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SpecZ AND THE GROMOV NORM

ALAIN CONNES AND CATERINA CONSANI

Abstract. We define the homology of a simplicial set with coefficients in a Segal’s
Γ-set (s-module). We show the relevance of this new homology with values in s-modules
by proving that taking as coefficients the s-modules at the archimedean place over the
structure sheaf on SpecZ as in [2], one obtains on the singular homology with real
coefficients of a topological space X, a norm equivalent to the Gromov norm. Moreover,
we prove that the two norms agree when X is an oriented compact Riemann surface.
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1. Introduction

The notion of a Γ-set (due to G. Segal [12]) is a fundamental constituent in mathematics:
it is the most embracing generalization of the datum given on a set by a commutative
addition with a zero element and it provides a common framework for many of the present
efforts to understand the “field with one element”. In [2] we defined on the Arakelov
compactification SpecZ of the algebraic spectrum of the integers a structure sheaf of Γ-
rings which agrees with the classical structure sheaf when restricted to SpecZ, but whose
stalk at the archimedean place uses in a crucial way the new freedom of moving from
the category of abelian groups to that of Γ-sets. To define Γ-sets one first introduces the
small, full subcategory Γop of the category Fin∗ of pointed finite sets, whose objects are
pointed sets k+ ∶= {0, . . . , k}, for each integer k ≥ 0 (0 is the base point) and with morphism
the sets Γop(k+,m+) = {f ∶ {0,1, . . . , k} → {0,1, . . . ,m} ∣ f(0) = 0}. A Γ-set is then defined
as a (covariant) functor Γop Ð→ Sets∗ between pointed categories and the morphisms in
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this category are natural transformations. The closed structure of the category ΓSets∗ of
Γ-sets is defined by setting

ΓSets
∗
(M,N) = {k+ ↦ ΓSets∗(M,N(k+ ∧ −))}, (1)

where ∧ is the smash product of pointed sets. This formula uniquely defines the smash
product of Γ-sets by applying the adjunction

ΓSets
∗
(M1 ∧M2,N) = ΓSets

∗
(M1,ΓSets

∗
(M2,N)).

The notions of rings and modules then acquire a meaning in this symmetric monoidal
closed category. In particular, Γ-sets can equivalently be viewed as modules over the
simplest Γ-ring s ∶ Γop Ð→ Sets∗ whose underlying Γ-set is the identity functor, whence
the name s-module to denote a Γ-set, and the more suggestive notation for morphisms in
ΓSets∗

Homs(M,N) ∶= ΓSets∗(M,N), Homs(M,N) ∶= ΓSets
∗
(M,N).

Abelian groups form a full subcategory of the category s −Mod of s-modules: the inclusion
functor associates to an abelian group A the functor (Eilenberg-Mac Lane object) HA ∶
Γop Ð→ Sets∗ which assigns to a finite pointed set X the pointed set of A-valued maps
on X vanishing at the base point of X ([3], 2.1.2). Note that the existence of an additive
inverse is not used in the construction, and HM continues to make sense when M is a
commutative monoid with a zero element.
At the conceptual level, it is important to make as explicit as possible the link between
the category s −Mod and the naive interpretation of vector spaces over F1 as pointed sets
(see [7]). This link can be understood by viewing s-modules as pointed objects in the topos
Γ̂ of covariant functors Γop Ð→ Sets. Thus, provided one works in Γ̂, one may think of
our basic objects as “pointed sets”. The reason for this choice of topos is to provide room
for the identity functor Id ∶ Γop Ð→ Γop which defines the simplest Γ-ring: s. In other
words both Γop and objects in Γ̂ are based on the idea of pointed sets which underlies
the naive interpretation of F1. In this way one reaches a workable framework that strictly
extends the category of Z-modules.
To perform homological algebra one needs, guided by the Dold-Kan correspondence, to
move from the basic category s −Mod to its simplicial version, namely the category ΓS∗
of Γ-spaces, where S∗ denote the category of pointed simplicial sets, i.e. contravariant
functors ∆ Ð→ Sets∗ where ∆ is the ordinal number category and Sets∗ is the category
of pointed sets. The category ΓS∗ plays a central role in [3]. We denote by Hom

S∗
the

internal hom functor in S∗. As explained in op.cit. , one can use the closed structure of
S∗ to endow ΓS∗ with the structure of a symmetric monoidal closed category. The closed
structure is defined as follows

HomΓS∗
(M,N) ∶= {(k+, [q]) ↦ HomΓS∗(M ∧∆[q]+,N(k+ ∧ −))}. (2)

The monoidal structure is given by the smash product where M ∧N is defined using the
closed structure and can be described as a Day’s product (see op.cit. 2.1.2.1)

(M ∧N)(Z) = ∫
(X,Y )

(M(X) ∧N(Y )) ∧ Γop(X ∧ Y,Z).
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The key result of Lydakis (op.cit. Theorem 2.1.2.4) states that there are choices of co-
herency isomorphisms so that the triple (ΓS∗,∧, s) is a symmetric monoidal closed cate-
gory.
Our goal is to use Γ-spaces to perform homological algebra in the category s −Mod by
applying an analogue of the Dold-Kan correspondence. For our arithmetic applications
it is crucial to work with non-fibrant Γ-spaces and define a suitable substitute for the
homotopy groups. In homotopy theory the Kan extension property is used in two ways:
- to show that the relation of homotopy is an equivalence relation,
- to define the group structure on πn for n ≥ 1.
To define the homology Hn(X,F ) of a pointed simplicial set X with coefficients in an
s-module F , the problem to obtain the substitute of the group structure does not arise
since, already in the classical case where F = HA corresponds to an abelian group, the
interchange law shows that the group structure in homology is the same as that inherited
from the underlying Γ-set (see Remark 2.18). Thus the issue created by the lack of the
Kan extension property occurs mainly at the level of pointed (non fibrant) simplicial sets
X, and Γop is not involved there. One thus needs, as an intermediate step, to extend the
combinatorial construction of the homotopy πn(X,⋆) for a pointed simplicial set which is
not fibrant. This step is described in Section 2.1 of the present paper. The main difficulty
to obtain a meaningful combinatorial notion is that the relation of homotopy between
n-simplices x, y ∈ Xn as in [10] Definition 3.1 is no longer an equivalence relation. By
definition (see op.cit. )

R = {(x, y) ∈Xn ×Xn ∣ ∂jx = ∂jy∀j&∃z ∣ ∂jz = sn−1∂jx∀j < n, ∂nz = x, ∂n+1z = y} (3)

The simplices involved in the definition of πn correspond to the elements of HomS∗(Sn,X),
i.e. by Yoneda’s lemma to x ∈ Xn with ∂jx = ∗∀j. Here Sn is the combinatorial sphere,
i.e. the pointed simplicial set (∆[n], ∂∆[n]) obtained by collapsing the boundary ∂∆[n]
of the standard simplex to a single base point. The relation R on HomS∗(Sn,X) ⊂ Xn

coincides with the relation on the 0-skeleton Y0 associated to the two boundary maps
∂j ∶ Y1 → Y0, where Y ∶= Ωn(X) is obtained from X by iterating n-times the endofunctor
Ω ∶ S∗ Ð→ S∗ of [11] (Definition 1.6). In this way one reduces the problem to the definition
of π0Y for Y = Ωn(X). Then one can simply define π0Y as the quotient πcomb

0 Y of Y0 by
the equivalence relation generated by R.

1.1. Definition. Let n ≥ 0 be an integer and X a pointed simplicial set. Define

πcomb
n (X) ∶= πcomb

0 (Ωn(X)) = HomS∗(Sn,X)/R̃ (4)

where R̃ is the equivalence relation generated by the restriction of the relation R of (3).

This notion developed in Section 2.1 suffices for the goals of the present paper, but for
future applications we also wish to keep the finer information contained in the relation
R. This is achieved by introducing the topos Sets(2) in which the finer notion, denoted
π
(2)
n (X,⋆), takes its value : i.e. π

(2)
n (X,⋆) is a 2-set, i.e. an object of Sets(2). This

construction is described in Section 2.5 where we also show that the topos Sets(2) is
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related to the topos of quivers. In Section 2.10 we then obtain a general definition of
homology of Γ-spaces, considered as simplicial Γ-sets. This homology is not, in general,
a group but is a Γ-2-set i.e. a pointed covariant functor Γop Ð→Sets

(2)
∗ .

In Section 2.14 we construct, given an integer n ≥ 0, an arbitrary pointed simplicial set
X and an arbitrary s-module (Γ-set) F , the homology Hn(X,F ) as follows

1.2. Definition. Let n ≥ 0 be an integer, X a pointed simplicial set, and F an s-module.
Define

Hn(X,F ) ∶= {k ↦ πcomb
n (F ○ (X ∧ k+))} (5)

as an s-module.

As in [3], we extend the Γ-set F to an endofunctor of the category of pointed sets. When
F = HA for an abelian group A, Hn(X,F ) coincides with the standard definition of
homology :

1.3. Theorem. Let A be an abelian group, and X a pointed simplicial set. For any
integer n ≥ 0 one has the equality of s-modules

Hn(X,HA) =H(Hn(X,A)) (6)

where Hn(X,A) is the (reduced) abelian group homology of X with coefficients in A.

Again, we stress the fact that we apply Definition 1.2 in cases where the pointed simplicial
set F ○ (X ∧ k+) is not fibrant. In particular, in our applications the s-modules Hn(X,F )
are rarely groups.
In Section 3 we apply Definition 1.2 to the s-modules we introduced in [2], at the
archimedean place of SpecZ. We show that these coefficients yield a semi-norm on the
ordinary singular homology Hn(X,R) of a topological space X and our goal is to com-
pare this semi-norm with the Gromov norm, whose definition is recalled in Section 3.3.
In Section 3.1 we review our construction (see [2]) of the structure sheaf O ⊂HQ of s-
algebras on SpecZ. The sheaves O(D) associated to Arakelov divisors D = Dfinite +D∞,
as in op.cit. provide a one parameter family of s-modules ∥HR∥λ (λ ∈ R+) which we can
use as coefficients in formula (5). In Section 3.8, Proposition 3.10, we prove that for
any topological space X the filtration of the singular homology group Hn(X,R) by the
Hn(X, ∥HR∥λ) defines a semi-norm which is equivalent to the Gromov norm.
The final Section 4 is entirely devoted to show that the two norms on Hn(X,R): the
Gromov norm and our new norm, are in fact equal when X = Σ is a compact Riemann
surface. The difficulty in the proof of this result is due to the fact that in order to
obtain elements of the homology H2(Σ, ∥HR∥λ) one needs to get singular chains which
are not only cycles but are such that all their simplicial boundaries actually vanish. While
one knows that this Moore normalization is possible the problem is to effect it without
increasing the `1-norm of the chain : this requires a delicate geometric work described in
Sections 4.1 and 4.4. One then obtains the desired equality in the form of the following



SpecZ AND THE GROMOV NORM 159

1.4. Theorem. Let Σ be a compact Riemann surface and [Σ] its fundamental class in
homology. Then [Σ] belongs to the range of the canonical map H2(Σ, ∥HR∥λ) →H2(Σ,R)
if and only if λ is larger than the Gromov norm of [Σ].
We expect that a similar statement holds in hyperbolic geometry in any dimension. The
natural test ground for the homology Hn(X, ∥HR∥λ) is in hyperbolic spaces since the
Gromov norm does not vanish there for n > 1 while it vanishes identically on all spheres.
This is in contrast with the construction of the spectra associated to Γ-spaces M where
the associated endofunctor X ↦M ○X is only tested on spheres.

2. Homology of a simplicial set with coefficients in an s-module

Our goal in this section is to reach a good definition of the homology of a pointed simplicial
set with coefficients in an s-module and to show that it generalizes the standard notion in
algebraic topology. This is achieved in Definition 2.15 and Theorem 2.17. As a preliminary
step we need to refine the definition of the homotopy groups πn by remaining at the
combinatorial level and ignoring the group structure. Classically (see e.g. [3] Appendix
A.2.3), the function space of maps between pointed simplicial sets X and Y is defined as
the pointed simplicial set:

Map
∗
(X,Y ) ∶= Hom

S∗
(X, sin∣Y ∣) (7)

This amounts to replace Y with the fibrant simplicial set sin∣Y ∣ and it entails that the
πn, defined using such a fibrant replacement (see also op.cit. A.2.5.1), are then groups
for n ≥ 1 (abelian for n > 1). Thus in the definition of the homotopy groups of a Γ-space
M ∶ Γop Ð→ S∗ (see op.cit. Definition 2.2.1.2, and §2.2.1.1 where M is extended to an
endofunctor of S∗)

πqM ∶= limÐ→
k

πk+qM(Sk) (8)

the terms involved in the colimit are groups, hence πqM is an abelian group.
For our applications however, the simplification effected by the definition (7) hides certain
finer features of Γ-spaces which become relevant for arithmetic constructions. We shall
thus work directly in the category ΓS∗ without performing this fibrant replacement.

2.1. Homotopy for pointed simplicial sets. In order to define the new homotopy
πnew
n (X,⋆) for a general pointed simplicial set (X,⋆), we shall first reduce to the case

of πnew
0 . This reduction process by “decalage” is well known and is recalled here for

convenience. We follow [11] Definition 1.9. One defines an endofunctor Ω of S∗ which
associates to a pointed simplicial set (X,∗) the pointed simplicial set Ω(X,∗) defined as
follows (with k a positive integer)

Ω(X,∗)k ∶= {x ∈X1+k ∣ ∂0(x) = ∗, ∂i0 . . . ∂ikx = ∗ , ∀ij ∈ {0, . . . ,1 + k}} (9)

with the simplicial structure given by faces

∂j ∶ Ω(X,∗)k → Ω(X,∗)k−1, ∂j(x) = ∂Xj+1(x) (10)
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and degeneracies
sj ∶ Ω(X,∗)k → Ω(X,∗)k+1, sj(x) = sXj+1(x). (11)

The definition of the homotopy πnew
n (X,⋆) is then reduced to that of πnew

0 for the simplicial
set Ωn(X) obtained after iterating the endofunctor Ω n-times :

πnew
n (X,⋆) ∶= πnew

0 (Ωn(X)). (12)

One shows by induction1 on n that

Ωn(X,∗)k = {x ∈Xn+k ∣ ∂j(x) = ∗, ∀j < n, ∂i0 . . . ∂ikx = ∗ , ∀ij ∈ {0, . . . , k + n}} (13)

while the face and degeneracies are obtained as in (10) and (11) but using ∂Xj+n and sXj+n.
One describes directly the first levels of Ωn(X) as follows

2.2. Lemma. Let (X,∗) be a pointed simplicial set.
(i) The 0-skeleton (Ωn(X))0 is the set of simplices x ∈Xn with all ∂j(x) equal to the base
point.
(ii) (Ωn(X))0 coincides with HomS∗(Sn,X) ⊂ Xn where Sn is obtained by collapsing the
boundary ∂∆[n] of the standard simplex to a single base point2.
(iii) The 1-skeleton (Ωn(X))1 is the set of x ∈Xn+1 which fulfill the conditions

∂i∂j(x) = ∗ , ∀i, j, ∂j(x) = ∗ , ∀j ∈ {0, . . . , n − 1}.

(iv) The boundaries ∂i ∶ (Ωn(X))1 → (Ωn(X))0 for i = 0,1 are given by ∂n and ∂n+1.
(v) The relation R on (Ωn(X))0 = HomS∗(Sn,X) ⊂Xn given by

xRy ⇐⇒ ∃z ∈ (Ωn(X))1 s.t. ∂0z = x and ∂1z = y

coincides with the relation of homotopy between n-simplices as in (3).

Proof. (i) Follows from (13) for k = 0.
(ii) By Yoneda’s lemma one checks that the morphisms y ∈ HomS∗(Sn,X) i.e. the el-
ements of HomS∗(∆[n],X) which send ∂∆[n] to the base point, are the same as the
elements of the 0-skeleton (Ωn(X))0.
(iii) Follows from (13) for k = 1.
(iv) Follows from ∂j = ∂Xj+n for j = 0,1.
(v) This follows from the previous part of the lemma since the relation (3) restricts to

R = {(x, y) ∈Xn ×Xn ∣ ∂jx = ∂jy = ∗∀j&∃z ∣ ∂jz = ∗∀j < n, ∂nz = x, ∂n+1z = y} (14)

1Note that a product ∂i0 . . . ∂ik can be reordered using the simplicial rules so that the indices fulfill
i0 ≥ i1 ≥ . . . ≥ ik.

2This is not the definition used in [3], where Sn is defined as the n-fold smash product S1 ∧ ⋅ ⋅ ⋅ ∧ S1

of S1 = ∆[1]/∂∆[1]. This distinction in the definition of the homotopy groups is irrelevant in the fibrant
case since the geometric realizations are homeomorphic, but as in [11] our choice is more convenient to
compute the set of maps using Yoneda’s Lemma.
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2.3. Remark. The geometric meaning of the above well known endofunctor Ω can be
understood starting from the “decalage” (see [6] or [3] A.2.7) which gives a combinatorial
model PX mimicking the path space of a simplicial set X by precomposing the functor
X with the endofunctor Dec1 = [0]∐● ∶ ∆ Ð→ ∆. This simply shifts the indices i.e.
one has (PX)k = Xk+1 and the indices of faces and degeneracies are shifted by 1. The
link with ordinary paths is given by precomposing with the morphism of simplicial sets
γ ∶ ∆[1] ×∆[q] →∆[q + 1], associated as γ ∶= N(p) by the nerve functor N to

p ∶ [1] × [q] → [q + 1], p(0, j) ∶= 0 ∀j, p(1, j) ∶= j + 1 ∀j

Requiring that the two end points of the path associated to x ∈ Xk+1 = Hom∆(∆[q + 1], x)
are equal to the base point ∗ (when X is pointed) gives exactly the conditions of (9)
defining Ω(X). When X is fibrant one obtains in this way a model for its loop space.

For a fibrant simplicial pointed set X, the relation (14) is an equivalence relation and
the quotient by this relation defines π0(Ωn(X)) which is known to be a group, for n ≥ 1
(see [10, 11], or Theorem 7.2 in Chapter III of [4]). Note also that when X is fibrant
the above equivalence relation on HomS∗(Sn,X) ⊂ Xn coincides with the one defined by
the two boundary maps from the 1-skeleton of the simplicial set Hom

S∗
(Sn,X) (see [11]

Lemma 1B.3).
On the other hand, the simplicial sets X we consider here are not necessarily fibrant and
the relation R is not in general transitive (nor symmetric). The easy solution to bypass
this problem is to define πcomb

n (X) as the quotient by the equivalence relation generated by
the relation R in agreement with Definition 1.1. This provides a first notion of homotopy
which suffices for the goal of the present paper. One has by construction

πcomb
n (X,⋆) ∶= πcomb

0 (Ωn(X)). (15)

We state simple properties of this combinatorial notion

2.4. Proposition. (i) Let X be a pointed simplicial set and k > 0 an integer. Then for
any n

πcomb
n (X ∧ k+) = πcomb

n (X) ∧ k+.
(ii) Let X,Y be pointed simplicial sets, one has for any n

πcomb
n (X × Y ) = πcomb

n (X) × πcomb
n (Y ).

Proof. (i) An element x ∈ (X ∧ k+)n, x ≠ ∗ is of the form x = (a, j) with a ∈ Xn and
0 < j ≤ k. Two elements x = (a, j) and x′ = (a′, j′) fulfill (x,x′) ∈ R as in (14) if and only
if j = j′ and (a, a′) ∈ RX since the boundaries preserve the index j.
(ii) This follows since (X × Y )n =Xn × Yn and the boundaries act componentwise.
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2.5. The finer notion π
(2)
n (X) and the topos Sets(2). For later applications to

Arakelov divisors Definition 1.1 is too coarse and one would like to

� keep all the information about the relation R and

� still think of πnew
0 as a set.

The idea of “topos” of Grothendieck [1] comes to the rescue providing a satisfactory
answer. We consider the topos Sets(2) of contravariant functors to the category of sets
from the small category obtained by restricting the objects of ∆ to [0] and [1] and keeping
the same morphisms as in the following definition

2.6. Definition. (i) Let X ∶ ∆op Ð→Sets be a simplicial set. We define π
(2)
0 (X) as the

object of Sets(2) which is the restriction of the functor X to the full subcategory of ∆ with
objects [0], [1] and same morphisms as ∆.
(ii) Let X be a pointed simplicial set, then we define

π
(2)
n (X) ∶= π(2)0 (Ωn(X)).

It turns out that the topos Sets(2) can also be described as the dual of the small category
with a single object whose morphisms form the monoidM with three elements 1,m0,m1

and the multiplication table specified by the rule mjx =mj for all j ∈ {0,1}.

2.7. Proposition. The topos Sets(2) is the same as the presheaf category M̂ of the
monoid M, i.e. the category of sets with a right action of M.

Proof. By definition an object F of the topos Sets(2) is a pair of sets F (0), F (1), with
two maps ∂j ∶ F (1) → F (0), j ∈ {0,1} and a map s ∶ F (0) → F (1) such that ∂j ○ s = Id.
This implies that s ∶ F (0) → F (1) is an injection and one can thus view F (0) as a subset
of F (1) and consider the two self-maps Tj = s ○ ∂j ∶ F (1) → F (1). They fulfill the rule

Ti ○ Tj = Tj , ∀i, j ∈ {0,1}

since s ○ (∂i ○ s) ○ ∂j = s ○ (Id) ○ ∂j = s ○ ∂j. Thus one obtains an object in M̂ where M
is the monoid defined by the opposite of the above rules. Conversely given an object X
of M̂, i.e. a set X endowed with a right action of M one defines an object of Sets(2) by
setting F (1) ∶= X, F (0) ∶= Range(Tj) which does not depend on the choice of j ∈ {0,1}.
One lets s ∶ F (0) → F (1) be the inclusion as a subset, and ∂j ∶ F (1) → F (0) is given by

Tj. One checks that ∂j ○ s = Id. One obtains in this way two functors Sets(2) Ð→ M̂ and

M̂ Ð→Sets(2) which are inverse of each other.
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Check
Doubt

Repair
TrueFalse

Figure 1: Subobject classifier for Sets(2).

2.8. Remark. (i) Two presheaf categories Ĉ and D̂ are equivalent if and only if the
categories C and D have isomorphic Karoubi completions. The full subcategory of ∆ on
the objects [0], [1] has two idempotents on [1] with isomorphic image on [2] and forms
the “splitting idempotents” of M thus Proposition 2.7 follows directly.
(ii) The topos Sets(2) is closely related to the topos of quivers but is not the same. In
fact the topos of quivers has two points given by the functors to the set of vertices and the
functor to the set of edges. Similarly these two functors give the two points of the topos
Sets(2) but in the latter case the functor to the set of edges never takes the value ∅ when
the functor to the set of vertices takes a non-empty value.

The determination of the subobject classifier shows that the topos Sets(2) is two valued
and not boolean (see [8], VI).

2.9. Lemma. The subobject classifier Ω of the topos Sets(2) is the object with two vertices
False, True and five edges which besides the two degenerate ones form the graph of Figure
1.

Proof. It is a general fact (see [8], §I.4) that for a topos of the form M̂ for a monoidM,
i.e. the topos of sets with a right action ofM, the subobject classifier is given by the set
J of right ideals of M on which the right action of M is defined by

J.m ∶= {n ∈ M ∣mn ∈ J} , ∀J ∈ J , m ∈ M.

Taking the aboveM with three elements 1,m0,m1 and the multiplication table specified
by the rule mjx =mj for all j ∈ {0,1}, one finds that J contains five elements

J = {∅,{m0},{m1},{m0,m1},M}

and that the right action Tj of mj ∈ M fixes ∅ andM (which are hence degenerate edges,
i.e. vertices) while Tj{mj} = M and Ti{mj} = ∅ for i ≠ j. Thus the set V of vertices
contains two elements ∅ andM and the non-degenerate edges are the three edges shown
in Figure 1.
The reason for renaming the vertices ∅ as “False” andM as “True” and for the choice of
the labels of the edges comes from the construction of the classifying map associated to a
subobject G′ of an object G in Sets(2). One finds that the classifying map f is obtained
as follows as a map from G to Ω:
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1. ε ∈ G′⇒ f(ε) = True

2. ε ∉ G′ and ∂jε ∉ G′⇒ f(ε) = False

3. ε ∉ G′, ∂0ε ∉ G′ and ∂1ε ∈ G′⇒ f(ε) = Repair

4. ε ∉ G′, ∂0ε ∈ G′ and ∂1ε ∉ G′⇒ f(ε) = Doubt

5. ε ∉ G′, ∂0ε ∈ G′ and ∂1ε ∈ G′⇒ f(ε) = Check .

The terminology “False” and “True” is the standard one for the two extremes in subobject
classifiers, the notations for the edges are suggestive but more arbitrary.

2.10. Homotopy of Γ-spaces. If C is a pointed category with initial and final object
denoted ∗, one defines (see [3]) the category of Γ-objects of C as the category ΓC of pointed
covariant functors Γop Ð→ C. This construction applies to the category S∗ of pointed
simplicial sets to yield the category ΓS∗ of Γ-spaces. It also applies to the category
Sets

(2)
∗ of pointed objects in Sets(2). We shall call Γ-2-sets the objects of ΓSets

(2)
∗ .

2.11. Proposition. (i) Let X be a Γ-space and n ∈ N. Then the map k ↦ π
(2)
n (X(k+))

(resp. k ↦ πcomb
n (X(k+))) extends to a pointed covariant functor π

(2)
n (X) ∶ Γop Ð→Sets

(2)
∗

(resp. to a Γ-set).

(ii) For n ∈ N, π
(2)
n defines a functor π

(2)
n ∶ ΓS∗ Ð→ ΓSets

(2)
∗ from Γ-spaces to Γ-2-sets .

(iii) For n ∈ N, πcomb
n defines a functor πcomb

n ∶ ΓS∗ Ð→ ΓSets∗ from Γ-spaces to s −Mod.

Proof. This follows from the naturality of Definitions 1.1 and 2.6.

The relation between π
(2)
n and πcomb

n is given by

πcomb
n ∶= ` ○ π(2)n (16)

i.e. composition with the functor

` ∶Sets(2) Ð→Sets, `(X) ∶= limÐ→
Co

X(c)

which assigns to a 2-set its set of components. Here, C is any of the small categories
defining Sets(2) as the presheaf category Ĉ as in Proposition 2.7 and Co is its opposite.
Note that the functor ` does not correspond to a point of the topos Sets(2).

2.12. Γ-sets as endofunctors . In this section we recall the construction of [3] of the
endofunctor in the category S∗ associated to a Γ-space, in the case of discrete Γ-spaces,
i.e. s-modules. By construction an s-module is a covariant functor M ∶ Γop Ð→Sets∗ and,
as in Section 2.1.2.1 of op.cit. , we view pointed sets as discrete pointed simplicial sets,
i.e. as constant functors ∆op Ð→Sets∗.

2.13. Lemma. Let M ∶ Γop Ð→ Sets∗ be an s-module. Then the associated endofunctor
of the category S∗ of pointed simplicial sets is obtained by composition with M viewed as
an endofunctor of the category Sets∗ of pointed sets.
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Proof. One first extends the functor M ∶ Γop Ð→ Sets∗ to an endofunctor Sets∗ Ð→
Sets∗ in pointed sets. This is done by taking a colimit on the finite subsets as explained
in §2.2.1.1 of [3]. Then, one applies the technique described in op.cit. that uses, for a
simplicial set X = {[q] ↦Xq}, the diagonal

M(X) ∶= {[q] ↦M(Xq)q}.

Since by construction M(Xq) is a discrete simplicial set, it is the same in all degrees so
that the index q in M(Xq)q disappears, thus we simply write M(Xq). Hence starting
with the pointed simplicial set X ∶ ∆op Ð→Sets∗, we obtain a new pointed simplicial set
by composition i.e.

X ↦M(X) =M ○X ∶ ∆op Ð→Sets∗. (17)

In summary the result follows from §2.2.1.1 of op.cit. .

The basic example of an s-module is given in 2.1.2.1 of [3] where one associates to an
abelian monoid A with a zero element, the functor M =HA

HA(k+) = Ak, Hf ∶HA(k+) →HA(n+), Hf(m)(j) ∶= ∑
f(`)=j

m` (18)

where m = (m1, . . . ,mk) ∈ HA(k+). The zero element of A gives meaning to the empty
sum. In the special case when the monoid A is an abelian group, the composition (17), i.e.
the functor HA○X ∶ ∆op Ð→Sets∗ factors through simplicial abelian groups (the functor
HA is the composite of a more precise functor A ↦ AbA to abelian groups with the
forgetful functor from abelian groups to pointed sets, where the base point is the 0) and
always fulfills the Kan extension property. The geometric realization ∣HA ○X ∣ only uses
the underlying simplicial pointed set but the finer structure as a simplicial abelian group,
and the Dold-Kan correspondence in the form of Corollary 2.5 of [4], Chapter III, show
that the homotopy groups of the geometric realization ∣HA○X ∣ are given by the (reduced)
homology3 of the associated complex of abelian groups, i.e. πn(∣HA○X ∣) =Hn(X,A). This
suffices to conclude for instance that ∣HA ○ Sn∣ is an Eilenberg-MacLane space K(A,n).

2.14. The homology with coefficients in an s-module . In our arithmetic con-
text we are interested in s-modules M which are no longer of the form HA where A is
an abelian group. In a first class of examples M is still of the form HA, where A is a
monoid. A second class of examples are those constructed in [2] to specify the geometric
structure of SpecZ at the archimedean place. In all these cases it is no longer true that
the composite M ○X is fibrant, even when the simplicial set X itself is fibrant. We shall
use the equality πn(∣HA ○X ∣) = Hn(X,A) holding for abelian groups as the motivation
to extend the definition of the homology of a pointed simplicial set with coefficients in an
arbitrary s-module as follows

3For a pointed simplicial set (X,∗) we use the notation Hn(X,A) for the reduced homology
Hn((X,∗),A).
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2.15. Definition. Let M be an s-module, and X a pointed simplicial set. For any integer
n ≥ 0 one defines the homology Hn(X,M) as the s-module

Hn(X,M)(k+) ∶= πcomb
n (M ○ (X ∧ k+)). (19)

Here, k+ is viewed as a discrete simplicial pointed set i.e. constant in all degrees.

As in Lemma 2.13, M is viewed as an endofunctor of the category Sets∗ and πcomb
n is

defined in Definition 1.1. There is in fact a refined version of homology H
(2)
n (X,M) using

π
(2)
n instead of πcomb

n but we shall not need it in the present paper.
The following result establishes several basic properties of the new homology. The s-
module HM makes sense for any additive monoid with a zero element, and this applies
to the monoid B ∶= {0,1} with 1 + 1 = 1 so that the s-module HB in (v) below is well
defined.

2.16. Proposition. (i) For any n ≥ 0, Hn(X,M) is a covariant bifunctor

Hn ∶ S∗ × s −ModÐ→ s −Mod.

(ii) Let M1,M2 be s-modules. One has a natural transformation

Hn(M1 ○X,M2) →Hn(X,M2 ○M1)

which is an isomorphism when evaluated on 1+.
(iii) For any pointed simplicial set X one has Hn(X, s) = πcomb

n (X) ∧ s.
(iv) For n ≠m : Hm(Sn, s) = {∗} while for n =m one has Hm(Sn, s) = s.
(v) For n ≠m : Hm(Sn,HB) = {∗} while for n =m one has Hm(Sn,HB) =HB.

Proof. (i) By construction, Hn(X,M) is a covariant functor of X for fixed M , and of M
for fixed X. To prove that it is a bifunctor it suffices, using the bifunctor lemma (see [9]
Proposition 1 Chapter II, §3), to show that it satisfies the interchange law which states
that given morphisms f ∈ HomS∗(X,Y ) and h ∈ Homs(M,N) one has the equality

Hn(f,N) ○Hn(X,h) =Hn(Y,h) ○Hn(f,M) ∈ Homs(Hn(X,M),Hn(Y,N)). (20)

Both sides of this formula are s-modules i.e. functors Γop Ð→ Sets∗ thus it is enough
to check the equality pointwise i.e. by evaluating both sides on k+ for fixed k. Since
πcomb
n ∶ S∗ Ð→ Sets∗ is a functor the equality follows provided one shows that the same

equality holds if one replaces Hn(X,M) by F (X,M) ∶= M ○ X which is a separately
covariant functor to S∗ with arguments in S∗ and s −Mod. Again it is enough to check this
equality pointwise i.e. replacing S∗ by Sets∗ and F (X,M) ∶=M ○X by G(X,M) ∶=M(X)
which is a separately covariant functor to Sets∗ with arguments in Sets∗ and s −Mod.
Since M and N are endofunctors of Sets∗ and the morphism h ∈ Homs(M,N) is a natural
transformation from M to N one has, for any f ∈ HomSets∗(X,Y ), the equality

N(f) ○ hX = hY ○M(f) ∈ HomSets∗(M(X),N(Y ))
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which gives (20).
(ii) As in [3], (2.2.1.2 equation (2.2)), one has natural maps M(X)∧Y ↦M(X ∧Y ). We
apply this with Y = k+ and thus obtain natural maps

ηk ∶M1(X) ∧ k+ →M1(X ∧ k+) , ∀k.

This yields a natural morphism

M2(ηk) ∶M2(M1(X) ∧ k+) →M2(M1(X ∧ k+))

and by composition with πcomb
n one gets the natural transformation

πcomb
n (M2(ηk)) ∶Hn(M1 ○X,M2)(k+) →Hn(X,M2 ○M1)(k+)

which is, by construction, an isomorphism for k = 1.
(iii) Since the endofunctor of Sets∗ associated to s is the identity, the result follows from
Proposition 2.4 (i).
(iv) Using (iii) it is enough to determine πcomb

n (Sm). The pointed simplicial set Sn

is obtained by collapsing ∂∆[n] to a base point. This means that one considers the
sub-functor [q] ↦ ∂∆([q]) ⊂ Hom∆([q], [n]) given by the maps [q] → [n] which are
not surjective and one identifies all the elements of ∂∆([q]) with the base point. For
h ∈ Hom∆([q′], [q]) one has ∂∆([q]) ○ h ⊂ ∂∆([q′]) so that the collapsing gives a pointed
simplicial set. An element of HomS∗(Sn,X) is an element of HomS∗(∆[n],X) which
maps ∂∆[n] to the base point. This means, by Yoneda’s lemma, an element x ∈Xn such
that ∂j(x) = ∗ for all j (since any map [q] → [n] which is not surjective factors through
a dj ∶ [n − 1] → [n]). For X = Sm, such an x ∈ Xn is, if it is not the base point, an
element φ ∈ Hom∆([n], [m]) which is surjective and such that φ ○ dj fails to be surjective
for any j. This latter condition implies that φ is also injective and one concludes that
n = m and φ is the identity map. This gives πcomb

n (Sm) = {∗} for n ≠ m. To prove that
πcomb
n (Sn) = {∗, Id} one just needs to show that the element Id does not get identified

with the base point under the equivalence relation generated by the relation (14), i.e.

xRy ⇐⇒ ∃z ∣ ∂jz = ∗∀j < n, ∂nz = x, ∂n+1z = y}.

Any z ≠ ∗ in Snn+1 is given by a surjective map si ∈ Hom∆([n + 1], [n]) such that si(i) =
si(i + 1) and the condition ∂jz = ∗∀j < n shows that the index i is equal to i = n. It
follows that ∂nz = ∂n+1z and that the relation R is the diagonal.
(v) The endofunctor HB associates to a pointed set E the (pointed) set of all finite
subsets of E which contain the base point ∗, and to a map f ∶ E → F the direct image
map Z ↦ f(Z). Note the equivalence,

f(Z) = {∗} ⇐⇒ f(x) = ∗ , ∀x ∈ Z (21)

It follows that there are only two elements u ∈ (HB ○ Sn)n = HB(Snn) = HB({∗, Id}),
namely the base point ∗ and the subset u = {∗, Id}. Let us show that these two elements
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are not equivalent under the equivalence relation generated by the relation (14) for the
simplicial pointed set HB ○ Sn. An element of (HB ○ Sn)n+1 = HB(Snn+1) is a subset z =
{∗, si1 , . . . , sik} of the set Snn+1 described in the proof of (iv). The condition ∂jz = ∗∀j < n
shows that all indices ij are equal to n so that either z = ∗ or z = {∗, sn}. This shows, as
in the proof of (iv), that the relation R is diagonal and πcomb

n (HB ○ Sn) = HB(1+) = B.
Let then k > 0 be an integer and E a pointed set. One has a natural isomorphism
HB ○ (E ∧ k+) ≃ (HB ○ E)k. It follows that for any pointed simplicial set X one has a
natural isomorphism HB ○ (X ∧ k+) → (HB ○X)k. Then by Proposition 2.4 (ii) one gets

πcomb
n (HB ○ (Sn ∧ k+)) = (πcomb

n (HB ○ Sn))k =HB(k+).

By construction the natural identifications are compatible with the structures of Γ-sets.
This shows that Hn(Sn,HB) = HB. The proof of (iv) together with (21) show that
Hn(Sn,HB) = {∗} for m ≠ n.

Definition 2.15 provides a meaning to the following equality (22) whose two sides are
s-modules.

2.17. Theorem. Let A be an abelian group, and X a pointed simplicial set. For any
integer n ≥ 0 one has the equality of s-modules

Hn(X,HA) =H(Hn(X,A)) (22)

where Hn(X,A) is the (reduced) abelian group homology of X with coefficients in A.

Proof. For any simplicial set Y the composite HA ○ Y is a simplicial abelian group
and hence has the Kan extension property (see [11], Theorem 2.2). It follows that the
combinatorial homotopy πcomb

n (HA ○Y ) coincides with the usual homotopy πn(∣HA ○Y ∣)
of the geometric realization

πcomb
n (HA ○ Y ) = πn(∣HA ○ Y ∣). (23)

Moreover the group law of these homotopy groups coincides with the abelian group law
inherited from the simplicial abelian group structure (see op.cit. Proposition 2.4). The
Dold-Kan correspondence (see [4], Chapter III Corollary 2.5) gives a canonical bijection

δY ∶Hn(Y,A) → πcomb
n (HA ○ Y ). (24)

Furthermore this bijection is a natural transformation of covariant functors from pointed
simplicial sets to pointed sets. More precisely given a morphism ψ ∶ Y → Y ′ of pointed
simplicial sets, one obtains the equality

πcomb
n (HA(ψ)) ○ δY = δY ′ ○Hn(ψ,A). (25)

Indeed, it is enough to check this equality on cycles c ∈ Zn(Y,A) which are Moore normal-
ized, i.e. ∂jc = 0 ∀j. The element δY (c) is then given by the combinatorial class directly
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associated to c viewed as an element of HomS∗(Sn,HA○Y ) = HomS∗((∆n, ∂∆n),HA○Y )
which is a subset of (HA ○ Y )n =HA(Yn). Let c = ∑ajyj where aj ∈ A and yj ∈ Yn. Then
πcomb
n (HA(ψ)) ○ δY (c) is represented by the combinatorial class obtained from δY (c) by

applying the functor HA(ψ). This gives HA(ψ)(∑ajyj) = ∑ajψ(yj), as one sees using
the definition (18) of the functor HA. But one has similarly Hn(ψ,A)(c) = ∑ajψ(yj),
thus one gets the required equality (25).
From (24) one gets the bijection δX ∶ Hn(X,A) → πcomb

n (HA ○X). Let then k > 0 be an
integer and E a pointed set. One has a natural isomorphism HA ○ (E ∧ k+) ≃ (HA ○E)k
since both sides consist of maps (x, j) ↦ φ(x, j) ∈ A, x ∈ E, j ∈ {1, . . . , k} with finite
support and such that φ(∗, j) = 0 for all j. Thus one obtains a natural isomorphism of
simplicial sets

HA ○ (X ∧ k+) = (HA ○X)k.
The same equality holds for the geometric realizations, and using (23) one derives

πcomb
n (HA ○ (X ∧ k+)) = πn(∣HA ○ (X ∧ k+)∣) = πn((∣HA ○X ∣)k) =Hn(X,A)k.

At the set-theoretic level this coincides with H(Hn(X,A))(k+). In fact one can obtain
the same result more directly as a consequence of (24) and of the equality of (reduced)
homology groups Hn(X1 ∨X2,A) =Hn(X1,A) ⊕Hn(X2,A).
It remains to show that given a morphism φ ∶ k+ →m+ in Γop the associated map

πcomb
n (HA ○ (X ∧ k+)) → πcomb

n (HA ○ (X ∧m+)),

is the same as the map HK(φ) ∶Hn(X,A)k →Hn(X,A)m associated to the group law of
K =Hn(X,A) and the functor HK. Using (25) it is enough to show that HK(φ) equals
the homology map

Hn(IdX ∧ φ,A) ∶Hn(X ∧ k+,A) →Hn(X ∧m+,A).

With ej, j ∈ {1, . . . , k}, the canonical basis of H0(k+), and e0 ∶= 0, the above map is given
by

Hn(IdX ∧ φ,A)(∑ cj ⊗ ej) = ∑ cj ⊗ eφ(j)
and using the definition (18) of the functor HK one gets the required equality.

2.18. Remark. In homotopy theory the homotopy groups πn are abelian groups for n > 1.
The group operation arises, at the combinatorial level, from the Kan extension property
of fibrant simplicial sets together with combinatorial constructions involving simplices.
Definition 2.15 does not involve any of these constructions and yet Theorem 2.17 shows
that one recovers the same group law on the homotopy groups πn from the Γ-set (s-
module) obtained using the functorial nature of the map k+ ↦ X ∧ k+. The reason behind
this equality of structures is the interchange law which is fulfilled by the group law of the
homotopy group πn and the group law induced by the abelian coefficients. In that sense,
Definition 2.15 takes into account the s-module structure of the coefficients to obtain a
replacement of the group structure of homotopy groups. We shall see in the next sections
a striking example where this additional structure is put to work.
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3. The archimedean place and the Gromov norm

In this section we show that the singular homologyH∗(X,R) of a topological space inherits
a natural semi-norm from the filtration of the s-module HR by the sub-s-modules ∥HR∥λ
associated to the archimedean place of SpecZ as constructed in [2]. Moreover we prove
that this semi-norm is equivalent to the Gromov semi-norm on singular homology.

3.1. SpecZ at the archimedean place. In [2] we showed how to endow the Arakelov
compactification SpecZ with a structure sheaf of s-algebras, which coincides with the
standard structure sheaf of SpecZ on the dense open set SpecZ ⊂ SpecZ using the fully
faithful functor H from rings to s-algebras. The new feature is the structure of this sheaf
at the archimedean place which is obtained using the following proposition4 of [2]

3.2. Proposition. (i) Let R be a semiring, and ∥ ∥ a sub-multiplicative seminorm on
R. Then HR is naturally endowed with a structure of s-subalgebra ∥HR∥1 ⊂ HR defined
as follows

∥HR∥1 ∶ Γop Ð→Sets∗ ∥HR∥1(F ) ∶= {φ ∈HR(F ) ∣ ∑
F∖{∗}

∥φ(x)∥ ≤ 1}. (26)

(ii) Let E be an R-semimodule and ∥ ∥E a seminorm on E such that ∥aξ∥ ≤ ∥a∥∥ξ∥,
∀a ∈ R, ∀ξ ∈ E, then for any λ ∈ R+ the following defines a module ∥HE∥Eλ over ∥HR∥1

∥HE∥Eλ ∶ Γop Ð→Sets∗ ∥HE∥Eλ (F ) ∶= {φ ∈HE(F ) ∣ ∑
F∖{∗}

∥φ(x)∥E < λ}. (27)

The first statement of Proposition 3.2 is applied for the ring R = Q of rational numbers
and its archimedean absolute value to construct the stalk at ∞ of the structure sheaf.
One obtains in this way a sheaf O ⊂HQ of s-algebras over SpecZ. The second statement
of Proposition 3.2 is then applied to the one-dimensional real vector space R to obtain,
given an Arakelov divisor D =Dfinite +D∞, the sheaf O(D) of O-modules over SpecZ

O(D)(Ω) ∶= ∥HO(Dfinite)(Ω ∖ {∞})∥ea , D∞ = a{∞}. (28)

Thus the s-modules at work at the archimedean place depend on a positive real parameter
λ > 0 and are implemented by the functor ∥HR∥λ ∶ Γop Ð→ Sets∗ which associates to a
pointed set F the pointed set

∥HR∥λ(F ) = {x ∶ F → R ∣ #{j, x(j) ≠ 0} < ∞ &∑∣x(j)∣ < λ}. (29)

In fact (29) describes also the extension of ∥HR∥λ as an endofunctor of Sets∗. There is
an obvious analogue of (29) when R is replaced by Q and this analogue is what is needed
in (28); on the other hand it is more natural to work with the local field R associated to
the archimedean place of Q.

4With the nuance that in (27) we use the strict inequality.
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3.3. Simplicial volume. We recall briefly the notion of simplicial volume introduced by
M. Gromov [5]. Let first X be a topological space and C∗(X,R) the associated singular
chain complex with real coefficients. One defines the `1-norm on singular chains as follows

∥c∥1 ∶= ∑ ∣aj ∣ , ∀c = ∑ajσj, σj ∈ Top(∆∗,X) (30)

The induced semi-norm on the singular homology H∗(X,R) is the quotient semi-norm

∥α∥1 ∶= inf
c∈α

∥c∥1. (31)

The Gromov norm ∣M ∣ of an oriented closed connected manifold of dimension n is then
defined as the semi-norm of its fundamental class ∣M ∣ ∶= ∥[M]∥1. A fundamental result of
the theory ( [5], [13] Thm 6.2) is the proportionality principle:

3.4. Theorem. (M. Gromov) Let Σ be any compact oriented hyperbolic manifold of
dimension n > 1, then one has

∣Σ∣ = v(Σ)
vn

where v(Σ) is the volume of Σ and vn is the maximal volume of straight simplices in
hyperbolic space.

We refer to [13] chapter 6 for the description of the straightening of singular simplices
and singular chains. The constant v2 is equal to π and one thus has

3.5. Corollary. Let Σ be a Riemann surface of genus g > 1, then ∣Σ∣ = 4(g − 1).

The fact that the norm does not vanish is dual to the boundedness of cohomology and
this holds in the hyperbolic case, thus for k > 1 the semi-norm (31) is in fact a norm on
the homology Hk(M,R) when M is an hyperbolic manifold (see op.cit. ).

3.6. Moore normalization. Let A be a simplicial abelian group. The standard com-
plex (still denoted A for simplicity) of abelian groups associated to A is defined using the
boundary map

∂ ∶=
n

∑
0

(−1)jdj ∶ An → An−1. (32)

The associated normalized complex NA is defined as follows

NAn ∶= ∩n−1
0 Kerdj ⊂ An, d ∶= dn ∶ NAn → NAn−1 (33)

(the simplicial identity dndn−1 = dn−1dn−1 shows that it defines a complex). For each n one
lets Dn ⊂ An be the subgroup generated by the ranges of the degeneracies. The boundary
map ∂ of (32) fulfills ∂(Dn) ⊂Dn−1 and induces a map

∂ ∶ An/Dn → An−1/Dn−1.

The corresponding quotient complex A/D is the complex modulo degeneracies. By con-
struction one has two morphisms of complexes i ∶ NA → A and p ∶ A → A/D. Moreover
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(see [4], Theorem 2.1), the morphism p ○ i ∶ NA → A/D is an isomorphism of chain
complexes. It follows that the composite morphism ν ∶= (p ○ i)−1 ○ p ∶ A → NA is a
projection. As in the proof of Theorem 2.4 of [4], one constructs explicitly a chain map
f (n) ∶ An → NAn as the composition

f (n) ∶= f (n)n−2 ○ . . . ○ f
(n)
j ○ f (n)0 (34)

where f
(n)
j ∶ An → An is defined as f

(n)
j = Id − sj+1dj+1. Moreover one also constructs

explicitly a chain homotopy Tk ∶ Ak → Ak+1 such that

Id − f (n) = T ○ ∂ + ∂ ○ T. (35)

Since each f
(n)
j acts as the identity in the quotient An/Dn the same holds for f (n) and

one obtains the equality νn = f (n).

3.7. Lemma. Let X be pointed simplicial set. Let the simplicial vector space A =HR ○X
be endowed with the norm

∥φ∥ ∶= ∑ ∣φ(x)∣ , ∀φ ∈ An =HR(Xn). (36)

(i) The linear map νn = f (n) ∶ An → NAn is of norm ≤ 2n−1.
(ii) Let c ∈ Zn(A) be a cycle. Then νn(c) is a homologous normalized cycle and ∥νn(c)∥ ≤
2n−1∥c∥.

Proof. (i) The statement follows from (34) and the inequalities

∥f (n)j ∥ ≤ ∥Id∥ + ∥sj+1dj+1∥ ≤ 2, ∥f ○ g∥ ≤ ∥f∥∥g∥.

(ii) This follows from (i) and (35).

On the real vector space Hn(X,R) we consider the following semi-norm which is induced
by the `1-norm (36) on the normalized complex NAn:

∥c∥nor ∶= inf{∥φ∥ ∣ φ ∈ NAn, φ ∼ c} (37)

where φ ∼ c means that φ ∈ NAn is homologous to the cycle c ∈ Zn(A). By applying
Lemma 3.7 one obtains the basic inequalities

∥c∥1 ≤ ∥c∥nor ≤ 2n−1∥c∥1 , ∀c ∈Hn(X,R). (38)

3.8. Equivalence with the Gromov norm. The filtration of the s-module HR by
the sub-s-modules ∥HR∥λ ⊂ HR, λ ∈ R+, of (29) provides, for any pointed simplicial set
X and integer n ≥ 0 natural morphisms of s-modules

ρn,λ ∶Hn(X, ∥HR∥λ) →Hn(X,HR), (39)

and a filtration by the ranges of the ρn,λ. Theorem 2.17 gives a natural isomorphism
Hn(X,HR) =H(Hn(X,R)).
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3.9. Theorem. Let X be a pointed simplicial set. For any integer n ≥ 0 and λ ∈ R+, the
range of the natural morphism of s-modules is

ρn,λ (Hn(X, ∥HR∥λ)) = ∥H(Hn(X,R))∥nor
λ (40)

where ∥c∥nor is the semi-norm defined in (37).

Proof. It follows from (29) that the endofunctor ∥HR∥λ assigns to a pointed set (X,∗)
the set of maps with finite support

∥HR∥λ(X) ∶= {φ ∶X → R ∣ φ(∗) = 0, #{x ∣ φ(x) ≠ 0} < ∞, ∑∣φ(x)∣ < λ}.

By construction the range ρn,λ (Hn(X, ∥HR∥λ)) is a sub-functor of H(Hn(X,R)) thus to
show (40) it is enough to prove that for any integer k > 0 one has

ρn,λ (Hn(X, ∥HR∥λ)) (k+) = ∥H(Hn(X,R))∥nor
λ (k+). (41)

The right hand side of (41) is given by k-tuples (γj)1≤j≤k, γj ∈ Hn(X,R) such that

∑∥γj∥nor < λ, i.e.

∃φj ∈HR ○Xn ∣ diφj = 0∀i, φj ∼ γj, ∑
Xn×{1,...,k}

∣φj(x)∣ < λ.

For the left hand side of (41) one has

∥HR∥λ(Xn ∧ k+) =

{(ψj)j∈{1,...,k} ∣ ψj ∶Xn → R, ψj(∗) = 0, #{x ∣ ψj(x) ≠ 0} < ∞, ∑∣ψj(x)∣ < λ}
and moreover the simplicial structure satisfies

di ((ψj)j∈{1,...,k}) = (diψj)j∈{1,...,k}.

Thus the 0-chains HomS∗(Sn, ∥HR∥λ(X ∧ k+)) are exactly the same as the ones involved
in the right hand side of (41) and one gets (40).

For a topological space X one lets sinX be the associated simplicial set of singular sim-
plices

sinX = {[n] ↦ Top(∆n,X)}
where the standard simplex ∆n of dimension n is given concretely as

∆n = {(λ0, . . . , λn) ∣ λj ≥ 0, ∑λj = 1}

Then, Definition 2.15 extends to topological spaces and arbitrary s-modules as

Hn(X,M) ∶=Hn(sinX,M) (42)

3.10. Corollary. Let X be a topological space. The filtration of the singular homology
group Hn(X,R) by the s-modules Hn(X, ∥HR∥λ) defines a semi-norm which is equivalent
to the Gromov norm.

Proof. This follows from Theorem 3.9 and the basic inequalities (38).
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4. Equality for Riemann surfaces of genus g > 1

We show that for a compact oriented 2-dimensional manifold Σ of genus g > 1, the
normalized norm (37) on singular homology agrees with the Gromov norm. Since these
two norms are equivalent and the Gromov norm vanishes except on H2(Σ,R) it is enough
to prove the equality for the fundamental class [Σ] ∈ H2(Σ,R). The difficulty is to
construct singular cycles c in the homology class [Σ] which not only have `1-norm ∥c∥1

close to the expected value 4(g − 1) but are also normalized, i.e. such that all boundaries
vanish ∂j(c) = 0. This is achieved in three steps. In section 4.1 we deal with the relative
situation of the building block K and construct a normalized cycle relative to its boundary
∂K. In section 4.4 we assemble together g copies of K and obtain a surface of genus g and
a normalized cycle representing the fundamental class whose `1-norm is 4g. The third step
is standard and uses cyclic covers to improve the estimate to the expected value 4(g − 1).
4.1. Moore normalization for the building block. A compact oriented 2-dimen-
sional manifold Σ of genus g > 1 is obtained by gluing together g copies of a building block
K which we now describe. This building block is the quotient of the convex polygon
Conv(0,1,2,3,4,5) of Figure 2 by the equivalence relation R generated by

∆({1,2})(x) ∼R ∆({4,3})(x), ∆({2,3})(x) ∼R ∆({5,4})(x) , ∀x ∈ ∆1

where given n + 1 points (P0, . . . , Pn) in the real affine plane E = R2, one denotes

∆({P0, . . . , Pn}) ∈ Top(∆n,E), (λ0, . . . , λn) ↦∑λjPj.

By transitivity one finds that the five vertices (1,2,3,4,5) are equal modulo R, since
1 ∼R 4 ∼R 3 ∼R 2 ∼R 5. Thus one has by construction a continuous map

γ ∶ Conv(0,1,2,3,4,5) →K. (43)

The building block K thus consists of 4 triangles with the common vertex 0 and where
the external sides are identified following the rules

∆({1,2}) ∼ ∆({4,3}), ∆({2,1}) ∼ ∆({3,4}),
∆({2,3}) ∼ ∆({5,4}), ∆({3,2}) ∼ ∆({4,5}). (44)

It is shown geometrically in Figure 3 as a subset of the 2-torus (before the identifications
of the edges) and in Figures 4 and 5 after these identifications have been performed. These
Figures keep track of the natural triangulations.
By construction one has ∆({P0, . . . , Pn}) ∈ Top(∆n,Conv(Pj)) where Conv(Pj) is the
convex hull of the points Pj. The composition

∆′({P0, . . . , Pn}) ∶= γ ○∆({P0, . . . , Pn}) ∈ Top(∆n,K) (45)

defines singular simplices i.e. elements of sinK. From (44) one obtains the equalities

∆′({1,2}) = ∆′({4,3}), ∆′({2,1}) = ∆′({3,4}),
∆′({2,3}) = ∆′({5,4}), ∆′({3,2}) = ∆′({4,5}) (46)
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Figure 5: Neighborhood of point P .

To each pair (i, j) of > 0 integer indices we associate the simplicial chain c(0, i, j)

c(0, i, j) ∶= ∆′({0, i, j}) +∆′({i, j,0}) + 2∆′({j,0, i})
−∆′({j, i,0}) −∆′({0, j, i}) − 2∆′({i,0, j}) (47)

The boundaries of c(0, i, j) are described as follows

4.2. Lemma. The following equalities hold

∂0(c(0, i, j)) = 2∆′({0, i}) − 2∆′({0, j}) −∆′({i,0}) +∆′({j,0}) +∆′({i, j}) −∆′({j, i})
∂1(c(0, i, j)) = −∆′({0, i}) +∆′({0, j}) +∆′({i,0}) −∆′({j,0}) + 2∆′({j, i}) − 2∆′({i, j})
∂2(c(0, i, j)) = ∆′({0, i}) −∆′({0, j}) + 2∆′({j,0}) − 2∆′({i,0}) +∆′({i, j}) −∆′({j, i})

Proof. The result follows by linearity of the ∂j and the equalities

∂0∆′({a, b, c}) = ∆′({b, c}), ∂1∆′({a, b, c}) = ∆′({a, c}), ∂2∆′({a, b, c}) = ∆′({a, b})
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Figure 7: Domain for surface of genus 3.

We now combine the above simplicial chains and use the rules (46) to get a chain which
is normalized relative to the boundary ