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WEAK VERTICAL COMPOSITION II: TOTALITIES

EUGENIA CHENG, ALEXANDER S. CORNER

Abstract. We continue our study of semi-strict tricategories in which the only weak-
ness is in vertical composition. We assemble the doubly-degenerate such tricategories
into a 2-category, defining weak functors and transformations. We exhibit a biadjoint
biequivalence between this 2-category and the 2-category of braided (weakly) monoidal
categories, braided (weakly) monoidal functors, and monoidal transformations.
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Introduction

In this paper we continue the study of weak vertical composition begun in [CC22]. We
study semi-strict tricategories in which everything is strict except vertical composition,
that is, composition along bounding 1-cells. These tricategories can be conveniently con-
structed as categories enriched in Bicats, the category of bicategories and strict functors,
with monoidal structure given by cartesian product.

In [CC22] we showed that any doubly-degenerate Bicats-category X has an underlying
braided monoidal category UX , and that given any braided monoidal category B there is
a doubly-degenerate Bicats-category ΣB such that UΣB is braided monoidal equivalent
to B. This shows that weak vertical composition is “enough” to achieve braided monoidal
categories in the doubly-degenerate case, a typical test case for whether a theory of tri-
categories is fully weak, and a special case of the study of k-degenerate n-categories
[BD95, CG07, CG11, CG14].

That work followed on from [JK07] which proved an analogous result for semistrict
tricategories in which everything is strict except weak horizontal units. However, in both
cases the totalities of the structures in question were not studied.
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In this paper we extend the comparison to totalities. That is, we assemble doubly-
degenerate Bicats-categories into a 2-category and exhibit a biequivalence with the 2-
category of braided monoidal categories; this extends the object-level comparison of
[CC22].

The first task then is to construct a suitable 2-category of doubly-degenerate Bicats-
categories. In order to make an equivalence with the 2-category of braided monoidal
categories we need to consider braided monoidal functors that are only weakly monoidal,
so to make a good comparison with doubly-degenerate Bicats-categories we use weak maps
of those as well. So the first step is to make that definition. Note that as in [CG11, CG14]
we do not simply take homomorphisms, transformations and modifications of tricategories
as this gives the “wrong” structure in the doubly-degenerate case. One issue is that this
would not be expected to form a 2-category; a priori tricategories and their higher mor-
phisms assemble into a tetracategory that does not truncate to a coherent 2-dimensional
structure. Another issue is that fully weak homomorphisms and transformations of tricat-
egories give too much extraneous structure in the doubly-degenerate case, in the form of
distinguished invertible elements arising as higher-dimensional constraint cells relating to
degenerate dimensions; the idea is that degenerate dimensions should not give rise to con-
straint cells, but rather, we should start with some semi-strict versions of weak functors
and transformations that are strict with respect to dimensions that are going to become
degenerate.

To address both of these issues we follow [CG11, CG14] and use Lack’s icons in a
higher-dimensional generalisation [Lac10] to ensure a coherent 2-category totality and
the “correct” functors and transformations for the doubly-degenerate structures. The idea
behind icons is that they are “identity component oplax natural transformations”, but
the key is that the identity components are ignored and replaced by an assertion that the
source and target homomorphisms agree on 0-cells. This means that the only components
are 2-cells and thus icons compose strictly, so bicategories, homomorphisms and icons form
a strict 2-category. The process can be iterated [CG14] to give 2-dimensional totalities of
weak n-categories where restricting to the (n− 1)-degenerate n-categories then results in
an appropriate 2-category of categories with extra structure (monoidal, braided monoidal,
or symmetric monoidal). We refer to these higher dimensional iterated versions generally
as “icon-like” or “iconic”; the first step in this work is to make an iconic 2-category of
doubly-degenerate Bicats-categories.

In [CC22] we characterised doubly-degenerate Bicats-categories as a semi-strict form of
2-monoidal category [AM10] (that is a category with two monoidal structures and inter-
change) in which one tensor product is weak but the other tensor product and interchange
are strict. This suggests a characterisation of weak functor as a weak monoidal functor
with respect to each monoidal structure, together with some interaction axiom(s). To
put this on a secure footing we will proceed abstractly via monads and distributive laws.
In Section 1 we construct Bicats-categories as algebras for a 2-monad on the 2-category
Cat-2-Gph of 2-graphs enriched in Cat (equivalently graphs enriched in Cat-Gph). This
2-category has iconic 2-cells, so all further constructions are then automatically iconic.
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The 2-monad in question is a composite of a 2-monad V for vertical composition and a
2-monadH for horizontal composition, composed via a strict distributive law V H HV
coming from strict interchange. We then have a 2-category of algebras for the composite
2-monad, weak maps of algebras, and transformations. This is the 2-category of Bicats-
categories that we want, but we need to unravel the definitions somewhat in order to
compare it with maps of braided monoidal categories.

In Section 2 we do some preliminary examination of structures arising from a 2-
dimensional distributive law of general 2-monads S over T . We characterise strict TS-
algebras via a T -algebra and S-algebra structure together with an interaction axiom; we
characterise a weak map of TS-algebras as a weak map with respect to the T -algebra
structure and to the S-algebra structure, together with an interaction axiom. Transfor-
mations are just transformations of the T -structure and the S-structure, with no further
interaction axiom required.

In Section 3 we unravel those definitions in our case of interest. We re-characterise
doubly-degenerate Bicats-categories as braided monoidal categories in steps:

1. First we express them as HV -algebras.

2. We then re-express them as an H-algebra and V -algebra structure satisfying an
interaction axiom coming from the distributive law (that is, a horizontal and vertical
monoidal structure with interchange).

3. Finally we express them as a V -algebra (monoidal category) with a braiding coming
from a weak Eckmann–Hilton argument.

We re-characterise a weak map of doubly-degenerate Bicats-categories as a braided monoidal
functor via the corresponding steps:

1. We start with a weak map of HV -algebras.

2. We re-express it as a weak map of H-algebras and a weak map of V -algebras, with
an interaction condition relating to the distributive law.

3. Finally we re-express it as just a weak map of V -algebras plus a braiding condition.

Our overall aim is to relate (1) to (3), and (2) mediates between those steps for us.
Section 2 takes us from (1) to (2), and Section 3 takes us from (2) to (3) in our specific
case.

We use a weak Eckmann–Hilton argument to show that a weak map of doubly-
degenerate HV -algebras in our case can be characterised as just a weak map of the V -
structures interacting well with the braiding (which itself comes from an Eckmann–Hilton
argument); conversely, such a weak map of doubly-degenerate V -algebras can be given
the structure of a weak map of HV -algebras. We characterise transformations similarly,
and show that a transformation of the V -structures is automatically a transformation of
the H-structures.
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We are then ready to construct a biadjoint biequivalence. In Section 4 we extend the
assignation U defined in [CC22] to a 2-functor

U ddBicats-Cat BrMonCat.

Biessential surjectivity was shown in [CC22]; local essential surjectivity on 1-cells follows
from Section 3, and local full and faithfulness on 2-cells follows from Section 3.10. Then
by [Gur12] we have the main theorem:

Main theorem. The 2-functor ddBicats-Cat
U BrMonCat is part of a biadjoint biequiv-

alence of 2-categories.

Note that constructing a pseudo-inverse is non-trivial and we defer it to a sequel.
Finally it is worth noting that weak vertical units are much easier to deal with

than weak horizontal units, as it is the weak horizontal 1-cell units that make the weak
Eckmann–Hilton argument tricky in a general tricategory (see for example [CG11]). Using
weak vertical units but strict horizontal ones avoids that technical issue.

How to read this paper quickly.

1. Section 1.28 gives the 2-category totality of Bicats-categories with strict maps.

2. Theorem 2.12 gives the characterisation of weak maps of TS-algebras via a T -
structure and S-structure.

3. Section 3 contains the main content of the comparison with braided monoidal cat-
egories.

4. The Main Theorem (4.1) follows immediately.

Terminology and notation conventions.

• We use “strict” when axioms hold on the nose and “weak” when axioms hold up to
specified constraint isomorphisms.

• Section 1.18 is concerned with a careful construction of 2-categorical structures, so
in that section we adopt a double-underline notation for 2-category totalities to
distinguish them from 1-category totalities.

• The Appendix contains various proofs using string diagrams.

1. Bicats-categories via distributive laws of 2-monads

In this section we construct a suitable totality of Bicats-categories for our comparison.
Bicats-categories can be thought of as a form of semi-strict tricategory, and we will even-
tually be studying the doubly-degenerate ones, that is, those with only one 0-cell and only
one 1-cell.
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The two subtle features for our totality of Bicats-categories are that it needs to have ap-
propriately weak maps (not fully weak), and that it needs to be 2-dimensional, rather than
fully 4-dimensional which is what we might otherwise expect for semi-strict tricategories.
The work of [CG14] showed that the “correct” approach for totalities of doubly-degenerate
higher categories is via iterated icons rather than via the fully weak maps.

