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KLEISLI CATEGORIES, T -CATEGORIES
AND INTERNAL CATEGORIES

DOMINIQUE BOURN

Abstract. We investigate the properties of the Kleisli category KlT of a monad
(T, λ, µ) on a category E and in particular the existence of (some kind of) pullbacks.
This culminates when the monad is cartesian. In this case, we show that any T -category
in E in the sense of A. Burroni coincides with a special kind of internal category in KlT .
Thus, it is the case in particular for T -operads and T -multicategories. More unexpect-
edly, this, in turn, sheds new conceptual lights on internal categories and n-categories.

1. Introduction

It is well known from [Eilenberg and Moore, 1965] that any monad (T, λ, µ) on a category
E determines an adjoint pair (UT , F T ) : Alg T ⇄ E. The Kleisli category KlT of this
monad [Kleisli, 1965] is then produced by the canonical decomposition of the functor F T :

E
F̄T

// KlT
KT // Alg T

into a bijective on objects functor F̄ T followed by a fully faithful one KT . If the properties
of the category Alg T of T -algebras are well known, those of KlT have been neglected.
After some recalls, a first part of this work (Section 3) will give us the opportunity to
investigate them. For instance, the functor F̄ T becomes an inclusion as soon as the natural
transformation λ is a monomorphism. More generally we shall show how, step by step,
the several assumptions of a cartesian monad (T, λ, µ) surprisingly organize the properties
of KlT . When the monad (T, λ, µ) is fully cartesian, we show that:

1. the bijective on object natural functor F̄ T : E // KlT is actually an inclusion;

2. the subcategory E then appears to be left cancelable in KlT , i.e. such that h ∈ E
and g ∈ E imply f ∈ E when h = g.f in KlT ;

3. when E is finitely complete, not only the category Alg T of algebras on the monad is
finitely complete as well, but the Kleisli category KlT , which is not finitely complete,
is however such that any map f : X // Y in (the subcategory) E has a pullback
along any map in KlT which still belongs to E; in other words, E becomes a pullback
stable subcategory of the Kleisli category KlT .
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The notion of T -category in a category E endowed with a monad (T, λ, µ) was intro-
duced in [Burroni, 1971]. It is a kind of a mix of a relational algebra on T in the sense
of [Barr, 1969] and of “something” which looks like an internal category, but shifted by
this monad, see precise definition in Section 6. Ultimately, the category T -CatE of T -
categories appears to be a fully faithful extension of Alg T ↪→ T -CatE. A second part of
this work (Sections 6 and 7) will investigate what is exactly the “something” in question.
First, it easily appears that a T -category is a special kind of 3-truncated simplicial object
in the Kleisli category KlT of this monad.

Then, from the observation 3) above, we shall show that, when the monad is cartesian,
the previous 3-truncated simplical object in KlT is actually underlying a regular internal
category in KlT , and that any T -category coincides with this kind of internal category.
So, according to [Leinster, 2004], T -operads and T -multicategories appear to be internal
categories in KlT . On the other hand, when the monad is cartesian, we get a natural
notion of T -groupoid, see Section 7.10.

We are also able to localize these results with respect to a pullback stable class Σ in
E when the monad is only Σ-cartesian, see Section 7.2.

Conversely, and more unexpectedly, any internal category in E will appear to be a
special kind of G-category where (G, σ, π) is the monad on the category PtE of split
epimorphisms in E whose category of algebras AlgG is known to be nothing but the
category GrdE of internal groupoids in E, see [Bourn, 1987]. In this way, the inclusion
GrdE ↪→ CatE is thoroughly produced by a standard construction on this only monad.

From that we shall show how internal n-categories and n-groupoids are related to this
monad as well. So that the following whole tower of fibrations:

... n−CatE ( )n−1→ (n− 1)−CatE ...... 2−CatE ( )1→ CatE ( )0→ E

is entirely ruled by the split epimorphisms in E and the monad (G, σ, π). Beyond the
heuristic interest of this result, it could appear very useful when combinatorial diagram-
matic calculations will have been developed on computers. The last part of this article
(Sections 9 to 11) is devoted to examples.

For some fresh results on Burroni’s T -categories in another direction see [Tholen and
Yeganeh, 2021]. I thank Cl. Berger and N. Arkor for their bibliographic suggestions.

The ideas of this work came to my mind during a talk of M. Batanin in Nice for the
Homotopical days (7-9 Dec. 2022), see [Batanin and De Leger, 2019] and also [Batanin,
2008]. The article is organized along the following lines.

Section 2: recalls about monads (T, λ, µ), cartesian monads, cartesian and autonomous
adjunctions. Section 3: step by step properties of the Kleisli category KlT . Section
4: brief recalls about internal categories. Section 5: recalls about internal groupoids
and the monad (G, σ, π) on PtE. Section 6: recalls about T -categories; their simplicial
description in KlT . Section 7: when T -categories in E coincide with a special kind of
internal categories in KlT . Section 8: when internal categories in E coincide with a
special kind of G-categories. Section 9: extensions of the results of the previous section
to internal n-categories and n-groupoids. It is well known that any internal category
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X• in a finitely complete category C produces a cartesian monad (TX• , λX• , µX•) on the
slice category C/X0; Section 10 is devoted to make explicit all the results of Section 7
concerning this cartesian monad. If Alg TX• is well known to be nothing but the category
DisF/X• of the discrete fibrations above X•, the category of TX•-categories surprisingly
coincides with the whole slice category CatC/X•. Section 11 is devoted to translate the
results of this same section 7 to the T -operads and the T -multicategories themselves and
to their algebras.

2. Monads

2.1. Basics. Let us briefly recall the basics about monads. A monad on a category E is
a triple (T, λ, µ) of an endofunctor T and two natural transformations:

IdE
λ−→ T

µ←− T 2

satisfying µ.µT = µ.Tµ and µ.λT = 1T = µ.Tλ. An adjoint pair (U, F, λ, ϵ) : Ē ⇄ E
determines the monad (T, λ, µ) = (U.F, λ, UϵF ) on E.

A T -algebra [Eilenberg and Moore, 1965] on an object X is given by a map ξ :
T (X) // X satisfying ξ.λX = 1X and ξ.µX = ξ.T (ξ). Accordingly the pair (T (X), µX)
produces a T -algebra on T (X). A morphism f : (X, ξ) // (Y, γ) of T -algebras is given
by a map f : X // Y such that f.ξ = γ.T (f).

This construction determines the category Alg T of T -algebras and the forgetful functor
UT : Alg T // E : (X, ξ) 7→ X which is obviously conservative. It has the functor
F T : E // Alg T defined by F T (X) = (T (X), µX) as left adjoint which makes UT a left
exact functor. The monad associated with the adjoint pair (UT , F T ) recovers the initial
monad (T, λ, µ). From an adjoint pair (U, F, λ, ϵ) : Ē ⇄ E and its associated monad
(T, λ, µ) = (U.F, λ, UϵF ) we get a comparison functor A(U,F ) : Ē // Alg T , defined by
A(U,F )(Z) = (U(Z), U(ϵZ)), making the following adjoint pairs commute:

Ē
A(U,F ) //

F ��

Alg T
FT

||
E

UT

<<

U
^^

The functor U is said to be monadic when the comparison functor A(U,F ) is an equivalence
of categories.

A comonad (C, ϵ, ν) is the dual of a monad; it determines the category ColgC of co-
algebras and a coadjoint pair (FC , UC) : ColgC ⇄ E. Any adjoint pair (U, F, λ, ϵ) : Ē ⇄ E
determines the comonad (C, ϵ, ν) = (F.U, ϵ, FλU) on Ē and a comparison functor C(U,F ) :
E //ColgC, defined by C(U,F )(X) = (F (X), F (λX)), making the following coadjoint pairs
commute:

E
C(U,F ) //

U ��

ColgC
UC

||
Ē

FC

<<

F
^^
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The functor F is said to be comonadic when the comparison functor C(U,F ) is an equiva-
lence of categories.

2.2. Cartesian monads. A functor F : C // D is said to be cartesian when C has
pullbacks and F preserves them. A natural transformation ν : F ⇒ G between any pair
of functors is said to be cartesian when, given any map f : X // Y ∈ C, the following
square is a pullback in D:

F (X)
F (f) ��

νX // G(X)
G(f)��

F (Y ) νY
// G(Y )

A monad (T, λ, µ) is cartesian when the three ingredients are cartesian. A. Burroni
[Burroni, 1971] was deeply involved in the cartesian monad induced by the free adjunction
Cat ⇄ Gph between categories and directed graphs. More specifically, from T. Leinster
[Leinster, 1998], the free monoid monad (M,λ, µ) on Set is a cartesian one: it is the
restriction of Burroni’s monad to directed graphs with only one object. Sections 4.6 will
be devoted to a cartesian monad associated with any internal category X•.

By the following lemma, when λ is cartesian, λ is the equalizer of λT and Tλ.

2.3. Lemma. Given any cosplit parallel pair in a category E:

X

m //

m′
//
X̌goo

any equality m.k = m′.h implies k = h. Accordingly the pullback of the maps m and m′

produces their equalizer. So:
1) given any monad (T, λ, µ), if λ is cartesian, then λ is the equalizer of the pair (λT , T (λ));
2) any cartesian functor preserves the equalizers of cosplit parallel pairs.

2.4. Proposition. Let (T, λ, µ) be a monad on E where µ is cartesian; the two following
conditions are equivalent:
1) λ is the equalizer of λT and Tλ, and 2) λ is cartesian.

Proof. When µ is cartesian, the natural transformations λT and Tλ are necessarily
cartesian as well, being splittings of the cartesian µ. Now, for any map f : X // Y in Σ,
consider the following diagram:

X

f
��

// λX // T (X)

T (f)
��

λT (X)//

T (λX)
// T

2(X)

T 2(f)
��

µXoo

Y //
λY
// T (Y )

λT (Y )//

T (λY )
// T

2(Y )µYoo

Any of the right hand side commutative squares is a pullback. Moreover, under assump-
tion 1), the two horizontal ones are pullbacks. Accordingly, the “box lemma” for pullbacks
makes the left hand square a pullback as well.
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Later on, we shall need the following:

2.5. Definition. A monad (T, λ, µ) is said to be half-cartesian when the endofunctor T
is cartesian and λ is the equalizer of the pair (λT , T (λ)).

Accordingly, a monad is cartesian if and only if it is half-cartesian and µ is cartesian.

2.6. Cartesian adjoint pairs. It is then natural to call cartesian adjoint pair, any
adjoint pair (U, F ) : C ⇄ D such that C and D has pullbacks, the functor F is cartesian,
the natural transformations λ : IdD ⇒ U.F and ϵ : F.U ⇒ IdC are cartesian. Then the
induced monad (T, λ, µ) on D is clearly a cartesian monad, since µ = U(ϵF ). The induced
comonad (C, ϵ, ν) on C is cartesian as well: the functor C = F.U is cartesian and the
natural transformation ν, being a section of the natural transformation ϵC , is cartesian
as soon as so is ϵ.

2.7. Proposition. Given any cartesian adjoint pair (U, F ) : C ⇄ D, the natural trans-
formation µ : T 2 // T of the induced monad on D is such that the following diagram is
a kernel equivalence relation:

T 3(X)
µT (X)

//

T (µX) //
T 2(X) µX

//T (λT (X))oo T (X)

Conversely, suppose that (T, λ, µ) is a cartesian monad. The adjoint pair (UT , F T ) :
AlgT ⇄ E is a cartesian one if and only if the natural transformation µ satisfies the
above property. In this case, given any T -algebra ξ : T (X) //X, the following diagram
produces a kernel equivalence relation:

T 2(X)
µX

//

T (ξ) //
T (X)

ξ
//T (λX)oo X

Proof. The first assertion is the consequence of the fact that the commutative square
underlying the diagram in question is the image by the cartesian functor U of the following
pullback:

(F.U)2(F (X))
F.U(ϵF (X)) ��

ϵF.U.F (X) // F.U.F (X)
ϵF (X)��

F.U.F (X) ϵF (X)

// F (X)

Now suppose the monad is cartesian. Given any T -algebra x : T (X) //X on the object
X ans applying µ-cartesianness to the map x, we get a pullback, in such a way that the
map T (µX) delineates the composition map of an internal category in E (see Section 4
below):

T 3(X)

T 2(x)
//

T (µX) //

µT (X) //
T 2(X)

T (x)
//

µX //
T (X)T (λX)oo
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When, in addition, µ satisfies the condition in question, the pair (µT (X), T (µX)) is the
kernel pair of µX and this category is actually a groupoid (see Theorem 5.7 below). Any
morphism of T -algebras: f : (X, x) // (Y, y) produces the following vertical discrete
fibration between groupoids:

T 3(X)

T 3(f)

��

T 2(x)
//

T (µX) //

µT (X) //
T 2(X)

T 2(f)

��

T (x)
//

µX //
T (X)T (λX)oo

T (f)

��
T 3(Y )

T 2(y)
//

T (µY ) //

µT (Y ) //
T 2(Y )

T (y)
//

µY //
T (Y )T (λY )oo

So, it is a discrete cofibration as well, and the following rightward left hand side commu-
tative square is a pullback:

T 2(X)

T 2(f)

��

T (x)
//
T (X)

T (f)

��

x
//

λT (X)oo X
λXoo

f

��
T 2(Y )

T (y)
//
T (Y )

y
//

λT (Y )oo Y
λYoo

So, the rightward right hand side commutative square is a pullback as well, since, com-
posed with the leftward right hand side pullback (λ is cartesian), it gives rise to the
pullback obtained by composition of the two left hand side pullbacks. This exactly means
that the co-unit ϵ : F T .UT → IdAlg T of the comonad on Alg T is cartesian. The last
assertion is obtained by applying ϵ-cartesianness to ϵ itself.

So, let us introduce the following:

2.8. Definition. A monad (T, λ, µ) is said to be hypercartesian when it is cartesian and
the natural transformation µ is such that:

T 3(X)
µT (X)

//

T (µX) //
T 2(X) µX

//T (λT (X))oo T (X)

is a kernel equivalence relation for any object X.

2.9. Autonomous adjoint pairs. Let us introduce the following:

2.10. Definition. An adjoint pair (U, F ) : Ē ⇄ E is said to be autonomous when U is
monadic and F comonadic.

In other words, an adjunction is autonomous when it does not expand in new adjunc-
tions via the algebra or co-algebra constructions. The aim of this section is to prove that
any half-cartesian monad makes the adjoint pair (UT , F T ) : Alg T ⇄ E an autonomous
one.
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2.11. Proposition. Let (U, F ) : Ē ⇄ E be an adjoint pair and (T, λ, µ) its associated
monad on E. The following conditions are equivalent:
1) the natural transformation λ is the equalizer of the pair (λT , T (λ));
2) the comparison functor C(U,F ) : E // ColgC is fully faithful.
Any of these conditions implies that the functor F : E // Ē is conservative.

