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ENRICHED MORITA THEORY OF MONOIDS IN A CLOSED
SYMMETRIC MONOIDAL CATEGORY

JAEHYEOK LEE, JAE-SUK PARK

Abstract. We develop Morita theory of monoids in a closed symmetric monoidal
category, in the context of enriched category theory.

1. Introduction

Let R, R′ be rings. The Eilenberg-Watts theorem [4], [12] states that every cocontinuous
functor F : ModR → ModR′ between the categories of right modules is naturally isomor-
phic to the functor −⊗R RMR′ of taking tensor product over R for some (R,R′)-bimodule

RMR′ . We say R, R′ are Morita equivalent if we have an equivalence of categories between
ModR and ModR′ . The main theorem of Morita theory [9] states that the following are
equivalent:

• Rings R, R′ are Morita equivalent;

• There exists a finitely generated projective generator PR′ in ModR′ together with
an isomorphism of rings R ∼= EndR′(PR′);

• There exists an (R,R′)-bimodule RMR′ and an (R′, R)-bimodule R′NR together with
isomorphisms of bimodules RMR′ ⊗R′ R′NR

∼= RRR and R′NR ⊗R RMR′ ∼= R′R′
R′ .

We generalize these results in the context of enriched category theory. We begin by
establishing the Eilenberg-Watts theorem in an enriched context. We follow the approach
introduced by Mark Hovey in [5, §1-2] using tensorial strengths of enriched functors be-
tween tensored enriched categories. After establishing the Eilenberg-Watts theorem, we
provide a theorem which characterizes when an enriched category is equivalent to the
enriched category of right modules over the given monoid of the base category. As a
corollary, we obtain the main result of Morita in enriched context.

The base category that we consider in this paper is a closed symmetric monoidal cat-
egory C = (C,⊗, c, [−,−]) whose underlying category C is finitely complete and finitely
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cocomplete. Some examples are the closed symmetric monoidal categories Set/fSet/sSet
of small sets/finite sets/simplicial sets, Cat of small categories, Ab/fAb of abelian
groups/finitely generated abelian groups, VecK/fVecK of vector spaces/finite dimensional

vector spaces over a field K, ModR/M̂odR/dgModR of modules/L-complete modules/dg-
modules over a commutative ring R, CGT/CGT∗ of unbased/based compactly generated
topological spaces, SpΣ

CGT∗
of topological symmetric spectra, CGWH/CGWH∗ of un-

based/based compactly generated weakly Hausdorff spaces, Ban of Banach spaces with
linear contractions. Every elementary topos is also an example.

We explain our main ideas and results. A monoid in C is a triple b = (b, ub,mb) where
b is an object in C and ub, mb are the unit, product morphisms in C. For each monoid b
in C, we denote Modb as the C-enriched category of right b-modules. We can see b as a
right b-module which we denote as bb. Let D be a tensored C-enriched category whose
underlying category D0 has coequalizers. For each C-enriched functor F : Modb → D,
the object F(bb) in D is equipped with a left action of b, and we have the C-enriched left
adjoint functor

−⊛bbF(bb) : Modb → D

of taking tensor product over b. We show that there is a canonical C-enriched natural
transformation

λF : −⊛bbF(bb) +3 F : Modb → D (1.1)

associated to F : Modb → D (Lemma 3.1). This was defined in [5, Proposition 1.1] as an
ordinary natural transformation when D = Modb′ for another monoid b′ in C. Moreover,
we show that the following are equivalent (Proposition 3.2):

• F : Modb → D is a C-enriched left adjoint;

• F : Modb → D is C-enriched cocontinuous;

• F : Modb → D preserves C-tensors, i.e. its tensorial strength is invertible, and the
underlying functor F0 preserves coequalizers;

• The C-enriched natural transformation λF : −⊛b bF(bb) ⇒ F : Modb → D in (1.1)
is invertible.

Using this result, we prove the following generalization of the Eilenberg-Watts theorem.
Left b-module objects in D are introduced in § 2.4.

1.1. Theorem. Let b be a monoid in C and let D be a tensored C-enriched category whose
underlying category D0 has coequalizers. We have a fully faithful left adjoint functor

bD // C-Funct(Modb,D) (1.2)

from the category of left b-modules objects in D to the category of C-enriched functors
Modb → D. The essential image of the left adjoint functor (1.2) is the coreflective full
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subcategory C-Functcocon(Modb,D) of cocontinuous C-enriched functors Modb → D, and
we have an adjoint equivalence of categories

bD
≃ //

C-Functcocon(Modb,D).
≃

oo

The coreflection of a C-enriched functor F : Modb → D is the associated C-enriched
natural transformation λF in (1.1).

Let us explain why Theorem 1.1 can be seen as a generalization of the Eilenberg-Watts
theorem. Given another monoid b′ in C, we define a (b, b′)-bimodule as a left b-module
object in Modb′ (Definition 2.6). After substituting D = Modb′ in Theorem 1.1, we obtain
the following corollary.

1.2. Corollary. Let b, b′ be monoids in C. We have an adjoint equivalence of categories

bModb′
≃ //

C-Functcocon(Modb,Modb′)≃
oo

from the category of (b, b′)-bimodules to the category of cocontinuous C-enriched functors
Modb → Modb′.

The original Eilenberg-Watts theorem [4], [12] states that the functor from left to
right in Corollary 1.2 is essentially surjective when C = Ab. This has been generalized
to the situation where the target category is a general tensored Ab-enriched category by
Nyman and Smith [10]. The main result of their article is precisely our Theorem 1.1 in
the special case C = Ab. We mention that Corollary 1.2 has been discussed online when
C is a Bénabou cosmos. 1

In the original Eilenberg-Watts theorem, we only assume the cocontinuity of the under-
lying functor (i.e., preservation of sums and coequalizers). In a general C-enriched setting
this is not enough, and we use preservation of C-tensors which is a more restrictive con-
dition than preservation of sums. The reason why the weaker assumption is enough in
the case of C = Ab is the following special property of abelian module categories: any
natural transformation between cocontinuous functors out of an abelian module category
is invertible as soon as it is invertible at a projective generator.