A fully weak map of doubly-degenerate Bicats-categories would include functoriality
constraints for composition of 1-cells. However, [CG11] showed that this is the “wrong”
notion for doubly-degenerate situations, because even if there is only one 0-cell and one 1-
cell, any constraint 2-cell would remain as a distinguished invertible element; that is, when
we perform the dimension shift, the old 2-cells become 0-cells of a new lower-dimensional
structure (in our case a putative braided monoidal category), and the constraint 2-cells
would become distinguished invertible 0-cells, adding unwanted extra structure to our
braided monoidal category.

We eliminate that issue by using stricter functors, specifically, functors that are strictly
functorial on any dimension of cell that is going to become degenerate. In our case, that
means we want functors that are strictly functorial with respect to 1-cell composition,
and only have functoriality constraints with respect to 2-cell composition. This is effected
technically by our use of icons, because the existence of an iconic 2-cell constraint encodes
an assertion that the source and target agree on objects.

Moreover, we wish to express doubly-degenerate Bicats-categories via a distributive
law between 2-monads, as this gives us a convenient framework for defining weak maps
between them; weak maps are difficult to define in generality for higher categories.

Both of these issues are resolved by making the construction via 2-monads on the
2-category Cat-Gph-Gph. The algebras for the resulting 2-monad immediately form a 2-
category, with 2-cells that are immediately iconic. That is the content of this section.

The 2-dimensional distributive law in question is just a 2-dimensional extension of a
1-dimensional distributive law that is already established [Che11a, CL19] so we will begin
with an overview of the 1-dimensional version.

1.1. Preliminaries on distributive laws.Distributive laws were introduced by Beck
in [Bec69] and are a way of combining two algebraic structures in a coherent way. We first
recall the definitions and main results that we will be building on.

1.2. Definition. [Bec69] Let S and T be monads on a category C. A distributive law
of S over T consists of a natural transformation λ ST TS such that the following
diagrams commute.

ST TS

T

λ

ηST TηS

S2T STS TS2

ST TS

Sλ λS

µST TµS

λ
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ST TS

S

λ

SηT ηTS

ST 2 TST T 2S

ST TS

λT Tλ

SµT µTS

λ

The main theorem about distributive laws tells us about new monads that arise canon-
ically as a result of the distributive law. In this work we will mostly be interested in the
composite monad.

1.3. Theorem. [Bec69] Write S-Alg for the category of algebras for S, and Kl T for the
Kleisli category of T . The following are equivalent:

• A distributive law of S over T .

• A lifting of the monad T to a monad T ′ on S-Alg.

• An extension of the monad S to a monad S̃ on Kl T .

It follows that TS canonically acquires the structure of a monad, whose category of
algebras coincides with that of the lifted monad T ′, and whose Kleisli category coincides
with that of S̃.

For the proof we refer the reader to [Bec69]. Note that the theorem also holds more
generally inside any 2-category with enough limits [Str72] so in particular holds in the
2-category 2-Cat of (small) 2-categories, strict 2-functors, and strict transformations.

1.4. Example. (Rings)

• C = Set

• S = free monoid monad

• T = free abelian group monad

• λ = the usual distributive law for multiplication and addition e.g.

(a+ b)(c+ d) ac+ bc + ad+ bd.

Then the composite monad TS is the free ring monad.

1.5. Example. (2-categories)

• C = 2-GSet, the category of 2-globular sets.

• S = monad for vertical composition of 2-cells (1- and 0-cells are unchanged)

• T = monad for horizontal composition of 2-cells and 1-cells (0-cells are unchanged)
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• λ is given by the interchange law, for example:

STA TSA
λA

Note that these are pasting diagrams of composable 2-cells in the 2-globular set A, but we
have not included the labels for the cells. The 2-cells of STA are given by vertical pastings
of horizontal pastings of 2-cells of A; the 2-cells of TSA are given by horizontal pastings
of vertical pastings of 2-cells of A; the above diagram indicates one particular 2-cell of
STA, and the 2-cell of TSA it is sent to by λA.

This is all we need about distributive laws for this section; in Section 2 we will revisit
distributive laws to examine more closely how to express TS-algebra structures via T -
and S-algebra structures interacting.

1.6. The distributive law in the 1-dimensional setting.We will now lay out the
1-dimensional version of the distributive law for operadic weak n-categories; see [Che11a,
CL19] for full details. This is a higher level of generality than we need in this work, but
we choose to work at this level as it can then also be used for Trimble 3-categories, which
we will study in a sequel. So we will parametrise all our composition by the action of
operads. When composition is strict it will simply be the terminal operad.

The 1-dimensional distributive law in question is given in [CL19]; it is a slight gen-
eralisation of the version in [Che11a], which is itself a generalisation of the one given by
Leinster for n-categories in [Lei04]. Rather than simply stating the results in full gener-
ality here, we will unravel them a little for the case that we need, in order to elucidate
some of the subsequent constructions.

Our basic setup is an iterative operadic theory of n-categories, a generalisation of
Trimble’s definition [Tri99] given in [Che11a]. The iteration is by “operadic enrichment”,
where we form categories enriched in V with composition parametrised by an operad P
in V.

1.7. Definition. Let V be a category with finite products, and P an operad in it. A
(small) (V, P )-category A is given by:

• an underlying V-graph, that is, a set A0 of objects and for all a, b ∈ A0 a hom-object
A(a, b) ∈ V.

• For all k ≥ 0 and a0, . . . , ak ∈ A0 a composition morphism

P (k)× A(ak−1, ak)× · · · × A(a0, a1) A(a0, ak)

compatible with the composition and identities of the operad in the usual way (as for
algebras). Morphisms are defined in the obvious way, giving a category (V, P )-Cat, which
also has products. We will also write this category V-CatP , to facilitate the notation for
iteration. Note that the category of V-graphs and their morphisms will be denoted V-Gph.
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1.8. Definition. An iterative operadic theory of n-categories is a series (Vn, Pn) for
n ≥ 0, where each Vn is a category with finite products and each Pn is an operad in Vn,
with

Vn+1 = Vn-CatPn

for every n ≥ 0. Then Vn is the category of n-categories and strict functors, according to
this theory.

1.9. Remark. Note that for each n ≥ 1 a Vn-category is a (Vn−1, Pn−1)-category. We
generally refer to composition along bounding k-cells as k-composition, but we also refer
to 0-composition as horizontal and 1-composition as vertical. As explained in [Che11a],
in an n-category, 0-composition is parametrised by Pn−1, and 1-composition by Pn−2.

In this work we will start this induction with V0 = Set and P0 = 1 and thus V1 = Cat.
We then have

• an operad P1 ∈ Cat, and V2 = V1-CatP1

• an operad P2 ∈ V2, and V3 = V2-CatP2
= V1-CatP1

-CatP2

One convenient aspect of this form of definition is that many results about strict
iterated enrichment generalise straightforwardly, with just some notational complication
as we must put operad actions everywhere. The first step is the free category construction.

In this work we will always be enriching with respect to the cartesian monoidal struc-
ture. To make the free category construction we also invoke small coproducts, and the
products must distribute over them; we call this an “infinitely distributive” category.
Shulman [Shu12] works with general monoidal structures and so uses the terminology
“⊗-distributive categories”. The following result is from [Che11a, CL19], and gives us the
general free (V, P )-category monad we need. Elsewhere this monad is written as fc(V ,P ),
but we will write it as fcP to streamline the subscripts. Note that if V is infinitely dis-
tributive, then V-Gph is also [CL19].

1.10. Proposition. [CL19] Given any infinitely distributive category V and operad P
in it, V-CatP is monadic over V-Gph via a monad fcP , and the category V-CatP is in turn
infinitely distributive.

So we know that V3 is monadic over V2-Gph, and that V2 is monadic over V1-Gph; our
aim now is to show that V3 is monadic over V1-Gph-Gph, and construct the monad as a
composite via a distributive law. The idea is that if we think of V3 as V1-CatP1

-CatP2
we

can do a free category construction on the middle component (with the P1 subscript) and
on the last component (with the P2 subscript) separately. The middle one constructs 1-
composites (vertical) and the last one constructs 0-composites (horizontal). In the follow-
ing diagram, the lower two forgetful functors produce our two monads for the distributive
law. This is an instance of the square in [CL19, Prop 8.6].
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V1-Gph-Gph

V1-CatP1
-Gph

V1-CatP1
-CatP2

V1-Gph-CatUP2

In order to construct the monad for 1-composition we use the following 2-functor.

1.11. Definition. The assignation V V-Gph extends to a 2-functor

Cat Cat

We write the action on functors as ( )∗, so given a functor V F W we induce a functor
V-Gph F∗ W-Gph in the obvious way; likewise for natural transformations. Thus a monad
T on V induces a monad T∗ on V-Gph.

1.12. Remark. Note that T∗ acts on a V-graph by leaving the objects unchanged, and
just acting as T on the homs.

1.13. Definition. [Monad for vertical composition]
We know that V2 = V1-CatP1

is monadic over V1-Gph with monad fcP1
. Write T1 =

(fcP1
)∗ for the induced monad on V1-Gph-Gph, with T1-Alg ∼= V2-Gph.

1.14. Remark. The monad T1 acts on a V1-Gph-graph by leaving the 0-cells unchanged
and then forming the free (V1, P1)-category on each hom V1-graph, that is, it makes vertical
composition freely.