Proof. Suppose 1). Let h : F (X) //F (Y ) be a map in Ē making the following left hand
side square commute:

F (X)

h
��

F (λX)// FT (X)

FU(h)
��

X

k
��

// λX // T (X)

U(h)
��

λT (X)//

T (λX)
// T

2(X)

TU(h)
��

F (Y )
F (λY )

// FT (Y ) Y //
λY
// T (Y )

λT (Y )//

T (λY )
// T

2(Y )

then the two right hand side squares of the right hand side diagram commute and, by 1),
we get the dotted factorization k in E such that U(h).λX = λY .k. It remains to show that
F (k) = h, which is a consequence of UF (k).λX = λY .k = U(h).λX . The unicity of such
a k is a consequence of the fact that λY is a monomorphism.

Conversely suppose 2). Let l : Z // T (X) be a map such that λT (X).l = T (λX).l. We
get the following commutative square in Ē:

F (Z)

ϵF (X).F (l)
��

F (λZ)// FT (Z)

FU(ϵF (X).F (l))
��

F (X)
F (λX)
// FT (X)

Since:

FU(ϵF (X).F (l)).F (λZ) = FU(ϵF (X)).FT (l).F (λZ) = FU(ϵF (X)).F (λT (X)).F (l) = F (l)

While:

F (λX).ϵF (X).F (l) = ϵFT (X).FT (λX).F (l) = ϵFT (X).F (λT (X)).F (l) = F (l).

According to 2), there is a map k : Z // X such that F (k) = ϵF (X).F (l). Whence
λX .k = l, by ϵF (X).F (λX .k) = F (k) = ϵF (X).F (l). It remains to show the unicity of
the factorization. Let k′ be be such that λX .k

′ = l. Since C(U,F ) is faithful, checking
k = k′ is equivalent to checking F (k) = F (k′). We get: F (k′) = ϵF (X).F (λX).F (k

′) =
ϵF (X).F (λZ .k

′) = ϵF (X).F (l) = F (k). The last assertion is straightforward since F =
FC .C(U,F ) and FC is conservative.
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2.12. Proposition. Let (U, F ) : Ē ⇄ E be an adjoint pair and (T, λ, µ) its associated
monad on E. Suppose the functor F cartesian. Then the following conditions are equiva-
lent:
1) the natural transformation λ is the equalizer of the pair (λT , T (λ));
2) the functor F is conservative.
Under any of these conditions, the functor F is comonadic.

Proof. Suppose 1). We shall show that the comparison functor C(U,F ) is an equivalence
of categories. Accordingly the functor F will be comonadic and thus conservative. So,
let us show that C(U,F ) is essentially surjective. Let a : W // F.U(W ) = C(W ) be a co-
algebra structure on W in Ē. By the identities ϵW .a = 1W and F.U(a).a = F (λU(W )).a,
it produces a 2-truncated split simplicial object in Ē:

W
a
//
F.U(W )

ϵWoo

F.U(a)
//

F (λU(W )) // (F.U)2(W )

ϵF.U(W )oo

F.U(ϵW )oo

Accordingly, a is the equalizer of the pair (F.U(a), F (λU(W ))) in Ē. We have to find an
object J in E such that C(U,F )(J) = (F (J), F (λJ) ≃ (W,a) in ColgC. For that take
the equalizer j : J // U(W ) in E of the cosplit parallel pair (U(a), λU(W )). Since F is
cartesian, this equalizer is preserved by F . So the natural comparison γ : F (J) //W
such that a.γ = F (j) in Ē is an isomorphism. It remains to check that the following
square commutes:

W
a // F.U(W )

F (J)

γ

OO

F (λJ )
// F.T (J)

F.U(γ)

OO

namely that F.U(γ).F (λJ) = F (j). We shall check it by composition with the monomor-
phism F.U(a): F.U(a).F.U(γ).F (λJ) = F.U.F (j).F (λJ) = F (λU(W )).F (j) while F.U(a).F (j) =
F (λU(W )).F (j) by definition of j.

Conversely, suppose 2). We have to show that the natural transformation λ is the
equalizer of the pair (λT , T (λ)). For that, take the equalizer j : J ↣ X in E of the
cosplit pair (λT (X), T (λX)) and denote γ : X // J the natural comparison such that
λX = j.γ. Since F is cartesian, this equalizer j is preserved by F , and, FλX being
necessarily the equalizer of the pair (F (λT (X)), F.T (λX)) thanks to the retraction ϵF (X),
the map F (γ) : F (X) // F (J) is an isomorphism is Ē. Now, since F is conservative, γ
is an isomorphism, and λX is the equalizer of the pair (λT (X), T (λX)).

2.13. Corollary. Let (T, λ, µ) be a monad with a cartesian endofunctor T , then the
following conditions are equivalent:
1) the monad is half-cartesian;
2) the endofunctor T is conservative.
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Under any of these conditions, the adjoint pair (UT , F T ) : Alg T ⇄ E is an autonomous
one.

Moreover, when the monad is hypercartesian, the adjoint pair (UT , F T ) : Alg T ⇄ E
is a cartesian one.

Proof. The functor UT being monadic, it reflects pullbacks; so, T is cartesian if and
only if F T is cartesian. Applying the previous proposition, the natural transformation λ
is the equalizer of the pair (λT , T (λ)) if and only if F T is conservative. This is the case,
UT being conservative, if and only if T is conservative. Then F T is comonadic; since UT

is monadic, the adjoint pair (UT , F T ) : Alg T ⇄ E an autonomous one. The last assertion
is a consequence of Proposition 2.7.

3. Kleisli category of a monad

The canonical decomposition of the functor F T : E F̄T

−→ KlT
KT−→ Alg T into a functor

F T which is bijective on objects followed by a fully faithful functor KT produces the
Kleisli category KlT of the monad [Kleisli, 1965]. Accordingly, the functor F̄ T remains
a left adjoint to : ŪT = UT .KT : KlT // E, and obviously this adjoint pair recovers the
monad (T, λ, µ) as well. Moreover the functor ŪT is conservative as a composition of two
conservative functors.

By the adjoint bijection HomKlT (X, Y ) ≃ HomE(X,TY ), any map X 99K Y in KlT is
given by a map α : X // T (Y ) in E; we call the map α ∈ E, the support of this map in
KlT which we shall then denote by “α” : X 99K Y . Given any other map “β” : Y 99K Z
in KlT , we get “β”.“α” = “µZ .T (β).α” in KlT . In this way, the natural transformation
ϵX : F̄ T .ŪT (X) = T (X) 99K X is given by “1”T (X) and, for any map “α” : X 99K Y in
KlT , its support α is the unique map in E such that “α” = “1”T (X).F̄

T (α) in KlT . So,
given any map f : X // Y in E, we get F̄ T (f) = “λY .f”, and UT (“α”) = µY .T (α) :
T (X) // T (Y ) in E.

We shall now investigate, step by step, how the assumptions of a cartesian monad
surprisingly organizes the properties of KlT .

3.1. Consequences of constraints on λ. Let (T, λ, µ) be a monad on E.

3.2. Proposition. The endofunctor T of the monad is faithful if and only if the natural
transformation λ is monomorphic. The functor F̄ T : E // KlT is then an inclusion.

Proof. Suppose λ is monomorphic. Given a parallel pair (f, g) of maps between X and
Y such that T (f) = T (g). Then T (f).λX = T (g).λX . So, λY .f = λY .g and f = g.

Conversely suppose the endofunctor T faithful. Given a parallel pair (f, g) of maps
between X and Y such that λY .f = λY .g, we get T (λY ).T (f) = T (λY ).T (g). Since T (λY )
is a monomorphism as a retract of µY , we get T (f) = T (g); and f = g. The last assertion
is then straightforward since F̄ T is bijective on objects.
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So, when λ is monomorphic, we are in the rather weird situation of a bijective on
objects inclusion F̄ T : E ↣ KlT which admits a right adjoint ŪT . The endofunctor of
the induced comonad (C = F̄ T .ŪT , ϵ, ν) on KlT coincides with T on objects and maps
in E and we get C(“α”) = µY .T (α). Whence the following diagram in KlT where µX
coincides with C(“1”T (X)):

X
λX
//

“α”

��

T (X)

µY .α

��

“1”T (X)oo

T (λX)
//

λT (X) // T 2(X)

“1”T2(X)oo
µXoo

T (µY .α)

��
Y

λY
// T (Y )

“1”T (Y )oo

T (λY )
//

λT (Y ) // T 2(Y )

“1”T2(Y )oo
µYoo

Thanks to the horizontal 2-truncated split simplicial objects, the map λX appears to be
the equalizer in KlT of the pair (λT (X), T (λX)).

3.3. Proposition. Let j : E ↣ Ē be a bijective on objects inclusion. When j admits
a right adjoint T : Ē // E, the induced monad (T, λ, µ) on E has its λ monomorphic.
Moreover we get KlT = Ē.
Proof. Let us denote by ϵX : X L99 T (X) the co-unit in Ē of this adjunction. The map
1X : X //X produces a unique map λX : X // T (X) in E such that ϵX .λX = 1X and
the following diagram in Ē:

X

λX
//
T (X)

ϵXoo

T (λX)
//

λT (X) // T 2(X)

ϵT (X)oo

µXoo

which makes ϵX the coequalizer of the pair (ϵT (X), T (ϵX)) in Ē, and λX the equalizer of
the pair (λT (X), T (λX)) in Ē. So, λX ∈ E is a monomorphism in Ē, therefore in E. Since
the co-unit ϵX in Ē is the coequalizer of the pair (ϵT (X), T (ϵX)), the comparison functor
A(T,j) : Ē // Alg T is fully faithful. Now consider the following commutative diagram:

Ē
A(T,j) //

j ��

Alg T
FT

||
E

UT

<<

^^
T

^^

Since E ↣ Ē is bijective on objects, we get Ē = KlT .

From Proposition 2.11, we get the following:

3.4. Corollary. Let (T, λ, µ) be a monad on E. The following conditions are equivalent:
1) the natural transformation λ is the equalizer of the pair (λT , T (λ));
2) a map “α” : X 99K Y in KlT lies in E if and only if λT (Y ).α = T (λY ).α in E.
The inclusion F̄ T : E ↣ KlT is then conservative; this last point means that the inverse
in KlT of a map f of (the subcategory) E belongs to E.
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Proof. The condition 2) of Proposition 2.11 means that, when the following square
commutes in KlT , the map “α” belongs to E:

X

“α”
��

λX// T (X)

µY .T (α)��
Y

λY
// T (Y )

The commutation in KlT is: T (λY ).α = λT (Y ).µY .T (α).λX in E; now this last term is
clearly: λT (Y ).µY .λT (Y ).α = λT (Y ).α. When 1) is true, the endofunctor T is conservative;
since T = ŪT .F̄ T , the functor F̄ T is conservative as well.

Let us introduce the following:

3.5. Definition. A class Σ of maps in a category E is said to be left cancellable, when
it is such that g.f ∈ Σ and g ∈ Σ imply f ∈ Σ.

3.6. Proposition. Let (T, λ, µ) be a monad with λ monomorphic. Then the following
conditions are equivalent:
1) the natural transformation λ is cartesian;
2) the inclusion F̄ T : E ↣ KlT makes E a left cancellable subcategory of KlT .
Any of these conditions implies that λ is the equalizer of the pair (λT , T (λ)).

Proof. Suppose 1). Let h : X // Z ∈ E, g : Y // Z ∈ E, and “ϕ” : X 99K Y ∈ KlT
be such that g.“ϕ” = h in KlT . This means that T (g).ϕ = λZ .h in E. According to
the previous corollary, we must show that λT (Y ).ϕ = T (λY ).ϕ in E. Now consider the
following diagram in E:

X
ϕ //

h
��

T (Y )

T (g)
��

T (λY )
//

λT (Y )//
T 2(Y )

T 2(g)
��

µYoo

Z
λZ
// T (Z)

λT (Z)//

T (λZ)
// T

2(Z)µZoo

Since the leftward right hand side commutative square is a pullback, it is enough to check
our equality via composition with µY (trivial) and by T 2(g) which is straightforward since
the left hand side square commutes.

Conversely suppose 2). We have to show that the following left hand side square is a
pullback in E. So let (h, ϕ) be a pair of maps in E such that T (g).ϕ = λZ .h. This means
that the following right hand side triangle commutes in KlT :

Y
λY//

g
��

T (Y )

T (g)
��

Y
g

��
Z

λZ
// T (Z) X

h
//

“ϕ”
@@

Z

According to our assumption, the map “ϕ” is in E, which means that there is a map
f : X // Y in E such that ϕ = λY .f and g.f = h in E. This map f is unique since λY is
monomorphic. So, the square in question is a pullback.
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Finally we get:

3.7. Proposition. Let j : E ↣ Ē be a bijective on objects left cancellable inclusion.
When j admits a right adjoint T : Ē //E, the induced monad (T, λ, µ) on E is such that
λ is cartesian.

Proof. According to Proposition 3.3, λX is monomorphic and Ē = KlT . Since E is left
cancellable in Ē, the previous proposition asserts that λ is cartesian.

3.8. Consequences of constraints on T . Rephrasing Corollary 2.13 we get:

3.9. Corollary. Let (T, λ, µ) be a monad with a cartesian endofunctor T . When λ is
the equalizer of the pair (λT , Tλ), the injective functor F̄ T : E ↣ KlT is conservative,
cartesian and then it reflects the pullbacks of E.

3.10. Consequences of constraints on µ.

3.11. Definition. A pullback stable class Σ of maps in a category E is a class of maps
which admit pullbacks along any map in E and whose pullbacks stay in Σ.

3.12. Proposition. Let (T, λ, µ) be a monad with a cartesian endofunctor T and a
cartesian natural transformation µ. Then, the class F̄ T (Σ) is pullback stable in KlT .

