [22, (3.10)].

4.18. Remark. Let T be a J -theory. Recall from 4.11 that we have the V -functor
ϕT = YT ◦ τ op : J → T -Alg!, which we now show is a j-relative left adjoint for the V -
functor UT : T -Alg! → C . Indeed, because MT : T -Alg! → [T ,V ] is fully faithful and
MT ϕT J ∼= T (τJ,−) (J ∈ J ), we have the following isomorphisms, which are V -natural
in J ∈ J and A = (A,M) ∈ T -Alg!:

T -Alg! (ϕT J,A) ∼= [T ,V ] (T (τJ,−),M) ∼= MτJ = C
(
jJ, UT A

)
.

The V -natural transformation η : j ⇒ UT ϕT that exhibits ϕT as a j-relative left adjoint
for UT (4.10) is precisely the unit uT : j ⇒ TT = UT ϕT of T (4.11).

Given an ordinary category X , we shall say that a full subcategory G ↪→ X is strongly
generating if the representable functors X (G,−) : X → Set (G ∈ obG ) are jointly
conservative (i.e. jointly reflect isomorphisms); this is equivalent to the conservativity of
the nerve functor Ni : X → [G op, Set] determined by the inclusion i : G ↪→ X .

4.19. Lemma. Let X be a complete (ordinary) category, and suppose that G ↪→ X is
strongly generating. Then the inclusion G ↪→ X preserves all small limits that exist.

Proof. Writing i : G ↪→ X for the inclusion, the nerve functor Ni : X → [G op, Set] is
conservative and preserves limits, and hence reflects small limits (by, e.g., [9, Proposition
2.9.7]). Now letD be a small diagram in G with limit limD in G . To show that i : G ↪→ X
preserves this limit, it suffices to show that Ni ◦ i : G → [G op, Set] preserves this limit;
but this is true because Ni ◦ i ∼= y : G → [G op, Set] and y preserves all limits that exist.
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We shall employ the following result in proving Proposition 5.15 below.

4.20. Proposition. Suppose that C and V are complete. Then the inclusion
J -Tract(C ) ↪→ V -CAT/C preserves all small limits that exist.

Proof. Since V is complete, it is well known that V -CAT is complete, so that V -CAT/C
is complete. The full subcategory of V -CAT consisting of the V -categories with exactly
two objects is strongly generating, from which it readily follows that the full subcategory
G ↪→ V -CAT/C consisting of the V -functors whose domains have exactly two objects
is strongly generating. Since C is complete, every V -functor G : A → C such that A
has exactly two objects is J -tractable, so that J -Tract(C ) contains G and is thus itself
strongly generating. The result now follows immediately from Lemma 4.19.

4.21. Definition. We define the semantics functor Sem : PrethaJ (C )op → J -Tract(C )

as follows. For an admissible J -pretheory T , the V -functor UT : T -Alg! → C is
J -tractable by Lemma 4.17, and we define SemT to be

(
T -Alg!, UT

)
.

Now let H : (T , τ) → (U , υ) be a morphism of admissible J -pretheories. We define
SemH : U -Alg! → T -Alg! in V -CAT/C by using the universal property of T -Alg!, as in
the following diagram in V ′-CAT:

U -Alg! [U ,V ]

T -Alg! [T ,V ]

C [J op,V ].

MT

[τ,1]UT

Nj

SemH

UU

MU

[H,1]

[υ,1]

It is readily verified that Sem is functorial.

4.22. Definition. Let G : A → C be a V -functor, so that (A , G) is a V -category over
C . A structure J -theory for G is a J -theory (StrG, τG) equipped with a fully faithful
V ′-functor mG : StrG ↣ [A ,V ] such that mG ◦ τG = C (j−, G?) : J op → [A ,V ], so
that the following triangle commutes:

J op [A ,V ].

StrG

C (j−,G?)

τG mG

(4.22.i)

We may also write Str(A , G) for StrG.
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4.23. Remark. Given an arbitrary V -functor G : A → C , we now address the question
of existence of a structure J -theory for G. We can always factor C (j−, G?) : J op →
[A ,V ] as an identity-on-objects V ′-functor τG followed by a fully faithful V ′-functor mG

as in (4.22.i), and such a factorization is unique up to an isomorphism that commutes with

the V ′-functors τG, mG. Such a factorization J op τG−→ StrG
mG−−→ [A ,V ] is a structure

J -theory for G if and only if the pair (StrG, τG) is a J -theory, noting that the latter
condition requires for each object J of J the existence of an object C of C such that
C (j−, C) ∼= StrG(J, τG−) : J op → V (with StrG then automatically a V -category).
But in any case

StrG(J, τGK) ∼= [A ,V ](C (J,G−),C (jK,G−)) ,

V ′-naturally in K ∈ J , so an object C with the needed property is equivalently a limit
{C (J,G−), G} in C . Thus we obtain the following result:

4.24. Proposition. Let G : A → C be a V -functor. Then G admits a structure
J -theory iff G is J -tractable. A structure J -theory StrG for G is unique up to iso-
morphism in ThJ (C ) if it exists, in which case any isomorphic J -pretheory is also a
structure J -theory for G.

4.25. Definition. Let G : A → C be a J -tractable V -functor. Then, by Proposition
4.24, a structure J -theory StrG for G exists and is unique up to isomorphism of J -
theories, so we call StrG the structure J -theory for G, or the J -structure of
G.

4.26. Definition. Let G : A → C be a J -tractable V -functor, so that (A , G) is a
J -tractable V -category over C . The fully faithful V ′-functor mG : StrG ↣ [A ,V ]
associated to StrG satisfies mG ◦ τG = C (j−, G?), and therefore corresponds by 4.6 to a
morphism

E(A ,G) : (A , G) →
(
StrG-Alg!, UStrG

)
in V -CAT/C . Explicitly, E(A ,G) is the induced V -functor in the following diagram

A

StrG-Alg! [StrG,V ]

C [J op,V ]

MStrG

[τG,1]UStrG

Nj

E(A ,G)

G

m̃G

where m̃G is the transpose of mG.

We now establish a structure–semantics adjunction for amenable subcategories of ar-
ities.
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4.27. Theorem. Let J ↪→ C be an amenable subcategory of arities. Then the semantics
functor Sem : PrethaJ (C )op → J -Tract(C ) has a left adjoint

Str : J -Tract(C ) → PrethaJ (C )op

that sends a J -tractable V -category (A , G) over C to its J -structure Str(A , G) = StrG
(4.25). The unit of this adjunction at (A , G) is

E(A ,G) : (A , G) →
(
StrG-Alg!, UStrG

)
= SemStr(A , G).

Proof. The J -structure StrG of G is a J -theory and so, by the amenability of J ,
is an admissible J -pretheory. We now show that E(A ,G) is a Sem-universal arrow for

(A , G). So let P : (A , G) → SemT =
(
T -Alg!, UT

)
be a morphism in V -CAT/C

for an admissible J -pretheory T , and let us show that there is a unique morphism of
J -pretheories P ♯ : T → StrG such that SemP ♯ ◦ E(A ,G) = P , all as in the following
diagram:

(A , G)
(
StrG-Alg!, UStrG

)
StrG

(
T -Alg!, UT

)
T

E(A ,G)

P
SemP ♯ P ♯

By 4.6, the morphism P is equivalently given by a V ′-functor P2 : T → [A ,V ] such that
P2 ◦ τ = C (j−, G?) : J op → [A ,V ], so that the outer square of the following diagram
in V ′-CAT commutes (by the definition of StrG):

J op T

StrG [A ,V ].

τ

τG P2

mG

P ♯ (4.27.i)

By the orthogonality of identity-on-objects V ′-functors to fully faithful V ′-functors, there
is a unique V ′-functor (and hence V -functor) P ♯ : T → StrG that makes the diagram
commute, so that P ♯ is a morphism of J -pretheories. The commutativity of the lower
triangle in (4.27.i) is equivalent to the commutativity of the following square, which entails
that SemP ♯ ◦ E(A ,G) = P , since the left-hand side of the latter equation corresponds via
4.6 to the lower-left composite in this square.

A T -Alg!

[StrG,V ] [T ,V ]

P

m̃G

[P ♯,1]

MT
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The required uniqueness of P ♯ then follows from the uniqueness of the diagonal filler in
(4.27.i).

4.28. Proposition.

1. The structure–semantics adjunction (4.27) is idempotent.

2. Let T be an admissible J -pretheory. Then T is a J -theory iff the counit morphism
εT : T → Str SemT is invertible.

3. The restriction of Sem to ThJ (C )op is a fully faithful functor Sem : ThJ (C )op →
J -Tract(C ) with a left adjoint Str : J -Tract(C ) → ThJ (C )op.

Proof. We first prove (2). The morphism εT : T → Str SemT is defined by taking H
to be the identity morphism of SemT in the proof of Theorem 4.27, so that εT : T →
Str SemT is the unique V -functor making the following diagram in V ′-CAT commute:

J op T

Str SemT
[
T -Alg!,V

]
,

τ

τ
UT M̃T

m
UT

εT

where M̃T is the transpose of the V ′-functor MT : T -Alg! → [T ,V ].
If εT is invertible, then T is certainly a J -theory, because Str SemT is a J -theory.

Suppose conversely that T is a J -theory. Since εT is identity-on-objects, it suffices
to show that εT is fully faithful. And since mUT is fully faithful, it then suffices to

show that M̃T : T →
[
T -Alg!,V

]
is fully faithful. By 4.11, the fully faithful V -functor

YT : T op → T -Alg! satisfies NYT
∼= MT : T -Alg! → [T ,V ], from which it follows

that M̃T : T →
[
T -Alg!,V

]
is isomorphic to the fully faithful composite V ′-functor

T
Yop

T−−→
(
T -Alg!

)op y−→
[
T -Alg!,V

]
.

To prove (1), it suffices to show that the whiskered counit ε Str : Str SemStr ⇒ Str is
a natural isomorphism; but if (A , G) is a J -tractable V -category over C , then StrG is
a J -theory, so that εStrG is an isomorphism by (2). Lastly, (3) follows from (1) and (2)
together with general facts about idempotent adjunctions.

4.29. Definition. Let G : A → C be a V -functor, so that (A , G) is a V -category
over C . We say that G, or (A , G), is strictly J -algebraic if there is an admissible
J -pretheory T satisfying A ∼= T -Alg! in V -CAT/C . We say that G, or (A , G), is
J -algebraic if there is an admissible J -pretheory T with an equivalence A ≃ T -Alg!

in the pseudo-slice 2-category V -CAT//C [32, 2.5]. Every J -algebraic V -functor is J -
tractable by Lemma 4.17, so the strictly J -algebraic V -categories over C constitute a
full subcategory of J -Tract(C ) that we denote by J -Alg!(C ).

The full subcategory J -Alg!(C ) ↪→ J -Tract(C ) is the essential image of Sem, so by
4.28 we obtain the following:
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4.30. Proposition. Let G : A → C be a V -functor, so that (A , G) is a V -category over
C . The following are equivalent: (1) G is strictly J -algebraic; (2) there is a J -theory
T such that A ∼= T -Alg! in V -CAT/C ; (3) G is J -tractable and the unit morphism
E(A ,G) : (A , G) → SemStrG of the structure–semantics adjunction (4.27) is invertible.

4.31. Corollary. A V -functor G : A → C is J -algebraic iff there is a J -theory
T with an equivalence A ≃ T -Alg! in V -CAT//C . Every J -algebraic V -functor is
J -tractable.

The following theorem now follows immediately from Propositions 4.28 and 4.30:

4.32. Theorem. Let J ↪→ C be an amenable subcategory of arities. Then the structure–
semantics adjunction (4.27) restricts to an equivalence

ThJ (C )op J -Alg!(C )
Sem

Str

∼

between J -theories and strictly J -algebraic V -categories over C . Furthermore, we have
that J -Alg!(C ) ↪→ J -Tract(C ) is reflective with reflector SemStr : J -Tract(C ) →
J -Alg!(C ), and ThJ (C ) ↪→ PrethaJ (C ) is reflective with reflector Str Sem : PrethaJ (C ) →
ThJ (C ).

4.33. Lemma. Let T be a J -pretheory, let G : A → C be a V -functor, let m : T ↣
[A ,V ] be a fully faithful V ′-functor, and let α be an invertible 2-cell in V ′-CAT as in the
leftmost diagram below. Then there is a unique pair (m′, α′) consisting of a fully faithful
V ′-functor m′ and an invertible 2-cell α′ as in the rightmost diagram below, such that the
lower triangle in that diagram commutes and the resulting pasted 2-cell equals α:

T m // [A ,V ] T

m

$$

m′
// [A ,V ]

J op

τ

OO

C (j−,G?)

66

J op

τ

OO

C (j−,G?)

66

α′��

α
�'

Consequently, if G is J -tractable, then T is a structure J -theory for G when equipped
with m′ : T ↣ [A ,V ].

Proof. Writing obJ for the discrete V -category on the objects of J and similarly
for obT , the forgetful V ′-functors [J op, [A ,V ]] → [obJ , [A ,V ]] and [T , [A ,V ]] →
[obT , [A ,V ]] are discrete isofibrations by 4.7, since they are given by precomposition
with the canonical identity-on-objects V -functors obJ → J op and obT → T . Since
τ is identity-on-objects, the needed pair (m′, α′) can be obtained by using the second of
these two discrete isofibrations, while the commutativity of the lower righthand triangle
above may be proved using the first of these discrete isofibrations. We then deduce the
final assertion from 4.23 and 4.24.
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If a V -functor G : A → C has a j-relative left adjoint F (4.10), then G is J -tractable
(by 4.17) and so has a structure J -theory, by 4.24. In this special case, the structure
J -theory StrG admits the following convenient description in terms of F , which we use
in proving a characterization theorem for J -algebraic V -functors (Theorem 4.35).

4.34. Proposition. Let G : A → C be a V -functor with a j-relative left adjoint F :
J → A . Let

J A

AF

F

iF jF
(4.34.i)

be the factorization of F as an identity-on-objects V -functor iF followed by a fully faithful
V -functor jF . Then there is a fully faithful V ′-functor mG : A op

F → [A ,V ] that is iso-

morphic to the composite A op
F

jopF−→ A op y−→ [A ,V ] and makes the J -pretheory (A op
F , iopF )

a structure J -theory for G (4.22). Thus we may take (StrG, τG) = (A op
F , iopF ).

Writing η : j ⇒ GF for the V -natural transformation that exhibits F as a j-relative
left adjoint for G (4.10), we can take TStrG = GF : J → C , and we can take the unit
uStrG : j ⇒ TStrG (4.11) of StrG to be η. With these choices, η : j ⇒ GF = UStrGE(A ,G)F
exhibits E(A ,G)F as a j-relative left adjoint for UStrG.

Proof. We have isomorphisms

αJA : A (FJ,A)
∼−→ C (jJ,GA) (4.34.ii)

that are V -natural in J ∈ J and A ∈ A and so constitute an isomorphism

α : y ◦ F op ∼
=⇒ C (j−, G?) : J op −→ [A ,V ],

where y : A op → [A ,V ] is the Yoneda embedding. The V ′-functor

ℓ := y ◦ jopF A op
F −→ [A ,V ]

is fully faithful, and its composite with τG = iopF : J op → StrG = A op
F is ℓ ◦ τG =

y ◦ jopF ◦ iopF = y ◦ F op : J op → [A ,V ], so α is an isomorphism of the form

α : ℓ ◦ τG
∼

=⇒ C (j−, G?) : J op −→ [A ,V ] .

Hence, by Lemma 4.33 we obtain a fully faithful V ′-functor mG : StrG → [A ,V ] that
makes (StrG, τG) := (A op

F , iopF ) a structure J -theory for G, and we obtain also an iso-
morphism α′ : ℓ

∼⇒ mG such that α′ ◦ τG = α. In particular, mG ◦ τG = C (j−, G?) :
J op → [A ,V ].

Since StrG(τGJ, τGK) = AF (iFK, iFJ) = A (FK,FJ) (J,K ∈ J ), the isomorphisms

α−,FJ : StrG(τGJ, τG−) = A (F−, FJ)
∼−→ C (j−, GFJ) (J ∈ J )
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witness that StrG is a J -theory with TStrG = GF and with unit uStrG = η.
Note that α′ : ℓ

∼⇒ mG is literally the same family of isomorphisms αJA that appear
in (4.34.ii), except now seen as a family

α′
JA : (ℓJ)A = A (jFJ,A)

∼−→ (mGJ)A

V -natural in J ∈ StrG and A ∈ A . Writing ℓ̃, m̃G : A → [StrG,V ] to denote the
transposes of ℓ and mG, this same V -natural family provides an isomorphism

α̃ : ℓ̃
∼

=⇒ m̃G .

To prove the final assertion, let us write E = E(A ,G) : A → StrG-Alg! and M = MStrG :

StrG-Alg! → [StrG,V ], and recall from 4.26 that ME = m̃G. Hence α̃ : ℓ̃
∼⇒ ME and in

particular α̃F : ℓ̃F
∼⇒ MEF : J → [StrG,V ]. But

ℓ̃FJ = (ℓ−)FJ = A (jF−, FJ) = A (jF−, jF iFJ) = StrG(τGJ,−) (J ∈ J ),

so α̃F is a family of isomorphisms

α̃FJ = α′
−,FJ : StrG(τGJ,−)

∼
=⇒ (mG−)FJ = MEFJ (4.34.iii)

V -natural in J ∈ J , each of which is a representation whose unit I → (mGτGJ)FJ
corresponds to the identity morphism on τGJ in StrG. But the component

α′
τGJ,FJ : StrG(τGJ, τGJ)

∼−→ (mGτGJ)FJ

of (4.34.iii) that is obtained by evaluating at the object τGJ is precisely

αJ,FJ : A (FJ, FJ)
∼−→ C (J,GFJ),

so the unit of the representation (4.34.iii) is precisely the morphism ηJ : J → GFJ in C .
Using these observations, together with the fact that M : StrG-Alg! → [StrG,V ] is

fully faithful (and w.l.o.g. identity-on-homs) we obtain isomorphisms

StrG-Alg!(EFJ,A) = [StrG,V ](MEFJ,MA)
∼= [StrG,V ](StrG(τGJ,−),MA)
∼= (MA)τGJ

= C (jJ, UStrGA)

that are V -natural in J ∈ J and A ∈ StrG-Alg! and witness that EF is a j-relative left
adjoint for UStrG : StrG-Alg! → C . The unit of this j-relative adjunction is obtained by
chasing 1EFJ along these isomorphisms and so is precisely the unit of the representation
(4.34.iii), namely ηJ : J → GFJ = UStrGEFJ .
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We now establish the following intrinsic characterization of (strictly) J -algebraic V -
categories:

4.35. Theorem. Let j : J ↪→ C be an amenable subcategory of arities, and let G :
A → C be a V -functor. Then G is a J -algebraic V -functor iff the following conditions
are satisfied:

1. G : A → C has a j-relative left adjoint F : J → A (4.10).

2. The fully faithful V -functor jF : AF ↣ A of (4.34.i) is dense.

3. A presheaf X : A op
F → V is a jF -nerve iff the presheaf X ◦iopF : J op → V is a j-nerve.

Furthermore, G is a strictly J -algebraic V -functor iff conditions (1)–(3) are satisfied as
well as

4. G : A → C is a discrete isofibration (4.7).

Proof. We may assume without loss of generality that (1) holds, since this condition
holds if G is J -algebraic, by 4.31. In particular, G is J -tractable by 4.17, and we can
form the following commutative square in V ′-CAT as in 4.26

A [StrG,V ]

C [J op,V ]

m̃G

[τG,1]G

Nj

(4.35.i)

where m̃G is the transpose of mG : StrG → [A ,V ]. By Proposition 4.34, we may take
StrG = A op

F , τG = iopF , and mG
∼= A (jF−, ?) : A op

F → [A ,V ]. Consequently, the top side
m̃G of (4.35.i) is isomorphic to the nerve V ′-functor NjF = A (jF ?,−) : A → [A op

F ,V ]
for jF : AF → A . Therefore (2) holds iff m̃G is fully faithful. Also, the essential image of
m̃G coincides with that of NjF and so consists of precisely the jF -nerves.

Using these observations, we now establish the given characterization of strictly J -
algebraic V -functors, for which we can also assume (4) without loss of generality, in view
of 4.7. By Proposition 4.30, G is strictly J -algebraic iff the unit morphism E(A ,G) :
(A , G) → SemStrG of the structure–semantics adjunction (4.27) is invertible, iff (by the
definition of E(A ,G) in Definition 4.26) the square (4.35.i) is a pullback in V ′-CAT. Since
G and [τG, 1] are discrete isofibrations (4.7) and Nj : C → [J op,V ] is fully faithful,
we deduce from [12, Lemma 14] that the commutative square (4.35.i) is a pullback iff
(a) m̃G is fully faithful, and (b) a presheaf X : StrG → V is in the essential image of
m̃G iff X ◦ τG : J op → V is in the essential image of Nj : C → [J op,V ], i.e. is a
j-nerve. But (a) is equivalent to (2) as noted above, while (b) is equivalent to (3) since
the essential image of m̃G consists of the jF -nerves. Thus the desired characterization of
strictly J -algebraic V -functors is proved.
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Lastly we prove the first assertion of the Theorem. If G is J -algebraic, then there
is a strictly J -algebraic V -category (A ′, G′) over C such that A ≃ A ′ in the pseudo-
slice 2-category V -CAT//C , so that conditions (1)–(3) hold for G, since they hold for
G′ and are stable under equivalence in V -CAT//C . Conversely, suppose that G satisfies
conditions (1)–(3). Within the square (4.35.i), the top side m̃G is fully faithful since (2)
holds, while the right side [τG, 1] has a faithful underlying ordinary functor, since τG is
the identity on objects, so the common composite in (4.35.i) has a faithful underlying
ordinary functor. This entails that the left side G has a faithful underlying ordinary
functor. Hence, by Proposition 4.8 there is a V -category A ′ equipped with a discrete
isofibration G′ : A ′ → C and an equivalence L : A ′ ∼−→ A such that GL ∼= G′, from which
it follows by [32, 2.5] that L underlies an equivalence A ′ ≃ A in V -CAT//C . Hence G′

also satisfies conditions (1)–(3), in addition to (4), so that G′ is strictly J -algebraic,
whence G is J -algebraic.

5. The monad–theory equivalence

In this section, we fix an arbitrary subcategory of arities j : J ↪→ C . Under the
assumption that J is amenable, we shall establish in Theorem 5.7 that the idempotent
structure–semantics adjunction of Theorem 4.27 yields an idempotent adjunction between
admissible J -pretheories and V -monads on C . We shall then show in Theorem 5.13 that
this adjunction restricts to an equivalence between J -theories and J -nervous V -monads
on C .

5.1. We write Mnd(C ) for the (ordinary) category of V -monads on C . For a V -monad
T on C , we regard the V -category T-Alg of T-algebras6 as a V -category over C by means
of the forgetful V -functor UT : T-Alg → C . We then say that a V -functor G : A → C
is strictly monadic, or that A is a strictly monadic V -category over C , if there is some
V -monad T on C such that A ∼= T-Alg in V -CAT/C . We write Monadic!(C ) for the full
subcategory of V -CAT/C consisting of the strictly monadic V -categories over C . There
is a V -monad semantics functor Alg : Mnd(C )op → V -CAT/C given by T 7→ T-Alg,
and this functor is fully faithful by [15, Pages 74–75]. Corestricting Alg to its essential
image thus yields an equivalence Mnd(C )op

∼−→ Monadic!(C ). A pseudo-inverse to this
equivalence is obtained by associating to each strictly monadic V -category (A , G) over
C the V -monad induced by a choice of left adjoint to G, and then the Eilenberg-Moore
comparison isomorphisms witness that this functor Monadic!(C ) → Mnd(C )op is indeed
pseudo-inverse to the equivalence Mnd(C )op

∼−→ Monadic!(C ).

By definition, a weight is a V -functor W : Bop → V , where B is a (possibly large)
V -category.

5.2. Definition. A weighted colimit in C is J -stable (cf. [32, Definition 6.1]) if it is
preserved by each C (J,−) : C → V (J ∈ obJ ). A weight W : Bop → V is J -flat

6Note that T-Alg is indeed a V -category because V has equalizers.
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(cf. [32, Definition 6.2]) if all W -weighted colimits that exist in C are J -stable. A J -
flat colimit in a V -category A is a weighted colimit W ∗ D in A whose weight W is
J -flat.

Thus the property of J -stability is defined only for colimits in C , but we may consider
J -flat colimits in V -categories other than C , as J -flatness is a property of the weight.

5.3. By a weighted diagram in a V -category A we mean a pair (W,D) consisting of a
weight W : Bop → V and a V -functor D : B → A . We say that a weighted diagram
(W,D) in C is J -stable if every colimit W ∗ D that C admits is J -stable. Given a
V -functor G : A → C , we say that a weighted diagram (W,D) in A is G-relatively
J -stable (cf. [32, Definition 6.1]) if the weighted diagram (W,GD) in C is J -stable.

Given a class Λ of weighted diagrams and a V -functor G : A → C , we say that
G creates Λ-colimits if for every weighted diagram (W,D) ∈ Λ in A and every colimit
cylinder7 (C, λ) for (W,GD), there is a unique cylinder

(
C, λ

)
for (W,D) with

(
GC,Gλ

)
=

(C, λ), and furthermore
(
C, λ

)
is a colimit cylinder for (W,D). We use these concepts in

the following proposition:

5.4. Proposition. Let T be an admissible J -pretheory. Then the V -functor UT :
T -Alg! → C creates UT -relatively J -stable colimits (even V ′-enriched such colimits),
and in particular creates J -flat colimits.

Proof. Let us write U := UT . Let
(
W : Bop → V , D : B → T -Alg!

)
be a U -relatively

J -stable weighted diagram in T -Alg!, and let W ∗ UD be a colimit of (W,UD) in C
with colimit cylinder λ : W ⇒ C (UD−,W ∗ UD). We must show that there is a unique
cylinder λ̄ : W ⇒ T -Alg! (D−, A) in T -Alg! with Uλ̄ = λ, and that λ̄ is a colimit
cylinder for (W,D). Since (W,D) is U -relatively J -stable, the weighted colimit W ∗UD
is J -stable, and hence is preserved by each C (J,−) : C → V (J ∈ obJ ), so Nj : C →
[J op,V ] sends the colimitW∗UD to a pointwise colimit in [J op,V ]. Since τ : J op → T
is identity-on-objects, it follows that the V ′-functor [τ, 1] : [T ,V ] → [J op,V ] creates
pointwise colimits8. Then because the square (4.2.i) defining T -Alg! is a pullback and
the fully faithful MT : T -Alg! → [T ,V ] reflects colimits, the desired conclusion readily
follows.

5.5. Proposition. Let T be an admissible J -pretheory. Then the V -functor UT :
T -Alg! → C is strictly monadic.

Proof. The V -functor UT : T -Alg! → C has a left adjoint by admissibility of T , and
it creates UT -contractible coequalizers by Proposition 5.4, since contractible coequalizers
are absolute colimits, and hence are J -stable. So UT is strictly monadic by the enriched
Beck monadicity theorem [15, Theorem II.2.1].

7An object C equipped with a colimit cylinder λ in the sense of [22, §3.1].
8I.e. given V ′-functors W : Bop → V and D : B → [T ,V ], any pointwise colimit cylinder (W ∗

[τ, 1]D,λ) that exists in [J op,V ] lifts uniquely to a cylinder in [T ,V ], and the latter cylinder is a
pointwise colimit cylinder.
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5.6. Remark. It follows from Proposition 5.5 that a J -pretheory T is admissible iff
the V ′-functor UT : T -Alg! → C has a left adjoint (i.e. the requirement in Definition 4.12
that T -Alg! be a V -category may be omitted, since it follows from the existence of such
a left adjoint). For if the V ′-functor UT : T -Alg! → C has a left adjoint, then UT will
be strictly V ′-monadic by the V ′-enriched version of Proposition 5.5, and hence T -Alg!

will be a V -category because C is a V -category.

In view of Proposition 5.5 we can now co-restrict the structure–semantics adjunction (4.27)
to obtain the following theorem. The idempotent adjunction (5.7.ii) below generalizes the
idempotent adjunction established by Bourke and Garner in [12, Theorems 6 and 20];
note that our proof relies on structure–semantics methods, whereas the proof given by
Bourke and Garner employs different techniques (which are only available in their locally
presentable setting).

5.7. Theorem. Let J ↪→ C be an amenable subcategory of arities. Then the idempotent
structure–semantics adjunction (4.27) co-restricts to an idempotent adjunction

PrethaJ (C )op Monadic!(C ).
Sem

Str

⊣ (5.7.i)

Since Monadic!(C ) ≃ Mnd(C )op, we then obtain an idempotent adjunction

PrethaJ (C ) Mnd(C ),
m

t

⊢ (5.7.ii)

where m is the composite PrethaJ (C )
Semop

−−−→ Monadic!(C )op
∼−→ Mnd(C ) and t is the com-

posite Mnd(C )
∼−→ Monadic!(C )op

Strop−−→ PrethaJ (C ).

5.8. Let J ↪→ C be an amenable subcategory of arities. Given an admissible J -
pretheory T , the V -monad m(T ) is the free concrete T -algebra V -monad, i.e. the
V -monad on C induced by the adjunction FT ⊣ UT . Conversely, given a V -monad T
on C , t(T) is the J -theory StrUT, where UT : T-Alg → C is the forgetful V -functor.
Now UT : T-Alg → C has a j-relative left adjoint F Tj : J → T-Alg, which we can factor
as an identity-on-objects V -functor iT followed by a fully faithful V -functor jT as in the
diagram

J T-Alg.

JT

Fj

iT jT
(5.8.i)

By Proposition 4.34, we may take StrUT to be the J -theory (J op
T , iopT ), which we may

call the Kleisli J -theory of T.
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We know by Proposition 4.30 that a V -monad T is fixed by the idempotent comonad
determined by the adjunction m ⊣ t of Theorem 5.7 iff there is some admissible J -
pretheory T such that T is isomorphic to the free concrete T -algebra V -monad m(T ).
We now show that these V -monads admit an alternative characterization that is not
expressed in terms of pretheories. The following definition was given by Bourke and
Garner [12, Definition 17] under more restrictive assumptions:

5.9. Definition. Let j : J ↪→ C be an amenable subcategory of arities. A V -monad
T on C is J -nervous if the following conditions are satisfied:

1. The fully faithful V -functor jT : JT ↣ T-Alg of 5.8 is dense.

2. A presheaf X : J op
T → V is a jT-nerve iff the composite presheaf J op τT−→ J op

T
X−→ V

is a j-nerve.

We write MndJ (C ) for the full subcategory of Mnd(C ) consisting of the J -nervous V -
monads on C .