Next we construct the monad for horizontal composition. This comes from the monad
for free (V2, P2)-categories, but that monad already encodes interaction with vertical com-
position. So we invoke the forgetful functor V2 V1-Gph to forget that part, so that the
monads for horizontal and vertical composition can be applied separately; the interaction
will be encoded in the distributive law.

1.15. Definition. [Monad for horizontal composition] We know that V3 is monadic over
V2-Gph = V1-CatP1

-Gph. We also have a forgetful functor

V2 = V1-CatP1

U V1-Gph.

As U preserves products, the operad P2 ∈ V2 becomes an operad UP2 ∈ V1-Gph, and we
can form (V1-Gph, UP2)-categories. Then by Proposition 1.10 we know that V1-Gph-CatUP2

is monadic over V1-Gph-Gph with monad fcUP2
. Call this monad T0.

Note that as we are enriching with respect to strict functors, we have strict interchange
between vertical and horizontal composition, parametrised by actions of the operads in
question. In this case, vertical composition is parametrised by P1 and horizontal compo-
sition is parametrised by P2. Furthermore, note that as P2 is an operad in V1-CatP1

there
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is also an action of P1 on P2, that is, each P2(k) is a (V1, P1)-category so has composition
parametrised by an action of P1; this has to be invoked when performing parametrised
interchange (see [Che11a]). The following is an instance of [CL19, Prop 8.6].

1.16. Proposition. There is a distributive law T1T0 T0T1 with T0T1-Alg ∼= V3 and
the lifted monad T̂0 on T1-Alg is fcP2

.

1.17. Remark. The monad for 3-categories can be decomposed further by also invoking
the monad for composition along bounding 2-cells. However, as we do not need to weaken
this composition, we do not need to reference this monad.

Note that for this work we will be taking P1 to be the operad for bicategories, that is,
the free operad generated by one binary and one nullary operation. We will take P2 = 1
(the terminal operad in Cat) so that horizontal composition is strict.

1.18. The 2-category totalities. We now construct the iconic 2-category totalities
we will be working with. Icons were introduced by Lack [Lac10], giving a convenient 2-
dimensional totality of bicategories, and were iterated in [GG09] to give a convenient
2-dimensional totality of tricategories. Regarding bicategories as weak Cat-categories, the
definition of icon can be generalised to weak K-categories for bicategories K other than
Cat, yielding an iconic bicategory of weak K-categories. Under some mild conditions the
generalised construction can then be iterated [CG14]. For this work we generalise in a
slightly different direction, as we need to add in the action of an operad but we do not
need K to be weak. As a result, we have strict 2-category totalities at every stage of the
iteration, which we see as a great advantage of this operadic approach.

We will begin with the basic definitions, before introducing the operad actions.

1.19. Definition. Let K be a 2-category. Then a K-graph X is given by

• a set X0 of 0-cells, and

• for all a, b ∈ X0 a hom-object X(a, b) which is a 0-cell of K.

A morphism X F Y of K-graphs is given by

• a function X0
F0 Y0, and

• for all a, b ∈ X0 a 1-cell X(a, b) Fab Y (Fa, Fb) ∈ K.

Given morphisms F,G X Y of K-graphs, a transformation α F G can exist only
when F and G agree on 0-cells. In that case such a transformation is given by

• for all a, b ∈ X0 a 2-cell in K as below:

X(a, b)
Y (Fa, Fb)

=

Y (Ga,Gb)

F

G

αab
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K-graphs, their morphisms and their 2-morphisms assemble into a 2-category K-Gph,
where the composition and identities are inherited from K.

1.20. Remark. Note that if the underlying 1-category of K is denoted by K1, then
a K-graph is no different from a K1-graph; likewise morphisms between them. The only
difference is that the 2-cells ofK enable us to put a 2-dimensional structure on the totality.
That is, the underlying 1-category of K-Gph is the same as the 1-category K1-Gph.

In what follows K could be a tensor distributive monoidal 2-category as in [Shu12].
However in all our cases we will use products, so we need K to have small coproducts,
and finite products that distribute over them (using the strictest 2-dimensional version
of (co)limits); we will call such a 2-category “infinitely distributive”. The definition of
K-icon is given in [CG14] in a fully weak setting using monoidal bicategories; our setting
is simplified by us using strict enrichment in a strict 2-category, and strict functors.

As with K-graphs, the concepts of K-category and K-functor are no different from
K1-category and K1-functor; the difference is that we now have 2-dimensional structure
with which to assemble K-categories into a 2-category.

1.21. Definition. Let K be a 2-category with products. Then a category enriched in K
is just a category enriched in its underlying 1-category K1, and a K-functor is just a
K1-functor.

1.22. Definition. [K-icons]
Let X, Y be K-categories, and let F,GX Y be strict K-functors such that Fa = Ga

for all objects a ∈ X. A K-icon

X Y

F

G

α

is given by, for all pairs of objects a, b ∈ X a 2-cell

X(a, b)
Y (Fa, Fb)

=

Y (Ga,Gb)

F

G

αab

satisfying the following axioms. Note that the following are all diagrams in K. We write
(a, b) for the hom-object of the appropriate K-category, and omit × signs. Here m and m′

represent composition in the appropriate K-categories.

• Composition:
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(b, c)(a, b)
(Fb, Fc)(Fa, Fb)

=

(Gb,Gc)(Ga,Gb)

(a, c) (Ga,Gc)

FF

GGm
m′

G

αα

=

(b, c)(a, b) (Fb, Fc)(Fa, Fb)

(a, c)
(Fa, Fc)

=

(Ga,Gc)

FF

m
m′

F

G

α

• Unit:

1

(a, a)

(Fa, Fa) = (Ga,Ga)

I

I′

GF
α

=
1

(a, a)

(Fa, Fa) = (Ga,Ga)

I

I′

G

Write K-Cat for the 2-category of K-categories, K-functors, and K-icons.

1.23. Remark. This is more usually written K-Icon to distinguish it from the full 3-
dimensional totality of K-categories, but we will write it as K-Cat as there will be no
ambiguity, and we want to emphasise the K-categories as they are our main objects of
study.

We now need to weaken all this by the action of an operad. As we are working somewhat
strictly we do not need to invoke any 2-categorical structure for the operad. So an operad
in a 2-category K is just an operad in the underlying 1-category K1.

1.24. Definition. Let K be a 2-category with products, and P an operad in K. We
define a 2-category K-CatP as follows.

• 0-cells are (K,P )-categories i.e. (K1, P )-categories

• 1-cells are (strict) (K,P )-functors

• 2-cells are (K,P )-icons.

Note that the underlying data for a (K,P )-icon is the same as for a K-icon, but the
composition axiom is now parametrised by P as follows (where m and m′ now represent
parametrised composition in the appropriate (K,P )-category):
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P (k)(xk−1, xk) · · · (x0, x1)
P (k)(Fxk−1, Fxk) · · · (Fx0, Fx1)

=P (k)(Gxk−1, Gxk) · · · (Gx0, Gx1)

(Gx0, Gxk)(x0, xk)

1× F k

1×Gkm
m′

G

1× αk

=

P (k)(xk−1, xk) · · · (x0, x1)

(x0, xk)

P (k)(Fxk−1, Fxk) · · · (Fx0, Fx1)

(Fx0, Fxk)

=(Gx0, Gxk)

1× F k

m m′

F

G

α

Horizontal and vertical composition of (K,P )-icons are built in the obvious way from
horizontal and vertical composition of 2-cells in K, and it is straightforward to check that
these composites satisfy the operadic composition condition.

The 2-category axioms for K-CatP are inherited from K.

Note that from this point on, we will be working entirely 2-categorically so we will
drop the double underline notation on 2-categories as there should be no ambiguity. We
can now iterate all the constructions so we have 2-categories as follows:

• V1 = Cat (here the 2-cells are ordinary natural transformations),

• V2 = V1-CatP1
with iconic 2-cells, and

• V3 = V2-CatP2
with iconic 2-cells.

1.25. Extending the distributive law to the 2-category totalities. We will
now extend the 1-dimensional distributive law to the 2-category totalities. Parts of this
have to some extent been done already: Lack and Paoli [LP08] study the distributive law
at the 2-monad level for bicategories, and Shulman [Shu12] studies it in some generality
for both strict and weak algebras. However we need a different combination of strictness
and weakness here, as we need our monads to be for weak vertical composition but strict
horizontal composition. Bicategories are often treated as weak algebras for the strict 2-
category monad, for example in [Shu12], but we want all our algebras to be strict. That
is, we express bicategories as strict algebras for a monad for bicategories, rather than as
weak algebras for a monad for 2-categories.
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As we already know the results are true for the underlying 1-monads on the underlying
1-categories, we just have to check the information at the 2-dimensional level. This is
mostly a question of working out what needs to be checked; the calculations are then
straightforward. This could also be seen as a generalisation of [Shu12] to include operad
actions, but we have decided to include the direct calculations, partly as they are not
hard and partly as we found them illuminating.

1.26. Proposition. [2-categorical version of Prop 1.10]
Given any infinitely distributive 2-category K and an operad P in it, the 2-category

K-CatP is 2-monadic over K-Gph via a 2-monad fcP , whose underlying 1-monad is the
one given in Proposition 1.10. Furthermore, K-CatP is also infinitely distributive.

Proof. Write T for the monad fcP , with unit η and multiplication µ. First we need to
extend the 1-monad as follows

1. make the underlying functor into a 2-functor, i.e., give its action on iconic 2-cells,
and

2. make η and µ into 2-transformations, i.e., check the cylinder conditions.

For (1) we know the action of T K-Gph K-Gph on 0-cells and 1-cells. On 0-cells,
given a K-graph A, TA has the same objects, and

TA(a, a′) =
∐

k,a=a0,a1,...,ak=a′

P (k)× A(ak−1, ak)× · · · × A(a0, a1)

That is, essentially, composable strings equipped with a reparametrising operation. The
action of T on 1-cells is pointwise: given a morphism A F B of K-graphs, the morphism
TA TF TB has the same action on objects, and on homs the action is as shown below.

P (k)× A(ak−1, ak)× · · · ×A(a0, a1)

P (k)×B(Fak−1, Fak)× · · · ×B(Fa0, Fa1)

1× F k

We can now define the action of T on 2-cells to be pointwise as well. So consider
morphisms of K-graphs

X Y
F

G

agreeing on objects, and a 2-cell α given as below, for all a, b.

X(a, b)
Y (Fa, Fb)

=

Y (Ga,Gb)

F

G

αab
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Then TF and TG also agree on objects and we define an icon Tα : TF TG by the
following (where in this diagram we omit the subscripts on the components of α so that
αk represents αxk−1xk

· · ·αx0x1
).

P (k)(xk−1, xk)(x0, x1)
P (k)(Fxk−1, Fxk)(Fx0, Fx1)

=

P (k)(Gxk−1, Gxk)(Gx0, Gx1)

TF = 1× F k

TG = 1×Gk

1× αk

For (2) there is no extra data for η and µ, we just have to check the 2-dimensional
cylinder conditions. We have to check that the following diagram commutes (as a diagram
in K):

(a, b)

(Fa, Fb) = (Ga,Gb)

P (1)(a, b)

P (1)(Ga,Gb)

GF

η

η

1×G
α

=

(a, b)

(Fa, Fb)

P (1)(a, b)

P (1)(Fa, Fb) = P (1)(Ga,Gb)

F

η

η

1× F 1×G
1× α

To see that this commutes, note that η acts as the identity on objects, and on hom
objects the action is via the unit of the operad P as follows:

(a, b) ∼= 1× (a, b) unit×1 P (1)× (a, b) ⊂ TA.

So the η and α parts of the diagram act on different parts of the product, and the above
cylinder diagram does indeed commute.

We now turn our attention to µ. We know that µ acts by concatenation together with
composition of the operad P . We need to check the following diagram:
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T 2(a, b)

T 2(Fa, Fb) = T 2(Ga,Gb)

T (a, b)

T (Ga,Gb)

T 2GT 2F

µ

µ

TG
T 2α

=

T 2(a, b)

T 2(Fa, Fb)

T (a, b)

T (Fa, Fb) = T (Ga,Gb)

T 2F

µ

µ

TF TG
Tα

Since T 2α and Tα both act pointwise, this commutes.
So we have a 2-monad fcP as claimed.
Next we need to establish an equivalence of 2-categories

T -Alg ≃ K-CatP .

In fact, as in the 1-dimensional case, this is an isomorphism because (K,P )-categories
are precisely algebras for the monad T . (We could have defined the monad T first, and
then defined (K,P )-categories to be T -algebras.) The 1-cell correspondence works as in
the 1-dimensional case, so we just need to examine iconic 2-cells. A 2-cell α of T -algebras
is a 2-cell of K satisfying the additional cylinder condition:

TA TB

A B

Tf

Tga b

g

Tα

=
TA TB

A B

Tf

a bf

g

α

We see that this condition is exactly the cylinder condition for iconic 2-cells of K-CatP .
Finally note that infinite distributivity follows as for the 1-dimensional version, that

is, since products and coproducts in K-CatP are constructed from those in K.

We now use this general free (K,P )-category 2-monad to construct the two 2-monads
which will be composed via a distributive law. In the 1-dimensional version, the monad
for vertical composition comes from a 2-functor

Cat Cat

V V-Gph
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We now need to use an analogous 2-functor

2-Cat 2-Cat

K K-Gph

As in the 1-dimensional version, a 2-functor

F K K ′

is sent to the 2-functor
F∗ K-Gph K ′-Gph

which leaves objects unchanged, and applies F to the hom K-objects; the action on icons
works similarly. The full definition of this 2-functor is given very succinctly in [Shu12,
Section 3] where it is called G. As in the 1-dimensional case, a 2-monad T on K induces
a 2-monad T∗ on K-Gph. T∗ acts on a K-graph by leaving the objects unchanged and
applying T to the hom K-objects; the unit and multiplication act on objects as the
identity on objects, and at the level of hom objects as the unit and multiplication for T .

1.27. Proposition. Let T be a 2-monad on K with 2-category of algebras KT . Then
GT is a 2-monad on GK and (GK)(GT ) ∼= G(KT ), that is

T∗-Alg ∼= (T -Alg)-Gph.

Proof. A T∗-algebra is a K-graph A together with an algebra action T∗A
θ A satisfying

the usual algebra axioms. As T∗ leaves the objects of A unchanged, the unit axiom for
algebras ensures that the algebra action θ must be the identity on objects; the unit and
associativity axioms at the level of homs tell us that θ gives a T -algebra action on each
hom K-object. That is, we have a graph enriched in T -Alg.

A map of T∗-algebras is a 1-cell A
f

B of the underlying K-graphs such that the
usual square commutes. As the algebra actions are the identity on objects, this gives us
any function f on the underlying objects, and a T -algebra map at the level of homs. That
is, we have a map of graphs enriched in T -Alg.

A 2-cell

A B

f

g

α

between maps of T∗-algebras is a 2-cell of K-Gph satisfying the cylinder condition. Thus
it is an icon, so we start with the condition that f and g must agree on objects; the rest
of the data and the axioms amount to a 2-cell between T -algebras at the level of homs.
That is, we have an iconic 2-cell of (T -Alg)-Gph.
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The 2-monads for horizontal and vertical composition are then straightforward 2-
dimensional extensions of Definitions 1.13 and 1.15.

We start with

• V1 = Cat (here the 2-cells are ordinary natural transformations), and P1 is an operad
in V1

• V2 = V1-CatP1
with iconic 2-cells, and P2 is an operad in V2

• V3 = V2-CatP2
= V1-CatP1

-CatP2
with iconic 2-cells.

The following diagram of categories and monadic forgetful functors (the lower part of
the diagram after Proposition 1.10) becomes a diagram of 2-categories and 2-monadic
forgetful 2-functors.

V1-Gph-Gph

V1-CatP1
-Gph V1-Gph-CatUP2

As in the 1-categorical case, we define the following 2-monads on V1-Gph-Gph

• For vertical composition: S = (fcP1
)∗.

• For horizontal composition: T = fcUP2
.

Finally, we check that the distributive law from the 1-categorical case (Proposition 1.16)

ST
λ

TS

extends to a 2-dimensional distributive law. We have to check that λ becomes a 2-
transformation, that is, that the cylinder diagram commutes (as a diagram in V1-Gph-Gph):

STX

STY

TSX

TSY

STGSTF

λX

λY

TSG
STα

=

STX

STY

TSX

TSY

TSα
STF

λX

λY

TSF TSG

First note that a 2-cell of STX essentially consists of a composable grid of 2-cells of
X , adorned with some appropriate operad elements for parametrising their formal compo-
sition, as shown below; here each bi is a 1-cell of P2(w) that is considered to parametrise
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the row of cells in question (as produced by T ), and moreover as S produces vertical
composites of cells of TX , we know that b1, . . . , bh are composable in P2(w), and a is a
0-cell of P1(h) which is here considered to parametrise the entire vertical composite.

a







b1 (x11 x21 · · · xw1)
...

bh (x1h x2h · · · xwh)







The distributive law places this configuration inside TSX as shown below:

• each column of cells is now considered to be vertically parametrised by a, and each
one is thus now a 2-cell of SX ,

• T produces horizontal composites of 2-cells of SX , parametrised by 1-cells of P2,
and here the 1-cell in question is the composite of b1, . . . , bh parametrised by a

a







b1
...

bh












a







x11
...

xw1






· · · a







x1h
...

xwh













See [Che11a, Theorem 4.1] for the derivation of this distributive law.
Now we see that STα acts as α pointwise on the individual cells of the grid, and leaves

the operad elements unchanged. TSα does likewise, so the equation holds.

1.28. Example: Bicats-categories. For this work we use the following special case:

• We set V1 = Cat and P1 = the operad for bicategories (the free contractible operad
on one binary and one nullary operation).

• Then by definition V2 := V1-CatP1
= Bicats.

• We set P2 = 1 (the terminal operad).

• Then by definition V3 := (Bicats, 1)-Cat = Bicats-Cat.