Next, we characterize when a C-enriched category D is equivalent to Modb. We say an
object X in a C-enriched category D is a C-enriched compact generator if the C-enriched
Hom functor D(X,−) : D → C is conservative, preserves C-tensors and the underlying
functor D(X,−)0 preserves coequalizers (Definition 4.1).

1.3. Theorem. Let b be a monoid in C, and let D be a tensored C-enriched category
whose underlying category D0 has coequalizers. Then D is equivalent to Modb as C-
enriched categories if and only if there exists a C-enriched compact generator X in D
inducing an isomorphism of monoids f : b ∼= EndD(X) in C.

1See https://mathoverflow.net/questions/159735/in-what-generality-does-eilenberg-watts-hold and
https://ncatlab.org/nlab/show/Eilenberg-Watts+theorem for the discussions of Corollary 1.2 over a
Bénabou cosmos C.
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Using Theorem 1.1 and Theorem 1.3, we establish the main theorem of Morita theory
in enriched context. We say monoids b and b′ in C are Morita equivalent if Modb and
Modb′ are equivalent as C-enriched categories.

1.4. Corollary. Let b, b′ be monoids in C. The following are equivalent:

(i) Monoids b, b′ in C are Morita equivalent;

(ii) There exists a C-enriched compact generator xb′ in Modb′ together with an isomor-
phism of monoids b ∼= EndModb′

(xb′) in C;

(iii) There exists a (b, b′)-bimodule bxb′ and a (b′, b)-bimodule b′yb together with isomor-
phisms of bimodules bxb′ ⊛b′ b′yb ∼= bbb and b′yb ⊛b bxb′

∼= b′b
′
b′.

If we consider C = Ab in Corollary 1.4, we recover the original result of Morita.

2. Enriched Categories

We fix a closed symmetric monoidal category C = (C,⊗, c, [−,−]) whose underlying
category C is finitely complete and finitely cocomplete. We denote objects in C with
small letters. Let z, x, y be objects in C. We have the functor ⊗ : C × C → C and the
unit object c in C, together with coherence isomorphisms

az,x,y : z⊗(x⊗y)
∼= // (z⊗x)⊗y,

sx,y : x⊗y
∼= // y⊗x,

ıx : c⊗x
∼= // x,

ȷx : x⊗c
∼= // x

(2.1)

in C that are natural in variables z, x, y. For each object x in C, the functor −⊗x : C → C
admits a right adjoint [x,−] : C → C and we have a functor [−,−] : Cop × C → C.

We refer [3], [6] for the basics of enriched category theory. Let D be a C-enriched
category and let X, Y , Z be objects in D. We denote D(X, Y ) as the Hom object and
IX : c → D(X,X), µX,Y,Z : D(Y, Z) ⊗ D(X, Y ) → D(X,Z) as the identity, composition
morphisms in C. We denote D0 as the underlying category of D. A morphism X → Y
in D means a morphism from X to Y in the underlying category D0 of D. We denote

IX : X
∼=−→ X as the identity morphism IX : c → D(X,X) of X in D. For each morphism

l : X → Y in D, we have morphisms l⋆ : D(Z,X) → D(Z, Y ) and l⋆ : D(Y, Z) → D(X,Z)
in C.

The category C has a canonical C-enriched category structure whose Hom objects are
given by C(x, y) = [x, y]. We identify the underlying category of the C-enriched category
C with the original category C.

Let D′ be another C-enriched category. For each C-enriched functor α : D → D′,
we have the underlying functor α0 : D0 → D′

0 and we denote αX,Y : D(X, Y ) →
D′(α(X), α(Y )) as the morphism between Hom objects. We write ID : D → D as the
identity C-enriched functor of D. Let β : D → D′ be another C-enriched functor from
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D to D′. For each C-enriched natural transformation ξ : α ⇒ β : D → D′, we have the
underlying natural transformation ξ0 : α0 ⇒ β0 : D0 → D′

0 whose component at each
object X in D is (ξ0)X = ξX : α(X) → β(X). We denote C-Funct(D,D′) as the category
of C-enriched functors from D to D′.

2.1. Tensored enriched categories and tensorial strengths. We say a C-
enriched category D is tensored if for each object X in D, the C-enriched Hom functor
D(X,−) : D → C admits a left adjoint C-enriched functor − ⊛ X : C → D. We denote
the components of the unit, counit of the C-enriched adjunction − ⊛ X ⊣ D(X,−) at
z ∈ Obj(C), Y ∈ Obj(D) as

C
−⊛X

&&

D
D(X,−)

ee
Cv z,X : z // D(X, z⊛X), EvX,Y : D(X, Y )⊛Y // X.

For each morphism l : z ⊛ X → Y in D, we denote the corresponding morphism in C
as l̄ : z → D(X, Y ) and call it as the right adjunct of l. We have a unique isomorphism

ıX : c⊛X
∼=−→ X in D whose right adjunct is the morphism ı̄X = IX : c → D(X,X) in C.

Let D, D′ be tensored C-enriched categories and let z ∈ Obj(C), X ∈ Obj(D). For
each C-enriched functor β : D → D′, the tensorial strength associated to β at z, X is a
morphism tβz,X : z ⊛ β(X) → β(z ⊛X) in D′ defined as follows:

tβz,X := Evβ(X),β(z⊛X) ◦ (βX,z⊛X ⊛ Iβ(X)) ◦ (Cv z,X ⊛ Iβ(X))

: z⊛β(X) // D(X, z⊛X)⊛β(X) // D′(β(X), β(z⊛X)
)
⊛β(X) // β(z⊛X).