The following result generalizes the result [12, Theorem 18] of Bourke and Garner;
while they give a direct proof in their setting, the proof that we give below employs our
characterization theorem for strictly J -algebraic V -categories (Theorem 4.35).

5.10. Proposition. Let j : J ↪→ C be an amenable subcategory of arities, and let T be
a V -monad on C . Then the following are equivalent: (1) T is J -nervous; (2) T is fixed
by the idempotent comonad mt determined by the adjunction m ⊣ t of (5.7.ii); (3) T-Alg
is a strictly J -algebraic V -category over C .

Proof. In view of Theorem 5.7, the counit morphism εT : m(t(T)) → T of the adjunction
(5.7.ii) is invertible iff the unit morphism E(T-Alg,UT) :

(
T-Alg, UT

)
→

(
J op

T -Alg!, UJ op
T
)
of

the structure–semantics adjunction (4.27) is invertible, which is equivalent by Proposition
4.30 to

(
T-Alg, UT

)
being a strictly J -algebraic V -category over C . Since UT : T-Alg →

C is strictly monadic and thus a discrete isofibration (4.7) and has the j-relative left
adjoint F Tj : J → T-Alg, Theorem 4.35 (in view of 5.8) then entails that

(
T-Alg, UT

)
is

strictly J -algebraic iff T is J -nervous, as desired.

From Proposition 5.10 we immediately deduce the following:

5.11. Proposition. Let J ↪→ C be an amenable subcategory of arities. Then a V -
monad T on C is J -nervous iff there is some admissible J -pretheory T such that T is
isomorphic to the free concrete T -algebra V -monad m(T ).

We now obtain the following useful property of J -nervous V -monads. Given a class Λ
of weighted diagrams and a V -functor G : A → C , we say that G conditionally preserves
Λ-colimits if for each (W,D) ∈ Λ in A with a colimit W ∗ D, if W ∗ GD exists then
G preserves the colimit W ∗ D (see [32, 2.3]). Note that if G creates Λ-colimits, then
G conditionally preserves them (while in general G need not preserve them, for lack of
existence in C ).
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5.12. Proposition. Let J ↪→ C be an amenable subcategory of arities, and let T =
(T, η, µ) be a J -nervous V -monad on C . Then T : C → C conditionally preserves
J -flat colimits.

Proof. By Proposition 5.11, there is an admissible J -pretheory T such that T ∼=
UT FT . The result now follows because UT creates J -flat colimits by Proposition 5.4
and the left adjoint FT preserves all colimits.

5.13. Theorem. Let J ↪→ C be an amenable subcategory of arities. Then the adjunc-
tion m ⊣ t of (5.7.ii) restricts to an equivalence

ThJ (C ) MndJ (C )
m

t

∼

between J -theories and J -nervous V -monads on C . Furthermore:

1. The inclusion MndJ (C ) ↪→ Mnd(C ) is coreflective, with coreflector mt : Mnd(C ) →
MndJ (C ).

2. For every J -nervous V -monad T we have t(T)-Alg! = J op
T -Alg! ∼= T-Alg in V -CAT/C ,

naturally in T ∈ MndJ (C ).

3. For every admissible J -pretheory T (and in particular, every J -theory T ) we have
m(T )-Alg ∼= T -Alg! in V -CAT/C , naturally in T ∈ PrethaJ (C ).

4. For every admissible J -pretheory T we have T -Alg! ∼= (tmT )-Alg! ∼= (Str SemT ) -Alg!

in V -CAT/C , naturally in T ∈ PrethaJ (C ), where tmT ∼= Str SemT is the J -theory
reflection of T (4.32).

Proof. The adjunction restricts to an equivalence by Propositions 4.28(2) and 5.10,
while (1) follows from Proposition 5.10 and the idempotence of the adjunction (5.7.ii),
and (2) follows immediately from 5.8 and Proposition 5.10. Given an admissible J -
pretheory T (in particular, a J -theory T ) and its J -theory reflection Str SemT , we
have T -Alg! ∼= m(T )-Alg by the definition of m(T ) and because UT : T -Alg! → C is
strictly monadic (5.5), and these isomorphisms are natural in T ∈ PrethaJ (C ) (by the
naturality of the Eilenberg-Moore comparison isomorphisms, 5.1). This proves (3). Since
the V -monad m(T ) is J -nervous (5.11) we deduce from (2) that T -Alg! ∼= m(T )-Alg ∼=
t(m(T ))-Alg! ∼= (Str SemT ) -Alg! in V -CAT/C , yielding (4).

The following theorem now follows immediately from Theorems 4.35 and 5.13:

5.14. Theorem. Let J ↪→ C be an amenable subcategory of arities, and let G : A → C
be a V -functor. Then the following are equivalent: (1) G is strictly J -algebraic; (2) G
is strictly monadic and the associated V -monad on C is J -nervous; (3) G satisfies
conditions (1)–(4) of Theorem 4.35.
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We write Alg : MndJ (C )op → V -CAT/C for the restriction of Alg : Mnd(C )op →
V -CAT/C . For a strongly amenable subcategory of arities J ↪→ C , we write Alg! :

PrethJ (C )op → V -CAT/C for the composite PrethJ (C )op
Sem−−→ J -Tract(C ) ↪→ V -CAT/C .

By 4.28(3), the restriction of Alg! to ThJ (C )op is a fully faithful functor that we denote

simply by Alg! : ThJ (C )op → V -CAT/C . The following result generalizes certain results
that Bourke and Garner proved in their locally presentable context (see [12, §5.4 and
Proposition 31]).

5.15. Proposition. Suppose that V is complete and cocomplete and that C is complete,
and let J ↪→ C be a small and strongly amenable subcategory of arities. Then PrethJ (C ),
ThJ (C ), and MndJ (C ) are cocomplete. Moreover, small colimits in these categories are

algebraic, i.e. are sent to limits by the functors Alg! : PrethJ (C )op → V -CAT/C , Alg! :
ThJ (C )op → V -CAT/C , and Alg : MndJ (C )op → V -CAT/C .

Proof. If PrethJ (C ) is cocomplete, then since its full subcategory ThJ (C ) is reflective by
Proposition 4.32, ThJ (C ) will also be cocomplete, and thus MndJ (C ) ≃ ThJ (C ) will be
cocomplete. Since V is cocomplete, so is the category V -Cat of small V -categories (by [43,
Corollary 2.14]), and hence so is the co-slice category J op/V -Cat (by, e.g., [9, Proposition
2.16.3]). Now PrethJ (C ) is equivalent to the full subcategory of J op/V -Cat consisting
the V -functors that are bijective-on-objects, and the bijective-on-objects V -functors form
the left class of a factorization system on V -Cat, so that PrethJ (C ) is coreflective in the
cocomplete category J op/V -Cat by (e.g.) [13, 2.12], and hence PrethJ (C ) is cocomplete.

The functor Alg! : ThJ (C )op → V -CAT/C preserves small limits, as it is the composite

ThJ (C )op
Sem−−→ J -Tract(C ) ↪→ V -CAT/C , whose first factor preserves limits as a right

adjoint (see Theorem 4.27 and Theorem 4.32), and whose second factor preserves small
limits by Proposition 4.20. In view of Theorem 5.13, the functor Alg! : PrethJ (C )op →

V -CAT/C is isomorphic to the composite PrethJ (C )op
Str Sem−−−−→ ThJ (C )op

Alg!−−→ V -CAT/C .
The first factor is a right adjoint (being the opposite of a left adjoint, 4.32) and hence
preserves limits, while the second factor preserves small limits, as already shown. Finally,
the functor Alg : MndJ (C )op → V -CAT/C is isomorphic to the composite MndJ (C )op

∼−→

ThJ (C )op
Alg!−−→ V -CAT/C by Theorem 5.13, where the second factor preserves small limits

(as already shown) and the first clearly does (as an equivalence).

We conclude §5 by showing that any small subcategory of arities that is contained in
some strongly amenable subcategory of arities is itself strongly amenable (Theorem 5.18
below).

5.16. Suppose that V is cocomplete. Let k : K ↪→ C be a subcategory of arities that
is contained in some small subcategory of arities j : J ↪→ C , and let i : K ↪→ J be
the inclusion. As mentioned in Definition 4.1, the category PrethK (C ) of K -pretheories
is the full subcategory of K op/V -Cat consisting of the identity-on-objects V -functors,
and similarly for PrethJ (C ). We have a functor i∗ : J op/V -Cat → K op/V -Cat given by
precomposition with iop : K op → J op, and i∗ is readily seen to have a left adjoint given
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by pushout along iop : K op → J op (since V -Cat is cocomplete by [43, Corollary 2.14]).
If T is a K -pretheory, then the pushout of τ : K op → T along iop : K op → J op can
be chosen to be identity-on-objects, since bijective-on-objects V -functors are stable under
pushout, as they constitute the left class of a factorization system on V -Cat. So the left
adjoint of i∗ restricts to a functor i∗ : PrethK (C ) → PrethJ (C ) given by pushout along
iop : K op → J op.

5.17. Lemma. Suppose that V is complete and cocomplete, and let k : K ↪→ C be a
subcategory of arities that is contained in some small subcategory of arities j : J ↪→ C .
Then for each K -pretheory T we have T -Alg! ∼= i∗(T )-Alg! in V -CAT/C .

Proof. The J -pretheory i∗(T ) is obtained as the following pushout in V -Cat:

K op J op

T i∗(T ).

iop

τ τJ

By applying the functor [−,V ] : V -Catop → V -CAT to this pushout square, we then
obtain the following pullback square in V -CAT:

[i∗(T ),V ] [T ,V ]

[J op,V ] [K op,V ].

[τJ ,1] [τ,1]

[iop,1]

Composing this pullback square with the pullback square that defines i∗(T )-Alg!, we then
obtain the following commutative diagram in V -CAT whose outer rectangle is a pullback:

i∗(T )-Alg! [i∗(T ),V ] [T ,V ]

C [J op,V ] [K op,V ].

[τJ ,1] [τ,1]

[iop,1]Nj

Mi∗(T )

U i∗(T )

But since the lower composite is equal to Nk : C → [K op,V ], we deduce that T -Alg! ∼=
i∗(T )-Alg! in V -CAT/C by the definition of T -Alg! as a pullback.
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From Lemma 5.17 we immediately deduce the following theorem:

5.18. Theorem. Suppose that V is complete and cocomplete, and let K ↪→ C be a
subcategory of arities that is contained in some small and strongly amenable subcategory
of arities. Then K ↪→ C is strongly amenable.

