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L’-LOCALIZATION IN AN 0co-TOPOS

MARCO VERGURA

ABSTRACT. We prove that, given any reflective subfibration L, on an co-topos &, there
exists a reflective subfibration L, on & whose local maps are the L-separated maps, that
is, the maps whose diagonals are L-local.
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1. Introduction

This paper complements the work of [Verl19] by proving the following theorem, which is
one of our main results in the theory of reflective subfibrations on an co-topos €.

1.1. THEOREM. [Theorem 4.3 & Corollary 4.4] Let Lo be a reflective subfibration on an
oo-topos €. Then, there exists a reflective subfibration L., on & for which the L'-local maps
are exactly the L-separated maps.

In [Verl9], we took from [RSS17] the notion of reflective subfibration on an oco-topos
€, and studied its properties. A reflective subfibration L, on € is a pullback-compatible
system of reflective subcategories D x of € /x, for every X € €. The collection of all objects
in Dy, as X varies in &, forms the class of L-local maps. Reflective subfibrations provide
a suitable framework for the study of localizations in an co-topos. Indeed, all the most
common examples of localizations from classical homotopy theory can be recovered in this
setting: stable factorization systems ([Ver19, Thm. 4.8]), left exact reflective subcategories
of an co-topos ([Verl9, Prop. 4.11}), and localizations at sets of maps ([Ver19, Prop. 5.11]).
For the reader’s convenience, in Section 2, we briefly gather from [Verl9] the general
aspects of reflective subfibrations that we need.
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For a reflective subfibration L, on &, one can consider the L-separated maps, that is,
those maps in € whose diagonal is L-local. For example, for the reflective subfibration
L? having the n-truncated maps as local maps, the L7-separated maps are the (n + 1)-
truncated maps, and they are themselves the local maps for a reflective subfibration, L7,
It turns out that this behavior is completely general: for any L,, there exists an L, such
that the L'-local maps are the L-separated maps (Theorem 4.3 and Corollary 4.4).

In this paper, we focus on the proof of this existence result, leaving the study of its
consequences to [Ver19, §7]. To this end, one needs to carefully examine some connections
between L-local and L-separated maps. We develop the study of these relationships in
Section 3. Our main result there is the following characterization of L'-localization maps,
that is, those maps out of a fixed object X (or, more generally, out of a map p) and into
an L-separated object, which are universal among maps with this property.

1.2. THEOREM. The following are equivalent, for a map n': X — X' in &:
1. ' is an L'-localization of X;

2. 1 is an effective epimorphism and

X—>X XXIX

N

XxX
is an L-localization of AX.

The existence result for L), together with a few auxiliary lemmas needed in its proof,
is the content of Section 4. The results in both Section 3 and Section 4 require some facts
about locally cartesian closed oo-categories that we collect in the Appendix (Section 5).
Some of the results there are well known, but for others we could not find any reference in
the literature. Examples of the results in the latter group are Proposition 5.2.1, where we
prove the topos-theoretic version of the function extensionality axiom from HoTT, and
Proposition 5.3.4, which provides a criterion for unique extensions of maps that is crucial
for the proof of Theorem 3.10.

Our approach to localization is inspired by the work in homotopy type theory (HoTT)
developed in [CORS18]. The notion of L-separated map, as well as Proposition 3.6 and
Theorem 4.3, are expressed in HoTT in [CORS18, §2.2-2.3]. We take from there the
main ideas for the proofs of Theorem 3.10 and Theorem 4.3. However, proof details and
techniques have been modified to apply to the “term-free” exposition we work with. This
is particularly evident in the proof of Theorem 3.10, and in the results of Section 4. All
the proofs of the results in the Appendix are also specific to the higher-topos theoretic
setting we work with. For a more detailed description of how our work relates to the
study of localization in HoTT, we refer the reader to the Introduction of [Ver19].

ACKNOWLEDGEMENTS. We would like to thank Dan Christensen, for his support and
guidance, Mike Shulman, for the careful reading of the material present here, and for
many helpful suggestions, and the anonymous referee for their account on the paper.
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NOTATION AND CONVENTIONS. By an oo-topos we mean an oo-category & with the
following properties.

(a) € is a locally presentable co-category ([Lur09, Def. 5.5.0.1]).
(b) Colimits in € are universal ([Lur09, Def. 6.1.1.2]).

(c) The class of all maps in € is a local class of maps (see [Lur09, Thm. 6.1.3.8]).

This characterization of co-topoi follows from [Lur09, Thm. 6.1.6.8].
Given an oo-category C, we often depict a map m: p — ¢ in a slice category C/z as a
commuting triangle in € of the form

E m

M
N S
7

leaving the interior 2-simplex implicit. We will often carry over this implicitness to other
maps in slice categories that are constructed from m, at least as long as the context is
enough to disambiguate. For example, if the implicit 2-simplex of m above is o, then
(0,0) is the implicit 2-simplex of the map in €22 given by

E—" M
(p,p)\ 7 ‘/(q,q)

If p and ¢ are objects in a slice category C,z, we write p x% g to mean the product
object of p and ¢ in C/5.

2. Reflective Subfibrations

We gather here some background material on reflective subfibrations in an co-topos &
from the companion paper [Ver19].

2.1. DEFINITION. [RSS17, §A.2] Let € be an co-topos.

1. A reflective subfibration L, on € is the assignment, for each X € &, of an oo-
category Dx such that:

(a) Each Dx is a reflective co-subcategory of € /x, with associated localization func-
tor Lx: &/x — &,x. This is the composite of the reflector of €,x into Dx and
the inclusion of Dx into &/x. If X =1, we write D for Dy and L for L.

(b) For everymap f: X =Y in &, and anyp € €y, the map Lx(f*p) = f*(Lyp)
is an equivalence. In particular, the pullback functor f*: €,y — & x restricts
to a functor Dy — Dx which we still denote by f*.

2. A modality on &€ is a reflective subfibration Lo on & which is composing, in that,
whenever p: X =Y isin Dy and q: Y — Z is in Dy, the composite qp is in Dy.
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2.2. EXAMPLE. In [Ver19, §4.2], we show that stable factorization systems in an co-topos
€ correspond to modalities on €. In particular, for every n > —2, there is a modality
LY on &, for which the L-local maps are the n-truncated maps. We call this modality
the n-truncated modality on €. Given an object X € &, we will also adopt the more
conventional notation || X]||,, for L™(X).

2.3. EXAMPLE. (Not all reflective subfibrations are modalities.) In [Ver19, §5], we show
that every map f: A — B in & gives rise to a reflective subfibration on &, called f-
localization, whose local objects are all X € & for which the map of internal homs
X7 XP — X4 is an equivalence. Similarly, a map p: E — X in &,x is an f-local
map if the map in € x obtained by taking internal homs of p with (X — 1)*(f) is an
equivalence. When € = ocoGpd, an f-local map is simply a map which has f-local fibers.
As long as B # 1, f-localization is typically not a modality. A simple example is given
in [CORSI1S, Ex. 4.8].

2.4. REMARK. For every X € € and every map f: Y — X, we have that (€,x)/r ~ €y
(this follows from [Lur09, Prop. 2.1.2.5], but see also [Kapl4, Lemma 4.18] for a more
explicit proof). Hence, for each X € &, a reflective subfibration L, induces a reflective
subfibration LJ* of € /x by taking D;X to be Dy. It follows that results about reflective
subfibrations on an oco-topos also hold “locally” in the oo-topos €,x, for X € €.

From now on, we fix a reflective subfibration L, on our favorite co-topos €.

2.5. NoTATION. We adopt the following notation for the rest of this work.

e A morphism p: E — X is called L-local if, seen as an object of € x, it is in Dy.
We call E € € an L-local object if E— 1 is an L-local map.

e For X € &, Sx denotes the class of all Lx-equivalences, i.e., maps « in &,x such
that Lx () is an equivalence. Equivalently, Sx = “Dy, where Dy denotes the
class of maps in €,x which are left orthogonal to maps in Dy. When it is clear that
a is a map in &,x, we often drop the explicit reference to the object X, and just
talk about L-equivalences.

e Given p € €/x, we write nx(p): p — Lx(p) for the reflection (or localization) map
of p into Dx. Note that nx(p) € Sx. For X € &, we set n(X) := n(X).

2.6. REMARK. ' (Why reflective subfibrations?) Let D be the full subcategory of £*7*
on the L-local maps. (Here, £*7* is the arrow category of £.) Since € has pullbacks,
the codomain functor cod: £*7* — € is a cartesian fibration (see [RV18, Prop. 5.1.26]).
Since, given an L-local map p: F — Y and any map f: X — Y in &, the pullback
map f*(p) is an L-local map, the codomain functor restricts to a cartesian fibration

'We thank the anonymous referee for the suggestion of considering D as a cartesian fibration over €.
This turned out to be the decisive observation for the author to finally be able to figure out the proper
relationship between reflective subfibrations and reflective subcategories of arrow categories.
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cod: D — &. In other words, the inclusion functor i: D <« E°7* gives a cartesian
functor between cartesian fibrations (see [RV18, Def. 5.1.18]):

D C [ co—e

co& /COd )
é

Taking fibers over X € &, the diagram above restricts to ix: Dx < &, x, the inclusion
functor of Dy into €,x. Since each Dy is a reflective subcategory of € x, [Lur09, Lemma
6.5.2.4] applies to give that D is a reflective subcategory of &, i.e., i: D < €*7* has a left
adjoint Le: €*7* — D. The pullback-compatibility condition of the localizations on the
various slice categories, given in Definition 2.1.1(b), says that L, is actually a cartesian
functor of cartesian fibrations over €&:

8.%0 Le D

co& /cod '
€

In other words, a reflective subfibration determines a fibered reflective subcategory of
E*7* over € (via the codomain projection), in which both the inclusion and the reflector
are cartesian functors of cartesian fibrations. If we reverse the above reasoning, we can see
that the converse of the previous statement is also true: a fibered reflective subcategory
of €*7* over &, in which both the inclusion and the reflector are cartesian functors of
cartesian fibrations, determines a reflective subfibration. (One key point for this converse
statement is that pullbacks of fibered adjunctions are fibered adjunctions [RV18, Lemma
3.6.7], so that a fibered reflective subcategory of £°7* over & determines a reflective
subcategory (fibered over the point) on each slice of €.)

Given a map f in €, we denote by Xy and by Il the left and right adjoint to the
pullback functor f*, respectively.

2.7. LEMMA. [Verl9, Lemma 3.4] Given f: X — Y, we have:

(i) f*(Sy) C Sx, that is, if a: p — q is an Ly-equivalence, then the induced map
f*(p) = f*(q) on pullbacks is an Lx-equivalence;

(ii) £;(Sx) C Sy.

One of the characterizing features of co-topoi that plays a crucial role in the proof
of our main result (Theorem 4.3) is the existence of classifying maps for local classes of
maps.
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2.8. DEFINITION. [Lur09, Def. 6.1.3.8, Prop. 6.2.3.14] A class S of maps in & is called
local if it closed under small coproducts in E°7°, it is stable under pullbacks and satisfies
the following condition. Given any pullback square in &

E—2 oM
_ P

Q

where f is an effective epimorphism, p is in S if and only if q is in S.

2.9. DEFINITION. Let S be a pullback-stable class of maps in an co-topos €. Let Cart(.S)
be the sub-co-category of E°7° having the maps in S as objects and pullback squares as
morphisms. A classifying map for S is a terminal object of Cart(S5).

Thus, a classifying map p: £ — X for S is a map in S such that every other map in
S is a pullback of p in an essentially unique way.

2.10. PROPOSITION. [Lur(09, Prop. 6.1.6.7] Let S be a local class of maps in an co-topos
€. Then, there are arbitrarily large reqular cardinals k such that the class S, of maps in
S that are relatively r-compact ([Lur09, Def. 6.1.6.4]) is local and has a classifying map.

Classifying maps enjoy an important property, called univalence, which characterizes
equivalences between fibers of classifying maps. The notion of univalent map uses the
construction of objects of equivalences in an co-topos, which we briefly recall from [GK17].

Let J(E) be the core of €, that is, the (strict) pullback of co-categories

J(E) £
| | -
J(Ho(&)) — Ho(&)

Here, Ho(€) is the homotopy category of €, and J(Ho(€)) is the usual core groupoid of
the 1-category Ho(€).

2.11. PropPoOSITION. [GK17, Thm. 2.10] For every X,Y € &, there is a subobject Eqe (X, Y)
of YX such that, for every T € &, there is an equivalence of co-groupoids

&(T, Eqe(X,Y)) ~ J(&7)(X X T,Y x T),

natural in T € €. Furthermore, this is also true “locally”, that is, for every two objects
D, q in a slice category & x.

2.12. NoraATION. For p: E — X and ¢: M — X, we write Eq,y (&, M) for the domain
of qu/x (p,q). We will often just write Eq(p, ¢) for EqE/X (p,q).
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2.13. DEFINITION. [GK17, §3.1] The object of equivalences for p: E — X is the object
of &/xxx given by

qu/XXx(p X idx,idx X p): Eq/x,x(p X idx,idx X p) = X x X
where p X idx: E x X — X x X and similarly for idx x p. We write the object of
equivalences for p as Eq,x(p): Eq,x(E) = X x X

By the definition of Eq, it follows that the identity map id, € J(€,x)(p,p) induces a
map idtoequiv: X — Eq,y(E) over X x X.

2.14. DEFINITION. [GK17, §3.2] A univalent map is a map p: E — X in & for which
the associated map idtoequiv: X — Eq,y(E) is an equivalence in &)xxx.

2.15. PROPOSITION. [GK17, Prop. 3.8] Every classifying map p is univalent.

The next result from our companion paper [Ver19] links the theory of univalent clas-
sifying map to reflective subfibrations.

2.16. PROPOSITION. [Verl9, Prop. 3.12 & Thm. 3.15] The class ML of all L-local maps
1s a local class of maps of €. In particular, there are arbitrarily large reqular cardinals
k such the class of relatively k-compact L-local maps admits a univalent classifying map

ul: UL — UL

2.17. DEFINITION. f € &/x is said to be an L-connected map (in &) if Lx(f) ~ idx.
Equivalently, f is L-connected if

f) .
(f 29 La(£) = (f D idx)
in €/x, where the equivalence is given by idy and Lx(f) — idx. We refer to this fact by
saying that an L-connected map f s its own reflection map.

In particular, an L-connected map f: £ — X is an Ly-equivalence when seen as a
map f: f —idx in &/x.

2.18. REMARK. By taking the reflection of f € & /x into Dx and using stability under
pullbacks of reflection maps (see Definition 2.1(1b)), it follows that L-connected maps are
stable under pullbacks along arbitrary maps.

We now give the core notion of this paper.

2.19. DEFINITION. A map p: E — X in & is called L-separated or L'-local if the object
Ap € E/pxyr 15 in Dpy g, i.e., if Ap is an L-local map.

2.20. EXAMPLE. For the reflective subfibration L} having the n-truncated maps as local
maps (see Example 2.2), the L]-separated maps are the (n + 1)-truncated maps.
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2.21. PROPOSITION. [Verl9, Prop. 6.5 & Prop. 6.7] Let L, be a reflective subfibration
on an oo-topos €. Then the following hold.

1. Let f: Y — X be a map in &, and let p: E — X and q: M — Y be L-separated
maps. Then f*(p) € €y and [[;q € €,x are L-separated. Furthermore, the
internal hom p’ is L-separated.

2. The class M' of all L-separated maps is a local class of maps.

3. Interactions between L-local and L-separated maps

We study here some relationships between L-local and L-separated maps and prove a
characterization result for L’-localization maps which will be used in the next section as
a fundamental step for the proof of Theorem 4.3.

3.1. LEMMA. [CORSI18, Lemma 2.21] Suppose given a commutative triangle

E

N

in which Aq € Dyrw o and o € Dy, that is, q is L-separated and o is L-local. Then Ap
1s m Dpy g, t.e., pis L-separated.

PROOF. The map (idg Xy a: ExXx E — Exx M) = (E xx M — M)*(«) is in Dpyxur,
since a: £ — M isin Dy,. Similarly, the map ((idg, a): £ — ExxM) = (ax xidy)*(Aq)
is in Dgy . But (idp xx ) o Ap = (idg, ), so Ap is L-local, by [Verl9, Prop. 3.7]: if
both f and f o g are L—local maps, then so is g. [

3.2. DEFINITION. A map a: p — p' in € x is called an L'-localization map of p if p’ is
L-separated and € /x(a,q): E/x(p',q) = €,x(p,q) is an equivalence of co-groupoids for
every L-separated q € €/x. In other words, for every map B: p — q, there is a unique
:p — q withyoa=p.

3.3. REMARK. Given an L-separated r € €/x and any t € &y, r' € £/x is again L-
separated. It follows that, for a map a: p — p' in € x with p’ L-separated, the above
definition can be rephrased internally, by asking that ¢ is an equivalence in & x for every
L-separated map ¢: Y — X.

3.4. LEMMA. [CORSIS, Prop. 2.30] Letn': p — p' in €y be an L'-localization map of
p € &y, withn': X — X' as a map in E. Then 1 is an L-connected map (Definition
2.17).
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PROOF. Let nx/(n'): n° — Lx/(n') be the reflection map of 7" € €,x into Dx,. Set
r:=p o Lx/(n'), and consider nx/(n'): p — r and Lx/(n'): r — p’ as maps in €,y. By
Lemma 3.1 applied to Lx/(n'), r is L-separated. Hence, there is a unique q: p’ — r
with ¢n' = nx/(n') as maps p — r in €,y. Since Lx/(n')qn’ = Lx/(n')nx:(n') = 1, the
universal property of ' gives Lx/(n)q = id,y. Thus, we can consider ¢Lx/(7') as a map
Lx/(n') = Lx:(n') in &,x, and qLx/ (0" )nx:(n') = qn' = nx: ('), so that ¢Lx/ (") = id,.
Hence, 1’ is L-connected. [

3.5. LEMMA. Let  be a regular cardinal such that the class of relatively k-compact L-local
maps has a classifying map ul: UL — UL, Then UL is L-separated.

PRrROOF. We drop  from our notation. Since u’ is univalent, we have an equivalence

AU*) ~ BEq e (u”) over U" x U (see [Verl9, Def. 2.10]). By definition, Eq . (u”) is
the object of equivalences in & ;. between idyr x u” and u” x idyr, both of which
are L-local since u” is. By [Ver19, Lemma 2.8], such an object of equivalences is then the
pullback of a cospan of objects in Dy, and it is therefore in Dyr gy ]

3.6. PROPOSITION. Let X € € and let ': X — X' be an L'-localization of X. Then a
map p: E — X is L-local if and only if there is a pullback square in &

E nx’(n'p) Ly E
Pl iLx/(n’p) .
X X'

/

n

PRrOOF. For the non-trivial implication, assume p is L-local. Let k be a regular cardinal
such that p is relatively k-compact and the class of relatively k-compact L-local maps has

a classifying map u”: UL — UE. Let P: X — UL be such that we have a pullback square

E Uk

J K
pj l/uL . (T)
X UL

Since UL is L-separated, there is a unique map P’: X' — UF with P = P'ny. Let
p': E' — X’ be the pullback map in

E UL
- 8
p \l/ \LuL .
X’ UL

Pl

By definition of P, n': X — X’ induces a map n: F — E’ such that the composite square

E—" - F UL
0| v] - et *)
X X' ur

,,7/ Pl
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is the square (1). It follows that the left square in (1) is also a pullback. Thanks to Lemma
3.4, 7' is L-connected. Thus, so is n, by Remark 2.18. In particular, n is an L-equivalence
(i.e., n: n — idg is in Sp/). By composing domain and codomain of n: n — idg with p/,
Lemma 2.7 (ii) gives that n: n'p — p’ is an L-equivalence. Since p’ is L-local, it follows
that n is the L-localization map of n'p, as required. [

3.7. REMARK. As explained in Lemma 2.4, Proposition 3.6 is also true “locally”, i.e.,
when we take our ground oo-topos to be &,y instead of €. For the result above, this
means specifically that, if

' (p)

X p
is an L'-localization of p in €/x, a map
Y i E
RN

is L/*-local (as an object in (€,x)/,, 0 m is in D) if and only if

E FE'

y e (' (p)om) LeY
m) | £ O o))
E E

7'y (p)

is a pullback square in €,x. (Note that, in the above, Ly should be LI/J,X, where L;,X is
the reflector of (€,x)/y onto ﬂz/),x and LY is the reflective subfibration on & /x induced
by L,, as in Remark 2.4. But, by its own definition, LI/),X = Lp.)

The following corollary is probably well-known, though the only explicit reference we
could find in the literature is [Rez10, Lemma 8.6], where the statement is proved in the
context of model topoi. Note that our proof is completely internal and does not use the
description of co-topoi as left exact localizations of presheaf categories. The reader might
remember from Example 2.2 that, given X € € and n > —2, we denote as || X]||, the
n-truncation object of X. This is the value at X of the n-truncation modality L7 (i.e.,
L7(X) = [|X ).

3.8. COROLLARY. Forn > =2, a map p: E — X is n-truncated if and only if ||p||ns1 is
n-truncated and there is a pullback square

Eﬁ | Elnt1
p |12l

X —[[Xlnt
I"ln+1
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PROOF. By [Verl9, Ex. 4.6 & Ex. 6.4], we can apply Proposition 3.6 where L, is the
n-truncation modality and get a pullback square

K % Ly X i (E)
pl lLuxnnH(\'lan) )
X [ X [nt1

Hn+1

Since || X|ln41 is (n + 1)-truncated and Ljx|,.,(|/|n+1p) is n-truncated, Ljxj,.,(E) is
(n + 1)-truncated. (This is an instance of Lemma 3.1.) Since m is a pullback of the
(n+ 1)-connected map |-|p11: X = | X||ns1, it is (n + 1)-connected. Finally, any (n+ 1)-
connected map k: A — B where B is (n + 1)-truncated is an (n + 1)-truncation of A. =

3.9. PROPOSITION. [CORS18, Prop. 2.26] Let

E n'x ()
X

be an L'-localization of p € €/x. Let

E/

NEx x E(Ap)

N A

EXXE

E R

be the L-localization of Ap € € gy r and consider v’ defined by the pullback square

E X g E E’
) = o (1)
FE X x FE E Xx E'
n'x (P) X x1'x (P)