Proof. Starting with a map f , consider the following left hand side pullback in E:

V

ϕ
��

h // U

ψ
��

V

“ϕ”
��

F̄T (h) // U

“ψ”
��

T (X)
T (f)
// T (Y ) X

F̄T (f)
// Y

This pullback in E determines a right hand side commutative square in KlT . Let us
show that it is a pullback in this category. Since KT : KlT // Alg T is fully faithful it
is sufficient to check it in Alg T ; now, since UT reflects pullbacks, it is sufficient to check
that its image by UT , which is given the following vertical rectangle, is a pullback in E:

T (V )
T (ϕ) ��

T (h) // T (U)
T (ψ)��

T 2(X)
µX ��

T 2(f) // T 2(Y )
µY��

T (X)
T (f)

// T (Y )

This is the case since the lower square is a pullback, µ being cartesian, and the upper one
as well since, T being cartesian, the image by T of our above left hand side pullback is
preserved by T .
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From Propositions 3.6, 3.12 and 2.12, we get:

3.13. Corollary. Let (T, λ, µ) be a cartesian monad on E. We then get a bijective on
objects inclusion F̄ T : E ↣ KlT , which makes E a left cancellable subcategory of KlT
which is pullback stable in KlT . This inclusion functor is cartesian and conservative. It
admits a right adjoint ŪT which necessarily makes this inclusion comonadic.

And from Proposition 3.7 the following:

3.14. Corollary. Let j : E ↣ Ē be a bijective on objects left cancellable and pullback
stable inclusion. When j admits a right adjoint T : Ē // E, the induced monad (T, λ, µ)
on E is cartesian and Ē is the Kleisli category of this monad.

Proof. By Proposition 3.3, we know that λ is cartesian and Ē = KlT . The endofunctor
T.j : E // E is cartesian since so are T (being a right adjoint) and j (E being pullback
stable in KlT , the inclusion j preserves the pullbacks). It remains to check that µ is
cartesian. For that, given any map f ∈ E, consider the following leftward pullback square
in KlT :

T (X)“1T (X)”

ss

T (f)

��

f̌
vv

X

f
��

P

f̄
��

“ϕf”
oo

Y T (Y )
“1T (Y )”
oo

The commutation of this square in KlT means T (f).ϕf = f̄ in E. The commutation of the
quadrangle in KlT produces a factorization f̌ in KlT ; since E is left cancellable in KlT , the
commutation of the vertical right hand side triangle makes f̌ in E. So we get f̄ .f̌ = T (f)
in E and “ϕf”.f̌ = “1T (X)” in KlT which means ϕf .f̌ = 1T (X) in E. Checking ϕf .f̌ = 1T (X)

in E will prove that the quadrangle is a pullback in KlT , which, being preserved by T ,
will prove, in turn, that µ is cartesian. We shall check ϕf .f̌ = 1T (X), by composition with

f̄ and “ϕf” in KlT . 1): f̄ .ϕf .f̌ = T (f).f̌ = f̄ = f̄ .1T (X); 2)“ϕf”.ϕf .f̌ = “ϕf”.1T (X) in

KlT is equivalent to ϕf .f̌ .ϕf = ϕf in E, which is true since ϕf .f̌ = 1T (X).

4. Internal categories

From now on, we shall suppose any ground category E has pullbacks and terminal object
1. Given any map f , we shall denote the kernel equivalence R[f ] of this map (which is
underlying an internal groupoid R[f ]• in E) in the following way:

R2[f ]

pf0 //

pf2

//
pf1

// R[f ]

pf0 //

pf1

//
X

f //sf0
oo Y
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and given any commutative square, as on the right hand side, we denote by R(ϕ) the
induced map between the kernel equivalences:

R[f ]

R(ϕ)
��

pf0 //

pf1

// X

ϕ
��

f //sf0
oo Y

ψ
��

R[f ′]
//
// X

′
f ′
//oo Y ′.

which is underlying an internal functor R(ϕ)• : R[f ]• //R[f ′]•. Let us recall the following
useful Barr-Kock Theorem [Bourn and Gran, 2004]:

4.1. Lemma. When the above right hand side square is a pullback, the left hand part
of the diagram is a discrete fibration between groupoids, which implies that any vertical
commutative square is a pullback. Conversely, if the left hand side part of the diagram is
a discrete fibration, and if f is a pullback stable strong epimorphism (it is the case when
f is split), then the right hand side square is a pullback.

4.2. Basics. Internal categories have been introduced by Ch. Ehrhesmann in [Ehres-
mann, 1963]. We deliberately choose the simplicial notations. For the basics on simplicial
objects, see, for instance, Chapter VII.5 in [Mac Lane, 1971]. An internal category in E
is is a 3-truncated simplicial object X• in E, namely a diagram:

X• : X3

d
X3
3

//

d
X3
2

//

d
X3
1

//

d
X3
0

//

X2

s
X3
0

oo

s
X3
1

oo

s
X3
2

oo
d
X2
2 //

d
X2
1

//

d
X2
0

//

X1

d
X1
1 //

d
X1
0

//

s
X2
1

oo

s
X2
0

oo
X0s

X1
0

oo

(where we shall drop the upper indexes when there is no ambiguities) subject to the
following identities:

di.dj+1 = dj.di, i ≤ j di.sj = sj−1.di, i < j

sj+1.si = si.sj, i ≤ j di.sj = 1, i = j, j + 1

di.sj = sj.di−1, i > j + 1

where the object X2 (resp. X3) is obtained by the pullback of dX1
0 along dX1

1 (resp. dX2
0

along dX2
2 ). An internal functor is a simplicial morphism between this kind of 3-truncated

simplicial objects. Let us recall some classical classes of internal functors:

4.3. Definition. An internal functor f• : X• //Y• is a discrete cofibration (resp. fibra-
tion) when the following right hand side square horizontally indexed by 0 (resp. by 1) is
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a pullback:

X2

f2

��

d2
//

d1 //

d0 //
X1

f1

��

d1
//

d0 //
X0s0oo

f0

��
Y2

d2
//

d1 //

d0 //
Y1

d1
//

d0 //
Y0s0oo

We denote by CatE the category of internal categories in E, and by ( )0 : CatE // E
the forgetful functor associating with any internal category X• its “object of objects” X0.
Since E has pullbacks, so has the category CatE, since, by commutation of limits, it is
easy to see that the limits in CatE are built levelwise in E. So, the forgetful functor ( )0
is cartesian.

The functor ( )0 is actually a fibration whose cartesian maps are the internal fully
faithful functors (obtained by a joint pullback) and whose maps in the fibers are the
internal functors which are “identities on objects” (ido-functors or idomorphisms for
short).

It is clear that the fiber Cat1E above the terminal object 1 is nothing but the pointed
category MonE of internal monoids in E. Any fiber CatYE above an object Y , with
Y ̸= 1, has an initial object with the discrete equivalence relation ∆Y = R[1Y ] and a
terminal one with the indiscrete one ∇Y = R[τY ], where τY : Y // 1 is the terminal
map. So, the left exact fully faithful functor ∇ : E // CatE admits the fibration ( )0 as
left adjoint and makes the pair (( )0,∇) a fibered reflection in the sense of [Bourn, 1987]
(see also section 9.1 below). A functor f• is then cartesian with respect to ( )0 (namely,
internally fully faithful) if and only if the following left hand side square is a pullback in
CatE, or, equivalently the right hand side one is a pullback in E:

X•
f• //

��

Y•

��

X1
f1 //

(d0,d1)
��

Y1

(d0,d1)
��

∇X• ∇f•

// ∇Y• X0 ×X0f0×f0
// Y0 × Y0

As for any left exact fibration, we get:

4.4. Proposition. 1) The cartesian maps (= internally fully faithful) functors are stable
under composition and pullback.

2) Given any commutative square in CatE where both x• and y• are cartesian maps:

X•
x• //

f•
��

X ′
•

f ′•
��

Y• y•
// Y ′

•

then it is a pullback:
1) if and only if its image by ( )0 is a pullback
2) in particular when f• and f ′

• are ido-functors.
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The dual category Xop
• of X• is the internal category where the role of dX1

0 and dX1
1

are interchanged. In the context of monads, we have the following:

4.5. Proposition. Let (T, λ, µ) be any monad on E with µ cartesian. Then, for any
algebra (X, ξ), the following diagram produces an internal category T (X, ξ) in Alg T :

(T 3(X), µT 2(X))

T 2(ξ)
//

T (µX) //

µT (X) //

(T 2(X), µT (X))

T (ξ)
//

µX //

T 2(λX)oo

T (λT (X))oo
(T (X), µX)T (λX)oo

determining the following commutative square:

AlgT

UT
��

T̄ // CatAlgT

( )0��
E

FT
// AlgT

Moreover any morphism f : (X, ξ) // (Y, γ) of T -algebras produces a discrete fibration
T̄ (f) : T̄ (X, ξ) // T̄ (Y, γ) in CatAlgT .

Proof. First, we have the following pullbacks in E since µ is cartesian:

T 4(X)

µT2(X)
��

T 3(ξ)// T 3(X)

µT (X)

��

T 2(ξ)// T 2(X)

µX
��

T 3(X)
T 2(ξ)

// T 2(X)
T (ξ)

// T (X)

Then T (µX), thanks to the axioms of T -algebra on X, furnishes a composition map. The
following pullback in E:

T 2(X)
µX //

T 2(f) ��

T (X)

T (f)
��

T 2(Y ) µY
// T (Y )

determines the last assertion.

There is a comonad (Dec, ϵ, ν) on the simplicial objects which is stable on CatE as
soon as E has pullbacks. We shall briefly describe this endofunctor Dec and the co-unit
ϵ : Dec // 1CatE because they will be useful in Section 8. Let us start with the lower
internal category X• and consider the following diagram, where X4 is determined by the
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pullback of d3 : X3
//X2 along d0 : X3

//X2:

DecX• :

ϵX•

��

X4

d4

��

d3
//

d2 //
d1 //

d0 //

X3

d3

��

d2
//

d1 //

d0 //
X2

d2

��

d1
//

d0 //
X1s0oo

d1

��
X• : X3

d3
//

d2 //
d1 //

d0 //

X2

d2
//

d1 //

d0 //
X1

d1
//

d0 //
X0s0oo

The category DecX• is given by the upper row (in Set, it is the sum of all the coslice
categories Y/E), while the co-unit of the comonad is given by the vertical internal functor
which is a discrete cofibration.

4.6. The cartesian monad (TX• , λX• , µX•) on E/X0. Given any object Y , the slice
category E/Y has the maps with codomain Y as objects, and the commutative triangles
above Y as morphisms. Given any map g : Z // Y , the composition with g determines
a functor Σg : E/Z // E/Y which admits as right adjoint the pullback functor g∗ :
E/Y // E/Z along g.

Let X• be an internal category in E. It produces a cartesian monad on the slice
category E/X0 whose endofunctor is TX• = Σd0 .d

∗
1. The following diagram where any

leftward plain square is a pullback describes vertically the behaviour of the endofunctor
TX• from left to right. The associated natural transformations λX• and µX• are precisely
described by the upper horizontal dotted arrows σh0 and δh1 which are induced by the
middle horizontal ones:

Z //
σh
0 //

h
��

d∗1(Z)
δh1

oo

d∗1(h)
��

(d1.d2)
∗(Z)

(d1.d2)∗(h)
��

δh2

oo

δh1oo

X0
// s0 // X1

d0
��

d1
oo X2

d0
��

d2
oo

d1oo

X0 X1
d1

oo

d0
��

d0oo

X0

h //
σh
0

// TX•(h) T 2
X•(h)δh1

oo

It is a cartesian monad on E/X0 since the upper plain part of the diagram is made
of pullbacks. It is well known (see for instance [Johnstone, 1977]) that the algebras of
this monad coincides with the internal discrete fibrations above X•; namely, we have
AlgTX• = DisF/X•.
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5. Internal groupoids

5.1. Basics. A category X• is a groupoid if and only if any map is invertible. It is a
property, which, internally speaking, is equivalent to saying that the following square in
the 3-truncated simplicial object defining X• is a pullback:

X2

d0
��

d1 // X1

d0
��

X1 d0
// X0

It is easy to check (via the Yoneda embedding) that a category X• is a groupoid if
and only if any commutative square in the 3-truncated simplicial object of its definition
is a pullback, see [Bourn, 1987]. The category GrdE of internal groupoids is the full
subcategory of CatE whose objects are the groupoids, and it determines a sub-fibration:

GrdE // //

( )0
��

CatE
( )0
��

E E

The fibre GrdYE has the same initial and terminal objects as the fibre CatYE.

5.2. The fibration of points. We denote by PtE the category whose objects are
the split epimorphisms (g, t) : X ⇄ Y in E and whose morphisms are the commutative
squares between them:

X

g
��

x // X ′

g′
��

Y y
//

t

OO

Y ′

t′

OO

We denote by ¶E : PtE // E the functor which associates with any split epimorphism
(g, t) its codomain Y , and associates with any morphism (y, x) the map y. It is a left exact
fibration whose cartesian maps are those squares which are pullback of split epimorphisms
in E; it is called the fibration of points [Bourn, 1991]. The class ¶ of cartesian maps is
stable under composition and pullbacks in PtE, it is left cancellable and contains the
isomorphisms. Accordingly, it determines a bijective on objects inclusion j¶ : Σ¶ ↣ PtE,
where Σ¶ denotes the subcategory of PtE whose morphisms belong to the class ¶, which
is left cancellable and pullback stable in PtE.

The fibre above Y is denoted by PtYE and an object of this fibre is called a (gen-
eralized) point of Y , while any morphism in a fiber is, for short, called an idomorphism
(=having an identity as lower map y). The left exact change of base functor produced by
the map ψ : Y → Y ′ ∈ E is the pullback along it and denoted by: ψ∗ : PtY ′E→ PtYE.
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5.3. The monad (G, σ, π) on PtE. The endofunctor G on PtE defined by G(g, t) =
(pg0, s

g
0) is underlying a monad described by the following diagram in E, where t1 =

(t.g, 1X):

X

g
��

t1 // R[g]

pg0 ��

R2[g]
pg2oo

pg0 ��
Y

t
//

t

OO

X

sg0

OO

R[g]

sg0

OO

pg1

oo

(g, t) σ(g,t)
// G(g, t) G2(g, t)π(g,t)

oo

It is clear that the maps σ(g,t) and π(g,t) belong to the class ¶ of cartesian maps. Although
being not strictly cartesian, this monad shares many properties with this notion.

5.4. Σ-cartesian monads. Given any pullback stable class Σ of maps in a category E,
we shall call Σ-cartesian any functor or natural transformation which only satisfies the
cartesian condition on the maps in Σ:

5.5. Definition. Given any pullback stable class Σ of maps in a category E and any
monad (T, λ, µ) on E, we shall say that:
1) this monad is Σ-cartesian, when:
i) the endofunctor T preserves the maps in Σ and is Σ-cartesian ;
ii) the natural transformations λ is the equalizer of the pair (λT , T (λ));
iii) the natural transformations µ is Σ-cartesian;
2) this monad is strongly Σ-cartesian when:
i) it is Σ-cartesian;
ii) any λX and any µX belong to Σ.