We say the C-functor β : D → D′ preserves C-tensors if the tensorial strength tβz,X
associated to β is an isomorphism in D′ for every pair z, X.

2.2. Example. The C-enriched category C is tensored. Let z, x, y ∈ Obj(C). The
tensored object of x, y in C is x⊛ y = x⊗ y. Moreover,

• the coherence isomorphism ıx : c ⊗ x
∼=−→ x in (2.1) corresponds to the unique iso-

morphism ıx : c⊛ x
∼=−→ x in C;

• the coherence isomorphism az,x,y : z⊗ (x⊗ y)
∼=−→ (z⊗ x)⊗ y in (2.1) corresponds to

the tensorial strength t−⊛y
z,x : z ⊛ (x⊛ y)

∼=−→ (z ⊛ x)⊛ y associated to the C-enriched
functor −⊛ y : C → C at z, x.

Let x, y be objects in C. Throughout this paper, we identify the object x ⊗ y in C
with the tensored object x⊛ y in C. For instance, given a monoid b = (b, ub,mb) in C, we
denote the product morphism as mb : b⊛ b → b.

Let D be a tensored C-enriched category. For each object X in D, the C-enriched
functor −⊛X : C → D preserves C-tensors. We denote the associated tensorial strength
as

aw,z,X := t−⊛X
w,z : w⊛(z⊛X)

∼= // (w⊛z)⊛X, ∀w, z ∈ Obj(C).
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We often omit this isomorphism and simply denote w ⊛ z ⊛X ∈ Obj(D).

2.3. Example. Let b = (b, ub,mb) be a monoid in C. We explain the tensored C-enriched

category Modb of right b-modules. A right b-module is a pair zb =
(
z, z ⊛ b

γz
// z
)
of an

object z in C, and a morphism γz : z ⊛ b → z in C satisfying the right b-action relations.

For instance, we have the right b-module bb :=
(
b, b⊛ b

γb=mb // b
)
. The Hom object between

right b-modules zb = (z, γz) and z̃b = (z̃, γz̃) is given by the equalizer

Modb(zb, z̃b)
� �

Uzb,z̃b // C(z, z̃)
(γz)⋆

//

(γz̃)⋆◦(−⊛b)z,z̃

// C(z⊛b, z̃). (2.2)

The tensored object of w ∈ Obj(C) and zb ∈ Obj(Modb) is the right b-module

w ⊛ zb = (w ⊛ z, γw⊛z), γw⊛z = Iw ⊛γz : w ⊛ z⊛b // w ⊛ z.

For each right b-module zb = (z, γz), the morphism γz : z ⊛ b → z in C becomes a
morphism γzb : z⊛ bb → zb in Modb. For instance, the morphism γb = mb : b⊛ b → b in C
becomes a morphism γbb : b⊛bb → bb in Modb. The underlying category (Modb)0 of Modb

has coequalizers. For each right b-module zb = (z, γz), we have the following coequalizer
diagram in (Modb)0.

z⊛b⊛bb
γz⊛Ibb //

Iz ⊛γbb

// z⊛bb
γzb // zb (2.3)

Let b be a monoid in C. We have the forgetful C-enriched functor U : Modb → C
whose morphism on Hom objects is given by the equalizer Uzb,z̃b : Modb(z, z̃) ↪→ C(z, z̃)
defined in (2.2). The forgetful C-enriched functor U : Modb → C preserves C-tensors, as
the associated tensorial strength at w ∈ Obj(C), zb = (z, γz) ∈ Obj(Modb) is the identity
morphism w ⊛ z = w ⊛ z in C.

We introduce basic properties of tensorial strengths without proof. See [11, §3] for
detailed explanations.

1. Let D, D′ be tensored C-enriched categories and let w, z ∈ Obj(C), X ∈ Obj(D).
For each C-enriched functor β : D → D′, the tensorial strength associated to β
satisfies the following relations.

c⊛β(X)
tβc,X
//

ıβ(X)

∼=
,,

β(c⊛X)

β(ıX)∼=
��

β(X)

w⊛
(
z⊛β(X)

)
aw,z,β(X) ∼=

��

Iw ⊛tβz,X
// w⊛β(z⊛X)

tβw,z⊛X
// β
(
w⊛(z⊛X)

)
β(aw,z,X)∼=
��

(w⊛z)⊛β(X)
tβw⊛z,X

// β
(
(w⊛z)⊛X

)
(2.4)

Conversely, suppose we have a functor F0 : D0 → D′
0 between the underlying

categories of D, D′ together with a collection of morphisms in D′{
tz,X : z⊛F0(X) → F0(z⊛X)

∣∣ z ∈ Obj(C), X ∈ Obj(D)
}
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which is natural in variables z, X and satisfies the relations (2.4). Then we have a
unique C-enriched functor β : D → D′ whose underlying functor β0 is equal to F0

and tβz,X = tz,X holds for every pair z, X.

2. Let α, β : D → D′ be C-enriched functors between tensored C-enriched categories
D, D′ and let z ∈ Obj(C), X ∈ Obj(D). For each C-enriched natural transformation
ξ : α ⇒ β : D → D′, we have the following relation.

z⊛α(X)

Iz ⊛ξX
��

tαz,X
// α
(
z⊛X

)
ξz⊛X
��

z⊛β(X)
tβz,X

// β
(
z⊛X

) (2.5)

Conversely, suppose we are given a natural transformation ξ0 : α0 ⇒ β0 : D0 → D′
0

between the underlying functors α0, β0. Then ξ0 becomes a C-enriched natural
transformation ξ : α ⇒ β : D → D′ if and only if it satisfies the relation (2.5)
for every pair z, X. This is precisely the correspondence between C-enriched natu-
ral transformations and strong natural transformations, first introduced by Anders
Kock in [7]. It is also explained in [2].