Then there is a natural equivalence p: R =y ) X E over E xXx E as in

F
nExXE(y \A(WS((P))
R—* S~ExpE

-

E

Xx
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PROOF. For sake of readability, we write ' and n for 0y (p) and ng.« . g(Ap), respectively.
The natural map ¢ is given by the universal property of 7, since r’ is L-local. (By
definition, 7’ is the pullback of the L-local map Ap'.) Now, since ' xx 7 is the L'-
localization map of the product object p XX p of €, Proposition 3.6 applied in &y gives
that there is a pullback square

R “ T

|- Js

77,><X77/ / ’
ExxyF———FE xx FE

where n: (' xx n')r — ¢ is the L-localization map of (7' xx n')r. Set m :=nn: E— T

and [ := mq, where m: E' X x E' — X is given by the composite map ' xx £’ — E’ L'
Note that 7 is L-separated, because it is the product in €, x of the L-separated map p’
with itself. Hence, since ¢ is L-local, [ is L-separated by Lemma 3.1. Since m = nn is
naturally a map m: p — [ in € x, there is a unique s: £ — T over X with commuting

triangles
E

s
A

Now, gsn’ = qm = gqnn = (0 xx 7')Ap = Ap'r/ so that gs = Ap’ and we can write
s: Ap' — ¢ as a map over B/ X x E'. Hence, s induces the comparison map 1 of pullback
squares in

/

Exp B £’
\\w \s
Y n N\
r! R Ap’ T
ExxE— E' xx E'
N AN
id id
N N
EXXE ; - EIXXE,
nXxn

Since the front face is a pullback, it follows that 1 o A’ = n, from which we get Y pn = n,
so that ¥ o p = id. We now show that s is an equivalence, so that ¢ (and therefore also
¢) is an equivalence. Since s: Ap’ — ¢ is a map between L-local maps over E' x x E',
it is enough to show that s € Sg/w, . Now, n': p — p' is L-connected so it is an Lp-
equivalence (more precisely, n': ' — idg is in Sg/). By Lemma 2.7 (ii), composing
n':n — idg with Ap’ gives that n': (Ap" )y’ — Ap' is in Sgry g. Similarly, composing
domain and codomain of n with 7’ X x 7’ turns 7 into a map in Sg/« g and then m = nn
is in Sp/«, g, since n is an L-equivalence. Since s’ =m, s € Sg/«, g, as needed. [
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Our next result characterizes L’-localization maps in terms of their diagonal maps.
We will use here some results from the Appendix (Section 5.3).

3.10. TuHeOREM. [CORSI1S8, Thm. 2.34] The following are equivalent for a map in €,y

X 1 X'
SN
Z

1. ' is an L'-localization map of p.

2. 1 is an effective epimorphism and

XXX/X

St

is an L-localization map of Ap.

PrOOF. We prove the theorem when Z = 1; the general statement follows from this one
by Remark 2.4. We show first that (1) implies (2). If ': X — X’ is an L'-localization
of X, then, by Proposition 3.9, we only need to show that 7’ is an effective epimorphism.
Let (m,7) be the (effective epi,mono)-factorization of 7/, with i: W — X'. Since i is a
mono, and X’ is L-separated, so is W. (This is because i being a mono is equivalent to
the fact that AW = i*(AX), where i*(AX) is the pullback map of AX along i . Hence,
if AX is an equivalence, so is AW.) Therefore there is a unique s: X’ — W with sn = 7.
From isn’ = im = n', we get that is = idx,. Thus, 7 is both a mono and an effective epi,
so it is an equivalence.
Conversely, assume 7’ is an effective epimorphism and An/ is the L-localization of AX.
In the pullback square
Xxxy X——X'
t\lJ l/AX' (*)
XxX——XxX'
' <’
n x n' is also an effective epi and ¢ is L-local by hypothesis. Thus, AX’ is L-local since
L-local maps are a local class of maps in € (Proposition 2.16). This shows that X’ is
L-separated. We now verify that " has the universal property of an L’-localization map.
Let f: X — Y be a map into an L-separated object Y. We show that f extends uniquely
along 7', by applying Proposition 5.3.4 to f and 1’. We want to show that

B o= Py, X' x f)@rnx¥)
5 ( M« ) )

X'XY—=X" \XxX'XY—=X'XY
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is contractible in €/x/. Applying Lemma 5.3.1 and the Beck-Chevalley condition (Lemma
5.1.3) to the pullback squares

Prxxy Prx

XXX XY ——XxY X
X><77/><Yl - n’xYl - U/l/
XxX'xY—X'xY X'

we can instead show that

E = Z ( H (X x n xY)* ((er,X' x f)(erW,XY)))

XXY—=X \XXXXY—=>XxXY

is contractible in €,x. We will show that this object of €, x is equivalent to the object
idx, which is contractible in €,x. Lemma 5.1.1 gives that

(X xn' xY) ((pr)oX' X f)(prx’n/xy)) ~

~ (X x ' X Y)*(pry, X' x f))F) (erxn1))
Notice that
(er’X, X f) = (f X pry)*(AY), (erﬂ?/ X Y) = (’r}, X er,>*(AX’)

and (f x pry)(X xn' xY) = (f x Y)(pry,prs), where pry: X x X xY — X and
prg: X x X xY — Y are appropriate projections. One can then see that

(X xn' xY) ((pry, X' x f)) = (dxxx, fpr;): X X X - X x X xY,
(X X0 xY) ((pry,” xY))=txY: (X xx X)xY > X x X XY

where ¢ is defined in the pullback square (*) above. Therefore,

(X xn'xY)* ((er,X' X f)(er’”/XY)> ~ (idXXX,fprl)tXY.

Now, since ¢ is the localization of AX in &,x.x, taking pullbacks along the projection
X x X xY — X x X gives that ¢ x Y is the localization of AX x Y in &/xxxxy. Since
(idxxx, fpry) is L-local (as the pullback of the L-local map AY’), we further have

txY ( AXXY

(idxxx, fpry) idxxx, f pry)
~ H (AX x Y)*(idxxx, fpry) >~ H (idx, f),

AXXY AXXY
where (idx, f): X — X x Y. We can now finally conclude because

E~ Y 11 (H (idX,f)> ~

XXY =X \pryyy: XxXxY—=XxY \AXxY

~ Y [I Gdv.p)]= D (dx.f)=idy.

XxXY—=X \pryyy o(AXxY) XxXY—=X
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4. Existence of L’-localization

We prove here our main result that the class of L-separated maps is the class of local
maps for a reflective subfibration on €, and we start by proving a few preliminary results.

Recall that, if p,q are objects in a slice category €/, we write p x% ¢ to mean the
product object of p and ¢ in &,.

The first result we need is an internal Yoneda lemma involving diagonal maps.

4.1. LEMMA. Let t: E — X be a map in € and form the pullback square
XxXxE——F
thl/J lt .
X x X TX

Then there is a map in & x2

(

X x X

mducing an equivalence

Bt = JJ(x x t)»¥

pTry
in €/x, where pri: X x X — X is the projection onto the first component.
PROOF. For any k: M — X, the product object (k x X) x X (AX) in €/x2 is given by

(AX)k. In fact, (AX)k is also the product object (X x k) x** (AX) in €/x2. Taking
k =t, we get that (t,id): (AX)t — X X t gives a map

Bt — JJ(X x )2¥

by adjointness. Using the fact that AX is a section of pr,, and considering the adjoint
pairs X, 1 pr3, prj - Hpr17 we get a chain of natural equivalences

E/x(k,t) ~ & x(proy(AX)k, t) ~ E/x2 (AX)k, X x t) ~

~ &xe (k x X, (X x )2) ~ &) x [k, JJ(X xt)**

pry

where the composite map is given by composition with f3. [
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—_——

4.2. LEMMA. Let X € € and let r: R — X? be an object in & x2. Let also X X 1 be the

composite map (1 x X) o (X xr), where 7: X? ~ X2 is the canonical involution. Then
the following hold.