Remark. 1) A Σ-cartesian monad is such that λ is Σ-cartesian;
2) a monad is a strongly Σ-cartesian one if and only if:
i) the endofunctor T preserves the maps in Σ and is Σ-cartesian ;
ii) the natural transformations λ and µ are Σ-cartesian;
iii) any λX and any µX belongs to Σ..

Proof. The point 1) is obtained by the proof of Proposition 2.4 restricted to maps in Σ.
As soon as λX belongs to Σ and λ is Σ-cartesian, then the natural transformations λ is
the equalizer of the pair (λT , T (λ)), whence 2).

5.6. Proposition. [Bourn, 1987] The endofunctor G is cartesian. It preserves and
reflects the maps of the class ¶. The monad (G, σ, π) is strongly ¶-cartesian. Furthermore,
given any object (g, t) in PtE, the following diagram is a kernel equivalence relation in
PtE with its (levelwise) quotient:

G3(g, t)

Gπ(g,t)
//

πG(g,t) //

G2(g, t) π(g,t)
//

GσG(g,t)oo G(g, t)



KLEISLI CATEGORIES, T -CATEGORIES AND INTERNAL CATEGORIES 1127

Proof. The endofunctor G is cartesian because it is the result of a cartesian construction.
The second assertion comes from Lemma 4.1. We already noticed that the maps σ(g,t)
and π(g,t) belong to the class ¶. It remains to show that the natural transformations σ
and π are ¶-cartesian. The second point is a consequence of the fact that the pullbacks
in PtE are levelwise and of Lemma 4.1, while the first one is a consequence of the further
fact that, in the pullback of a split epimorphism, the splitting is pullbacked as well. The
last assertion comes from the fact that in the diagram of a kernel equivalence relation:

R2[f ]

pf0 //

pf2

//
pf1

// R[f ]

pf0 //

pf1

//
X

f //sf0
oo Y

the diagram in plain arrow is again a kernel equivalence relation.

Again from [Bourn, 1987], recall the following:

5.7. Theorem.Any algebra α : G(g, t)→ (g, t) of this monad is necessarily a ¶-cartesian
map. The category of algebras of the monad (G, σ, π) on PtE is the category GrdE of
internal groupoids in E. The functor UG : GrdE // E associates (d0, s0) : X1 ⇄ X0 with
any groupoid X•, while the functor FG : E //GrdE associates the internal groupoid R•[g]
with split epimorphism (g, t).

Proof.We refer to [Bourn, 1987] for the proof. The main conceptual aspects of the proof
are detailed in the proof of Proposition 7.12.

Accordingly an internal groupoid is given by a reflexive graph in E as on the right
hand side, completed by a map d2 : R[d0] //X1 which makes the following diagram :

X• : R2[d0]

d3=R[d2]
//

p2 //
p1 //

p0 //

R[d0]

d2
//

p1 //

p0 //
X1

d1
//

d0 //

s1oo
s0oo

X0s0oo

a 3-truncated simplicial object; namely the map d2 must: 1) complete a 2-simplicial
object, and 2) satisfy d2.R(d2) = d2.p2. In the set theoretical context, the map d2 is
defined by d2(α, β) = β.α−1 for any pair (α, β) of arrows with same domain.

5.8. Corollary.The adjoint pair (UG, FG) : GrdE ⇄ E is autonomous and the comonad
induced on GrdE coincides with the restriction to GrdE of the comonad (Dec, ϵ, ν) on
CatE. The endofunctor Dec : CatE // CatE reflects the groupoids.

Proof. By Proposition 5.6, the endofunctor G is cartesian, and the monad (G, σ, π) is
strongly ¶-cartesian with a ¶-cartesian σ; so, σ is the equalizer of the pair (σG,G(σ)),
and the monad is half-cartesian. Then apply Corollary 2.13: accordingly the adjoint pair



1128 DOMINIQUE BOURN

(UG, FG) : GrdE ⇄ E is autonomous. As for the second point, starting with an internal
groupoid X•, observe that the endofunctor Dec on CatE is stable on GrdE:

DecX• :

ϵX•

��

R3[d0]

d4

��

d3
//

d2 //
d1 //

d0 //

R2[d0]

d3

��

d2
//

d1 //

d0 //
R[d0]

d2

��

d1
//

d0 //
X1s0oo

d1

��
X• : R2[d0]

d3
//

d2 //
d1 //

d0 //

R[d0]

d2
//

d1 //

d0 //
X1

d1
//

d0 //
X0s0oo

since the upper horizontal diagram is the groupoid R•[d0] and that this DecX• is nothing
but FG.UG(X•).

As for the last point, consider the following vertical discrete fibration in CatE:

DecX• :

ϵX•

��

X4

d4

��

d3
//

d2 //
d1 //

d0 //

X3

d3

��

d2
//

d1 //

d0 //
X2

d2

��

d1
//

d0 //
X1s0oo

d1

��
X• : X3

d3
//

d2 //
d1 //

d0 //

X2

d2
//

d1 //

d0 //
X1

d1
//

d0 //
X0s0oo

and suppose the upper horizontal part is groupoid. Since the vertical discrete fibration
h• has its h0 = d1 split by s0, then the lower horizontal row is a groupoid: denote by
γ : X2

// X2 the involutive mapping producing the inversion in the upper groupoid.
Then d2.γ.s1 : X1

// X1 determines an involutive map which produces an inversion for
the lower row and makes it a groupoid as well.

5.9. Corollary. The category PtE is a subcategory of KlG; the morphisms of this last
category are the commutative squares in E:

X

g
��

x // X ′

g′
��

Y y
//

OO t

OO

Y ′
OO t′
OO

not necessarily respecting the sections.

Proof. The first assertion is a consequence of Proposition 3.2. The morphisms in KlG
between the two vertical objects of the previous diagram are given by the internal functors
between R[g] and R[g′] which produce (and are produced by) the commutative diagrams in
question since g and g′, being split, are the quotients of these kernel equivalence relations.
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5.10. The monad (TX• , λX• , µX•) when X• is a groupoid.

5.11. Proposition. Given any internal category X•, the monad (TX• , λX• , µX•) is hy-
percartesian if and only if X• is a groupoid.

Proof. Suppose X• is a groupoid. We have to show that the monad is hypercartesian.
For that, let us reproduce below a part of the upper part of the diagram of Section 4.6
and let us complete it on the left hand side:

d∗1(Z)

d∗1(h)

��

(d1.d2)
∗(Z)

δh2

oo

δh1oo

(d1.d2)∗(h)

��

(d1.d2.d3)
∗(Z)

(d1.d2.d3)∗(h)

��

δh3

oo
δh2

oo

δh1oo

X1 R[d1]
d2

oo

d1oo
R2[d1]

d3
oo

d2oo

d1oo

In this diagram, any commutative vertical square is a pullback. Since X• is a groupoid,
we get the following kernel equivalence relations on the lower row:

X1 R[d1]
d1oo R2[d1]

d2
oo

d1oo

which is lifted by pullback on the upper row as a kernel equivalence relation:

d∗1(Z) (d1.d2)
∗(Z)

δh1oo (d1.d2.d3)
∗(Z)

δh2

oo

δh1oo

which is the hypercartesian condition for the cartesian monad (TX• , λX• , µX•).
Conversely, suppose this monad is hypercartesian. The hypercartesian condition ap-

plied to the terminal object 1X0 of E/X0 says that in the following diagram which is
nothing but the DecXop

• :

X1 s1 // X2
d2
oo

d1oo
X3

d3
oo

d2oo

d1oo

the dotted part of the diagram is a kernel equivalence relation, and consequently that
DecXop

• is a groupoid. According to Corollary 5.8, Xop
• , and thus X•, is a groupoid.

This gives a conceptual way to a straightforward result in Set:

5.12. Corollary. The domain of any discrete fibration above a groupoid in CatE is a
groupoid as well.
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Proof. We know that any TX•-algebra produces a discrete fibration above the groupoid
X•:

Z2

h2
��

d2
//

d1 //

d0 //
Z1

h1
��

d1
//

d0 //
Z0s0oo

h0
��

R[d0]

d2
//

d1 //

d0 //
X1

d1
//

d0 //
X0s0oo

By Proposition 2.7, any TX•-algebra d0 : TX•(h) // h produces a kernel equivalence
relation:

T 2
X•(h)

µX•h
//

TX• (d0) //
TX•(h)

d0 // //oo h

which, here, is nothing but:

Z2

d1 //

d0
// Z1

d0 // //oo Z0

and shows that the category Z• is a groupoid.

6. T -categories

Now, let (T, λ, µ) be any monad on E. The notion of T -category has been introduced
by A. Burroni, see [Burroni, 1971], as a mix of a relational algebra in the sense of Barr
[Barr, 1969] and of something which looks like a kind of internal category, but shifted by
this monad. For that, he first introduced the notion of pointed T -graph in E as a triple
(d0, δ1, s0) of maps:

X1
d0

}}
δ1

##
X0

s0

==

λX0

// T (X0)

such that d0.s0 = 1X0 and δ1.s0 = λX0 (Axioms 1). According to our notations, it is
nothing but a reflexive graph in the Kleisli category KlT :

X1

F̄T (d0)
//

“δ1” //
X0F̄T (s0)oo
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Then building the pullback of the map δ1 along T (d0) in E (in plain arrows in the following
diagram):

X2d10

{{
d11{{

δ2

%%
X1

d0

~~
δ1

##

s10

;;

T (X1)T (d0)

yy
T (δ1)

%%
X0

s0

>>

λX0

// T (X0)
T (s0)

99

T 2(X0)µX0

oo

Burroni first observed that the section s0 of d0 produces, through the existence of T (s0) a
section s10 of d

1
0 such that δ2.s

1
0 = T (s0).δ1 (Observation 2) and that the identity δ1.s0.d0 =

λX0.d0 = T (d0).λX1 produces a map s11 : X1
//X2 such that d10.s

1
1 = s0.d0 and δ2.s

1
1 = λX1

(Observation 3).
Then he demanded a “composition” map d11 : X2

//X1 in E satisfying: d0.d
1
1 = d0.d

1
0

and δ1.d
1
1 = µX0 .T (δ1).δ2 (Axioms 4) which, with our notation, delineates the beginning

of a 2-truncated simplicial object in KlT :

X2

F̄T (d10)
//

F̄T (d11)
//

“δ2” //

X1

F̄T (d0)
//

“δ1” //

F̄T (s10)
oo

F̄T (s11)
oo

X0F̄T (s0)oo

Then Buronni demands Axioms 7 (neutrality): d11.s
1
0 = 1X1 and d11.s

1
1 = 1X1 which com-

pletes the previous diagram into a plain 2-truncated simplicial object in KlT . Finally,
constructing the pullback of the map δ2 along T (d10) in E:

X3
d20

{{ d21
{{

d22{{

δ3

%%
X2

d11~~

d10

~~
δ2

##

s20

;;

T (X2)T (d10)

yy

T (d11)yy

T (δ2)

%%
X1

s10

>>

T (X1)

T (s10)

99

T 2(X1)µX1

oo

Burroni observed that:
1) from: δ1.d

1
0.d

2
0 = T (d0).δ2.d

2
0 = T (d0).T (d

1
0).δ3 = T (d0).T (d

1
1).δ3

we get a morphism d21 : X3
//X2 such that d10.d

2
1 = d10.d

2
0 and δ2.d

2
1 = T (d11).δ3 (Observa-

tions 5);
2) and from: δ1.d

1
1.d

2
0 = µX0 .T (δ1).δ2.d

2
0 = µX0 .T (δ1).T (d

1
0).δ3

= µX0 .T
2(d0).T (δ2).δ3 = T (d0).µX1 .T (δ2).δ3, we get a morphism d22 : X3

//X2 such that:
d10.d

2
2 = d11.d

2
0 and δ2.d

2
2 = µX1 .T (δ2).δ3 (Observations 6).

Then he added Axiom 8 (associativity) d11.d
2
1 = d11.d

2
2 to complete the definition of a

T -category.
Further observations: the splitting s10 of d10 produces, via the map T (s10), a splitting

s20 : X1
//X2 of d20 such that δ3.s

2
0 = T (s10).δ2. And from: d11.s

1
0.d0 = λX0 .d0 = T (d0).λX1
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we get a map s11 : X1
// X2 such that d10.s

1
1 = s0.d0 and δ2.s

1
1 = λX1 . Finally from

δ2.s
1
1.d

1
0 = λX1 .d

1
0 = T (d10).λX1 , we get a map s22 : X2

//X3 such that d20.s
2
2 = s11.d

1
0 and

δ3.s
2
2 = λX2 . Again, with our notation, this delineates a 3-truncated object in the category

KlT (where the higher degeneracies are omitted):

X3

F̄T (d20)
//

“δ3” //

F̄T (d21)
//

F̄T (d22)
//

X2

F̄T (d10)
//

F̄T (d11)
//

“δ2” //

F̄T (s21)
oo

F̄T (s20)
oo

F̄T (s22)
oo

X1

F̄T (d0)
//

“δ1” //

F̄T (s10)
oo

F̄T (s11)
oo

X0F̄T (s0)oo

A morphism of T -categories, namely a T -functor, is a morphism (f0, f1) of pointed
T -graph:

T (X0)
T (f0) // T (Y1)

X1

d0 ((

δ1 77
f1 // Y1 d0

''

δ1

77

X0 f0
// Y0

which preserves the “composition maps” d11. Any T -functor naturally induces a morphism
of 3-truncated simplicial objects in KlT . Whence the category T -CatE of T -categories
whose objects will be denoted XT

• and morphisms hT• : XT
•

// Y T
• . We get a forgetful

functor ( )T : T -CatE // E associating the object X0 with the T -category X0
d0← X1

δ1→
T (X0).

We get an injective fully faithful injective functor T♯C : Alg T ↣ T-CatE where
T♯CE(X, ξ) has the following underlying pointed T -graph:

T (X)
ξ

||

1T (X)

%%
X

λX
//

λX

<<

T (X)

the structure of T -category being produced by the following diagram:

T 2(X)T (ξ)

yy
µXyy

1T2(X)

%%
T (X)

ξ

||

1T (X)

%%

T 2(X)
T (ξ)

yy
T (1T (X))

%%
X λX

<<

λX
// T (X) T 2(X)µX

oo
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The functor T♯CE makes the following diagram commute:

Alg T // T♯CE//

UT

��

T−CatE
( )T
��

E E

In this way, the category T-CatE appears as a natural extension of the category Alg T .