We then have the following 2-monads on Cat-Gph-Gph:

• for (strict) horizontal composition: H = fcUP2
,

• for (weak) vertical composition: V = (fcP1
)∗,

Note that the algebras for H are Cat-Gph-categories, and the algebras for V are Bicats-
graphs.

We have a 2-dimensional distributive law

VH HV
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thus by Proposition 1.16 we know that H lifts to a 2-monad H ′ on V-Alg = Bicats-Gph

and this lifted monad is the free Bicats-category monad. Thus by Beck’s theorem (inside
2-Cat) we know

HV -Alg ∼= Bicats-Cat

showing that the 2-category of Bicats-categories with iconic 2-cells can be constructed as
the 2-category of algebras for the composite 2-monad HV . This is the construction we
will use to define weak maps between Bicats-categories in the next section.

Note that the underlying data for an HV -algebra is a Cat-Gph-graph, that is, it has 0-
cells, 1-cells, and hom-categories of 2-cells and 3-cells. Doubly-degenerate Bicats-categories
can then be constructed as doubly-degenerate HV -algebras, that is, HV -algebras whose
underlying Cat-Gph-graph has only one 0-cell and only one 1-cell. We perform the usual
“dimension shift” and disregard the single 0-cell and single 1-cell, so that the underlying
data becomes just a category.

2. Algebras via distributive laws

In this section we will give more details about how to use 2-dimensional distributive laws
to study weak maps between TS-algebras in general. This will enable us to define weak
maps of Bicats-categories via weak maps of algebras for the individual 2-monads. These
are only weak enough in the doubly-degenerate case because, in effect, they force (or
assume) strict functoriality on 1-cells. For general tricategories this is too strict, but for
doubly-degenerate ones there is only one 0-cell and only one 1-cell so weak functors are
trivially strictly functorial on 1-cells.

As our motivating example is not a fully weakly 2-dimensional, we will simplify the
situation by keeping it as strict as that example:

• strict 2-categories, strict 2-functors, strict transformations

• strict 2-monads and strict distributive laws between them

• strict algebras

• weak maps of algebras

• strict transformations of algebras

For this reason we will not just use the analogous results about pseudo distributive
laws from [CHP04, Cor. 5.5] giving a biequivalence of bicategories

TS-Alg ≃ T ′-Alg

where T ′ is a lifting of T to S-Alg. We have a much better behaved situation and we
can characterise weak maps of TS-algebras precisely with a direct approach. Our goal
is to achieve a convenient explicit description of weak maps of doubly-degenerate Bicats-
categories. We follow Kelly and Street [KS74] and consider strict 2-monads (which they
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call doctrines), strict algebras, and weak maps of algebras (although their focus is more
on the lax case). Keeping the 2-monads and the algebras strict makes for a much simpler
theory, without us losing any of the expressivity we need.

We begin by giving a closer examination of algebras for a composite monad TS.

2.1. Algebras via distributive laws. The basic theorem about a distributive law
of S over T (Theorem 1.3) shows that algebras for the composite monad TS are the
same as algebras for the lifted monad T ′. However, in practice we often express them as
a T -algebra structure and an S-algebra structure satisfying an interaction axiom coming
from the distibutive law. This is one possible answer to the question of why a distributive
law is called a “law” when it is a piece of extra structure on the monads (a natural
transformation): it is a law at the level of algebra structures.

The following easy corollary makes this precise.

2.2. Corollary. [Bec69, Section 2] Let S and T be monads on a category C, and λ :

ST TS a distributive law. Then a TS-algebra is equivalently a T -algebra
TA

A

t and S-

algebra
SA

A

s such that the following diagram commutes:

STA SA

TSA

TA A

St

t

λA

Ts

s

We follow Beck and call this a λ-distributive algebra pair, or λ-distributive pair for
short, and will refer to this diagram as “s/t interaction”.

We have included a proof in the Appendix, expressed in string diagrams, as we found
it helpful for what follows.

2.3. Remark. It will later be useful to have an explicit correspondence between TS-
algebras and λ-distributive algebra pairs.

• Given a TS-algebra





TSA

A

θ



 we get the pair













SA

TSA

A

ηT
SA

θ

,

TA

TSA

A

TηS
A

θ













.

• Given the pair





SA

A

s ,
TA

A

t



 we get the TS-algebra













TSA

TA

A

Ts

t













.
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This follows from the above corollary and standard correspondence between T -algebras
and T ′-algebras.

2.4. Examples.

1. In the case of rings, the above correspondence expresses a ring as a set with a
monoid structure and an abelian group structure satisfying distributivity of the
monoid operation over the group operation, that is, the usual direct definition of a
ring.

2. In the case of 2-categories, the above correspondence expresses a 2-category as a
2-globular set equipped with vertical and horizontal composition satisfying inter-
change, that is, one of the usual direct definitions of a 2-category.

3. We can modify the example of 2-categories to produce doubly-degenerate 2-categories.
Let C, T, S, λ be as in Example 1.5. A doubly-degenerate TS-algebra is by definition
a λ-distributive pair where the underlying 2-globular set is doubly-degenerate. That
is, it has only one 0-cell and only one 1-cell, so is of the following form (as a diagram
of sets and functions) and so its underlying data is just a set.

A2 1 1

Thus a doubly-degenerate 2-category is a set equipped with two monoid structures,
with one distributing over the other. The standard Eckmann–Hilton argument shows
that these must be the same and commutative.

4. Finally, the correspondence tells us that a Bicats-category is a Cat-Gph-graph equipped
with weak vertical composition and strict horizontal composition, satisfying strict in-
terchange. Restricting to the doubly-degenerate ones, we see that a doubly-degenerate
Bicats-category is a doubly-degenerate Cat-Gph-graph (that is, a category) equipped
with a weak “vertical” tensor product and a strict “horizontal” tensor product, sat-
isfying strict interchange.

2.5. Remark. Doubly-degenerate 2-categories cannot be simply expressed by restricting
T and S to a category of doubly degenerate 2-globular sets (i.e. Set), as T does not
restrict — even if A is a doubly degenerate 2-globular set, TA is not, as it creates formal
composites of the unique 1-cell. The same is true for doubly-degenerate Bicats-categories.

2.6. Maps of algebras via distributive laws.We now move on to consider maps of
algebras via distributive laws. Just as we can express TS-algebras in terms of a T -algebra
and an S-algebra (in the presence of a distributive law of S over T ), we can express maps
of TS-algebras as a map of T -algebras and a map of S-algebras.

2.7. Theorem. In the presence of a distributive law of monads S over T , a map f of
TS-algebras is precisely a map f which is a map of both the associated T -algebra and the
associated S-algebra.
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Proof. Consider TS-algebras TSA θ A and TSB
φ

B and a map A
f

B between
them, so the following diagram commutes.

TSA TSB

A B

TSf

f

θ φ

We need to check that f is a map of the associated T -algebras and of the associated
S-algebras. This is seen from the following diagrams where the top squares are naturality
squares:

SA SB

TSA TSB

A B

Sf

TSf

f

ηT
SA

θA

ηT
SB

θB

TA TB

TSA TSB

A B

Tf

TSf

f

TηS
A

θA

TηS
B

θB

Conversely, suppose we know that f is a map of the associated T -algebra and S-algebra
structures given by the λ-distributive pairs below.





TA

A

at ,
SA

A

as



 and





TB

B

bt ,
SB

B

bs





We check that f satisfies the axioms for a map of TS-algebras. This is seen from the
following diagram, where by definition the left-hand map is θ and the right-hand map is
φ, and the squares are the axioms for a T -algebra map and an S-algebra map respectively:

TSA TSB

TA TB

A B

TSf

Tf

f

Tas

at

Tbs

bt
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2.8. Examples.

1. A ring homomorphism consists of a map that is both a group homomorphism and
a monoid homomorphism.

2. A functor of 2-categories is a map of the underlying 2-globular sets that respects
both the horizontal composition and the vertical composition. This has a slightly
different emphasis from the expression as a T ′-algebra map, which says it is a functor
on hom-categories and a Cat-enriched functor as well.

We now move to the case of weak maps of algebras.

2.9. Weak maps of algebras via distributive laws.We now extend the 1-categorical
results to a 2-categorical framework. Since we are dealing with strict 2-monads, strict
algebras and strict distributive laws throughout this work, the previous theorems charac-
terising TS-algebras still hold. However, we need a new result characterising weak maps
of TS-algebras. First we recall the definition of a weak map of algebras for a 2-monad T .

2.10. Definition. Let T be a 2-monad on a 2-category C. Given strict algebras TA a A
and TB b B a weak map between them is given by a 1-cell A

f
B and a 2-cell isomor-

phism
TA TB

A B

Tf

f

a b
τ

∼

satisfying the following axioms.