(i) There is a natural equivalence in € x>

Bir = H()?\X/T)(AXXX) .

PT23

(ii) There is a map p: AX — Hpr23 (X x r)™X) such that, given any map n: AX — r
in & x2, there is a commutative square

AX - "= = [T(X x r)exX)

Pra3

n IT (Xxr)xX) (1)

pPr23

PROOF. The first claim is a special case of Lemma 4.1 applied to r = (ry,79): R — X2,
seen as a map 7: 7y — pIy in € x2. Indeed, the following pullback square in &

X3 brig X2
Pra3 l/ J lprz
X? X

Pro

witnesses that pry: X* — X is the product object of pry: X* — X with itself in €,y
and the displayed maps pry3 and pry; give the projection maps out of this product. The
map AX x X: X? — X3 seen as a map pry — pry, is the diagonal of the object

pry € &/x. Since X xr = pris(r), Lemma 4.1 gives the desired natural equivalence
Brr =[], (X x ) (AXXX),
For the second part, we describe the map p and how it makes the square (1) commute

by looking at its adjunct. Under the adjunction pri; 4[] giving a square as (1) is the
same as giving a square

Praz’

X x AX - 72 (X X))
Xxnt l/()?;/r)(nxx)

X X TT‘ (X X T)(AXXX)
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since X x AX = pri;(AX) and similarly for X x r. Taking further adjoints along
(=) XX (AX x X) 4 (=)2¥*X we need to exhibit a square

X3
(X x AX) xX* (AX x X) DTN 3 w2 X° (AX x X)
(XxAX)xX3(77><X)l lﬁ“
X3 —_—~——
(X xAX) x*" (rxX)------~ il =X Xr

The products (X x AX) x** (AX x X), (X x7)x¥* (AX x X) and (X x AX) xX’ (rx X)
in &, xs, together with their projections onto the factors, are represented, in order, by the
following pullback squares in &

(id,r2)

X A8X x? R r X? R Rx X
l | F\ | F\ |
AX (id,id,id) AXxX (r1,id) (r1,m1,m2) AXXX r (r1,r2,m2)  TXX
2 S +3 3 2 S ¢3
X XxAX X X X R Xxr X X XxAX X

Using Lemma 4.1 as in the first part, we know the map 3% is given by

5’1:(7‘1 ,id)

R X xR

’“l (r1,71,72) l)?;/r .

\
2 3

X v X

We take pf to be given by

p=(ra,id) X x R

~_ o
Tl (r1,r2,m2) ler .
3

N
2#—
X XxAX X

Then the composite maps (3* ((X x 1) xX* (AX x X)) and p* ((X x AX) x** (n x X))
are given by the following composite maps in &, xs, respectively:

(r1,id)

X xR i) v« R
Xr Xr

X—"->R X—"-R
| |
(id,ithT\; ’T% (id,idMl’Tf ’T%
X3 X3

By using properties of the product X x R and since n is a section of both r; and 75, one
can see that these CO@RO/Site maps are equal since they are both equal to the morphism
(id,n): (id,id,id) = X x r in € xs. (The needed homotopies are obtained by using either
degenerate 2-simplices or the 2-simplices defining n: AX — r.) ]
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4.3. THEOREM. [CORS18, Thm. 2.25] For any Y € &, each f € &,y has an L'-
localization 1y (f): f — f'.

PRrROOF. We prove the result for Y = 1. Fix X € € and let n: AX — r be the L-reflection
map of AX € €/x2. Let x be a regular cardinal such that r is relatively x-compact and
the relatively k-compact L-local maps have a classifying map uf : Z:{E” — UJ. Omitting k
from our notation, we then have pullback squares

R—T -1 U — i
N e
X x X—;LIL U, ——U

We denote the composite pullback square as

R——
H (2)

X —

Qg—ﬁz

X

T.—I

Let (17,4) be the (effective epi, mono)-factorization of Tr¥: X — X, the adjunct map
to Tr . Set X' := cod(n), so that we can picture the situation as:

X 1 X/
N
uX

together with the implicit 2-simplex witnessing the commutativity of the diagram. Note

that, if (17},4.) is the (effective epi,mono)-factorization of 7%, then ’ = 1}, and i = X o,

since ¢~ is a mono.

Our goal is to apply Theorem 3.10 to n’. The map 7’ is an effective epi by definition.
To show that X’ is L-separated, note first that Uy, is L-separated by Lemma 3.5, hence
so is Ui, by Proposition 2.21(1). Since i is a mono, this implies that X’ is L-separated.
It remains to show that An’ is the L-localization map of AX. We can see An' as a map
An': AX — tin € x2, where ¢ is the pullback map (7' x n')*(AX’) and it is therefore
L-local. Hence, there is a unique map ¢: 7 — t with ¢n = An' as maps in €,x2. We will
show that ¢ is an equivalence.

The strategy we adopt is to, first, construct a monomorphism ¢': ¢t — r and, then,
show that ¢’'p: r — r is an equivalence by showing that we have ¢'¢n = n. This will
imply that ¢ itself is an equivalence. Note that, by definition of ¢, showing that ¢'on =n
is the same as showing that ¢'An’ = .
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Step 1. Construction of ¢’ and description of ¢’ A’ We construct ¢’ as a composite

of some equivalences and a monomorphism. Consider the diagram:

el

ux Pr2 X xyYy¥ —

L
AX ) AUX (o )
T
2

X2 —UX x x UX ﬂ>u !
[ AV
[l 6 . D
(4) XX " 2, T PT13) ( )
2 X x wﬁy‘
PTa3 <X a
X><AX
(5) \ — (7> /\
(XXT.)<’V‘><X)

The maps labelled as ev are appropriate counits of product — internal-hom adjunctions.
We proceed to explain this diagram, show how it defines ¢’, and give a description of ¢/ An'.

(i) Recall that An' is a map AX — ¢ in & x2, and one can show that ¢ is the pullback
map of the cospan in (1) of (D). Because of this, the square (1) determines An'.

(ii) Thanks to Function Extensionality (Proposition 5.2.1), AUX ~ II
o (Tr# o Ty (I, ev* (AU))

ev*(AU). Hence,

Pras

(iii) Since the bottom square (5) in (D) is a pullback, we can use the Beck-Chevalley
condition (Lemma 5.1.3) to get an equivalence ¢ ~ IL,. ("7 pry, 7' pri3)*(Al). Since
the pullback of X x AUX along X x "r ¥ x "™ is X x t, the square (6) in (D) determines
the map X x An': X x AX — X xtin &/xs. It follows that the map X x AX —
("r pryg, "1 pryg)*(AU) determined by the square given as the composite of (3) and (6)
is the adjunct of the composite map

AX Tt H ("rpryg, T pryg) (AU

Pra3

(iv) We now consider the map j in & ;> displayed in the top-right corner of (D). Here,
M is simply a name for the domain of the map (id x u)®*9). The map j is defined as
the composite of the equivalence AU ~ Eq,,(u), given by univalence ([Ver19, Def. 2.10]),
and the monomorphism Eqy,(u) » (id x )™ Thus, j is a mono as well. Using the
fact that (7) in (D) is a pullback square, we obtain a monomorphism

[T ("r7prig, 7 prig)*(4)

T proy, 77 pryg) (AU 2 [T <m0

Prag Pras
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—_—~—

Here, X x r is the pullback map pri;(r) = (7 x X)(X x r), where 7: X? ~ X? is the

swapping equivalence, and W is simply a name for the domain of the map ()?;/r)(’”xx ).
Note that the map displayed above is indeed a monomorphism because, being right ad-
joints, pullback and dependent-product functors preserve monomorphisms. Therefore, we
get a composite monomorphism

o IR,

PT23

The map ¢ in &/ xs given in (D) is determined, as a map X x AX — ()?;/r)(’”xx),
by the composite of the squares (3) and (6) with the 2-simplex representing the map
g AU) — (id x u)®@*D Tt follows that v is the adjunct to the composite

AX 2Ty T X <))

Pra3

This means that this latter map is the composite

ITv
AX 5 [ X x AX 22 X x ),
PTra3 Prag

where 7 is the unit of the adjunction pr3, - Hpr23 at AX.