Warning: However an internal category X• : X1
d0

//

d1 //
X0s0oo in E does not induce in general

a structure of T -category on the following pointed T -graph:

X1
d0
}}

λX0
.d1

$$
X0

s0

==

λX0

// T (X0)

since the pullback of T (d0) along λX0 .d1 does not coincide with X2 in general. When
the endofunctor T is cartesian, so is F̄ T : E // KlT . However, for the same reason, the
internal category F̄ T (X•) in KlT does not coincide with a T -category.

6.1. Proposition. Suppose T and λ cartesian. Then the image by the inclusion F̄ T :
E ↣ KlT of an internal category is a T -category. So, we really get an inclusion functor
Cat(F̄ T ) : CatE ↣ T -CatE.

Proof. Start with an internal category X• in E. We have λX0 .d1 = T (d1).λX1 . Now,
since the following whole rectangle is a pullback in E

X2

λX2//

d0
��

T (X2)

T (d0) ��

T (d2)// T (X1)

T (d0)��
X1 λX1

// T (X1)
T (d1)
// T (X0)

the composition map d11 : X2
// X1 of X• in E produces the map d11 demanded by the

definition of a T -category. The satisfaction of the other axioms immedialely follows.

7. When T -categories in E coincide with (a special kind of) internal cate-
gories in KlT

In this section, we are going to investigate the T -categories in the setting of the Σ-cartesian
monads and to show that some specific class of T -categories coincides with some specific
class of internal categories in the Kleisli category KlT of the monad. This will be the case
thanks to the following:
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7.1. Proposition. Given any pullback stable class Σ in E and any Σ-cartesian monad
(T, λ, µ), then:
1) the class Σ is pullback stable in KlT ;
2) given a pair (g, h) of maps in Σ×E with same codomain Z, if there is a map ϕ : X 99K Y
in KlT such that g.ϕ = h, then ϕ belongs to E.

Proof. First, since λ is the equalizer of the pair (λT , T (λ)), E is a subcategory of KlT .
1) By the same proof as the one of Proposition 3.12, restricted to the maps in Σ, any map
in Σ is pullback stable in KlT .
2) Again, by a careful inspection, the same proof as the one of Proposition 3.6 works,
when it is restricted to the maps in Σ.

7.2. T -categories and Σ-cartesian monads.Now, let be given any pointed T -graph
in E:

X1
d0

}}
δ1

##
X0

s0

==

λX0

// T (X0)

7.3. Proposition. Let Σ be a pullback stable class of morphisms in E and (T, λ, µ) be
a Σ-cartesian monad. Then there is a bijection between the T -categories XT

• having its
underlying pointed T -graph with leg d0 ∈ Σ and the internal categories in KlT :

X• : X3

d20

//

“δ3” //

d21
//

d22
//

X2

d10

//

d11
//

“δ2” //

s21
oo

s20
oo

s22
oo

X1

d0
//

“δ1” //

s10
oo

s11
oo

X0s0oo

KlT having leg d0 : X1
//X0 ∈ Σ and section s0 ∈ E.

Proof. Starting with such a T -category XT
• , according to the previous proposition, the

following diagrams are pullbacks in KlT since d0 is in Σ:

X3

d20 //

“δ3”
��

X2

“δ2”
��

d10 // X1

“δ1”
��

X2
d10

// X1 d0
// X0

and the above 3-truncated simplicial object in KlT is underlying an internal category in
KlT .

Conversely, starting with any internal category in KlT with d0 : X1
// X0 ∈ Σ and

s0 ∈ E, the pullbacks involved in the definition of an internal category are obtained as
above, and then they coincide with Burroni’s construction. By the second part of the same
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proposition and the identity d0.d
1
1 = d0.d

1
0, the composition map d11 : X2

//X1 necessarily
belongs to E, since d0 ∈ Σ; in the same way, since d10 ∈ Σ as well, by d10.d

2
1 = d10.d

2
0, the

map d21 is in E too; finally the identity d10.d
2
2 = d11.d

2
0 assures us that d

2
2 is in E; accordingly,

the internal category X• in KlT is underlying a T -category in E.
Similarly, by the same previous proposition, we know that any internal functor (h0, h1)

between internal categories in KlT with d0 ∈ Σ and having h0 ∈ E is such that h1 ∈ E;
accordingly the full subcategory TΣ-CatE of T -CatE whose objects are the T -categories
with d0 ∈ Σ coincides with the subcategory CatΣKlT of internal categories in KlT having
d0 ∈ Σ and s0 ∈ E and internal functors (h0, h1) in KlT with h0 ∈ E. It is obtained by
the following pullback:

TΣ−CatE //

��

CatAlg T

D0
Alg T
��

PtΣE // // PtE
Pt(FT )

// PtAlg T

where PtΣE denotes the full subcategory of PtE whose objects are the split epimorphism
(f, s) in E with f ∈ Σ.

When, in addition, the class Σ contains the identity maps, is stable under composition
and left cancellable, the situation becomes even clearer since we are now assured that the
map s0 and the composition map d1 : X2

//X1 belong to Σ. So, we get a fully faithful
inclusion j : CatΣE ↣ TΣ-CatE where CatΣE denotes the full subcategory of CatE whose
objects are the internal categories in Σ.

7.4. T -categories and cartesian monads. Now, we get our more meaningful result:

7.5. Theorem. When the monad (T, λ, µ) is cartesian, a T -category coincides with an
internal category XT

• in KlT whose leg d0 belongs to the subcategory E. A T -functor, coin-
cides with an internal functor in KlT whose image by the functor ( )0 : Cat(KlT ) //KlT
belongs to the subcategory E. The image by the cartesian inclusion functor F̄ T : E ↣ KlT
of any internal category is a T -category. The image of any T -category by the fully faithful
functor KT : KlT // Alg T produces an internal category in Alg T .

Proof. It is a corollary of the previous proposition where Σ = E.
By Proposition III.2.21 in [Burroni, 1971], the author observed that, when the monad

(T, λ, µ) is cartesian, the image by the functor ŪT = UT .KT : KlT //E of the 3-truncated
simplicial object in KlT induced by a T -category in E is an internal category in E, but he
did not produce the previous characterization; for that the Proposition 3.6 concerning the
behaviour of the maps of E inside KlT and the Proposition 3.12 concerning the existence
of a certain class of pullbacks in KlT are needed. According to the previous proposition,
the category T -CatE is defined by any of the following pullbacks:

T−CatE // //

��

CatKlT
D0

KlT��

T−CatE //

��

CatAlg T
D0

Alg T��
PtE //

Pt(F̄T )
// PtKlT PtE

Pt(FT )
// PtAlg T
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Let us denote by ( )T : T -CatE //E the forgetful functor associating with any T -category
XT

• its “object of objects” X0.

7.6. Proposition. When the monad (T, λ, µ) is cartesian, the category T -CatE has
pullbacks and the forgetful functor ( )T is cartesian; it is a fibration such that, in the
following commutative diagram, the inclusion Cat(F̄ T ) : CatE ↣ T -CatE is fully faithful,
cartesian and preserves the cartesian maps:

CatE //Cat(F̄
T )//

( )0
��

T−CatE
( )T
��

E E

Proof. Let f• : XT
•

// ZT
• and g• : Y T

•
// ZT

• be a pair of T -functors. Consider the
following levelwise pullbacks in E:

P0

pX0 //

pY0 ��

X0

f0
��

P1

pY1 ��

pX1 // X1

f1
��

Y0 g0
// Z0 Y1 g1

// Z1

The split epimorphisms (d0, s0) in E produce a split epimorphism (dP0 , s
P
0 ) : P1 ⇄ P0 in E.

And since the injection E ↣ KlT is cartesian (Proposition 3.9), the maps “δ1” : X1 99K X0

in KlT produces a map “δ1” : P1 99K P0 in KlT ; from that the structure P T
• of T -category

on this induced pointed graph follows. By this construction, the functors ( )T and Cat(F̄ T )
are cartesian.

To show that this functor is a fibration, we have first to check that the classical
construction of the cartesian maps above a map f : X // Y0 is valid in KlT , namely to
build some joint pullbacks in KlT . So let Y T

• be a T -category and f : X // Y0 any map
in E. The following diagram where any square is a pullback in KlT makes it explicit:

X1

ϕ̄ ��

ˇ̄f // X̌
“δ̌1”//

ϕ
��

X
f
��

X̄

d̄0 ��
f̄
// Y1 “δ1”

//

d0��

Y0

X
f
// Y0

Whence a morphism of pointed graphs in KlT :

X1

d̄0.ϕ̄
��

“δ̌1”.
ˇ̄f

��

f̄ .ϕ̄ // Y1

d0
��

“δ1”
��

X

OO

OO

f
// Y0

OO

OO
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which, by general arguments, endows the left hand side reflexive graph with an internal
category structure XT

• in KlT . By Theorem 7.5, this internal category in KlT is a T -
category.

We have now to check the universal property: so, let ZT
• be another T -category and

g• : ZT
•

// Y T
• a T -functor, such that g0 = f.h for some h : Z0

// X in E. Again, by
general arguments, we certainly get an internal functor h• : Z

T
•

//XT
• in KlT such that

h0 = h ∈ E. Since both Z• and X• are T -categories and h0 belongs to E, then h• is a
T -functor, see Theorem 7.5. Since F̄ T preserves pullbacks, Cat(F̄ T ) preserves the fully
faithful internal functors, namely the cartesian maps with respect to ( )0.

In our context, the construction of the endofunctor Dec can be extended to T -
categories:

7.7. Proposition. Given any cartesian monad (T, λ, µ), there is an endofunctor Dec
on T -CatE which mimicks the endofunctor Dec on CatE. However the co-unit ϵ does not
belong to T -CatE.

Proof. Consider the upper part of the following vertical diagram in KlT :

DecX• :

ϵX•

��

X4

δ4

��

d3
//

d2 //
d1 //

d0 //

X3

“δ3”

��

d2
//

d1 //

d0 //
X2

“δ2”

��

d1
//

d0 //
X1s0oo

“δ1”

��
X• : X3

“δ3”
//

d2 //
d1 //

d0 //

X2

“δ2”
//

d1 //

d0 //
X1

“δ1”
//

d0 //
X0s0oo

where X4 is defined by the pullback in KlT of the map d0 : X3
//X2 ∈ E along the map

δ3 : X3 99K X2 ∈ KlT .

7.8. Proposition. Given any cartesian monad (T, λ, µ), the fully faithful inclusion
Cat(F̄ T ) : CatE ↣ T -CatE admit a right adjoint R which preserves the cartesian maps
(=fully faithful functors).

Proof. Let us start with a T -category XT
• and define R(XT

• ) by the following fully
faithful internal functor in CatE:

X̄1

d̄0

��
d̄1

��

λ̌1 // T (X1)

T (d0)

��

T (δ1)
((

T 2(X0)

µX0
vv

X0

OO
s̄0

OO

λX0

// T (X0)

OO
T (s̄0)

OO
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It determines the left hand side T -functor in T -CatE where λ̄1 is the factorization of λ̌1
through λX1 :

X̄1
λ̄1

//

λ̌1 //

d̄0

��
d̄1

��

X1

d0

��

λX1

//

“δ1”

��

T (X1)

T (d0)

��

T (δ1)
((

T 2(X0)

µX0
vv

X0

OO
s̄0

OO

X0

OO
s0

OO

λX0

// T (X0)

OO
T (s̄0)

OO

since “δ1”.λ̄1 = d̄1 in KlT means δ1.λ̄1 = λX0 .d̄1 in E which is true since λX0 .d̄1 =
µX0 .T (δ1).λ̌1 = µX0 .T (δ1).λX1 .λ̄1 = µX0 .λT (X0).δ1.λ̄1 = δ1.λ̄1.

Now, let h• : Z• // XT
• be any T -functor with Z• ∈ CatE. This means that we get

δ1.h1 = λX0 .h0.d1 in E. We have to check that the map h1 : Z1
// X1 factors through

λ̄1 or equivalently that λX1 .h1 factors through λ̌1. For that it is enough to check that we
have an internal functor in CatE:

Z1

d0

��

d1

��

λX1
.h1// T (X1)

T (d0)

��

T (δ1)
((

T 2(X0)

µX0
vv

Z0

OO
s0

OO

λX0
.h0
// T (X0)

OO
T (s̄0)

OO

which is straightforward. The functor R preserves the fully faithful functors since the
functor KT : KlT // AlgT is cartesian as soon as the monad is cartesian.

Now, when the monad is cartesian, the injective functor:
T♯CE : Alg T ↣ T-CatE ↣ Cat(KlT ) is defined by the following diagram:

T 2(X)

T (ξ)
//

µX //

“1”T2(X) //

T (X)

ξ
//

“1”T (X) //

T (λX)oo

λT (X))oo
XλXoo

which makes commute the following diagram:

Alg T // //

UT

��

Cat(KlT )

( )0
��

E E

7.9. Proposition. The upper injective functor is cartesian. We get R(T♯CE(X, ξ)) =
∆.UT (X, ξ) = ∆X .
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Proof. The first point is straightforward since the pullbacks of internal categories are
levelwise and that it is also the case for the T -algebras when T is cartesian. For the
second point, given any T -algebra (X, ξ), consider the following joint pullback diagram:

X

λX ��

1X // X

λX��
T (X)

ξ
��

λT (X)

// T 2(X) µX
//

T (ξ)
��

T (X)

X
λX
// T (X)

The composition functor Alg T ↣ Cat(KlT )
Cat(F̄T )
↣ Cat(AlgT ) gives rise, for any

X ∈ E to the following internal category in Alg T :

(T 3(X), µT 2(X))

T 2(ξ)
//

T (µX) //

µT (X) //

(T 2(X), µT (X))

T (ξ)
//

µX //

T 2(λX)oo

T (λT (X))oo
(T (X), µX)T (λX)oo

For further developments on these internal categories, see [Batanin and Berger, 2017]. On
the other hand, the “intersection” of the inclusions Cat(F̄ T ) : CatE ↣ Cat(KlT ) and
AlgT ↣ Cat(KlT ) is clearly the empty set.

7.10. T -groupoids. Is the notion of T -groupoid meaningful? Probably not in general,
but it is clear that when a T -category coincides with an internal category in KlT , it is
legitimate to say that a T -category:

X• : X3

d20

//

“δ3” //

d21
//

d22
//

X2

d10

//

d11
//

“δ2” //

s21
oo

s20
oo

s22
oo

X1

d0
//

“δ1” //

s10
oo

s11
oo

X0s0oo

is a T -groupoid when:

X2

d11 //

d10

//
X1 d0

//s10
oo X0

is a kernel equivalence relation in E.