=

A B

TA

TA TB

T 2A T 2B
T 2f

µB

µA

TfTa

a

a b

f

=

=

τ

A B

TA TB

TB

T 2A T 2B
T 2f

µB

Ta

a

b

f

b

Tb

Tf

=

τ

Tτ

A B

TA TB

A B
f

ηB

ηA Tf

1
a b

f

=

=

τ
=

A B

TB

A B
f

ηB

1
b

f

1 ==
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2.11. Example. Let T be the 2-monad on Cat whose strict algebras are weak monoidal
categories. So given a category A, TA is the free weak monoidal category on A, with
objects (parenthesised) words in objects of A. The multiplication µ acts by concatenation
of words, and the unit η realises an object of A as a 1-ary word.

Then the weak maps are weak monoidal functors but expressed slightly differently from
the usual way, with a priori a coherence isomorphism for every length of parenthesised
word, not just binary and nullary words. This is because in the definition of weak map of
algebras, the 2-cell isomorphism τ produces, for all objects of TA, a morphism in B. In
this case, the objects of TA include parenthesised words of all finite lengths.

That is, not only do we have the usual specified coherence isomorphisms

Fx⊗ Fy ∼ F (x⊗ y)

and
I ∼ FI

but also coherence isomorphisms such as

Fx⊗ (Fy ⊗ Fz) ∼ F
(

x⊗ (y ⊗ z)
)

.

However, the axioms for a weak map of algebras ensure that the coherence constraints
for other arities must be built from the binary and nullary ones in the usual way, so that
these (unbiased) weak maps coincide with the usual (biased) definition of weak monoidal
functor.

We now consider 2-monads S, T with a distributive law, and characterise weak maps
of TS-algebras in a manner similar to the strict maps. However, as the maps are now
weak a new axiom is needed, governing the interaction between the constraint cells.

2.12. Theorem. Let S and T be 2-monads on a 2-category C, and let λ ST TS be a
2-categorical distributive law. Then a weak map of TS-algebras

(

TA

A

at ,
SA

A

as

)





TB

B

bt ,
SB

B

bs





is given by a 1-cell A
f

B and 2-cells as below giving individual weak maps:

TA TB

A B

Tf

f

at bt
τ

∼

SA SB

A B

Sf

f

as bs
σ

∼

such that the following “σ/τ interaction axiom” holds:
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=

A B

SA TA TB

TSA TSB

STA STB

TSf

Tbs

Tas

Tf

Sat

as
at bt

f

STf

λA

λB
=

Tσ
=

τ
A B

SA SB TB

TSB

STA STB

Tbs
Sat

as

Sbt

bt

f

STf

λB

Sf

bs

=

σ

Sτ

Note that as everything is strict here except the weak maps of algebras, there is a
certain amount of overkill in using fully 2-dimensional pasting diagrams. In particular,
the vast majority of faces in the diagrams are merely (strict) naturality squares. Under
such circumstances, string diagram notation is particularly efficacious. All the proofs of
commutativity in this section are entirely routine, and only complicated by the difficulty
of notating 2-cells. Thus, we will defer many of the proofs to the appendix where we will
use string diagrams.

Proof. Consider a weak map

TSA TSB

A B

TSf

f

ats bts
ζ

∼

First note that ηTS : S TS and TηS : T TS give monad functors TS S and
TS T . Thus we know that σ and τ given as follows are weak maps of the constituent
S-algebras and T -algebras respectively:

SA SB

TSA TSB

A B

Sf

TSf

f

ηTSA

ats

ηTSB

bts
ζ

TA TB

TSA TSB

A B

Tf

TSf

f

TηSA

ats

TηSB

bts
ζ

We need to check the σ/τ interaction axiom; see Appendix.
Conversely, given individual weak maps σ and τ , we construct the following putative

weak map of TS-algebras:
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TSA TSB

TA TB

A B

TSf

Tf

f

Tas

at

Tbs

bt

Tσ

τ

We need to check the two axioms for an algebra; see Appendix.

2.13. Transformations of algebras via distributive laws.

2.14. Definition. Let T be a 2-monad on a 2-category C. Given weak maps of T -algebras

TA TB

A B

Tf

f

a b
τf

∼

TA TB

A B

Tg

g

a b
τg

∼

a transformation f g consists of a 2-cell

A B

f

g

α

such that the following cylinder diagram commutes.

TA TB

A B

Tf

Tga b

g

Tα

τg

=
TA TB

A B

Tf

a bf

g

τf

α

We will refer to this as a T -algebra transformation for short, or just T -transformation.
T -algebras, weak T -maps and T -transformations form a 2-category which we will call
T -Algw.

2.15. Example. Let T be the 2-monad on Cat for weak monoidal categories. Then a
transformation between weak maps of T -algebras is a monoidal transformation. As for
the weak maps, this is expressed slightly differently from the usual biased way, in that
there is now a monoidality axiom for all parenthesised words and not just nullary/binary
ones. However, again the concepts are the same because in the biased presentation the
axioms for other arities can be derived from the nullary/binary ones. This allows us to
consider T -Algw as the 2-category of monoidal categories, weakly monoidal functors, and
monoidal transformations.
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2.16. Theorem. Let S and T be 2-monads on a 2-category C, and let λ ST TS be a
2-categorical distributive law. Then a transformation α of TS-algebras is precisely a 2-cell
α that is both a transformation of S-algebras and a transformation of T -algebras (with no
further axiom).

Proof.Consider a transformation of TS-algebras. As above, the monad functors TS S
and TS T give us a transformation of S-algebras and T -algebras respectively. Con-
versely, suppose we have a 2-cell α that satisfies both the cylinder for T and the cylinder
for S; it is straightforward to check that it then satisfies the cylinder for TS.

3. Weak maps and transformations of
doubly-degenerate Bicats-categories

In this section we unravel the definitions of weak map and transformation in our case
of interest, and go on to characterise these with reference only to the vertical monoidal
structures. This is the technical content of the comparison with braided monoidal cate-
gories.

3.1. Weak maps by definition. In this section we unravel the definition of weak map
in the case of doubly-degenerate Bicats-categories.

Recall (Section 1.28) that we construct Bicats-categories from 2-monads V for vertical
composition and H for horizontal composition, equipped with a distributive law of V
over H . These are monads on the 2-category Cat-Gph-Gph. By definition, the doubly-
degenerate HV -algebras are those whose underlying data is doubly-degenerate, that is,
whose underlying Cat-Gph-graph has only one 0-cell and only one 1-cell. In this case the
underlying data is just a category A. Then

• a V -algebra structure is a (weak) monoidal structure on A, and

• an H-algebra structure is a (strict) monoidal structure on A.

As in [CC22] we will write the V -algebra (weak monoidal) structure vertically as a
b
and the

H-algebra (strict monoidal) structure horizontally as a | b. As we have strict interchange
between these monoidal structures we can combine these in grids without ambiguity, for
example:

a b

c d

Furthermore, we will often ignore issues of associativity in the vertical direction because, as
long as we are not simultaneously interacting with associativity in the horizontal direction,
coherence means that the diagram of vertical associators will commute. (We know from
[Koc06] that care must be taken about the interaction between horizontal and vertical
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associativity.) Thus we will work with larger grids such as

a b

c d

e f

but will only increase the height when the width remains at two. By interchange we know
that the horizontal and vertical monoidal unit are the same, and we write it as 1; we will
sometimes write it as an empty space in a grid formation. We will write the left and right
unit constraints for the horizontal tensor product as follows (with λ and ρ for “left” and
“right”):

1 a λ a

a 1
ρ

a

and those for the vertical tensor product as follows (with τ and β for “top” and “bottom”):

1

a
τ a

a

1
β

a

3.2. Definition. We define a weak map of doubly-degenerate Bicats-categories to be a
weak map of their HV -algebra structures.

We can now use the results of the previous section to characterise these weak maps via
the horizontal and vertical monoidal structures.

3.3. Proposition.A weak map X F Y of doubly-degenerate Bicats-categories is a func-
tor on the underlying categories equipped with:

• A vertical monoidality constraint: for all a, b ∈ X an isomorphism

Fa

Fb
vab
∼ F

(a

b

)

natural in a and b; we will usually omit the subscripts.

• A horizontal monoidality constraint: for all a, b ∈ X an isomorphism

Fa |Fb hab
∼ F (a | b)

natural in a and b; again we will usually omit the subscripts.

• A unit constraint: an isomorphism 1
η
∼ F1.
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These must satisfy the usual axioms for monoidal functors, plus the interaction axiom:

Fa Fb

Fc Fd

F (a | b)

F (c | d)

F
(

a
c

)

F
(

b
d

)

F

(

a b

c d

)

h
h

h

v | v
v

Note that is essentially a “biased” presentation of the interaction axiom in the previous
section.

Proof. By Theorem 2.12 we know that a weak HV -map is equivalently a map with the
structure of both a weak H-map and a weak V -map satisfying the interaction axiom. Thus
as in Example 2.11 the structure of the weak V -map gives us unbiased vertical monoidality
constraints, and the structure of the weak H map gives us unbiased horizontal monoidal-
ity constraint, and a general interaction axiom (for all arities in both directions). The
interaction axiom gives us interaction for all vertical and horizontal arities. In particular
in the nullary case it tells us that the horizontal and vertical unit constraints 1 F1
must coincide; in the case of a binary arity in both directions, the axioms tells us that the
2-by-2 interaction axiom above must hold. Conversely, starting from the interaction axiom
for arity 0 and 2-by-2, we can prove the general interaction axiom by double induction.