6. Examples

In this section, we shall establish some classes of examples of amenable and strongly
amenable subcategories of arities.

6.1. Eleutheric subcategories of arities.

We shall first show that every (possibly large) eleutheric [32, 34] subcategory of arities is
amenable. Throughout this subsection, as in §4 and §5, we let j : J ↪→ C be a (possi-
bly large) subcategory of arities in an arbitrary V -category C enriched in a symmetric
monoidal closed category V with equalizers.

6.1.1. Definition. The subcategory of arities j : J ↪→ C is eleutheric [32, 34] if
every V -functor H : J → C has a left Kan extension along j that is preserved by each
C (J,−) : C → V (J ∈ obJ ). Writing ΦJ for the class of (possibly large) weights
C (j−, C) : J op → V (C ∈ obC ), we have that J is eleutheric iff C is ΦJ -cocomplete
and each C (J,−) : C → V (J ∈ obJ ) preserves ΦJ -colimits [34, Definition 3.3]. The
repletion of the full sub-V ′-category ΦJ ↪→ [J op,V ] is the V -category j-Ner(V ).

We shall show in Corollary 6.1.15 below that if J is eleutheric, then a V -monad on C
is J -nervous iff it is J -ary in the sense of the following definition:

6.1.2. Definition. A V -endofunctor T : C → C is J -ary [32, 34] (or j-ary) if T
preserves ΦJ -colimits, or equivalently if T preserves left Kan extensions along j. A V -
monad T on C is J -ary if its underlying V -endofunctor is J -ary.

6.1.3. Example. We have the following examples of eleutheric subcategories of arities
J ↪→ C and their associated J -ary V -endofunctors, in view of [34, Examples 3.9 and
4.7]:

(1) Suppose that V is locally α-presentable as a closed category (in the sense of [21,
7.4]). If C is a locally α-presentable V -category and Cα is a skeleton of the full sub-
V -category of C consisting of the (enriched) α-presentable objects, then Cα ↪→ C is a
small and eleutheric subcategory of arities, and the Cα-ary V -endofunctors are precisely
the V -endofunctors that preserve small conical α-filtered colimits. In fact, every small
subcategory of arities in this locally presentable setting is contained in some small and
eleutheric subcategory of arities [34, Example 3.9(1)]. When C = V , the subcategory of
arities Vα ↪→ V is a system of arities (4.4), because the unit object I is α-presentable
and the α-presentable objects are closed under the monoidal product [32, Example 3.4].
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In particular, when C = V = Set, the system of arities FinCard ↪→ Set consisting of the
finite cardinals is eleutheric, and the FinCard-ary endofunctors are precisely the finitary
endofunctors.

(2) Suppose that V has (conical) finite copowers n · I (n ∈ N) of the unit object I. Then
there is a small system of arities (4.4) j : SF(V ) ↣ V , where SF(V ) is the V -category
with ob (SF(V )) = N and SF(V )(n,m) = V (n ·I,m ·I) for all n,m ∈ N (see [32, Example
3.7]). Provided that V is complete, cocomplete, and cartesian closed, or more generally
a π-category in the sense of [11], the system of arities j : SF(V ) ↣ V is eleutheric.
In the case where V is cartesian closed, SF(V ) is isomorphic to the free V -category on
FinCard by [23, §3], and the SF(V )-ary V -endofunctors are precisely the strongly finitary
V -endofunctors of Kelly and Lack [23, §3].

(3) The inclusion {I} ↪→ V of the unit object is a small and eleutheric system of arities
(see also [32, Example 3.6]), and the {I}-ary V -endofunctors on V are precisely those
V -endofunctors that are isomorphic to X ⊗ (−) : V → V for some X ∈ obV .

(4) Given any V -category C , the identity V -functor C ↪→ C is an eleutheric subcategory
of arities, and the C -ary V -endofunctors are arbitrary V -endofunctors. When C = V ,
the subcategory of arities V ↪→ V is a system of arities (4.4) (see also [32, Example 3.5]).

(5) If V is complete and A is a small V -category, then the Yoneda embedding yA :
A op ↣ [A ,V ] is a small and eleutheric subcategory of arities, and a V -endofunctor on
[A ,V ] is yA -ary iff it is cocontinuous.

(6) Suppose that V is complete and cocomplete, and let Φ be a class of small weights that
satisfies Axiom A of Lack-Rosický [26] and is locally small in the sense of [25, Definition
8.10] (as in [26, p. 370]). Let T be a Φ-theory, i.e. a small V -category T with Φ-limits, and
let C = Φ-Mod(T ) be the V -category of models of T in V , i.e. the full sub-V -category
of [T ,V ] consisting of the Φ-continuous V -functors. As in [26], we call such V -categories
C locally Φ-presentable. The (corestricted) Yoneda embedding yΦ : T op ↣ C is then an
eleutheric subcategory of arities, and a V -endofunctor on C = Φ-Mod(T ) is yΦ-ary iff it
preserves small Φ-flat colimits, so that the yΦ-ary V -monads on C = Φ-Mod(T ) are the
Φ-accessible V -monads of [26].

(7) As a special case of (6), let D be any small class of small categories that is a sound
doctrine in the sense of [1], and suppose that V is locally D-presentable as a ⊗-category
in the sense of [26, §5.4]. Then we can take Φ := ΦD to be the saturation of the class
of (small) weights for conical D-limits and cotensors by D-presentable objects of V . A
V -endofunctor on ΦD-Mod(T ) is then yΦD-ary iff it preserves small ΦD-flat colimits, which
is equivalent to its preservation of small conical D-filtered colimits [34, Lemma 4.8].

We now wish to characterize eleutheric subcategories of arities in terms of free co-
completions for classes of weights. Recall from [25, Remarks 3.7] and [22, Theorem 5.35]
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that if Φ is a class of weights, then a V -functor F : A → B presents B as a free Φ-
cocompletion of A if B is Φ-cocomplete and for any Φ-cocomplete V -category X , com-
position with F induces an equivalence of categories Φ-Cocts(B,X )

∼−→ V -CAT(A ,X ),
where Φ-Cocts(B,X ) is the full subcategory of V -CAT(B,X ) consisting of the Φ-
cocontinuous V -functors.

6.1.4. Remark. We now recall the following equivalent characterizations of small ele-
utheric subcategories of arities obtained in [34, Propositions 3.6 and 3.8], when V is
complete and cocomplete:

1. J is eleutheric iff j : J ↪→ C presents C as a free ΦJ -cocompletion of J .

2. J is eleutheric iff there is a class of small weights Ψ such that j : J ↪→ C presents
C as a free Ψ-cocompletion of J (in which case a V -endofunctor on C is J -ary iff
it is Ψ-cocontinuous [34, Proposition 4.2]).

The first author showed in [32, Theorem 7.8] that if V is only assumed to have equalizers
and j : J ↪→ V is a (possibly large) system of arities in V (4.4), then J is eleutheric iff
j : J ↪→ V presents V as a free ΦJ -cocompletion of J . We now wish to simultaneously
generalize the latter result and (1) above to the more general context of the present sub-
section. We first require the following result, which is a generalization of [32, Proposition
7.9].

6.1.5. Proposition. Let X be a ΦJ -cocomplete V -category, and let H : C → X be a
V -functor. If H preserves ΦJ -colimits, then H is a left Kan extension along j : J ↪→ C ,
and the converse also holds if J is eleutheric.

Proof. We first deduce by [22, Theorem 5.29] that H is a left Kan extension along
j : J ↪→ C iffH preserves the weighted colimits C = C (j−, C)∗j (C ∈ obC ) that exhibit
j as a dense V -functor, since these weighted colimits constitute a density presentation for
j (see [22, §5.4] and also 6.3.5 below). So if H preserves ΦJ -colimits, then H certainly
preserves the given weighted colimits and is thus a left Kan extension along j. Supposing
now that J is eleutheric, let F : J → X be a V -functor, and let us show that LanjF :
C → X (which exists because X is ΦJ -cocomplete) preserves ΦJ -colimits. Recall that
j-Ner(V ) is a V -category and may be described as the repletion of ΦJ ↪→ [J op,V ]
(6.1.1). Since X is ΦJ -cocomplete, the V -functor F : J → X induces a V -functor

(−)∗F : j-Ner(V ) → X , and LanjF then factors as the composite C
Nj−→ j-Ner(V )

(−)∗F−−−→
X . The eleuthericity of J entails that the equivalence Nj sends each ΦJ -colimit in C
to a pointwise colimit. But (−) ∗F sends pointwise colimits to colimits in X [22, (3.23)],
so that the composite LanjF preserves ΦJ -colimits.

6.1.6. Corollary. Suppose that j : J ↪→ C is eleutheric. Then a V -monad T on C
is J -ary iff its underlying V -endofunctor T : C → C is a left Kan extension along j.

Given a ΦJ -cocomplete V -category X , we write LX for the full subcategory of
V -CAT(C ,X ) consisting of those V -functors that are left Kan extensions along j.
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6.1.7. Lemma. j : J ↪→ C presents C as a free ΦJ -cocompletion of J iff LX =
ΦJ -Cocts(C ,X ) for each ΦJ -cocomplete V -category X .

Proof. For each ΦJ -cocomplete V -category X , we have an adjunction

V -CAT(J ,X ) V -CAT(C ,X )

Lanj

V -CAT(j,X )

⊢

with Lanj fully faithful because j is fully faithful. The functor V -CAT(j,X ) therefore
restricts to an equivalence E1 : LX

∼−→ V -CAT(J ,X ). Noting that ΦJ -Cocts(C ,X ) ⊆
LX by Proposition 6.1.5, consider the following commutative diagram, where
E2 : ΦJ -Cocts(C ,X ) → V -CAT(J ,X ) is defined to be the given composite:

ΦJ -Cocts(C ,X )

LX V -CAT(J ,X ).

E2

E1

Since the inclusion ΦJ -Cocts(C ,X ) ↪→ LX is replete and E1 is an equivalence, one
readily verifies that E2 is an equivalence iff ΦJ -Cocts(C ,X ) = LX . But j : J ↪→ C
presents C as a free ΦJ -cocompletion of J iff E2 : ΦJ -Cocts(C ,X ) → V -CAT(J ,X ) is
an equivalence for each ΦJ -cocomplete V -category X , whence the desired result follows.

6.1.8. Proposition. If J is eleutheric, then j : J ↪→ C presents C as a free ΦJ -
cocompletion of J . If V is ΦJ -cocomplete, then the converse also holds.