7.11. When T -algebras produce T -groupoids. We shall try now to answer the
question: when is the image T♯CE(X, ξ) an internal groupoid in KlT?
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7.12. Proposition. Let Σ be a pullback stable class of morphisms and (T, λ, µ) be a
strongly Σ-cartesian monad on E. Suppose that the object X is such that the following
diagram is a kernel equivalence relation:

T 3(X)
µT (X)

//

T (µX) //
T 2(X) µX

//T (λT (X))oo T (X)

Then the object T (X) satisfies the same property. Suppose moreover that Σ is a bijective
on objects left cancellable subcategory of E containing all the isomorphisms. Then any
algebra ξ : T (X) //X on X belongs to Σ and the following diagram is a kernel equivalence
relation:

T 2(X)
µX

//

T (ξ) //
T (X)

ξ
//T (λX)oo X

So, the T -category T♯CE(X, ξ) is actually a T -groupoid, i.e. an internal groupoid in the
Kleisli category KlT .

Proof. Since µX is in Σ and µ is Σ-cartesian, the map T (µT (X)) delineates the compo-
sition map of an internal category in E:

T 4(X)

T 2(µX)
//

T (µT (X)) //

µT2(X) //
T 3(X)

T (µX)
//

µT (X) //
T 2(X)T (λT (X))oo

When the diagram in question is a kernel equivalence relation, its image by T is a kernel
equivalence relation (i.e. the pair (T (µT (X)), T

2(µX)) is the kernel pair of T (µX)), and
this category is actually a groupoid. By duality, the pair (µT 2(X), T (µT (X))) is the kernel
equivalence relation of µT (X) and we get the first assertion.

Any T -algebra ξ : T (X) //X produces the following diagram:

T 4(X)

T 3(ξ)

��

T 2(µX)
//

T (µT (X)) //

µT2(X) //
T 3(X)

T 2(ξ)

��

T (µX)
//

µT (X) //
T 2(X)T (λT (X))oo

T (ξ)

��
T 3(X)

T 2(ξ)
//

T (µX) //

µT (X) //
T 2(X)

T (ξ)
//

µX //
T (X)T (λX)oo

Now, since the square in question is a pullback, the maps T (ξ) and T 2(ξ) makes the lower
row an internal groupoid. So, the involutive “inversion” mapping γξ : T

2(X) //T 2(X) of
this groupoid exchanges the maps µX and T (ξ). Since, by assumption, the isomorphism
γX is in Σ which is a subcategory of E, then T (ξ) = µX .γξ belongs to Σ. Now, the identity
λX .ξ = T (ξ).λT (X) shows that ξ ∈ Σ, since Σ is left cancellable.
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It remains to check the last assertion. Since the lower row of the diagram above is a
groupoid, by duality, the following diagram is a kernel equivalence relation:

T 3(X)
T 2(ξ)

//

T (µX) //
T 2(X)

T (ξ)
// T (X)

The endofunctor T is conservative since λ is the equalizer of the pair (λT , T (λ)) (since
λ is in Σ and λ Σ-cartesian); accordingly it reflects the pullbacks of maps in Σ, and the
following diagram is thus a kernel equivalence relation:

T 2(X)
T (ξ)

//

µX //
T (X)

ξ
// X

7.13. Corollary. Let (T, λ, µ) be a cartesian monad on E. Suppose the object X is
such that the following diagram is a kernel equivalence relation:

T 3(X)
µT (X)

//

T (µX) //
T 2(X) µX

//T (λX)oo T (X)

Then any T -algebra ξ : T (X) // X on X is such that the T -category T♯CE(X, ξ) is
actually a T -groupoid, i.e. an internal groupoid in KlT .

In Section 10.5 we shall produce a cartesian monad where this condition is satisfied
for any object X.

8. When internal categories in E coincide with G-categories in PtE
In this section we shall show that the category CatE of internal categories in E coincides
with a specific subcategory of the category of G-categories in PtE.

The monad (G, σ, π) being strongly ¶-cartesian on PtE (Section 5), we get:

8.1. Proposition. The full subcategory G¶-CatPtE of G-CatPtE whose objects are the
G-categories with a ¶-cartesian 0-leg coincides with the category whose objects are the
discrete fibrations h• : X• // Y• in E, where h0 : X0

// Y0 is endowed with a given
splitting t0 and whose morphisms are the commutative squares between discrete fibrations
in CatE as on the left hand side:

X•
ψ• //

h•
��

X̄•

h̄•��

X0
ψ0 //

h0
��

X̄0

h̄0 ��
Y• ϕ•

// Ȳ• Y0 ϕ0
//

t0

OO

Ȳ0

t̄0

OO

such that the above right hand side square is a morphism in PtE.

Proof. Apply Propositions 7.3 and 5.9.
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We shall be interested now in the full subcategory of G¶-CatPtE whose objects are
the G-categories having, in addition, an idomorphic 1-leg.

8.2. Theorem. The full subcategory of G-CatPtE whose objects are the G-categories
with a ¶-cartesian 0-leg and an idomorphic 1-leg is isomorphic to the category CatE of
internal categories in E.

Proof. Let h• : X• // Y• be a G-category with a ¶-cartesian 0-leg, namely a vertical
discrete fibration with a section t0 of h0:

X0 sY0
//

h0

��

X1

h1

��

d
1X

oo

d
0Xoo

X2

h2

��

d2
oo

d0oo
d1oo

Y0 s0 //

t0

OO

Y1
d
1Y

oo

d
0Yoo

Y2
d2

oo

d0oo
d1oo

we shall denote by ti the induced section of hi. Its underlying G-graph:

(h0, t0)
(dY0 ,d

X
0 )

←− (h1, t1)
(dX1 ,R(dX1 )).σ(h1,t1)−→ G(h0, t0)

is the following one:
X1

h1

��

d
0X

xx
(dX1 .t1.h1,d

X
1 )

''
X0

h0

��

R[h0]

p
h0
0

��
Y1

d
0Y

xx

t1

OO

dX1 .t1
''

Y0

t0

OO

X0

s
h0
0

OO

Saying that its 1-leg is idomorphic is saying that dX1 .t1 = 1Y1 . Whence:
1) h0 = h0.d

X
1 .t1 = dY1 .h1.t1 = dY1 , and 2) t0 = t0.d

Y
1 .s

Y
0 = dX1 .t1.s

Y
0 = sY0 , and consequently

(h0, t0) = (d1, s0). Similarly we have dX2 .t2 = 1Y2 . Whence:
1) h1 = h1.d

X
2 .t2 = dY2 .h2.t2 = dY2 , and 2) t1 = t1.d

Y
2 .s

Y
1 = dX2 .t2.s

Y
1 = sY1 , and consequently

(h1, t1) = (d2, s1). Accordingly, we get the following diagram:

Y1 s0 //

d1

��

Y2

d2

��

d1
oo

d0oo
Y3

d3

��

d2
oo

d0oo
d1oo

Y0 s0 //

s0

OO

Y1
d1

oo

d0oo
Y2

d2
oo

d0oo
d1oo

which is nothing but the discrete fibration ϵY• : DecY• // Y• with the section s0, and
nothing more. So that a G¶-category with an idomorphic 1-leg is just an internal category
in E. Conversely any internal category Y• in E produce the above G¶-category with an
idomorphic 1-leg.
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Now, consider the injective functor G♯C : AlgG = GrdE ↣ G-Cat(PtE); according to
Proposition 7.12, any G-algebra is ¶-cartesian, so that the pointed G-graph underlying
G♯C((d0, s0), (d1, d2)) (following the notations of Section 5):

G(d0, s0)
(d1,d2)
ww

1G(d0,s0)

((
(d0, s0)

σ(d0,s0)
// G(d0, s0)

has a ¶-cartesian 0-leg and an idomorphic 1-leg. Accordingly, the injective functor G♯C
factors through CatE, producing the natural inclusion GrdE ↣ CatE. So, not only the
monad (G, σ, π) on PtE produces the category GrdE = AlgG of internal groupoids, but
also it entirely rules the construction of CatE and the previous inclusion.

9. Internal n-groupoids and n-categories

In this section, we shall show that the constructions and results of the previous section
about the monad (G, σ, π) have a natural extension to the internal (strict) n-groupoids
and n-categories.

9.1. The monad (GF , σF , πF ). We shall first introduce a locating process for the monad
(G, σ, π) up to a fibration. So let F : Ē // E be any fibration whose underlying functor
is cartesian; we denote by FW the fiber above W ∈ E.

9.2. Lemma. Given any fibration F : Ē //E whose underlying functor is cartesian, then
any fiber FW has pullbacks.

Proof.Given pair (f, g) of maps with same codomain in the fiber FF (Y ) and their pullback
in Ē:

P
pX //

pY
��

X

f
��

F (P )

F (pY )
��

F (pX)// F (X)

F (f)

Z g
// Y F (Z)

F (g)
F (Y )

we get F (pX) = F (pY ) = γ, where γ is an isomorphism in E. Taking ζ : P̄ // P the
cartesian map above γ−1 with domain P furnishes the pullback of the pair (f, g) inside
the fiber FF (Y ).

Let us denote by PtF Ē the full subcategory of PtĒ whose objects are the split epi-
morphisms in a fiber of F , it is obtained by the following left hand side pullback where
1E(W ) = (1W , 1W ):

PtF Ē //
ιĒ
//

¶F //

��

PtĒ
PtF
��

¶Ē

// Ē

E //
1E
// PtE
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This makes PtF Ē a cartesian category and any functor in this diagram is a cartesian one.
This produces, in addition, the upper horizontal cartesian functor ¶F which becomes a
subfibration of ¶Ē by the following specification of the base-change functor ψ∗: starting
with any split epimorphism (f, s) : X ⇄ Y in the fiber FF (Y ), take the pullback in Ē as
on the left hand side which produces a cartesian map above ψ in PtĒ:

X̄
ψ̄ //

f̄
��

X

f
��

F (X̄)

F (f̄)
��

F (ψ̄)// F (X)

F (f)

Z
ψ
//

s̄

OO

Y

s

OO

F (Z)
F (ψ)
// F (Y )

So, in its right hand side image by F in E which is a pullback, the map F (f̄) = γ is an
isomorphism whose inverse is F (s̄). Taking the cartesian isomorphism ζ : X̌ // X̄ above
γ−1 with codomain X̄ produces the desired split epimorphism (f̄ .ζ, ζ−1.s̄) : X̌ ⇄ Z in the
fiber above F (Z). From now on we shall use the previous specification in the construction
of the base-change functors ψ∗.

We shall denote by ¶F the class of the cartesian maps with respect to the fibration ¶F
(namely pullbacks between split epimorphisms belonging to a fiber) and, again, we shall
call idomorphims the morphisms (y, x) in PtF Ē whose lower map y in Ē is an identity
map. Modulo the above precisions, the monad (G, σ, π) on PtĒ is stable on PtF Ē; for
sake of clarity, we shall denote it by (GF , σF , πF ).

9.3. Proposition. The endofunctor GF on PtF Ē is cartesian. It preserves and reflects
the class ¶F . The monad (GF , σF , πF ) is strongly ¶F -cartesian. Furthermore, given any
object (g, t) in PtF Ē, the following diagram is a kernel equivalence relation in PtĒ with
its (levelwise) quotient:

G3
F (g, t)

GFπF (g,t)

//

πFGF (g,t) //

G2
F (g, t) πF (g,t)

//
GF (σFGF (g,t))oo GF (g, t)

Proof. It is just Proposition 5.6 restricted to the full subcategory PtF Ē of PtĒ since
the inclusion ιĒ preserves the cartesian maps and the monad (GF , σF , πF ) is just the
restriction to PtF Ē of the monad (G, σ, π) on PtĒ.

9.4. Proposition. Any algebra α : GF (g, t) → (g, t) of this monad necessarily belongs
to the class ¶F . The category of algebras of the monad (GF , σF , πF ) on PtF Ē is the full
subcategory GrdF Ē of GrdĒ whose objects are the internal groupoids in the fibers of F .

Proof. This time, it is just a restriction of Theorem 5.7 to the full subcategory PtF Ē of
PtĒ.
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We shall denote by ( )F0 the diagonal functor of the following commutative square:

AlgGF = GrdF Ē // //

( )F0

((

UGF

��

GrdĒ

( )0

��
PtF ĒGF   ¶F

// Ē

9.5. Definition. A functor F : Ē //E is called a fibered reflection when it is cartesian
and is a fibration such that any fiber FW of F has a terminal object T (W ) which is stable
under any base-change functor.

The easiest examples of fibered reflection are the fibrations ( )0 : CatE // E and
( )0 : GrdE // E, when E is a cartesian category with a terminal object; in both cases,
the terminal object in the fiber above the object X in E being the undiscrete equivalence
relation ∇X = R[τX ], where τX : X // 1 is the terminal map. We are going to show now
that when F is a fibered reflection, so are the forgetful functors ( )F0 : GrdFE // E and
( )F0 : CatFE // E. First, the previous terminology comes from the following:

9.6. Proposition. [Bourn, 1988] A functor F : Ē //E is a fibered reflection if and only
if the following conditions hold:
1) the functor F is cartesian and has a right adjoint right inverse T : E // Ē such that
the unit ηX : X // TF (X) of this co-adjoint pair is such that F (ηX) = 1F (X);
2) for any map h : Z //F (X) in Ē, there is a map h̄ : Z̄ //X in E such that F (h̄) = h
and the following square is a pullback:

Z̄
h̄ //

ηZ̄ ��

X

ηX
��

TF (Z̄) = T (Z)
TF (h̄)=T (h)

// TF (X)

Proof. Suppose F is a fibered reflection. Choose a terminal object T (W ) in the fiber
FW ; this determines a right adjoint right inverse T of F with ηX : X // TF (X) the
terminal map in the fiber FF (X). Then a map f : X // Y in Ē is cartesian with respect
to F if and only if the following left hand side square is a pullback in Ē, see Section 1 in
[Bourn, 1988] for instance:

X
f //

ηX
��

Y

ηY
��

Ž ȟ //

η̌
��

X

ηX
��

TF (X)
TF (f)

// TF (Y ) T (Z)
T (h)

// TF (X)

Now starting with a map h : Z //F (X) in Ē, take the above right hand side pullback in
E. Since F is cartesian, its image by F is a pullback in E, and F (η̌) is an isomorphism.
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Taking γ : Z̄ // Ž the invertible cartesian map above F (η̌)−1 with codomain Ž, produces
the desired map h̄ = ȟ.γ : Z̄ //X of condition 2).