3. Let D, D′, D′′ be tensored C-enriched categories and let D β−→ D′ β′
−→ D′′ be C-

enriched functors. The tensorial strength of the composition β′β : D → D′′ at
z ∈ Obj(C), X ∈ Obj(D) is given by

tβ
′β

z,X = β′(tβz,X) ◦ t
β′

z,β(X) : z⊛β′β(X) // β′(z⊛β(X)
)

// β′β(z⊛X).

2.4. Left module objects. For the rest of this section, b = (b, ub,mb) is a monoid in
C.

2.5. Definition. Let D be a tensored C-enriched category. A left b-module object in D
is a pair bX =

(
X, b⊛X

ρX // X
)
of an object X in D, and a morphism ρX : b⊛X → X

in D satisfying the left b-action relations. A morphism bX → bX̃ of left b-module objects
in D is a morphism X → X̃ in D which is compatible with the left b-action morphisms
ρX , ρX̃ . We denote

bD

as the category of left b-module objects in D. We do not treat bD as a C-enriched category.

Let X be an object in a tensored C-enriched category D. Then the triple EndD(X) :=
(D(X,X), IX , µX,X,X) is a monoid in C. For each morphism ρX : b ⊛ X → X in D,
the pair (X, ρX) is a left b-module object in D if and only if the right adjunct ρ̄X : b →
D(X,X) of ρX becomes a morphism ρ̄X : b → EndD(X) of monoids in C.

Let D be a tensored C-enriched category and let bX = (X, ρX) be a left b-module
object in D. Then the C-enriched Hom functor D(X,−) : D → C factors through the
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forgetful C-enriched functor U : Modb → C. We have a C-enriched functor

D D(bX,−)
//

D(X,−) //

Modb

U
��

C

D(bX,−) : D → Modb (2.6)

which sends each object Y in D to the right b-module D(bX, Y ) = (D(X, Y ), γD(X,Y ))
whose right b-action is given by

γD(X,Y ) :D(X, Y )⊛b
ID(X,Y ) ⊛ρ̄X

// D(X, Y )⊛D(X,X)
µX,X,Y

// D(X, Y ).

2.6. Definition. Let b′ = (b′, ub′ ,mb′) be another monoid in C. We define a (b, b′)-
bimodule bxb′ as a left b-module object in the tensored C-enriched category Modb′ of right

b′-modules. Equivalently, it is a pair bxb′ =
(
xb′ , b⊛xb′

ρxb′ // xb′
)
of a right b′-module

xb′ =
(
x, x⊛b′

γ′
x // x

)
and a morphism ρxb′

: b ⊛ xb′ → xb′ in Modb′ satisfying the left
b-action relations. We denote

bModb′

as the category of (b, b′)-bimodules. We do not treat bModb′ as a C-enriched category.
Note that we have the (b, b)-bimodule bbb := (bb, γbb : b⊛bb → bb).

2.7. Example. We explain what Modb and bModb′ are in each example of the base
category C.

1. Let C = Ab be the closed symmetric monoidal category of abelian groups.

• Monoids b, b′ in C are rings;

• Modb is the preadditive category of right modules over the ring b;

• bModb′ is the category of (b, b′)-bimodules.

2. Let C = fAb be the closed symmetric monoidal category of finitely generated abelian
groups.

• Monoids b, b′ in C are rings finitely generated as abelian groups;

• Modb is the preadditive category of right modules over the ring b which are
finitely generated as abelian groups;

• bModb′ is the category of (b, b
′)-bimodules which are finitely generated as abelian

groups.

3. Let C = sSet be the closed symmetric monoidal category of simplicial sets.

• Monoids b, b′ in C are simplicial monoids;
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• Modb is the simplicially enriched category of simplicial sets equipped with a
right action of the simplicial monoid b;

• bModb′ is the category of simplicial sets equipped with a bi-action of the sim-
plicial monoids b, b′.

4. Let C = Ban be the closed symmetric monoidal category of Banach spaces and linear
contractions between them, equipped with the projective tensor product.

• Monoids b, b′ in C are associative unital Banach algebras;

• Modb is the Ban-enriched category of Banach spaces equipped with a right
action of the Banach algebra b;

• bModb′ is the category of Banach spaces equipped with a bi-action of the Banach
algebras b, b′.

5. Let C = SpΣ
CGT∗

be the closed symmetric monoidal category of topological symmetric
spectra.

• Monoids b, b′ in C are symmetric ring spectra;

• Modb is the SpΣ
CGT∗

-enriched category of symmetric spectra equipped with a
right action of the symmetric ring spectrum b;

• bModb′ is the category of symmetric spectra equipped with a bi-action of the
symmetric ring spectra b, b′.

2.8. Definition. Let D be a tensored C-enriched category whose underlying category D0

has coequalizers. We define the functor

−⊛b − : (Modb)0 × bD → D0

as follows. The functor sends each pair of a right b-module zb = (z, γz) and an object

bX = (X, ρX) in bD to the following coequalizer in D0.

z⊛b⊛X
γz⊛IX //

Iz ⊛ρX
// z⊛X

cqzb,bX // // zb⊛b bX

The functor sends each pair of a morphism l : zb → z̃b in Modb and a morphism l̃ : bX →
bX̃ in bD to the unique morphism l⊛b l̃ : zb⊛b bX → z̃b⊛b bX̃ in D satisfying the relation

z⊛X
cqzb,bX ����

l⊛l̃
// z̃⊛X̃

cq z̃b,bX̃����

zb⊛b bX
∃! l⊛b l̃ // z̃b⊛b bX̃

cq z̃b,bX̃ ◦ (l ⊛ l̃) = (l ⊛b l̃) ◦ cqzb,bX .
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Let D be a tensored C-enriched category whose underlying category D0 has coequaliz-

ers. For each object bX = (X, ρX) in bD, we have a unique isomorphism ıb
bX

: bb⊛b bX
∼=−→

X in D which satisfies the relation ρX = ıb
bX

◦ cqbb,bX . The inverse of ıb
bX

is given by

b⊛X
cqbb,bX ����

ρX

  

bb⊛bbX
∃! ıb

bX

∼=
// X

(ıb
bX

)−1 = cqbb,bX ◦ (ub⊛IX) ◦ ı−1
X

:X
∼= // c⊛X // b⊛X // // bb⊛bbX.