Proof. If J is eleutheric, then C is ΦJ -cocomplete and LX = ΦJ -Cocts(C ,X ) for
each ΦJ -cocomplete V -category X by Proposition 6.1.5, so that j : J ↪→ C presents
C as a free ΦJ -cocompletion of J by Lemma 6.1.7. Conversely, suppose that V is ΦJ -
cocomplete and that j : J ↪→ C presents C as a free ΦJ -cocompletion of J . Then
LV = ΦJ -Cocts(C ,V ) by Lemma 6.1.7. But each C (J,−) : C → V (J ∈ obJ ) is a left
Kan extension of J (J,−) : J → V along j and hence is ΦJ -cocontinuous, proving that
J is eleutheric.

We now show that eleutheric subcategories of arities are amenable. Given a J -theory T ,
recall from 4.11 and Remark 4.18 that the V ′-functor ϕT : J → T -Alg! is a j-relative
left adjoint for UT : T -Alg! → C .

6.1.9. Theorem. Every eleutheric subcategory of arities J ↪→ C is amenable.

Proof. Let T be a J -theory. By Remark 5.6, it suffices to show that the V ′-functor
UT : T -Alg! → C has a left adjoint. Since ϕT : J → T -Alg! is a j-relative left adjoint
for UT : T -Alg! → C , it is equivalent by [32, Lemma 8.4] to show that the V ′-enriched
left Kan extension of ϕT : J → T -Alg! along j : J → C exists. It therefore suffices
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to show for each C ∈ obC that T -Alg! admits the weighted colimit C (j−, C) ∗ ϕT .
By (the V ′-enriched version of) Proposition 5.4, it then suffices to show that C admits
the weighted colimit C (j−, C) ∗ UT ϕT , and that this colimit is J -stable; but since
UT ϕT = TT : J → C (4.11), this follows from J being eleutheric.

From Theorems 5.13 and 6.1.9, we thus obtain an equivalence between J -theories and
J -nervous V -monads on C for each eleutheric subcategory of arities J ↪→ C . We now
proceed to show (see Corollary 6.1.15 below) that if J is eleutheric, then J -nervous
V -monads coincide with J -ary V -monads (6.1.2).

6.1.10. Lemma. Let G : A → X and H : B → X be strictly monadic V -functors, let
F be left adjoint to G with unit η : 1 ⇒ GF , and let K : A → B be a V -functor with
HK = G. Suppose that η : 1 ⇒ GF = HKF exhibits KF as left adjoint to H. Then
K : A → B is an isomorphism.

Proof. By strict monadicity of G and H, we may suppose without loss of generality that
(A , G) =

(
T-Alg, UT

)
and (B, H) =

(
S-Alg, US

)
for V -monads T = (T, η, µ) and S =

(S, ζ, ν) on X , so that K = α∗ : T-Alg → S-Alg for a unique V -monad morphism α : S →
T (see the first paragraph of §5). Now α∗ sends each free T-algebra (TX, µX) (X ∈ obX )
to the S-algebra (TX, µX ◦ αTX), and the fact that α : S → T is a V -monad morphism
entails that αX : SX → TX is an S-algebra morphism αX : (SX, νX) → (TX, µX ◦ αTX)
that commutes with the unit components ζX : X → SX and ηX : X → TX. But
ηX : X → TX exhibits (TX, µX ◦ αTX) as a free S-algebra on X by assumption, so that
αX : (SX, νX) → (TX, µX ◦ αTX) is an isomorphism (being the canonical isomorphism
between two free S-algebras on X). So α : S → T is an isomorphism, and hence K = α∗

is an isomorphism.

6.1.11. Lemma. Let G : A → C and H : B → C be strictly monadic V -functors, let
F be left adjoint to G with unit η : 1 ⇒ GF , and let K : A → B be a ΦJ -cocontinuous
V -functor with HK = G. Suppose that ηj : j ⇒ GFj = HKFj exhibits KFj as a
j-relative left adjoint for H (4.10). Then K : A → B is an isomorphism.

Proof. To show that K is an isomorphism, it suffices by Lemma 6.1.10 to show that
η : 1C ⇒ GF = HKF exhibits KF as left adjoint to H. Since 1 : Fj ⇒ Fj exhibits F
as LanjFj (4.10) and K : A → B preserves left Kan extensions along j, we deduce that
1 : KFj ⇒ KFj exhibits KF as LanjKFj. By assumption, ηj : j ⇒ GFj = HKFj
exhibits KFj as a j-relative left adjoint for H, and so we deduce by 4.10 that η : 1C ⇒
GF = HKF exhibits KF : C → B as left adjoint to H : B → C .

6.1.12. Definition. Let G : A → C be a V -functor, so that (A , G) is a V -category
over C . We say that G, or (A , G), is strictly J -ary monadic [34, Definition 4.10] if
there is a J -ary V -monad T on C (6.1.2) such that A ∼= T-Alg in V -CAT/C .

6.1.13. A strictly J -ary monadic V -functor G : A → C is J -tractable by Lemma
4.17, and G creates ΦJ -colimits by [34, Proposition 4.11] and thus conditionally preserves
them (in the sense defined just before Proposition 5.12). In particular, if C has ΦJ -
colimits, then A has them and G preserves them.
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6.1.14. Theorem. Suppose that J ↪→ C is eleutheric, and let G : A → C be a V -
functor. Then G is strictly J -ary monadic (6.1.12) iff G is strictly J -algebraic (4.29).

Proof. If G is strictly J -algebraic, then we deduce from Theorem 5.14 that G is strictly
monadic, and the associated V -monad on C is J -nervous. Since J is eleutheric, the
V -category C has ΦJ -colimits, and such colimits are J -flat. Thus, the J -nervous V -
monad T preserves ΦJ -colimits by Proposition 5.12 (and the amenability of J established
in Theorem 6.1.9), so that T is J -ary and G is strictly J -ary monadic.

Suppose conversely that G is strictly J -ary monadic. Then the V -functors G :
A → C and UStrG : StrG-Alg! → C are strictly monadic (the latter by Proposition
5.5 and Theorem 6.1.9), and we have UStrG ◦ E(A ,G) = G. We write F for the left
adjoint of G and η : 1 ⇒ GF = UStrGE(A ,G)F for the unit, so that ηj : j ⇒ GFj
exhibits Fj as a j-relative left adjoint for G (by 4.10) and we may identify StrG with the
J -theory A op

Fj of Proposition 4.34. We deduce from the final assertion of Proposition

4.34 that ηj : j ⇒ GFj = UStrGE(A ,G)Fj exhibits E(A ,G)Fj as a j-relative left adjoint

for UStrG. We now show that E(A ,G) : A → StrG-Alg! is ΦJ -cocontinuous. Since the

fully faithful MStrG : StrG-Alg! ↣ [StrG,V ] reflects colimits, it suffices to show that
MStrG ◦E(A ,G) = m̃G : A → [StrG,V ] preserves ΦJ -colimits, for which it suffices to show
that each mGJ : A → V (J ∈ obJ ) preserves ΦJ -colimits (where mG : StrG → [A ,V ]
is defined as in 4.22). We have

mGJ = mGτGJ = C (jJ,G−) = C (J,G−),

and C (J,G−) preserves ΦJ -colimits because G preserves them (6.1.13) and C (J,−)
preserves them (since J is eleutheric). We finally deduce from Lemma 6.1.11 that
E(A ,G) : A → StrG-Alg! is an isomorphism, and thus G is strictly J -algebraic.

We immediately obtain the following from Proposition 5.11 and Theorems 6.1.9 and 6.1.14:

6.1.15. Corollary. Suppose that J ↪→ C is eleutheric, and let T be a V -monad on
C . Then T is J -nervous iff T is J -ary.

From Theorems 4.27, 5.13, and 6.1.9 we now deduce the following theorem, part of which
(in view of Proposition 4.5) generalizes the equivalence between J -theories and J -ary
V -monads on V for an eleutheric system of arities j : J ↣ V (4.4) previously established
by the first author in [32, Theorem 11.8].

6.1.16. Theorem. Let J ↪→ C be an eleutheric subcategory of arities. Then we have
a structure–semantics adjunction Str ⊣ Sem : ThJ (C )op → J -Tract(C ) between J -
theories and J -tractable V -categories over C , as well as an equivalence MndJ (C ) ≃
ThJ (C ) between J -theories and J -nervous V -monads on C , equivalently J -ary V -
monads on C (6.1.15).

6.1.17. Example. The structure–semantics adjunction of Theorem 6.1.16 specializes to
recover the following structure–semantics adjunctions previously established in the liter-
ature (where each subcategory of arities is eleutheric by Example 6.1.3):
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(1) By taking C = V = Set and J = FinCard ↪→ Set, we recover the structure–
semantics adjunction between ordinary Lawvere theories and tractable categories over
Set established by Lawvere in [27].

(2) By taking C to be an arbitrary V -category enriched in an arbitrary symmetric
monoidal closed category V with equalizers and J = C ↪→ C , we recover the structure–
semantics adjunction between C -theories and strongly tractable V -categories over C es-
tablished by Dubuc in [16]. In the latter paper, it was also assumed that V is complete
and well-powered. Given the equivalence between C -theories and arbitrary V -monads on
C (see Example 6.1.3), we also recover Dubuc’s structure–semantics adjunction between
V -monads on C and strongly tractable V -categories over C established in [15, Page 74].

(3) By taking C = V a symmetric monoidal closed π-category [11] (e.g. a complete and
cocomplete cartesian closed category) and J = SF(V ) ↣ V the eleutheric system of
arities consisting of the natural numbers, we recover the structure–semantics adjunction
between SF(V )-theories and SF(V )-tractable V -categories over V established by Borceux
and Day in [11, Theorem 2.4.2].

6.2. Bounded and eleutheric subcategories of arities.

In this subsection, we shall show that if J ↪→ C is an eleutheric subcategory of arities that
satisfies the further condition of boundedness (6.2.2), then not only is J itself strongly
amenable, but every subcategory of arities that is contained in J is strongly amenable
(see Theorem 6.2.4).