Conversely, let F be a functor satisfying the two above conditions. Condition 1)
implies that any map f : X // Y making the above left hand side square a pullback is
cartesian with respect to F , while Condition 2) guarantees the existence of a cartesian
map above any map h. Then ηX : X // TF (X) is necessarily the terminal map in the
fiber FF (X).

9.7. Proposition.When the fibration F : Ē //E is a fibered reflection, so is the forgetful
functor ( )F0 : GrdF Ē // Ē.

Proof. The kernel equivalence relation R[ηX ] produces a groupoid R•[ηX ] in the fiber
FF (X) (since F (ηX) = 1F (X)) such that R0[ηX ] = X, and it is clearly a terminal object
among the groupoids Z• in the fiber FF (X) such that Z0 = X.

Let us check that ( )F0 is a fibration whose base-change functors preserve these terminal
objects. So, let X• be any internal groupoid in a fiber of F and h : Z //X0 be any map
in Ē; then consider the following left hand side pullback in the following left hand side
diagram in Ē, where η̄1X• is the factorization of the pair (dX•

0 , dX•
1 ):

Z̄1
η̄ //

h̄1
��

R[ηZ ]

R(h)
��

p0 //

p1
// Z

h
��

ηZ //oo TF (Z)

TF (h)
��

Z̄•
η̄• //

h̄•
��

R•[ηZ ]

R•(h)
��

X1 η̄1X•
// R[ηX0 ]

p0 //

p1
// X0 ηX0

//oo TF (X0) X• η̄•X•
// R•[ηX0 ]

This produces an internal groupoid in Ē, since this pullback in Ē is underlying the right
hand side pullback in GrdĒ. The map η̄ is not necessarily inside a fiber, but certainly F (η̄)
is an isomorphism since F (η̄1X•) = 1F (X0). Take the invertible cartesian map ζ1 : Z1

//Z̄1

above F (η̄)−1 with codomain Z̄1, then the associated internal groupoid Z• (which is
isomorphic to Z̄•) belongs to GrdF Ē. It is then straighforward to check that the internal
functor h•.ζ• : Z• //X• is the desired cartesian map above h with respect to the functor:
( )F0 : GrdF Ē //Ē. This construction makes R•(h) a cartesian map above h, which means
that the terminal object R•[ηX0 ] in the fiber of ( )F0 is preserved by the base-change functor
along h; in other words this means that the fibration ( )F0 is a fibered reflection.

9.8. Theorem.The full subcategory of GF -Cat(PtF Ē) whose objects are the GF -categories
with a ¶F -cartesian 0-leg and an idomorphic 1-leg is isomorphic to the full subcategory
CatF Ē of CatĒ whose objects are the internal categories in the fibers of F . The inclusion
G♯CF : AlgGF ↣ CatF Ē coincides with the following upper one:

GrdF Ē // //

( )F0 ��

CatF Ē
( )F0��

Ē Ē

When F is a fibered reflection, so is ( )F0 : CatF Ē // Ē.
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Proof. Once again, the first point is only a straighforward restriction of Theorem 7.5 to
the full subcategory PtF Ē of PtĒ. And the second one holds since the previous proof for
GrdF Ē is still valid for CatF Ē, which means, as expected, that the terminal objects in
the fibers GrdFXĒ and CatFXĒ are the same one.

9.9. When the fibration F has protomodular fibers. Recall from [Bourn, 1991],
that a category C is protomodular when any base-change functor of the fibration ¶C :
PtC //C is conservative, that any protomodular category is a Mal’tsev one in the sense
of [Cardoni, Lambek and Pedicchio, 1991] (namely any reflexive relation in C is an equiv-
alence relation), and that any internal category in a Mal’tsev category is an internal
groupoid [Carboni, Pedicchio and Pirovano, 1992].

The easiest examples of protomodular category are the category Gp of groups and
GpE of internal groups in E when E is cartesian. More generally any fiber of the fibration
( )0 : GrdE //E is protomodular, again see [Bourn, 1991], and when C is protomodular, so
is the category GrdC. When the fibration F has protomodular fibers, then the extension
determined by Theorem 9.8 does not produce anything new:

9.10. Proposition. When the fibration F has protomodular fibers, the inclusion G♯CF :
AlgGF = GrdF Ē ↣ CatF Ē is an isomorphism of categories, and the fibered reflection
( )F0 : GrdF Ē // Ē has protomodular fibers as well.

Proof. Following what we just recalled, internal categories and internal groupoids do
coincide inside the protomodular fibers of F : Ē // E; whence the first point. Now, the
fiber ( )F,X0 of ( )F0 above the object X ∈ Ē is a cartesian subcategory of the category
Grd(FF (X)) which, as we just recalled above, is protomodular since so is FF (X). Accord-

ingly, so is this fiber ( )F,X0 .

9.11. 2-categories and 2-groupoids. (Strict) 2-categories have been introduced by
Benabou [Benabou, 1965] and Maranda [Maranda, 1965] as Cat-enriched categories. They
are examples of double categories in the sense of Ehresmann [Ehresmann, 1965] as well,
namely as special cases of internal categories. Internally speaking, the category 2-CatE of
internal 2-categories in E is nothing but the full subcategory of the category Cat(CatE)
of double categories whose objects are the internal categories in the fibers of the fibration
( )0 : CatE //E, see Section VI.2 in [Bourn, 1988]. So we are in the situation investigated
in Section 9.1 with the fibration F = ( )0. This section will be devoted to the translation
of the results of Section 9.1, and this will show how, again, the monad (G, σ, π) entirely
rules the construction of the category 2-CatE. Similarly, the category 2-GrdE of internal
2-groupoids in E is nothing but the full subcategory of the category Grd(GrdE) of double
groupoids whose objects are the internal groupoids in the fibers of the fibration ( )0 :
GrdE // E.

Let us begin by the category 2-GrdE. In this way, 2-GrdE = Grd( )0GrdE. When
there is no ambiguity, a 2-groupoid will be denoted by the central part X2

• of the internal
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groupoid defining it in a fiber of ( )0 : GrdEE // E:

X2
• ×0 X

2
• d2,1•

//

d2,2• //

d2,0•

//
X2

•

d2,0•

//

d2,1• //
X1

•s2,0•
oo

where the left hand side object is a pullback in this fiber. The internal groupoid X1
• is

called the groupoid of 1-morphisms, while the internal groupoid X2
• is called the groupoid

of 2-morphisms or 2-cells. Let us translate now the results of Section 9.1 with F = ( )0 :
GrdE // E. For that and for sake of simplicity we shall denote:
1) by Pt0GrdE the category Pt( )0GrdE whose objects are the split epimorphisms between
internal groupoids lying in a fiber of ( )0,
2) by ¶0E the fibration ¶( )0 : Pt0GrdE = Pt( )0GrdE //GrdE associating with any split
epimorphism of this kind its codomain,
3) and by (G1, σ1, π1) the monad (G( )0 , σ( )0 , π( )0) on the category Pt0GrdE.
So we get:

9.12. Proposition. 1) The category 2-GrdE is isomorphic to AlgG1. The forgetful
functor ( )1 : 2-GrdE // GrdE associating the groupoid X1

• with the 2-groupoid X2
• is a

fibered reflection.
2) The inclusion G♯C1 : AlgG1 = 2-GrdE ↣ Cat( )0GrdE is an isomorphism of categories
and the fibered reflection ( )1 : 2-GrdE //GrdE has protomodular fibers.

Proof. For the first point, just apply Propositions 9.3, 9.4 and 9.7 to the fibration
( )0 : GrdE // E. For the second one, apply Proposition 9.10.

Let us translate now the results of Section 9.1 related with F = ( )0 : CatE // E.
In this way, 2-CatE = Cat( )0CatE. Again, when there is no ambiguity, a 2-category will
be denoted by the central part X2

• of the internal category producing it in a fiber of of
( )0 : CatE // E:

X2
• ×0 X

2
• d2,1•

//

d2,2• //

d2,0•

//
X2

•

d2,0•

//

d2,1• //
X1

•s2,0•
oo

where the left hand side object is a pullback in this fiber of ( )0 : CatE //E. The internal
category X1

• is called the category of 1-morphisms, while the internal category X2
• is called

the category of 2-morphisms or 2-cells. Again for sake of simplicity, we shall denote:
1) by Pt0CatE the category Pt( )0CatE whose objects are the split epimorphisms between
internal categories lying in a fiber of ( )0,
2) by ¶C0 E the fibration ¶( )0 : Pt0CatE = Pt( )0CatE // CatE associating with any split
epimorphism of this kind its codomain,
3) and by (GC

1 , σ
C
1 , π

C
1 ) the monad (G( )0 , σ( )0 , π( )0) on the category Pt0CatE.

Now translating the results of Section 9.1 we get:
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9.13. Theorem. 1) The category AlgGC
1 is the full subcategory 2G-CatE of Grd(CatE)

whose objects are the internal groupoids in the fibers of ( )0 : CatE // E, namely the 2-
categories with invertible 2-cells. The forgetful functor ( )1 : 2G-CatE //CatE associating
the category X1

• with the 2-category X2
• is a fibered reflection.

2) The full subcategory of GC
1 -Cat(Pt0CatE) whose objects are the GC

1 -categories with
a ¶C0 E-cartesian 0-leg and an idomorphic 1-leg is isomorphic to the category of internal
categories in the fibers of ( )0, namely to the category 2-CatE of internal 2-categories.
3) The inclusion G♯C1 : AlgGC

1 ↣ 2-CatE coincides with the following upper horizontal
one in the following commutative diagram:

2G−CatE // //

( )1
��

2−CatE
( )1
��

CatE CatE

where the vertical functors are fibered reflections.

Proof. Apply Proposition 9.4 and Theorem 9.8.

9.14. n-categories and n-groupoids. Internally speaking, the category (n+1)-CatE
of internal (n + 1)-categories in E is defined by induction from the construction of the
fibered reflection ( )1 : 2-CatE // CatE, see for instance [Bourn, 1990]. Suppose we
have defined the fibered reflection ( )n−1 : n-CatE // (n-1)-CatE. Then the category
(n + 1)-CatE of (n + 1)-categories is the full subcategory of Cat(n-CatE) whose objects
are the internal categories in the fibers of ( )n−1. We are now in the situation investigated
in Section 9.1 with F = ( )n−1. This section will be devoted to the translation of the
results of Section 9.1, and this will show how, this time, the monad (G, σ, π) entirely
rules the construction of the category (n + 1)-CatE. Similarly, the category (n + 1)-
GrdE of internal (n + 1)-groupoids in E is inductively defined as the full subcategory of
the category Grd(n-GrdE) whose objects are the internal groupoids in the fibers of the
fibration ( )n−1 : n-GrdE // (n− 1)-GrdE.

Let us begin by the category (n + 1)-GrdE. When there is no ambiguity, a (n + 1)-
groupoid will be denoted by the central part Xn+1

• of the internal groupoid defining it in
a fiber of ( )n−1 : n-GrdE // (n− 1)-GrdE:

Xn+1
• ×n1 X

n+1
• dn+1,1

•
//

dn+1,2
• //

dn+1,0
•

//
Xn+1

•

dn+1,0
•

//

dn+1,1
• //

Xn
•sn+1,0

•
oo

where the left hand side object is a pullback in this fiber. The n-groupoid Xn
• is called

the n-groupoid of n-morphisms, while the n-groupoid Xn+1
• is called the n-groupoid of

(n + 1)-morphisms or (n + 1)-cells. Let us translate now the results of Section 9.1 with
F = ( )n−1. For that and for sake of simplicity we shall denote:
1) by Ptn−1n-GrdE the category Pt( )n−1n-GrdE whose objects are the split epimorphisms
between internal n-groupoids lying in a fiber of ( )n−1,
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2) by ¶n−1E the fibration ¶( )n−1 : Ptn−1n-GrdE // n-GrdE associating with any split
epimorphism of this kind its codomain,
3) and by (Gn, σn, πn) the monad (G( )n−1 , σ( )n−1 , π( )n−1) on the category Ptn−1n-GrdE.
Now translating the results of the Sections 9.1 and 9.9, we get:

9.15. Proposition. 1) The category (n+ 1)-GrdE of internal (n+ 1)-groupoids is iso-
morphic to AlgGn. The forgetful functor ( )n : (n + 1)-GrdE // n-GrdE associating the
n-groupoid Xn

• with the (n+ 1)-groupoid Xn+1
• is a fibered reflection.

2) The inclusion: G♯Cn : AlgGn = (n+1)−GrdE ↣ Cat( )n−1n−GrdE is an isomorphism
of categories and the fibered reflection: ( )n : (n+ 1)-GrdE // n-GrdE has protomodular
fibers.

Proof. For the first point, apply Propositions 9.3, 9.4 and 9.7 to the fibered reflection
( )n−1 : n-GrdE // (n-1)-GrdE. For the second one, apply Proposition 9.10.

Let us translate now the results of Section 9.1 related to the fibration ( )n−1 : n-
CatE // (n− 1)-CatE. In this way, (n+1)-CatE = Cat( )n−1n-CatE. Again, when there
is no ambiguity, a (n+1)-category will be denoted by the central part Xn+1

• of the internal
category producing it in a fiber of ( )n−1 : n-CatE // (n− 1)-CatE:

Xn+1
• ×n−1 X

n+1
• dn+1,1

•
//

dn+1,2
• //

dn+1,0
•

//
Xn+1

•

dn+1,0
•

//

dn+1,1
• //

Xn
•sn+1,0

•
oo

where the left hand side object is a pullback in this fiber. The internal category Xn
• is

called the category of n-morphisms, while the internal categoryXn+1
• is called the category

of (n+ 1)-morphisms or (n+ 1)-cells. Again for sake of simplicity, we shall denote:
1) by Ptn−1CatE the category Pt( )n−1n-CatE whose objects are the split epimorphisms
between internal n-categories lying in a fiber of ( )n−1,
2) by ¶Cn−1E the fibration ¶( )n−1 : Ptn−1n-CatE // n-CatE associating with any split
epimorphism of this kind its codomain,
3) and by (GC

n , σ
C
n , π

C
n ) the monad (G( )n−1 , σ( )n−1 , π( )n−1) on the category Ptn−1n-CatE.