(2.7)

2.9. Lemma. Let D be a tensored C-enriched category whose underlying category D0 has
coequalizers. We have a well-defined functor

bD // C-Funct(Modb,D)

bX
� // −⊛b bX : Modb → D

(2.8)

from the category of left b-module objects in D to the category of C-enriched functors
Modb → D.

1. For each object bX = (X, ρX) in bD, we have a C-enriched functor − ⊛b bX :
Modb → D which is uniquely determined as follows. The underlying functor of
−⊛b bX is defined in Definition 2.8, and the associated tensorial strength

aw,zb,bX := t−⊛bbX
w,zb

: w⊛(zb⊛b bX)
∼= // (w⊛zb)⊛b bX, w ∈ Obj(C), zb ∈ Obj(Modb)

is the unique isomorphism in D satisfying the relation

w⊛(z⊛X)
Iw ⊛cqzb,bX ����

aw,z,X

∼=
// (w⊛z)⊛X

cqw⊛zb,bX����

w⊛(zb⊛b bX)
∃! aw,zb,bX

∼=
// (w⊛zb)⊛b bX

cqw⊛zb,bX
◦ aw,z,X

= aw,zb,bX ◦ (Iw ⊛cqzb,bX).

2. For each morphism bX → bX̃ in bD, the following collection of morphisms in D{
zb⊛b bX → zb⊛b bX̃

∣∣ zb ∈ Obj(Modb)
}

(2.9)

defines a C-enriched natural transformation −⊛b bX ⇒ −⊛b bX̃ : Modb → D.

Proof. We leave for the readers to check that such isomorphisms aw,zb,bX in D uniquely
exist, and satisfy the relations (2.4). Thus we have a unique C-enriched functor −⊛b bX :
Modb → D as described in statement 1. Statement 2 is also true, as we can check that
the collection (2.9) of morphisms in D satisfies the relation (2.5). We conclude that the
functor (2.8) is well-defined.



ENRICHED MORITA THEORY 1689

We will show in §3 that the functor (2.8) in Lemma 2.9 is the fully faithful left adjoint
functor (1.2) described in Theorem 1.1.

2.10. Proposition. Let D be a tensored C-enriched category whose underlying cate-
gory D0 has coequalizers. For each left b-module object bX in D, we have a C-enriched
adjunction

Modb

−⊛bbX

((

D
D(bX,−)

kk
−⊛bbX ⊣ D(bX,−) : Modb → D

whose unit, counit C-enriched natural transformations η, ε are described below.

• The component of the unit η at each zb = (z, γz) ∈ Obj(Modb) is the unique mor-
phism ηzb : zb → D(bX, zb⊛b bX) in Modb, whose corresponding morphism in C
is

ηzb : z
Cvz,X

// D(X, z⊛X)
(cqzb,bX

)⋆
// D(X, zb⊛b bX).

• The component of the counit ε at each Y ∈ Obj(D) is the unique morphism εY :
D(bX, Y )⊛b bX → Y in D which satisfies the relation

D(X, Y )⊛X
cqD(bX,Y ),bX ����

EvX,Y

  

D(bX, Y )⊛b bX
∃! εY // Y

EvX,Y = εY ◦ cqD(bX,Y ),bX
.

Proof. The components ηzb , εY are well-defined and are natural in variables zb, Y ,
respectively. As their components ηzb , εY satisfy the relation (2.5), we obtain C-enriched
natural transformations η, ε. We leave for the readers to check that η, ε satisfy the
triangular identities.

3. The Eilenberg-Watts Theorem

In this section, we prove Theorem 1.1 which generalizes the Eilenberg-Watts theorem
in enriched context. We also give a proof of Corollary 1.2. Throughout this section,
b = (b, ub,mb) is a monoid in C and D is a tensored C-enriched category whose underlying
category D0 has coequalizers. We are going to show that the functor

bD
(2.8)

// C-Funct(Modb,D)

bX
� // −⊛bbX : Modb → D

defined in Lemma 2.9 is left adjoint to the functor of evaluating at bb ∈ Obj(Modb). Let
us explain the right adjoint functor in detail. Using the properties (2.4), (2.5) of tensorial
strengths associated to C-enriched functors Modb → D, one can check that the following
are true.
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• For each C-enriched functor F : Modb → D, the object F(bb) in D becomes a left
b-module object bF(bb) =

(
F(bb), ρF(bb)

)
in D whose left b-action morphism is

ρF(bb) : b⊛F(bb)
tFb,bb // F(b⊛bb)

F(γbb ) // F(bb).

• For each C-enriched natural transformation ξ : F ⇒ F̃ : Modb → D, the component
ξbb : F(bb) → F̃(bb) of ξ at bb becomes a morphism ξbb : bF(bb) → bF̃(bb) of left
b-module objects in D.

Thus we obtain a well-defined functor

C-Funct(Modb,D) //
bD

F : Modb → D � //
bF(bb)

(3.1)

of evaluating at bb.

3.1. Lemma. For each C-enriched functor F : Modb → D, we have a C-enriched nat-
ural transformation λF : −⊛b bF(bb) ⇒ F : Modb → D whose component λF

zb
at

zb ∈ Obj(Modb) is the unique morphism in D satisfying the relation

z⊛F(bb)
cqzb,bF(bb) ����

tFz,bb // F(z⊛bb)
F(γzb )��

zb⊛b bF(bb)
∃! λF

zb // F(zb)

F(γzb) ◦ tFz,bb = λF
zb
◦ cqzb,bF(bb)

.

Moreover, the component of λF at bb is given by λF
bb
= ıb

bF(bb)
: bb⊛b bF(bb)

∼= // F(bb).