6.2.1. Throughout §6.2, we assume that our symmetric monoidal closed V is complete
and cocomplete, and that V is a closed factegory [34, Definition 6.1.2], meaning that
V is equipped with an enriched (not necessarily proper) factorization system (E ,M )
[31]. A V -factegory [34, Definition 6.1.5] is then a V -category X equipped with an
enriched factorization system (EX ,MX )9 that is compatible with (E ,M ), meaning that
each X (X,−) : X → V (X ∈ obX ) sends MX -morphisms to M -morphisms. A V -
factegory X is proper when (EX ,MX ) is proper in the enriched sense, meaning that EX

is contained in the V -epimorphisms and MX in the V -monomorphisms [31, Definition
2.2]. If X is tensored and cotensored, then (EX ,MX ) is proper in the enriched sense iff
it is proper in the ordinary sense [31, Proposition 2.4]. A cocomplete (proper) V -factegory
[34, Definition 6.1.5] is a (proper) V -factegory X that is cocomplete as a V -category and
has conical cointersections (i.e. wide pushouts) of arbitrary families of EX -morphisms
with common domain.

For the remainder of §6.2, we let C be a cotensored V -category that is also a co-
complete V -factegory, and we suppose either that the enriched factorization system
(E ,M ) = (EC ,MC ) on C is proper or that C is E -cowellpowered (meaning that each
C ∈ obC has just a small set of E -quotients, i.e. isomorphism classes of E -morphisms
with domain C).

9We shall usually omit these subscripts when that is unlikely to cause confusion.
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6.2.2. Definition. Let α be a regular cardinal, and let X and Y be V -factegories
with small conical α-filtered colimits. A V -functor F : X → Y is α-bounded pro-
vided that for every small α-filtered diagram D : A → X0 and every M -cocone m =
(mA : DA → X)A∈A on D (meaning that m is a cocone on D such that each mA ∈ M ),
if the induced morphism m : colimD → X lies in E , then the induced morphism
Fm : colimFD → FX lies in E . Thus, we say that F is α-bounded iff F : X → Y
preserves the E -tightness of small α-filtered M -cocones.10 If (EX ,MX ) and (EY ,MY )
are both the trivial factorization system (Iso,All), then F is α-bounded iff F preserves
small conical α-filtered colimits.

An object C of C is α-bounded if the V -functor C (C,−) : C → V is α-bounded.
A subcategory of arities J ↪→ C is α-bounded if J is small and each J ∈ obJ is
α-bounded as an object of C , and J ↪→ C is bounded if it is α-bounded for some
regular cardinal α.

6.2.3. Example. We have the following examples of bounded subcategories of arities
from [34, Example 6.1.12]:

(1) Every small subcategory of arities in a locally bounded V -category C [33] enriched in a
locally bounded closed category V [22, Chapter 6] is bounded, with respect to the specified
proper factorization system that C is required to carry as a locally bounded V -category.
In particular (by [33, Example 5.14 and Proposition 7.1]), every small subcategory of
arities J ↪→ C in a locally presentable V -category C enriched in a locally presentable
closed category V is bounded.

(2) If small (conical) filtered colimits commute with (conical) finite powers in V , i.e. if
each (−)n : V → V (n ∈ N) preserves small filtered colimits, then the system of arities
j : SF(V ) ↣ V consisting of the natural numbers (6.1.3) is ℵ0-bounded with respect
to the trivial factorization system (Iso,All), because V (n · I,−) ∼= (−)n for each n ∈ N.
In fact, because the diagonal functor A → A × A for a small filtered category A
is final, it suffices that each X × (−) : V → V (X ∈ obV ) preserve small filtered
colimits. In particular, this is true when V is cartesian closed, and more generally when
V is a π-category [11]. It is also true when V0 is locally finitely presentable, by [21, 3.8].
Furthermore, this is also true for the symmetric monoidal closed category Met of extended
metric spaces and non-expanding mappings by [39, Corollary 2.4], even though Met is not
locally finitely presentable (although it is locally ℵ1-presentable by [28, Examples 4.5(3)])
and is not known to be a π-category.

(3) The system of arities {I} ↪→ V containing just the unit object is ℵ0-bounded with
respect to the trivial factorization system (Iso,All).

(4) For a small V -category A , the subcategory of arities yA : A op ↣ [A ,V ] is ℵ0-
bounded with respect to the trivial factorization system (Iso,All).

10This terminology comes from Kelly [20, 2.3].
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(5) As in Example 6.1.3, let Φ be a locally small class of small weights satisfying Axiom
A of [26], and let C = Φ-Mod(T ) be the V -category of models of a Φ-theory T . If V is
a locally bounded closed category that is E -cowellpowered, then yΦ : T op ↣ Φ-Mod(T )
is a bounded subcategory of arities with respect to a suitable proper factorization system
carried by Φ-Mod(T ).

(6) Let ΦD be the class of small weights determined by a sound doctrine D as in Example
6.1.3(7), where V is locally D-presentable as a ⊗-category. Since D is a small class of
small categories, we can find a regular cardinal α such that each D ∈ D is α-small. It
then follows that yΦD : T op ↣ ΦD-Mod(T ) is an α-bounded subcategory of arities with
respect to the trivial factorization system (Iso,All).

In [35, Theorem 9.1], results pertaining to presentations of J -ary V -monads were
used to prove that if J ↪→ C is contained in some bounded and eleutheric subcategory
of arities, then UT : T -Alg! → C is strictly monadic for every J -pretheory T . From
this we obtain the following result:

6.2.4. Theorem. Let J ↪→ C be a subcategory of arities that is contained in some
bounded and eleutheric subcategory of arities. Then J ↪→ C is strongly amenable.

6.2.5. Example. Every small subcategory of arities in a locally presentable V -category
C enriched in a locally presentable closed category V is contained in some bounded and
eleutheric subcategory of arities by Examples 6.1.3(1) and 6.2.3(1). By Example 6.2.3(1),
every small and eleutheric subcategory of arities in a locally bounded V -category enriched
in a locally bounded closed category V satisfies the hypotheses of Theorem 6.2.4. In view
of Example 6.2.3, the examples (2), (3), (5), and (7) of Example 6.1.3 also satisfy the
hypotheses of Theorem 6.2.4.

From Theorems 4.27, 5.7, 5.13, and 6.2.4 we immediately obtain the following result:

6.2.6. Theorem. Let J ↪→ C be a subcategory of arities that is contained in some
bounded and eleutheric subcategory of arities. Then we have an idempotent structure–
semantics adjunction Str ⊣ Sem : PrethJ (C )op → J -Tract(C ) between J -pretheories
and J -tractable V -categories over C , from which we obtain an idempotent adjunction
m ⊣ t : Mnd(C ) → PrethJ (C ) between J -pretheories and V -monads on C . This ad-
junction yields an equivalence MndJ (C ) ≃ ThJ (C ) between J -theories and J -nervous
V -monads on C (which coincide with J -ary V -monads on C if J itself is eleutheric,
6.1.15).

6.2.7. Remark. One of the central results of Bourke and Garner [12, Theorem 6] may
be formulated in the new axiomatics of the present paper as the result that every small
subcategory of arities in a locally presentable V -category C enriched in a locally pre-
sentable closed category V is strongly amenable. In view of Example 6.2.5, we may now
recover this result from Theorem 6.2.4.
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6.3. Small subcategories of arities in the locally bounded sketchable
context.

In this subsection, we shall show that if V is a locally bounded closed category, then every
small subcategory of arities J ↪→ C in a V -sketchable V -category C (6.3.2) is strongly
amenable.

6.3.1. We assume throughout this subsection that V is locally bounded as a closed
category; see [22, Chapter 6] and [33, Definition 5.1] for two equivalent formulations
of the definition, which we shall not need. Note in particular that V is complete and
cocomplete, and has an enriched proper factorization system (E ,M ) (6.2.1). We have
the following examples of locally bounded closed categories from [33]:

• Kelly showed in [22, Chapter 6] that locally bounded closed categories include all locally
presentable closed categories and the cartesian closed categories CGTop, CGHTop, and
QTop of compactly generated topological spaces, compactly generated Hausdorff spaces,
and quasitopological spaces.

• Every commutative unital quantale (i.e. a symmetric monoidal closed category that is
posetal and cocomplete) is a locally bounded closed category [33, Example 5.15].

• Given that V is locally bounded as a closed category, it is shown in [24, Theorem 5.6]
that V -Cat is locally bounded as a closed category.

• Any cocomplete locally cartesian closed category with a (small) generator and arbi-
trary cointersections of epimorphisms is a locally bounded cartesian closed category
[33, Corollary 5.11].

• Specializing the previous example, the concrete quasitoposes of Dubuc [17], and in
particular the convenient categories of smooth spaces of Baez–Hoffnung [6], are locally
bounded cartesian closed categories [33, Example 5.17]. These categories are not in
general locally presentable, and include such examples as the categories of bornological
sets, pseudotopological spaces, and various categories of convergence spaces [17].

• Generalizing the previous example, if V0 is a topological category over Set, then the
closed category V is locally bounded [33, Proposition 5.13(1)]. In particular, every
cartesian closed topological category over Set is a locally bounded cartesian closed cat-
egory. For example, given a productive class C of topological spaces [18], the full sub-
category TopC of Top consisting of the C-generated spaces is a locally bounded cartesian
closed category [33, Example 5.19]. Examples of TopC include the categories of com-
pactly generated spaces, core compactly generated spaces, locally compactly generated
spaces, and sequentially generated spaces [18, 3.3].

Moreover, every topological category over Set carries a canonical (generally non-cartesian)
symmetric monoidal closed structure [40, §2.2] with respect to which it is a locally
bounded closed category [33, Example 5.18]. For example, Top and Meas (the category
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of measurable spaces and measurable maps) become locally bounded closed categories
with respect to this (non-cartesian) symmetric monoidal closed structure.

6.3.2. For the remainder of §6.3, we fix a class Φ of small weights and a small Φ-theory
T, i.e. a small Φ-complete V -category. We have the full sub-V -category Φ-Cts(T,V ) ↪→
[T,V ] consisting of the T-models in V , i.e. the Φ-continuous V -functors T → V . We
assume for the remainder of §6.3 that the V -category C is equivalent to Φ-Cts(T,V ) for
some small Φ-theory T, which we express by saying that C is a V -sketchable V -category;
we shall assume without loss of generality that C = Φ-Cts(T,V ).