3.4. Weak maps in terms of vertical structure. We are now going to use a
weak Eckmann–Hilton argument to re-characterise these weak maps further, eliminating
the reference to H . First recall from [CC22] that a doubly-degenerate Bicats-category has
the structure of a braided monoidal category with respect to its vertical tensor product,
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with braiding given by a weak Eckmann–Hilton argument as follows:

a

b

a

b

b a

b

a

b

a

strict horizontal units

strict interchange

weak vertical units

∼

weak vertical units

∼

strict horizontal units

strict interchange

Note that this involves a choice of orientation; we will keep the above “clockwise” ori-
entation throughout. As we will invoke this repeatedly we will express it in terms of the
following maps:

α a b
a

b

and

α a b
b

a

We can think of α as being clockwise and α as anti-clockwise. Then the braiding in the
orientation we have chosen above is given as follows:

γ :=
a

b
α−1

b a α
b

a

We will refer to this as the standard braiding.
Note that α and α are built from unit constraints so are natural in a and b. Another key

result we need encapsulates the usual way in which we extract a braiding from interchange.

3.5. Proposition. The following diagram commutes.
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a b

c d

a

b

c

d

a

c

b

d

αab

αcd

α(
a

c

)(

b

d

)

1a

γbc

1d

Proof. The diagram in question is the outside of the diagram below.

a b

c d

a

b

c

d

a

b

c

d

a

b

c

d

a

c

b

d

a

c

b

d

a

c

b

d

vertical units

horizontal units

horizontal units

horizontal units

vertical units

horizontal units

vertical unitsvertical units

horizontal units

horizontal units

We see that each triangle involves only one type of unit constraint and so commutes by
coherence. The square commutes by functoriality of vertical tensor product.



WEAK VERTICAL COMPOSITION II: TOTALITIES 1027

We are now ready to characterise the weak maps of HV -algebras in terms of just the
vertical structure, that is, in terms of V -structure and the braiding. In some sense the
following proposition is just a corollary of [CG11, Theorem 2.14], where it was proved
in much greater generality (for fully weak tricategories). However, as that proof involved
long coherence calculations we deem it worthwhile to include a direct proof here. First
we show that a weak map of HV -algebras is a braided monoidal functor with respect to
the V -structure; afterwards we will show that given a braided monoidal functor, a weak
HV -map giving rise to it can be reconstructed.

3.6. Proposition. Let (F, v, h) X Y be a weak map of doubly-degenerate Bicats-
categories. Then F is a braided monoidal functor with respect to the vertical tensor product
and the standard braiding. That is, the following diagram commutes:

Fa

Fb
F

(

a

b

)

Fb

Fa
F

(

b

a

)

v

v

γ Fγ
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Proof. The diagram can be seen to commute as shown below. Here “unit” refers to the
unit axiom for a monoidal functor.

Fa

Fb

F (1 |a)

F (b | 1)

F

(

a

b

)

1 Fa

Fb 1

F

(

1

b

)

F

(

a

1

)

F

(

1 a

b 1

)

Fb Fa F (b a)

F1 Fa

Fb F1

Fb F1

F1 Fa

Fb 1

1 Fa

F

(

b

1

)

F

(

1

a

)

F

(

b 1

1 a

)

Fb

Fa

F (b | 1)

F (1 |a)

F

(

b

a

)

v

Fλ−1

Fρ−1

λ−1

ρ−1
F

(

λ−1

ρ−1

)

vh

h

η 1

1 η

v v
h

τ β

Fτ Fβ

β−1 τ−1

Fβ−1 Fτ−1

hv v

1 η

η 1

h

h
ρ

λ
Fρ−1

Fλ−1

v

v

h

F (τ β)

F (β−1 τ−1)

F

(

ρ

λ

)

naturality

of v

naturality

of v

naturality

of h

naturality

of h

v–h

interaction

v–h

interaction

unit

unit

unit

unit

unit unit

unit unit

Note that the diagram in the above proof splits into two halves (top and bottom) and
the halves are themselves key for what follows, showing that, given a weak HV -map, the
h constraint can always be derived from v.

3.7. Proposition. Let (F, v, h) be a weak map of doubly-degenerate Bicats-categories
X Y . It follows from the above proof that the following diagram commutes, showing
that h can be derived from v (as α and thus Fα are invertible):
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Fa Fb F
(

a b
)

Fa

Fb
F

(

a

b

)

h

v

α Fα

Note that this means that if we know we have a weak HV -map, then h can be recon-
structed from v, but if we started with only v we might not be able to make it into a weak
HV -map. It remains to show that any v satisfying the braid axiom will yield a weak map
by reconstructing h according to this diagram.

The idea is that if we start with a constraint v there are two options for extending the
weak map structure, depending on how we’re thinking about the overall structure. Either
we’re thinking about braided monoidal categories in which case we want v to satisfy the
braid axiom. Or we’re thinking about HV -algebras in which case we want to reconstruct
an h and check the interaction axiom. The point is that these turn out to be equivalent.

3.8. Proposition. Let X and Y be doubly-degenerate Bicats-categories and (F, v) a
monoidal functor X Y with respect to the vertical tensor products, satisfying the braid
axiom. Then defining h according to Proposition 3.7 makes F into a weak map of doubly-
degenerate Bicats-categories.

Proof. We need to show that with h defined in this way the interaction axiom holds.
This is seen by the following diagram; the outside is the interaction axiom, and we see
that it follows from the braid axiom.
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Fa Fb

Fc Fd

Fa

Fb

Fc

Fd

F

(

a

b

)

F

(

c

d

)

F (a | b)

F (c |d)

Fa

F

(

b

c

)

Fd

Fa

Fc

Fb

Fd

F











a

b

c

d











Fa

F

(

c

b

)

Fd

F

(

a

c

)

F

(

b

d

) F

(

a

c

)

F

(

b

d

) F











a

c

b

d











F

(

a b

c d

)

α

α

v

v

Fα−1

Fα−1

1

v

1

v

v v

α

1

γ

1

1

v

1

v

F

(

α−1

α−1

)

v
1

Fγ

1

v

α v Fα−1

v

v
F







1

γ

1







Prop 3.5

Prop 3.5

naturality

of α

naturality

of v

coherence

of v

coherence

of v

naturality

of v

braid

axiom

for v

3.9. Remark. Note that we could equally define h using α, but in the presence of the
braid axiom for v, this produces the same constraint, as seen from the diagram below,
where the top and bottom edges are the two different ways of producing an h, the square
is the braid axiom, and the triangles come from the definition of γ.
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Fa Fb F
(

a b
)

Fa

Fb
F

(

a

b

)

Fb

Fa
F

(

b

a

)

v

v

γ Fγ

α

α

Fα−1

Fα−1

In fact, as the triangles in this diagram are simply the definition of γ, we see that the
braid axiom is the assertion that these two ways of producing a horizontal constraint are
the same.

We have now shown that a weak map of HV -algebras is equivalently a weak map of
V -algebras satisfying the braid axiom. We now move on to transformations.

3.10. Transformations in terms of vertical structure. We will now char-
acterise transformations of doubly-degenerate Bicats-categories. A priori we know that
doubly-degenerate Bicats-categories have a vertical and a horizontal monoidal structure
(with an interchange axiom) and we know that weak maps between such are monoidal
with respect to each of those structures. We will refer to transformations being “hori-
zontally monoidal” and “vertically monoidal” if they are monoidal with respect to the
horizontal or vertical monoidal structures respectively.

By the results of Section 2.13 we know that a transformation of weak maps of HV -
algebras is a 2-cell that is both an H-transformation and a V -transformation. We will now
show that in the case of doubly-degenerate Bicats-categories, being a V -transformation
suffices as we can use the weak Eckmann–Hilton argument to derive the H-structure
(horizontal monoidal) axiom. This tells us that a transformation of doubly-degenerate
Bicats-categories is precisely a monoidal transformation between the associated braided
monoidal categories.

3.11. Proposition. Consider X Y

F

G

θ where

• X and Y are doubly-degenerate Bicats-categories,

• F and G are weak maps, and

• θ is a V -transformation, that is, vertically monoidal.

Then θ is an H-transformation, that is, horizontally monoidal.

Proof. As usual we write h and v for the horizontal and vertical monoidal functor
constraints respectively (for both F and G). We know that the diagram for a monoidal
transformation with respect to v commutes; we need to check that the diagram for a
monoidal transformation with respect to h follows. By Proposition 3.7 we know that h
can be expressed in terms of v (for F and G respectively) giving the top and bottom
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edges of the diagram below. Thus the monoidal transformation diagram we need to check
becomes the outside of the diagram below, which is seen to commute as shown:

Fa Fb
Fa

Fb
F

(

a

b

)

F (a b)

Ga Gb
Ga

Gb
G

(

a

b

)

G(a b)

α

α

v

v

Fα−1

Gα−1

θa θb
θa

θb
θ a

b

θ
a b

naturality

of α

vertical

monoidal

axiom

naturality

of θ

Note that doubly-degenerate Bicats-categories, weak maps, and transformations be-
tween them form a 2-category which we will write as ddBicats-Cat; it is a full sub-2-category
of HV -Algw.