Proof. We leave for the readers to check that such morphism λF
zb

in D uniquely exists,
and that the following diagram of morphisms in D commutes.

z⊛b⊛F(bb)

Iz ⊛ρF(bb)
��

γz⊛IF(bb)
��

tFz⊛b,bb // F(z⊛b⊛bb)

F(Iz ⊛γbb )
��

F(γz⊛Ibb )
��

z⊛F(bb)

cqzb,bF(bb)
����

tFz,bb // F(z⊛bb)

F(γzb )
��

zb⊛bbF(bb)
∃! λF

zb // F(zb)

(3.2)

The collection {λF
zb
} of morphisms in D is natural in variable zb. To show that the

collection {λF
zb
} is C-enriched natural in variable zb, we need to verify the following relation

for every pair w ∈ Obj(C), zb ∈ Obj(Modb).

w⊛
(
zb⊛bbF(bb)

)
Iw ⊛λF

zb ��

aw,zb,bF(bb)

∼=
// (w⊛zb)⊛bbF(bb)

λF
w⊛zb��

w⊛F(zb)
tFw,zb // F(w⊛zb)

(3.3)
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Consider the following commutative diagram.

w⊛
(
z⊛F(bb)

)
Iw ⊛cqzb,bF(bb)����

w⊛
(
z⊛F(bb)

)
aw,z,F(bb)

∼=

��

w⊛
(
z⊛F(bb)

)
Iw ⊛tFz,bb��

w⊛
(
z⊛F(bb)

)
Iw ⊛cqzb,bF(bb)����

w⊛
(
zb⊛bbF(bb)

)
aw,zb,bF(bb)

∼=

��

w⊛F(z⊛bb)
tFw,z⊛bb��

Iw ⊛F(γzb )
((

w⊛
(
zb⊛bbF(bb)

)
Iw ⊛λF

zb��

(w⊛z)⊛F(bb)
cqw⊛zb,F(bb)ssss

tFw⊛z,bb ++

F
(
w⊛(z⊛bb)

)
F(aw,z,bb

)∼= �� F(Iw ⊛γzb )

��

w⊛F(zb)

tFw,zb

��

(w⊛zb)⊛bbF(bb)
λF
w⊛zb��

F
(
(w⊛z)⊛bb

)
F(γw⊛zb

)
��

F(w⊛zb) F(w⊛zb) F(w⊛zb)

After right-cancelling the epimorphism Iw ⊛cqzb,bF(bb)
in the above diagram, we obtain

the relation (3.3). Thus we have a well-defined C-enriched natural transformation λF as
we claimed. From the definition of ıb

bF(bb)
given in (2.7), we obtain that λF

bb
= ıb

bF(bb)
:

bb ⊛b bF(bb)
∼=−→ F(bb).

3.2. Proposition. For each C-enriched functor F : Modb → D, the following are equiv-
alent:

(i) F : Modb → D is a C-enriched left adjoint;

(ii) F : Modb → D is C-enriched cocontinuous;

(iii) F : Modb → D preserves C-tensors, and the underlying functor F0 preserves co-
equalizers;

(iv) The C-enriched natural transformation λF : −⊛b bF(bb) ⇒ F : Modb → D defined
in Lemma 3.1 is invertible.

Proof. By Proposition 2.10, (iv) implies (i). It is straightforward that (i) implies (ii), and
(ii) implies (iii). We claim that (iii) implies (iv). Assume that the C-enriched functor F :
Modb → D preserves C-tensors, and the underlying functor F0 : (Modb)0 → D0 preserves
coequalizers. Recall the coequalizer diagram (2.3) in (Modb)0. If we look at the diagram
in (3.2) we see that the top, middle horizontal morphisms in D are isomorphisms, and
the right vertical morphisms also form a coequalizer diagram in the underlying category
D0 of D. This shows that λF

zb
is an isomorphism in D for every zb ∈ Obj(Modb). We

conclude that the C-enriched natural transformation λF is invertible.

3.3. Lemma. Let F , F̃ : Modb → D be C-enriched functors. For each C-enriched
natural transformation ξ : F ⇒ F̃ : Modb → D, we have the following relation for every
zb ∈ Obj(Modb).

zb⊛b bF(bb)

Izb ⊛bξbb
��

λF
zb // F(zb)

ξzb
��

zb⊛b bF̃(bb)
λF̃
zb // F̃(zb)

(3.4)
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Proof. For each zb = (z, γz) ∈ Obj(Modb), we have the following diagram.

z⊛F(bb)
cqzb,bF(bb)����

z⊛F(bb)

tFz,bb��

z⊛F(bb)
Iz ⊛ξbb��

z⊛F(bb)
cqzb,bF(bb)����

zb⊛bbF(bb)

λF
zb��

F(z⊛bb)

F(γzb )
rr

ξz⊛bb��

z⊛F̃(bb)

tF̃z,bbtt

cq
zb,bF̃(bb)

** **

zb⊛bbF(bb)
Izb ⊛bξbb��

F(zb)
ξzb��

F̃(z⊛bb)

F̃(γzb )��

zb⊛bbF̃(bb)

λF̃
zb��

F̃(zb) F̃(zb) F̃(zb)

After right-cancelling the epimorphism cqzb,bF(bb)
in the above diagram, we obtain the

relation (3.4).

Let bX be a left b-module object in D. The functor C-Funct(Modb,D) → bD of
evaluating at bb ∈ Obj(Modb) defined in (3.1) sends the C-enriched functor − ⊛b bX :
Modb → D to the left b-module object bbb ⊛b bX = (bb ⊛b bX, ρbb⊛bbX) in D, where

ρbb⊛bbX : b⊛(bb⊛bbX)
ab,bb,bX

∼=
// (b⊛bb)⊛bbX

γbb⊛bIbX // bb⊛bbX.