6.3.3. Since C = Φ-Cts(T,V ) contains the representables, the Yoneda embedding y :
Top ↣ [T,V ] factors through Φ-Cts(T,V ) by way of a fully faithful V -functor yΦ : Top ↣
Φ-Cts(T,V ), which is dense by [22, Theorem 5.13] because y is dense. If J ↪→ C =
Φ-Cts(T,V ) is a small full sub-V -category that contains the representables T(T,−) :
T → V (T ∈ obT), then the dense and fully faithful yΦ : Top ↣ Φ-Cts(T,V ) factors
through j : J ↪→ Φ-Cts(T,V ) by way of a fully faithful V -functor k : Top ↣ J , so
that j and k are both dense by [22, Theorem 5.13]. In this case, we therefore have that
J ↪→ Φ-Cts(T,V ) is a small subcategory of arities.

6.3.4. Lemma. Let j : J ↪→ Φ-Cts(T,V ) be a small full sub-V -category that contains
the representables T(T,−) : T → V (T ∈ obT). Then a presheaf X : J op → V is a
j-nerve iff (i) X is a right Kan extension of its restriction along kop : T ↣ J op (6.3.3)
and (ii) X ◦ kop : T → V is Φ-continuous.

Proof. The V -functor [kop, 1] : [J op,V ] → [T,V ] has right adjoint Rankop : [T,V ] →
[J op,V ], which is fully faithful because k is fully faithful. Since V is locally bounded,
we know by [33, Theorem 11.8] that Φ-Cts(T,V ) is reflective in [T,V ]. So the composite

Φ-Cts(T,V ) ↪→ [T,V ]
Rankop−−−−→ [J op,V ]

is a fully faithful right adjoint, which is in fact isomorphic to Nj : Φ-Cts(T,V ) →
[J op,V ], as we now show. Each J ∈ obJ ⊆ ob (Φ-Cts(T,V )) is a V -functor J : T → V
and so by the Yoneda lemma is isomorphic to [T,V ](y−, J) = J (k−, J). Invoking [22,
(3.7) and (4.9)], we then have

(RankopM) J = {J (k−, J) ,M} ∼= {J,M}
∼= [T,V ](J,M) = Φ-Cts(T,V )(J,M) = (NjM) J

V -naturally in M ∈ Φ-Cts(T,V ) and J ∈ J op. So a presheaf X : J op → V is a j-nerve
(i.e. lies in the essential image of Nj) iff X lies in the essential image of the reflective

embedding Φ-Cts(T,V ) ↪→ [T,V ]
Rankop−−−−→ [J op,V ], which is equivalent to X satisfying (i)

and (ii).
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6.3.5. Let K : A → B be a V -functor. Recall from [22, §5.4] that a weighted colimit
in B is K-absolute if it is preserved by the nerve V ′-functor NK : B → [A op,V ]. A
density presentation for a fully faithful V -functor K : A ↣ B is then a class Ψ of
weighted diagrams in B such that each diagram in Ψ has a K-absolute colimit and B
is the closure of A under Ψ-colimits. By [22, Theorem 5.19], a fully faithful V -functor
K : A ↣ B is dense iff it has a density presentation, and when A is small we can (and
shall) assume that the density presentation consists of small weighted diagrams.

6.3.6. Proposition. Let j : J ↪→ Φ-Cts(T,V ) be a small full sub-V -category that
contains the representables T(T,−) : T → V (T ∈ obT), and let Ψ be a density presen-
tation for the fully faithful and dense V -functor k : Top ↣ J (6.3.3). Then a presheaf
X : J op → V is a j-nerve iff X preserves Ψ-limits and X◦kop : T → V is Φ-continuous.

Consequently, for a J -pretheory T , a V -functor M : T → V is a (non-concrete)
T -algebra iff M ◦ τ : J op → V preserves Ψ-limits and M ◦ τ ◦ kop : T → V is Φ-
continuous.

Proof. The second assertion follows from the first because a V -functor M : T → V is a
T -algebra iff M ◦ τ : J op → V is a j-nerve. We know from Lemma 6.3.4 that a presheaf
X : J op → V is a j-nerve iff X ∼= Rankop (X ◦ kop) and X ◦ kop is Φ-continuous. But
X ∼= Rankop (X ◦ kop) iff X preserves Ψ-limits by [22, Theorem 5.29].

6.3.7. Let J ↪→ Φ-Cts(T,V ) be a small full sub-V -category that contains the repre-
sentables T(T,−) : T → V (T ∈ obT), and let Ψ be a density presentation for the fully
faithful and dense V -functor k : Top ↣ J (6.3.3). Given a J -pretheory T , we can
equip the small V -category T with the structure of an enriched limit sketch (T ,Γ) (see
[22, §6.3] or [33, §11]) as follows. We equip T with the cylinders obtained by applying the
V -functor τ : J op → T to the Ψ-limit cylinders in J op, and with the cylinders obtained
by applying the V -functor τ ◦ kop : T → T to the Φ-limit cylinders in T. A model of
the limit sketch (T ,Γ) is then a V -functor M : T → V that sends all of these cylinders
to limit cylinders in V , and we write (T ,Γ)-Mod ↪→ [T ,V ] for the full sub-V -category
consisting of the models of (T ,Γ).

6.3.8. Proposition. Let J ↪→ Φ-Cts(T,V ) be a small full sub-V -category that contains
the representables T(T,−) : T → V (T ∈ obT), and let Ψ be a density presentation for
the fully faithful and dense V -functor k : Top ↣ J (6.3.3). Let T be a J -pretheory,
and let (T ,Γ) be the associated limit sketch of (6.3.7). Then T -Alg = (T ,Γ)-Mod as
full sub-V -categories of [T ,V ].

Proof. It is immediate that a V -functor M : T → V is a model of the limit sketch
(T ,Γ) iff M ◦ τ : J op → V preserves Ψ-limits and M ◦ τ ◦ kop : T → V is Φ-continuous.
The result then immediately follows from Proposition 6.3.6.

6.3.9. Proposition. Let J ↪→ Φ-Cts(T,V ) be a small full sub-V -category that contains
the representables T(T,−) : T → V (T ∈ obT), and let T be a J -pretheory. Then
T -Alg ↪→ [T ,V ] is reflective. If V is E -cowellpowered, then T -Alg is a locally bounded
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and E -cowellpowered V -category, and the inclusion T -Alg ↪→ [T ,V ] is a bounding right
adjoint [33, Definition 4.33].

Proof. The result follows immediately from Proposition 6.3.8 and [33, Theorem 11.5],
noting that the first assertion also follows from [22, Theorem 6.11] (in view of Proposition
6.3.8).

6.3.10. Lemma. Let j : J ↪→ Φ-Cts(T,V ) be a small full sub-V -category that con-
tains the representables T(T,−) : T → V (T ∈ obT). Then J is a strongly amenable
subcategory of arities.

Proof. Let T be a J -pretheory. Then T -Alg! is a V -category because J is small and
V is complete. In view of 4.9, it suffices to show that the V -functor WT : T -Alg →
j-Ner(V ) has a left adjoint. The composite V -functor T -Alg

WT

−−→ j-Ner(V ) ↪→ [J op,V ]

factors as the composite T -Alg ↪→ [T ,V ]
[τ,1]−−→ [J op,V ]. The inclusion T -Alg ↪→ [T ,V ]

has a left adjoint by Proposition 6.3.9, while [τ, 1] has a left adjoint given by left Kan
extension along τ (since T is small and V is cocomplete). So the composite V -functor

T -Alg
WT

−−→ j-Ner(V ) ↪→ [J op,V ] has a left adjoint, which restricts to a left adjoint for
WT .

We can now prove our central results of this subsection:

6.3.11. Theorem. Let V be a locally bounded closed category, and let C be a V -sketchable
V -category (6.3.2).

1. Every small subcategory of arities J ↪→ C is strongly amenable.

2. Every small full sub-V -category J ↪→ C is contained in a small and strongly amenable
subcategory of arities.

Proof. Without loss of generality, C = Φ-Cts(T,V ) for a small Φ-theory T, by 6.3.2. It
suffices to prove (2), because (1) then follows by Theorem 5.18. Given J ↪→ C as in (2),
let us write K := J ∪ {T(T,−) | T ∈ obT} ↪→ C . Then K is a small subcategory of
arities (6.3.3) that contains J and is strongly amenable by Lemma 6.3.10.

The V -category V is itself V -sketchable when we take Φ to be the empty class of weights
and the small Φ-theory (i.e. V -category) T to be the unit V -category. Any small full
sub-V -category of V that contains the unit object is automatically dense by 6.3.3, and
hence is a small subcategory of arities. We then immediately obtain the following result
from Lemma 6.3.10 or Theorem 6.3.11:

6.3.12. Theorem. Let V be a locally bounded closed category. Then every small full
sub-V -category J ↪→ V that contains the unit object is a strongly amenable subcategory
of arities.

From Theorems 4.27, 5.7, 5.13, and 6.3.11 we immediately obtain the following result:
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6.3.13. Theorem. Let V be a locally bounded closed category, and let J ↪→ C be
any small subcategory of arities in a V -sketchable V -category C (6.3.2). Then we have
an idempotent structure–semantics adjunction Str ⊣ Sem : PrethJ (C )op → J -Tract(C )
between J -pretheories and J -tractable V -categories over C , from which we obtain an
idempotent adjunction m ⊣ t : Mnd(C ) → PrethJ (C ) between J -pretheories and V -
monads on C . This adjunction restricts to an equivalence MndJ (C ) ≃ ThJ (C ) between
J -theories and J -nervous V -monads on C .

From Proposition 6.3.9 and Theorem 6.3.11 (together with Theorem 5.13) we also im-
mediately deduce the following result about V -categories of algebras for J -nervous V -
monads:

6.3.14. Proposition. Let V be a locally bounded and E -cowellpowered closed category,
let J ↪→ C be any small subcategory of arities in a V -sketchable V -category C (6.3.2),
and let T be a J -nervous V -monad on C . Then T-Alg is a locally bounded and E -
cowellpowered V -category, as is any J -algebraic V -category over C .

6.3.15. Remark. In Remark 6.2.7 we indicated one way in which certain results of the
present paper specialize to recover one of the main results of Bourke and Garner [12],
which, when formulated in the new axiomatics of the present paper, is the statement
that every small subcategory of arities in a locally presentable V -category enriched in a
locally presentable closed category V is strongly amenable. The results of this subsection
provide yet another way to obtain this central result of [12], as that result follows from
Theorem 6.3.11, the fact that every locally presentable closed category is a locally bounded
closed category [33, Example 5.14], and the fact that every locally presentable V -category
enriched in a locally presentable closed category V is V -sketchable [21, 7.4].
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Jiri Rosický, Masaryk University: rosicky@math.muni.cz
Giuseppe Rosolini, Università di Genova: rosolini@unige.it
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