Now translating the results of Section 9.1 we get:

9.16. Theorem. 1) The category AlgGC
n is the full subcategory (n+1)G-CatE of (n+1)-

CatE whose objects are the internal groupoids in the fibers of ( )n−1 : n-CatE // (n− 1)-
CatE, namely the (n + 1)-categories with invertible (n + 1)-cells. The forgetful functor
( )n−1 : n-CatE // (n− 1)-CatE associating the n-category Xn

• with the (n+ 1)-category
Xn+1

• is a fibered reflection.
2) The full subcategory of GC

n -Cat(Ptn−1n-CatE) whose objects are the GC
n -categories with

a ¶Cn−1E-cartesian 0-leg and an idomorphic 1-leg is isomorphic to the category of internal
categories in the fibers of ( )n−1, namely to (n+ 1)-CatE.
3) The inclusion G♯CCn : AlgGC

n ↣ (n + 1)-CatE coincides with the following upper
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horizontal one in the following commutative diagram:

(n+ 1)G−CatE // //

( )n
��

(n+ 1)−CatE
( )n
��

n− CatE n− CatE

where the vertical functors are fibered reflections.

Proof. Apply Proposition 9.4 and Theorem 9.8.

Accordingly, the construction of the following tower of fibered reflections is entirely
ruled by the monad (G, σ, π) on PtE:

... n−CatE ( )n−1→ (n− 1)−CatE ...... 2−CatE ( )1→ CatE ( )0→ E

10. The TX•-categories

10.1. The general case. In section 4.6 we observed that, when X• is an internal
category, the monad (TX• , λX• , µX•) on E/X0 is cartesian, and that the algebras of this
monad coincide with the discrete fibrations above X•, so that Alg TX• = DisF/X•. We
are now going to investigate what are that the TX•-categories.

10.2. Proposition. Given any internal category X• in the category E, then the category
TX•-Cat(E/X0) is isomorphic to CatE/X•.

Proof. A pointed TX•-graph on an object g0 : Y0 //X0 of E/X0 is given by a diagram
of the following kind in E, where g0.dY0 = γ = d0.d

∗
1(g0).d̄1 = d0.g1:

Y1

γ
��

dY0

~~
d̄1=(dY1 ,g1)

##
Y0
g0
��

sY0

>>

σ
g0
0

// d∗1(Y0)
oo

d∗1(g0)
��

X0 s0 // X1

d1oo

d0
oo

satisfying (dY1 , g1).s
Y
0 = σg00 = (1Y0 , s0.g0), namely dY1 .s

Y
0 = 1Y0 and g1.s

Y
0 = s0.g0. Accord-

ingly it is equivalent to a morphism of internal reflexif graphs in E:

Y0 sY0
//

g0

��

Y1

g1

��

dY1

oo

dY0oo

X0 s0 // X1

d1
oo

d0oo
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We have to build now the pullback of d̄1 = (dY1 , g1) along TX•(d
Y
0 ), namely the pullback

of dY1 along dY0 whose domain is denoted Y2:

Y1

dY0
��

//
d∗1(Y1)

δ
g0.d0
1

oo

TX• (g0)
��

Y2

dY0
��

(dY2 ,g1.d
Y
0 )

oo

Y0
g0
��

σ
g0
0
//
d∗1(Y0)

δ
g0
1

oo

d∗1(g0)
��

Y1
(dY1 ,g1)
oo

X0 s0 // X1

d1
oo

This induces a map g2 : Y2 //X2 such that g1.d
Y
0 = d0.g2 and g1.d

Y
2 = d2.g2. Accordingly,

we get the following diagram where the two central “vertical” triangles commute and
where g2 = d∗2(g1).d̄2, with d̄2 = (dY2 , g1.d

Y
0 ):

Y2

d̄2ww

dY0

rr dY1
rrY1

d̄1
||

g1

��

dY0

tt

d∗2(Y1)

d∗2(g1)

��

TX• (d̄1)
xx

δ
d0.g1
1

oo

Y0 // σ
g0
0

//

g0

��

d∗1(Y0)
δ
g0
1

oo

d∗1(g0)

��

(d1.d2)
∗(Y0)

(d1.d2)∗(g0)

��

δ
g0
2

oo

δ
g0
1oo

X0
// s0 // X1

d0
��

d1
oo X2

d0
��

d2
oo

d1oo

X0 X1
d1

oo

d0oo

The structure of TX•-category on g0 is then completed by the data of a map dY1 : Y2 //Y1
in E/X0 such that Burroni’s Axioms 4, 7, 8 hold. The first part of Axioms 4 is dY0 .d

Y
1 =

dY0 .d
Y
0 (which implies that dY1 is a map in the slice category E/X0), while the second

part is d̄1.d
Y
1 = µX•(g0).TX•(d̄1).d̄2 = δg01 .TX•(d̄1).d̄2. This second part is equivalent to

dY1 .d
Y
1 = dY1 .d

Y
2 and g1.d

Y
1 = d1.g2, which would complete the structure of an internal

functor:

Y0 sY0
//

g0

��

Y1

g1

��

dY1

oo

dY0oo
Y2

g2

��

dY2

oo

dY0oo
dY1

oo

X0 s0 // X1

d1
oo

d0oo
X2

d2
oo

d0oo
d1oo
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provided that neutrality and associativity of the composition map dY1 : Y2 // Y1 hold,
which is straightforward with Axioms 7 and 8.

The inclusion Cat(E/X0) = CatE/∆X0 ↣ TX•-Cat(E/X0) = CatE/X• is given by
composition, in CatE, with the inclusion functor ∆X0 ↣ X•; while its coadjoint R (see
Proposition 7.8) is obtained by the pullback in CatE along this inclusion functor.

10.3. The TX•-groupoids.

10.4. Proposition. Given any internal category X• in the category E, a TX•-groupoid is
functor above X• whose domain is a groupoid. Accordingly, the category TX•-Grd(E/X0)
is given by the following pullback:

TX•−Grd(E/X0) // //

��

CatE/X•

dom
��

GrdE // // CatE

Proof. According to Section 7.10, a TX•-category gives rise to a TX•-groupoid if and only
if the map dY1 : Y2 // Y1 produces the following kernel equivalence relation:

Y0 Y1
dY0oo Y2

dY0oo

dY1

oo

which is equivalent to the fact that Y• is a groupoid.

10.5. The TX•-categories when X• is a groupoid. By Section 5.10, we know that:

TX• T 2
X•

µX•oooo T 3
X•

µX•TX•oo

TX• (µX• )
oo

is a kernel equivalence relation if and only if X• is a groupoid. In this case, by Corol-
lary 7.13, any TX•-algebra produces a TX•-groupoid and we get the following string of
inclusions:

Alg TX•
// TX• ♯C // TX•−Grd(E/X0) // // TX•−Cat(E/X0)

DFib/X• // // GrdE/X• // // CatE/X•

11. T -operads and T -multicategories

About thirty years after Burroni’s work [Burroni, 1971] (which was published in french),
his ideas have been independantly rediscovered by Leinster [Leinster, 1998] and Hermida
[Hermida, 2000]. According to the historical note, p. 63, of Leinster’s encyclopedia about
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operads [Leinster, 2004], the notions of operad and multicategory gradually emerged from
multiple horizons until they found a name, the first one in May [May, 1972] and the second
one in Lambek [Lambek, 1969], before being completely stabilized. Finally, starting with
E = Set and (M,λ, µ) the free monoid monad which is cartesian as we recalled above,
operads appeared to coincide with M-categories with only one object, while muticategories
appeared to coincide with M-categories [Leinster, 1998]. Then Leinster introduced the
terminolgy T -operads and T -multicategory for the same notions related to any cartesian
monad (T, λ, µ). So, in the cartesian context, T -multicategory in the sense of Leinster
coincides with T -category in the sense of Burroni. See also [Hermida, 2000] and [Crutwell
and Shulman, 2010].

So, given any cartesian monad (T, λ, µ) and following our results, and with respect to
our notations related to the inclusion F̄ T : E ↣ KlT , a T -multicategory in E is nothing
but an internal category in KlT :

X3

d0
//

“δ3” //

d1 //

d2 //

X2

d0
//

d1 //

“δ2” //

s1oo X1

d0
//

“δ1” //

s0oo

s1oo
X0s0oo

Warning: Leinster’s designation of a T -operad in terms of “generalized monoid” could
be a bit confusing, because, beyond the undisputable existence of a unit e and of an
internal “operation” m, a T -operad is an actual internal category in KlT :

X ×δ1 X

τX0

//

m //

“δ2” //

X
τX

//

“δ1” //

s0oo

s1oo
1eoo

since the object 1 does not stay a terminal object in KlT , unless T (1) ≃ 1, and conse-
quently the map m is far from being a classical binary operation.

11.1. The cartesian monad (TXT
•
, λXT

•
, µXT

•
). Given any cartesian monad (T, λ, µ) on

E and any T -category XT
• , Leinster introduced in [Leinster, 1998] a notion of algebras

associated with them. Indeed, on the model of Section 4.6, we get a cartesian monad
(TXT

•
, λXT

•
, µXT

•
) on the slice category E/X0:

1) we get a cartesian functor on E/X0 since, in the cartesian context, E becomes a pullback
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stable subcategory of KlT :

Z // σh
0
//

h
��

d∗1(Z)
“δh1 ”

oo

d∗1(h)
��

(d1.d2)
∗(Z)

(d1.d2)∗(h)
��

“δh2 ”
oo

δh1oo

X0
// s0 // X1

d0
��

“δ1”
oo X2

d0
��

“δ2”
oo

d1oo

X0 X1
“δ1”

oo

d0
��

d0oo

X0

h //
σh
0

// TXT
•
(h) T 2

XT
•
(h)

δh1

oo

2) and, in addition, since the diagram X0

s0
↣ X1

d1← X2 lies in E, so does:

Z
σh
0

↣ d∗1(Z)
δh1← (d1.d2)

∗(Z); accordingly, this monad is entirely defined inside the slice
category E/X0. So, in our terms, we get:

11.2. Proposition. When (T, λ, µ) is a cartesian monad, the algebras of the monad
(TXT

•
, λXT

•
, µXT

•
) are the discrete fibrations above XT

• in the category CatKlT :

Z0 s0 //

h0

��

Z1

h1

��

“δ1”
oo

d0oo

X0 s0 // X1

“δ1”
oo

d0oo

in other words, we get Alg TXT
•
= DisF (T -CatE/XT

• ).

Proof. Straightforward from the classical result on the monad (TX• , λX• , µX•)

11.3. The TXT
•
-categories. It remains to characterize the TXT

•
-categories. On the

model of what happens for an ordinary internal category X•, we get:

11.4. Proposition. The TXT
•
-categories are the T -functors above XT

• :

Y0 s0 //

g0

��

Y1

g1

��

“δ1”
oo

d0oo

X0 s0 // X1

“δ1”
oo

d0oo

in other words, we get TXT
•
-Cat(E/X0) = T -CatE/XT

• .
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Proof. Let us follow step by step the proof of Proposition 10.2. A pointed TXT
•
-graph

on an object g0 : Y0 //X0 of E/X0 is given by a diagram of the following kind in KlT ,
where g0.d

Y
0 = γ = d0.d

∗
1(g0).d̄1 = d0.g1 which implies g1 ∈ E:

Y1

γ
��

dY0

~~
d̄1=(“δY1 ”,g1)

##
Y0
g0
��

sY0

>>

σ
g0
0

// d∗1(Y0)
oo

d∗1(g0)
��

X0 s0 // X1

“δ1”oo

d0
oo

satisfying (“δY1 ”, g1).s
Y
0 = σg00 = (1Y0 , s0.g0), namely “δY1 ”.s

Y
0 = 1Y0 and g1.s

Y
0 = s0.g0.

Accordingly it is equivalent to a morphism of pointed T -graphs:

Y0 sY0
//

g0

��

Y1

g1

��

“δY1 ”
oo

dY0oo

X0 s0 // X1

“δ1”
oo

d0oo

We have to build now the pullback of T TX•(d
Y
0 ) along d̄1 = (“δY1 ”, g1) in KlT , which is

nothing but the pullback of dY0 along “δY1 ” in KlT , whose domain is denoted Y2:

Y1

dY0
��

//
d∗1(Y1)

“δ
g0.d0
1 ”

oo

T
XT•

(g0)
��

Y2

dY0
��

(“δY2 ”,g1.dY0 )
oo

Y0
g0
��

σ
g0
0
//
d∗1(Y0)

“δ
g0
1 ”

oo

d∗1(g0)
��

Y1
(“δY1 ”,g1)
oo

X0 s0 // X1

“δ1”
oo

This induces a map g2 : Y2 //X2 in KlT such that g1.d
Y
0 = d0.g2 (which implies that g2

belongs to E) and g1.“δY2 ” = “δ2”.g2. Accordingly, we get the following diagram in KlT
where the two central “vertical” triangles commute in E and where g2 = d∗2(g1).d̄2, with
d̄2 = (“δY2 ”, g1.d

Y
0 ):
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Y2

d̄2ww

dY0

rr dY1
rrY1

d̄1
||

g1

��

dY0

tt

d∗1(Y1)

d∗2(g1)

��

T
XT•

(d̄1)

xx

δ
d0.g1
1

oo

Y0 // σ
g0
0

//

g0

��

d∗1(Y0)
“δ

g0
1 ”

oo

d∗1(g0)

��

(d1.d2)
∗(Y0)

(d1.d2)∗(g0)

��

“δ
g0
2 ”

oo

δ
g0
1oo

X0
// s0 // X1

d0
��

“δ1”
oo X2

d0
��

“δ2”
oo

d1oo

X0 X1
“δ1”

oo

d0oo

The structure of TXT
•
-category on g0 is then completed by the data of a map dY1 : Y2 //Y1

in E/X0 (and thus in E) such that Burroni’s Axioms 4, 7, 8 hold. The first part of Axioms
4 is dY0 .d

Y
1 = dY0 .d

Y
0 , while the second part is d̄1.d

Y
1 = µXT

•
(g0).TXT

•
(d̄1).d̄2 = δg01 .TXT

•
(d̄1).d̄2.

This second part is equivalent to “δY1 ”.d
Y
1 = “δY1 ”.“δ

Y
2 ” and g1.d

Y
1 = d1.g2, which would

complete the structure of a T -functor:

Y0 sY0
//

g0

��

Y1

g1

��

“δY1 ”
oo

dY0oo
Y2

g2

��

“δY2 ”
oo

dY0oo
dY1

oo

X0 s0 // X1

“δ1”
oo

d0oo
X2

“δ2”
oo

d0oo
d1oo

provided that neutrality and associativity of the composition map dY1 : Y2 // Y1 hold,
which is straightforward with Axioms 7 and 8.

So, the canonical inclusion is the following one:

TXT
•
♯C : Alg TXT

•
= DisF (T−CatE/XT

• ) ↣ T−CatE/XT
•
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