One can check that the isomorphism ıb
bX

: bb ⊛b bX
∼=−→ X in D defined in (2.7) becomes

an isomorphism ıb
bX

: bbb⊛bbX
∼=−→ bX in bD. We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. From the equivalence of statements (i)-(iv) in Proposition 3.2,
we conclude that the map (2.8) induces an equivalence of categories

bD ≃ // C-Functcocon(Modb,D)

between bD and the category of cocontinuous C-enriched functors Modb → D. The latter
is a full, coreflective subcategory of the category C-Funct(Modb,D) of all C-enriched

functors Modb → D thanks to Lemma 3.3 by taking F̃ to be a general C-enriched functor
and F a C-cocontinuous one. This completes the proof of Theorem 1.1.

One can also directly show that the functor bD → C-Funct(Modb,D) in (2.8) is
left adjoint to the functor C-Funct(Modb,D) → bD in (3.1). The component of the

unit at each object bX in bD is the isomorphism (ıb
bX

)−1 : bX
∼= //

bbb⊛bbX in bD. The

component of the counit at each C-enriched functor F : Modb → D is the C-enriched
natural transformation λF : −⊛bbF(bb) ⇒ F defined in Lemma 3.1. One can check that
the isomorphism (ıb

bX
)−1 is natural in variable bX, and by Lemma 3.3 λF is natural in

variable F . We can check the triangular identities using the relation λF
bb
= ıb

bF(bb)
and the

explicit description of (ıb
bX

)−1 given in (2.7). The rest of the statements in Theorem 1.1
are straightforward to check using Proposition 3.2. This is another proof of Theorem 1.1.
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Proof of Corollary 1.2. Let b′ be another monoid in C. After substituting D =
Modb′ in Theorem 1.1, we obtain the adjoint equivalence of categories

bModb′
≃ //

C-Functcocon(Modb,Modb′)≃
oo

whose right adjoint is the functor of evaluating at bb.

4. Morita Theory

In this section, we prove Theorem 1.3 which characterizes when a C-enriched category D
is equivalent to Modb for a given monoid b in C. We also give a proof of Corollary 1.4
which generalizes the result of Morita in enriched context.

4.1. Definition. Let D be a C-enriched category and let X ∈ Obj(D). We say

(i) X is a C-enriched compact object in D if the C-enriched Hom functor D(X,−) :
D → C preserves C-tensors, and the underlying functor D(X,−)0 preserves coequal-
izers;

(ii) X is a C-enriched generator in D if the C-enriched Hom functor D(X,−) : D → C
is conservative;

(iii) X is a C-enriched compact generator in D if it is both a C-enriched compact object
and a C-enriched generator in D.

4.2. Example. Consider the case when C = Ab is the closed symmetric monoidal cate-
gory of abelian groups. Let R be a ring and let ModR be the preadditive category of right
R-modules. For each right R-module NR,

(i) NR is an Ab-enriched compact object in ModR if and only if it is a finitely generated
projective right R-module;

(ii) NR is an Ab-enriched generator in ModR if and only if it is a generator in the
category of right R-modules;

(iii) NR is an Ab-enriched compact generator in ModR if and only if it is a finitely
generated projective generator in the category of right R-modules.

Let us explain the ‘only if ’ part of statement (i). Assume that NR is an Ab-enriched com-
pact object in ModR. By Proposition 3.2, the Ab-enriched Hom functor ModR(NR,−) is
Ab-enriched cocontinuous. In particular, the underlying functor ModR(NR,−)0 is cocon-
tinuous.

• NR is a projective right R-module if and only if the underlying functor ModR(NR,−)0
preserves coequalizers.
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• A projective right R-module NR is finitely generated if and only if the underlying
functor ModR(NR,−)0 preserves arbitrary sums. This is explained in the proof of
[1, Proposition1.2(c)].

Therefore NR is a finitely generated projective right R-module.

4.3. Lemma. Let b = (b, ub,mb) be a monoid in C. The right b-module bb is a C-enriched
compact generator in Modb, and we have an isomorphism of monoids b ∼= EndModb

(bb) in
C.

Proof. Recall that for each zb ∈ Obj(Modb), we have a morphism γzb : z ⊛ bb → zb in

Modb. One can check that the corresponding right adjunct γ̄zb : z
∼=−→ Modb(bb, zb) is an

isomorphism in C, and is C-enriched natural in variable zb. Thus we have an isomorphism
of C-enriched functors U ∼= Modb(bb,−) : Modb → C. The forgetful C-enriched functor
U : Modb → C is conservative, preserves C-tensors, and its underlying functor U0 preserves
coequalizers. We conclude that bb is a C-enriched compact generator in Modb. We leave

for the readers to check that the isomorphism γ̄bb : b
∼=−→ Modb(bb, bb) in C becomes an

isomorphism of monoids γ̄bb : b
∼= EndModb

(bb) in C.

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 4.3, the only if part is true. We prove the if part

as follows. Let us denote f : b
∼=−→ D(X,X) as the isomorphism in C. Then we have a

morphism ρX : b⊛X
f⊛IX
∼=
// D(X,X)⊛X

EvX,X
// X in D whose right adjunct is ρ̄X = f : b

∼=−→
D(X,X), and the pair bX = (X, ρX) is a left b-module object in D. By Proposition 2.10,
we have the following adjoint pair of C-enriched functors.

Modb

α :=−⊛bbX // D
β :=D(bX,−)
oo (4.1)

We are going to show that the C-enriched adjunction (4.1) is an adjoint equivalence of C-
enriched categories. First, we show that βα : Modb → Modb is C-enriched cocontinuous
as follows. Recall the diagram in (2.6).

• The C-enriched functor D(X,−) : D → C preserves C-tensors, and the underlying
functor D(X,−)0 preserves coequalizers.

• The C-enriched category Modb is tensored, and the underlying category (Modb)0
has coequalizers.