4. Biadjoint biequivalence

We are now ready to state and prove our main theorem. We exhibit a comparison 2-functor
between ddBicats-Cat and BrMonCat and prove that it is part of a biadjoint biequivalence.
Here we write BrMonCat for the 2-category of braided (weakly) monoidal categories, weak
monoidal functors between them, and monoidal transformations.

In fact, all the technical components of the equivalence have been proved in [CC22]
and the previous section, so this is just a case of bringing all those results together.

4.1. Theorem. [Main Theorem] There is a 2-functor

U ddBicats-Cat BrMonCat

extending the construction on 0-cells given in [CC22], and it is part of a biadjoint biequiv-
alence of 2-categories.

Proof. First we construct the 2-functor U .

• On 0-cells: given a doubly-degenerate Bicats-categoryX , UX is the braided monoidal
category given by the vertical tensor product and the standard braiding γ.

• On 1-cells: given a weak map of doubly-degenerate Bicats-categories

(F, v, h)X Y

UF is the associated braided monoidal functor (F, v), which we know is braided by
Proposition 3.6.

• On 2-cells: given a transformation between weak maps of doubly-degenerate Bicats-
categories

X Y

F

G

θ
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Uθ is the underlying transformation with respect to just the vertical monoidal struc-
ture.

This is a strict 2-functor. The main theorem of [CC22] proved that U is biessentially
surjective on 0-cells. By Proposition 3.8 we know U is locally essentially surjective on 1-
cells (in fact locally surjective). By Proposition 3.11 we know U is locally full and faithful
on 2-cells. Then by [Gur12, Lemma 3.1 and Theorem 3.2] it follows that U is part of a
biadjoint biequivalence of 2-categories.

Note that constructing a pseudo-inverse for U is non-trivial. A candidate construction
on 0-cells was made in [CC22] to prove the biessential surjectivity, but extending it to a
2-functor requires more work and we defer it to a sequel.

In future work we will perform an analogous analysis for doubly-degenerate tricate-
gories according to the theory of Trimble [Tri99]. This theory uses iterated enrichment
with more general operad actions, with the result that, although the ideas are analogous,
the technicalities are a little more intricate.

A. String diagram calculations

In this section we will give the deferred 2-categorical proofs that are more efficaciously
performed using string diagrams. The advantage of string diagrams in this case is that
almost all our 2-categorical concepts are strict, and so we can “ignore” naturality squares.
The conventions we use are as follows. We read the diagrams from top to bottom. We are
working with 2-categories, 2-functors, and transformations (all strict), so in particular the
relative heights do not matter (because of naturality). To simplify the diagrams we will
omit labels wherever there is no ambiguity.

A.1. Monads and distributive laws. We begin by laying out our basic notation for
the classical results of 2-monads and distributive laws. For a 2-monad T on a 2-category
C, we write its multiplication, unit, and axioms as follows.

T T

T

1

T
= = =

We write a distributive law ST TS as

S T

T S

and the axioms for a distributive law as follows:

S S T

=

S T T

=

T

T S

=

T

T S

S

T S

=

S

T S
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Given such a distributive law, TS becomes a monad with the following multiplication and
unit:

T S T S

T S
T S

We write an algebra for a monad T as follows, together with its axioms. (Note that this
can be made consistent with the string diagram notation by regarding the object A as a
functor 1 C.)

T A

A

at

T T A

at

at

=

at

at =

We now turn to algebras for a composite monad TS arising from a distributive law.
Corollory 2.2 says that a TS-algebra is equivalently a T algebra and an S-algebra satisfying
the following interaction axiom.

S T A

as

at

= at

as

Given a TS-algebra ats we produce an S-algebra and a T -algebra as follows; it is then
quite straightforward to check they satisfy the interaction axiom using the diagrams.

T

S A

ats

T

S

A

ats

Conversely, given an S-algebra as and a T -algebra at we construct a putative TS-algebra
as follows, and can then use the string diagrams to check that the algebra axioms follow
from the interaction axiom. (That is, the multiplication axiom follows from the interaction
axiom; the unit axiom follows from the individual unit axioms.)

T S A

as

at

A.2. Weak maps of algebras. We now address weak maps of algebras. Note that in
all that follows, we will label 2-cells between string diagrams just with the name of the
non-trivial part of the 2-cell.
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A weak map of algebras




TA

A

at









TB

B

bt





consists of a 1-cell A
f

B and a 2-cell isomorphism as shown below

T A

f

bt

B

τf

T A

at

f

B

satisfying the following axioms:

T T A

f

bt

bt

τf

at

f

bt

τf

at

at

f

bt

f at

f

τf

T

A

f

bt

B

τf

T

A

at

f

B

A

B

f

Note that, as above, we can make this consistent with the string diagrams: if we are regard-
ing a 0-cell A as a 2-functor 1 A, then a 1-cell f : A B is a strict transformation,
and a 2-cell f g is a modification.

We now turn to weak maps for the composite monad TS arising from a distributive
law. We know that a TS-algebra structure on A can be expressed as a pair (as, at) where
as is an S-algebra structure on A and at is a T -algebra structure on A and they satisfy
the interaction axiom. Theorem 2.12 says that a weak map of TS-algebras





TA

A

at ,
SA

A

as









TB

B

bt ,
SB

B

bs





is given by

• a 1-cell A
f

B
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• 2-cells σf and τf as shown below giving the structure of a weak map of underlying
S-algebras and a weak map of underlying T -algebras,

S A

f

bs

B

σf

S A

as

f

B

T A

f

bt

B

τf

T A

at

f

B

• satisfying the interaction axiom shown below.

S T A

f

bs

bt

σf

S T A

as

f

bt

τf

S T A

as

at

f

S T A

f

bt

bs

τf

S T A

at

f

bs

σf

S T A

at

as

f

Proof of Theorem 2.12. Now, a priori a weak map of TS-algebras is a 1-cell A
f

B and
a 2-cell

T S A

f

bts

ζf

T S A

f

ats

such that the following diagrams commute:
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T S T S A

bts

f

bts

ζf

T S T S A

ats

f

bts

ζf

T S T S A

ats

ats

f

ζf
T S T S A

bts

f

T S T S A

ats

f

T S

A

f

bts

B

ζf

T S

A

ats

f

B

A

B

f

First we will show that this gives a pair (σf , τf ) satisfying interaction. We begin by
expressing the TS-algebras ats and bts as λ-distributive pairs:

T

S A

ats

A

T

S

A

ats

A

























































































































































T

S B

bts

B

T

S

B

bts

B

Next we construct σ for the S components and τ for the T components as shown
below.
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σf : T

S A

f

bts

B

T

S A

ats

B

f

ζf τf :

T

S

A

f

bts

B

ζf

T

S

A

ats

B

f

We check the interaction diagram:
S T A

S

T

bts

f

bts

ζf

ats

f

bts

ζf

ats

ats

f

ζf

bts

f

ats

f

f

bts

ζf

f

ats

bts

f ζf

ats

f

bts

f

bts

ζf

ats

f

bts

ζf
ats

ats

f

Conversely, suppose we have a pair (σf , τf) as below satisfying the interaction diagram.
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S A

f

bs

B

σf

S A

as

f

B

T A

f

bt

B

τf

T A

at

f

B

We show that these result in a weak map of TS-algebras. First we form the 2-cell ζf as
shown below.

T S A

f

bs

bt

σf

T S A

as

f

bt

τf

T S A

as

at

f

We check the axioms.

T S T S A

f

bs

bt

bs

bt

σf

as

f

bt

bs

bt

τf

as

at

f

bs

bt

σf

as

at

as

f

bt

τf

as

at

as

at

f

f

bs

bs

bt

bt

σf

as

f

bs

bt

bt

σf

as

as

f

bt

bt

τf

as

as

at

f

bt

τf

as

as

at

at

f

bs

f

bt

σf

as

bt

f

τf

as

at

f
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T

S

A

bs

f

bt

σf

as

f

bt

τf

as

at

f

bt

f as

f

f

Finally we check that these assignations are inverse to each other. We start with ζf ,
construct individual weak maps σf and τf , compile them back into a weak TS-map and
check that this is equal to ζf . This is seen from the commutativity of the following diagram,
where the top region is the multiplication axiom for a weak map of TS-algebras.

T S A

S

T

bts

f

bts

ζf

ats

f

bts

ζf

ats

ats

f

ζf

bts

f

ats

f

f

bts

ζf

f

ats

Conversely, start with σf and τf , make ζf , and then extract individual weak S-map
and T -map constraints out, and check that these are equal to the σf and τf we started
with. This is seen from the commutativity of the following diagrams; in each case the
triangle commutes by the triangle axiom for a weak map.
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S A

f

bs

bt

σf

S A

as

f

bt

τf

S A

as

at

f

σf

S A

f

bs

B

S A

as

f

B

T A

f

bs

bt

σf

T A

as

f

bt

τf

T A

as

at

f

τf

T A

f

bt

B

T A

at

f

B
�
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Julie Bergner, University of Virginia: jeb2md (at) virginia.edu
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