(v) Since X x r = pris(r), X x ris L-local. Hence, because n x X: AX x X —r x X is
an L-localization map (it is the pullback along pr,, of ), we have an equivalence

(X 5 )X (X )X 25 (X 5 ) @XX)
Whence, we have a composite monomorphism

t— T %) = T X r)@X0

Prosz Pras

(vi) Finally, we have an equivalence 3: r = IL,.,, (X x r)(AXxX) as in Lemma 4.2. Com-
posing the monomorphism obtained in (v) with the inverse of 8 we obtain the needed
monomorphism ¢’: ¢ ~— r. Using what we found in (iv) above, the composite ¢’An’ is
then given as the composite

I v —
AX B ]X x AX 225 T x )™ S,
Prag Prag

where the displayed equivalence is 37! ] ()?;/r)(’“x ),

Pra3
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Step 2. Proof that ¢'An’ = 1. By the work above, it suffices to show that the maps

AX T L X x )@

Pras

and
I ¢ o [T (Xxr) (<)
LTI X xAx 22 X <)@ 22 TT(X x )30
PTra3 PTra3 B PT23

are equal in €,/x2. By Lemma 4.2 (i), there is a map p: AX — [] ()?;/r)(”xx) making
Prag
the following diagram commute in & x-:

AX - "= = [T(X x r)exX)

Pra3

n L [T (Xxr)mxX)

PT23

r——1I (X X r)(AXxX)
Pra3

Thus, we only need to show that p = (Hpr% 1/1) ~. Equivalently, we can show that the

adjunct maps p',¢: (X x AX) — (m)(”x) are equal in € xs. Since the square (7)
in the diagram (D) is a pullback, we only need to show that p’ and 1 are equal after
composing with g := ("r7pryy, "7 pry5) and

g(X X)) 2 (id x u)i,

that is, as maps g(X x AX) — (id x u)®*d) Finally, we can further show that op’, o are
equal in & ;2 by showing their adjuncts along the adjunction (—) x%* (u x id) 4 (—)®*i)
are equal.

In order to describe the adjunct of op’, we use Lemma 5.1.2 with f = X x AX,
g = ("r7pryy,"rpryy), p = id X w and ¢ = w x id. Consequently, g*¢ = r x X,

g*p = X x r and the adjunct of op’ is given as the composite map

€(idxu)

g((X x AX) <X (1 x X)) £ g(X X 1) = gg*(id x 1) <2 id x .

Recall the pullback square (2) defining ™77, Since (X x AX) xX* (r x X) = (X xAX)r,
using the proof of Lemma 4.2 and the fact that at g (Ad x u) = X %1 r, we have that the
maps p*: (X x AX)r — X xrand ¢ (idxu) : 9(X x 7’) — id x u are described by the two
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squares below

€iaxu)=("7"(r1 pro,pry),7 pry) ~

b= (ro,i
R R X xR

Uxu
\ . - J
Tl (7"1,7"2,7"2)\k l/XX’r‘ le lidxu .
2 3 3 2
X XxAX X X g=("rpryy,"r'pry3) u

Hence, the composite €axu)p* (the adjunct of op’ in € 42) is given by the map

("r )

Z/{XZ/{

ﬁv§>\ /g; 3)

To describe the adjunct of o1, note that, from the squares (6), (7) and (3) and the
definition of j in the diagram (D), 0% is given as the map in €2 described by the
diagram

X{\\’“ U—-7>"'—M
XXAXL (re) Alu / W -
ld u uX1
X3 \u2 (idxu)

g=("r7pryg, 7 pryg)

Then, the adjunct of ;777 in & 442 is the composite j*("7r™ xU (u x id)), where the map
g5 AU xU* (u x id) — id x u is the adjunct of j. Using that there are pullback squares

R-T0 dixu U u
R
r uxid U uxid
2 2 2
X (rr17r 1 Z/{ u AU u
we get that j4(7r7 x4* (u x id)) is the composite map
T ~ = (ui -~ ur,r ~
R—T— =0 U < U Ry xu
w _ : (4)
(TP, e ( v )% = (rrﬂ’rrﬂh AXU
Z/{2 u2

One can now see that the maps (3) and (4) are equal by using the square (2) defining "r™
(including the implicit given homotopies). Our proof is then complete. ]

Once we know that every map in € has an L’-localization, we can also show that
L'-localization form a reflective subfibration on €. The crucial point here is to show
pullback-compatibility of L’-reflections. This is necessary when working in higher topos
theory, but it is superfluous in homotopy type theory as reflections are automatically
stable under pullbacks in that setting.
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4.4. COROLLARY. Given any reflective subfibration Le of an oo-topos €, there exists a
reflective subfibration L), of € such that the L'-local maps are exactly the L-separated maps.
Furthermore, if L is a modality, then so is L.

PROOF. Let D’ be the full subcategory of & spanned by the L-separated objects and
let ©: D' — & be the inclusion functor. Theorem 4.3 constructs, for every X € &, an
L'-localization map n(X): X — L'(X). By definition of L'-localization map, this means
that, for every X € &, the oo-category defined as the pullback

has an initial object. (Here, D', , is the slice category of D’ under X, and similarly for
Ex/.) By [Joy08, §17.4], ¢ has a left adjoint L': € — D’, i.e., D’ is a reflective subcategory
of €. The same construction performed on each slice category now gives that, for every
X € &, the full subcategory D’x of € x on the L-separated p € €/ is reflective. Since
L-separated maps are closed under pullbacks (see Proposition 2.21), to conclude that we
get a reflective subfibration [, on €, we need to verify that the L’-reflection maps are
compatible with pullbacks.
Let then p: £ — X be an object in &/x and f: Y — X amap in €. Let

E n':=n'x (p)
p\X/,,f

be the L’-localization of p. We need to show that m := f*('): f*(p) — f*(p') is the
L'-localization of f*(p) in €,y. To do so we use Theorem 3.10. Set f*(E) :=Y xx E,
q = f*(p) and f*(E') :=Y xx E'. Since 1’ is an effective epimorphism and effective
epimorphisms are closed under pullbacks, an application of the pasting lemma for pull-
backs show that m is also an effective epimorphism. By Proposition 2.21(1), f*(p') is
L-separated. Therefore, we only need to show that A(m), as a map in &€, (g)yx, k), is
the L'-localization map of Ag. In €y we have the pullback square (products are products
in (C_:/y)

E/

q X ) g — [ (1)
(me)*(A(f*(P'))l - lA(f*(P/))
q X q———=f*(p') x f*(¢¥)
and Am is a map Ag — (m x m)*(A(f*(p')) in (E/Y)/(qu)'

E/p(Byxy +(p) and m = f*(n'), one can see that Am is the map

FH(E) —2"— f*(E) X&) [*(E)

Since (E/Y)/( ~

axq)
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in €/ f«(B)xy f+(E), Where t corresponds to the map (m x m)*(A(f*(p")) above. Similarly,
An' is a map Ap — s in €/ g (Where s is given by a suitable pullback) and it is the
L-localization of Ap by Theorem 3.10. We want to show that Am is a pullback of this
L-localization and conclude because L, is a reflective subfibration. Let g: f*(E) — E
and ¢': f*(E’) — E' be the projection maps. As in the proof of Proposition 2.21, we see
that the following are all pullback squares in €

fY(E) xy f{(E) —=E xx E fY(E) xy f*(F') —E' xx F'
| - ! | - |

f*(E) E f*(El) g, E/
f* (E) g E f* (E/) g E
A(f*(p))l - lAp A(f*(p/))l = lAp’

f*(E) xy f*(F)——=E xx E f*(E") xy f*(E') — E' xx E'
Then in the diagram
fY(E) Xy ["(E) —=Exp E

FA(E) \ E
t E g
A(f*(®) Apf
f1(E) xy f*(E) —Exx E
Thxym n'xxn
N

F(B) xy f*(B) —— B xx B

the left and right sides are pullbacks (by definition of ¢ and s) and the front square is a
pullback by the above. Therefore, the back square is also a pullback. A final application
of the pasting lemma now shows that there are pullback squares in &€

(B) =22 () X0 1(E) —— I*(B) x J*(B)
7| l l

FE - Exp B Exx FE
An

s

completing the proof that L. is a reflective subfibration.

The final claim about L’ being a modality when L is follows from the observation that,
given composable maps f: X — Y and ¢g: Y — Z in &, we have A(gf) = pAf, where p
is the leftmost vertical map in

X xy X X Y
I- |- o
XXZX dxxaf XXZYWYXZY
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Therefore, if g is L-separated (so that Ag is L-local), p is L-local. If also f is L-separated
and L is a modality, we can then conclude from A(gf) = pAf that gf is L-separated. m

5. Appendix: On locally cartesian closed oo-categories

We prove here some miscellaneous facts about locally cartesian closed (lcc) oo-categories
that we need but we could not fit elsewhere. Some of these results are well-known, but
others do not seem to appear or be proven in the literature.

In Section 5.1, we discuss some results about cartesian-closedness of pullback functors,
and some interactions between their adjoints. In Section 5.2, we give a “term-free” version
of the type-theoretic axiom known as function extensionality, and we prove that it holds in
any lcc oo-category. Finally, in Section 5.3, we prove a “fiberwise” criterion for extending
a map along another one with the same domain.

We fix throughout an lcc oo-category C.

5.1. PULLBACK FUNCTOR AND ITS ADJOINTS. The first set of results we need explore
the behaviours of the pullback functors and of their adjoints in C.

5.1.1. LEMMA. Let C be a locally cartesian closed oo-category. Given any morphism
g: Y — X in C the pullback functor g*: €,x — C,y is cartesian closed, i.c., for every
p,q € C/x, g* (p?) is the exponential object g*(p)7" @ in Cy.

A proof of the above result for 1-categories can be found in [Joh02, Lemma A.1.5.2]
and the same proof carries over to oo-categories.

5.1.2. LEMMA. Let €: gg* — ide,, be the counit of the adjunction go (=) - g*. Given
X € C, take p,q € C/x. Suppose given a diagram in C

A__»
\ 0:=¢€pq
w T
||
(g"p)" D lpq :
¥
Y X

Let p*: f xY g*q — g*p be the adjunct to p in C/y and consider the map op: gf — p?in
C/x. Then, g(f x¥ g*q) = gf x* q and the adjunct of op is given by the composite map:

# €
9(f x¥ g°q) & gg9'p = p.

PROOF. The fact that g(f x¥ g*q) = gf x*X ¢ is given by the pasting-lemma for pullbacks.
By definition, the adjunct of op is the composite

g X V.
gf xX g 20 g1 X g Sy,
and the adjunct p? is the composite

Vg*p,g*q

Y * - " "
FxYgq 225 (gp) ) XY gtq T g*p.
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Using that (¢*p)@'? xY g*q = g*(p? x¥ q), the map evy, 4+, is the map g*(ev,,). One
then needs to show that the maps ev,,(op X~ q) and €,g%(ev,,)(p x* g*q) are equal.
Consider the diagram below, where all squares are pullbacks

g (T xx Q) —Z—T xx
RN

(/)@ l 9°Q l Q
T

w g N
P q
/ \ l/ P N\
7 Y

g

(9)*q

A

Then m (as a map over Y) is p x¥ g*¢ and o'm (as a map over X) is op x* q. The
claim now follows thanks to the following commutative diagram, where the back, front
and bottom faces of the cube (and, hence, also the top face) are pullbacks

g*(TXXQ o TXXQ

Y =
X AN
py/ N 9*(evp,q) \\j"p,q
Q

|
(9f)@Q g P— j P
T

— 0

(9f)*q w .
p g'p N
/ \ l’ pq\
A 7 Y

5.1.3. LEMMA. [Beck—Chevalley condition| Let C be a locally cartesian closed co-category
and let

X

D—r.¢
kH |+
A——B

be a pullback square in C. Then there are canonical natural equivalences
Yont =g > and fI[=]]F-
k f g h

PROOF. The first map being an equivalence at every p € C,¢ is a restatement of the
pasting lemma for pullbacks. The result for dependent products follows from the one for
dependent sums by taking right adjoints, since adjoints compose. [
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5.2. FUNCTION EXTENSIONALITY. In homotopy type theory, given types X and A, and
morphisms f,g: X — A, there is a map

(f =ax g) — H(f(f) =4 g(2))

evaluating a path between f and g at each x: X. The statement that this map is an
equivalence (for all types A, X and all f,g: A — X) is known as function extensionality.
In our setting, function extensionality can be stated as follows.

5.2.1. PROPOSITION. [Function Extensionality] Let C be a locally cartesian closed oo-
category. Given A, X € @, let ev: AX x X — A be the counit at A of the adjunction
(=) x X 4 (=)X and form the pullback

0 A
|~ |as
AX x AX x X Ax A

(evi,eva)

Here evy (resp. evy) is the composite of the projection AX x AX x X — AX x X onto the
first (resp. second) and third components with the evaluation map. Consider the projection
map pr: AX x AX x X — A% x AX. Then, there is a canonical equivalence in C,x  ox

AAN) S T]a-

PROOF. Let k: E — A% x A% be an object in C/axxax. By adjointness, there is a natural
equivalence

Caxxax (k?, HQ) >~ Craxxaxxx(k x X, q).
pr

By the description of hom-spaces in oo-slice categories (see [Lur09, Lemma 5.5.5.12]) and

since () is a pullback, we get a homotopy pullback square of co-groupoids

G/AXXAXX)((]CXX,(]) G(EXX,A)
l . lG(ExX,AA)_
* C(Ex X,Ax A)

(evi,eva)o(kxX)
But C(E, A(AY)) ~ C(E x X, AA) ~ A¢(pxx,4), which means that
Craxxaxxx(k x X, q) = hofiby,(C(E, A(AY))) = G/AXXAX(kaA(AX))a

where the last equivalence is again [Lur09, Lemma 5.5.5.12]. We then get the needed
composite natural equivalence

G/AXXAX (k,Hq) ~ G/AXXAX(k,A(AX>).

pr
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Proposition 5.2.1 can be promoted to a result about diagonals of dependent products.
We now set up what we need to state this generalization of Proposition 5.2.1.

Let p: E — X be a map in € and let
(Ilxp) x X ———F

N

X

be the component of the counit of the adjunction (—) x X 4[]y at p € €,x. Here 7 is
the projection map onto X. The projection map

(1) (11)

is the product object 7 xX 7 in €,x. Hence, the product map e x¥ e: 7 x* 7 = px¥ p
in €,/ x is the map over X given by

(€1,€2): (Hp) X (Hp) x X — ExxFE,

where €; (resp. €3) is the composite of the projection

(117) < (1) <o (I

onto the first (resp. the second) and third components with the counit map. The pullback
of Ap along € xX ¢ in C /x can be described as the pullback square

Q' E

0| - | 5)
(HXP)X(HXP)XX Exx E

in € and Q' can be naturally regarded as an object over X.

(€1,€2)

5.2.2. PROPOSITION. [Dependent Function Extensionality] Let C be a locally cartesian
closed co-category and let p: E— X be a map in C. Construct ¢’ as in (5) and let

o (1)< (1) - 11e) < (11

be the projection map. Then there is a canonical equivalence in G/(HX p)x(Tx »)

() =110

Mutatis mutandis, the proof is the same as for Proposition 5.2.1, so we omit it.
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5.2.3. REMARK. If C is a locally cartesian closed oo-category, then so is C,x for any
X € C. Thus, Proposition 5.2.1 and Proposition 5.2.2 hold true also in €,x and give,
for maps p: £ — X, f: Y — X and ¢: M — Y in C, an alternative description of the

diagonal of pf € C/x and of A (Hf q) as a map in Cy.

5.3. CONTRACTIBILITY. We provide here a criterion for the existence and the uniqueness
of extensions of one map along another one with the same domain. This result is linked
to the notion of contractibility in C.

Recall that an object A € C is contractible if the map A — 1 is an equivalence. When
we apply this definition to an object p € C,x, this means that p is contractible in C,x
exactly when, seen as a map in €, it is an equivalence. Since equivalences in an co-topos
form a local class of maps, we immediately get the following result.

5.3.1. LEMMA. Let € be an oo-topos and let f: Y — X be an effective epimorphism in
E. Foranyp € &/x, f*(p) € &)y is contractible if and only if p is.

The following lemma is a standard exercise in 2-category theory since the notions of
slice co-categories and of adjunctions between oo-categories can be completely character-
ized in the 2-category of co-categories — see [RV18, §3 and 4].

F

5.3.2. LEMMA. Let C, £ "D be an adjunction and let D € D. Then there is an induced
a
adjunction on slice categories
F
G/GD<_®/D
a

where, forp € C/gp and g € Dp, F(p) = epFp and G(q) = Gq.

5.3.3. LEMMA. Let p: D — B x C be a map in a locally cartesian closed oo-category C.
Consider the map q: E — B x CP given by the pullback square

E D
qﬁ o
BxCB—=BxC

(priev)

Then there is an equivalence

M )=z 1

B BxC—B CB BxCB—(CB

PROOF. Let prg: B x C — B and pros: B x CB — CP be the projection maps. Note
that Il _pq is, by definition, a map I, _,q: Xeelly ,q — CB. On the other hand, we
can see p as a map p: X, .p — prp in €/p. Setting a := Ilgp, we then get a map

o 112 p— ] [rs ="

B prp
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It is therefore sufficient to show that a ~ I, ,¢ in C/cs. Let k: Z — CPB be an object
in €/cs. Using Lemma 5.3.2 applied to the adjunction

Bx(-)
C L G/B
B

we get Con(k, o) =~ (G/B) (/ﬁﬂ,p) . Here % is the composite (pry, ev)(B x k), seen as a

/prp
map from (B x Z =% B) to prp, and thus as an object in (G/B)/p . Since (G/B)/p ~

'p '
C/pxc and using the definition of ¢ = (pr;,ev)*p, we obtain

e/cB(k,Oé) ~ C/pxc (Hﬂ,p) = C/Bxc ((pry,ev)(B x k), p) =~

~ €/pycn(B x k,q) = Cpecn (pres)k.q) ~ Cpen [k, [ a |,
pch

whence o >~ 11, ¢, as needed. [

Intuitively, the following result is about the existence of a unique extension of a map
f along another map ¢ in terms of unique extensions along the fibers of g. Taking fibers
out of the picture, we get the following odd-looking statement.

5.3.4. PROPOSITION. [cf. [CORS18, Lemma 2.23]] Let f: A— C and g: A — B be two
maps in a locally cartesian closed co-category C. Form the following pullback squares in

C:

AxC B Bx A C
(prA,ng)l J lAB (prA,Bxf)l J lAC'
AxBx(C——-BxDB AxXxBx(C—(CxC
gxprg fxpro

Consider the following object in C/p

E = Z < H (pra, B X f)(prA’gXC)>

BxC—B \AxBxC—BxC

where the displayed internal hom is taken in C/axpxc. Then the following hold.

(i) If we let f: CP — C4 be the composite CP — 1 ER C4, there is an equivalence

[T1E=D (r.co) (ach). (6)

CB

(i) The space of global elements of the right-hand side in (6) is equivalent to the space
Ext(f,g) of extensions of f along g. In particular, if [[5 E is contractible in C,p,
then there s a unique dotted extension in

A-L ¢

4
gl 7
/

B
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ProoOF. We start by proving the first claim. We have
(prA7B X f)(prAhQXC) = H (prA7g X C)*(prAa B x f)
(pra,9xC)

Since (pry, B x f) = (f X pre)*(AC) and (f X pro)(pry, g x C) = f x C, we get that
(pra,g x C)*(pry, Bx f)=(ida, f): A= AXC. If prg,: Ax BxC — B x Cis the

projection map, we then have

II ora,Bx e = T | II Gda )] =[] Gda, )

Prpxc Prpxc \(pra,gxC) gxC

Using Lemma 5.3.3, we then get

HE IT D. I1Gda ) =>" ] (oryev)” (H(idA,ﬁ) =

B BxC—BgxC CB prgm gxC

where pros: B x CB — C8 is the projection map. There are pullback squares

Ax CP Ma, & 9xCT) 4w © A- I _.¢
gxCE | |oxc (idaf))| |ac.
B x CE B xC AxC——CxC
(pry,ev) fxc

Thus, using the Beck—Chevalley condition, we get

o~ Z H H (f x C)(id4, ev(g x C’B)))* (AC) ~

CB prop gxCB

~> " ]  ((f xO)(ida, ev(g x C?)))" (AC) ~

CB AxCB—(CB
~3 II (A x (Co) (aC) = B
CB AxCB—(CB

where the last equivalence is due to the fact that (f x C)(ida, ev(g x CP)) is equal to
the composite map evo (A x (f,CY)). Using the Beck—Chevalley condition applied to the
pullback square

Ax B U 4 oA oA
pry | — v
CB o CAx CA

we further deduce that

:Z H (A (f,C%)" (ev'(AC)) =~

CB AxCB—CB
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:Z(f,Cg)* Hev*(AC) SZ(fan)*(A(CA))

pro CcB

where the last equivalence is given by Function Extensionality.

For the second part, P := Y 5(f, CY)*(A(C?)) is the pullback object of C¥ along
f:1— C# and thus C(1, P) is the homotopy fiber of C(1,(Y) at f € C(1,C4). The latter
homotopy fiber gives the needed space of extensions. [
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