• The forgetful C-enriched functor U : Modb → C is conservative, preserves C-tensors,
and the underlying functor U0 preserves coequalizers.

Thus we obtain that the C-enriched functor β = D(bX,−) : D → Modb preserves C-
tensors, and the underlying functor β0 preserves coequalizers. Then the C-enriched functor
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βα : Modb → Modb also has the same properties. By Proposition 3.2, we conclude that
the C-enriched functor βα : Modb → Modb is cocontinuous.

Next, we show that the adjunction (4.1) is an adjoint equivalence of C-enriched cat-
egories. We begin by showing that the unit η : IModb

⇒ βα : Modb → Modb is a
C-enriched natural isomorphism. By Corollary 1.2, it suffices to show that the compo-
nent ηbb : bb → D(bX, bb ⊛b bX) at bb is an isomorphism in Modb. Consider the following
diagram.

b

ηbb

��

b
Cvb,X
��

b
f∼=
��

D(X, b⊛X)

(cqbb,bX
)⋆

tt

(ρX)⋆

��

(f⊛IX)⋆
∼=

((

D(X,X)CvD(X,X),X

ww

D(X, bb⊛bbX)

(ıb
bX

)⋆∼=
��

D
(
X,D(X,X)⊛X

)
(EvX,X)⋆
��

D(X,X) D(X,X) D(X,X) D(X,X)

We obtain that the morphism ηbb : b → D(X, bb ⊛b bX) in C is equal to (ıb
bX

)−1
⋆ ◦ f :

b
∼=−→ D(X,X)

∼=−→ D(X, bb ⊛b bX) which is an isomorphism. This shows that the unit
η : IModb

⇒ βα is a C-enriched natural isomorphism.
To conclude that the C-enriched adjunction (4.1) is an equivalence of C-enriched cat-

egories, it suffices to show that the right adjoint β = D(bX,−) : D → Modb is con-
servative. This is because any C-enriched adjunction with fully faithful left adjoint and
conservative right adjoint is an adjoint equivalence of C-enriched categories due to the
triangular identities. As we assumed that X is also a C-enriched generator in D, the
C-enriched functor D(X,−) : D → C is conservative. From the relation (2.6), we obtain
that β = D(bX,−) : D → Modb is also conservative. This completes the proof of Theo-
rem 1.3.

4.4. Remark. Let us weaken the assumption of Theorem 1.3 and merely assume that X is
a C-enriched compact object in D. Then the left adjoint C-enriched functor α : Modb → D
in (4.1) induces an equivalence of C-enriched categories from Modb to a coreflective full
C-enriched subcategory of D.

4.5. Remark. Theorem 1.3 is related to the result in [2] which states that the Eilenberg-
Moore category of a C-enriched C-tensor preserving monad T on C is equivalent to the
category of right T (c)-modules.

Let b = (b, ub,mb) be a monoid in C. We have a C-enriched natural isomorphism

ȷb : −⊛bbbb
∼= +3 IModb

: Modb → Modb (4.2)

whose component at zb = (z, γz) ∈ Obj(Modb) is the unique isomorphism ȷbzb : zb⊛b bbb
∼=−→
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zb in D satisfying the relation

z⊛bb
cqzb,bbb ����

γzb

��
zb⊛bbbb

∃! ȷbzb
∼=

// zb

γzb = ȷbzb ◦ cqzb,bbb .

Let b′, b′′ be additional monoids in C. For each pair of a (b, b′)-bimodule bxb′ = (xb′ , ρxb′
)

and a (b′, b′′)-bimodule b′yb′′ , we have the (b, b′′)-bimodule

bxb′⊛b′ b′yb′′ =
(
xb′⊛b′ b′yb′′ , ρxb′⊛b′b′yb′′

: b⊛(xb′⊛b′ b′yb′′) // xb′⊛b′ b′yb′′
)

whose left b-action is given by

ρxb′⊛b′b′yb′′
: b⊛(xb′⊛b′ b′yb′′)

a b , xb′ ,b′yb′′

∼=
// (b⊛xb′)⊛b′ b′yb′′

ρxb′⊛b′ Ib′yb′′// xb′⊛b′ b′yb′′ .

We have a C-enriched natural isomorphism

a−,bxb′ ,b′yb′′ : −⊛b(bxb′⊛b′ b′yb′′)
∼= +3 (−⊛bbxb′)⊛b′ b′yb′′ : Modb → Modb′′ (4.3)

whose component azb,bxb′ ,b′yb′′ at zb ∈ Obj(Modb) is the unique morphism in Modb′′ which
makes the following diagram commutative.

z⊛(xb′⊛b′ b′yb′′)
cqzb,bxb′⊛b′b′yb′′ ����

az,xb′ ,b′yb′′

∼=
// (z⊛xb′)⊛b′ b′yb′′

cqzb,bxb′
⊛b′ Ib′yb′′����

zb⊛b(bxb′⊛b′ b′yb′′)
∃! azb,bxb′ ,b′yb′′

∼=
// (zb⊛bbxb′)⊛b′ b′yb′′

We are ready to prove Corollary 1.4.

Proof of Corollary 1.4. By substituting D = Modb′ in Theorem 1.3, we immediately
obtain that statements (i), (ii) are equivalent. We are left to show that statements (i),
(iii) are equivalent. The monoids b, b′ in C are Morita equivalent if and only if there
exist a pair of cocontinuous C-enriched functors α : Modb → Modb′ , β : Modb′ → Modb

together with a pair of C-enriched natural isomorphisms βα ∼= IModb
, αβ ∼= IModb′

. By
Corollary 1.2 and using the C-enriched natural isomorphisms (4.2), (4.3), we obtain that
the existence of such pair α, β is equivalent to the existence of bimodules bxb′ , b′yb together
with isomorphisms of bimodules bxb′ ⊛b′ b′yb ∼= bbb and b′yb ⊛b bxb′

∼= b′b
′
b′ .
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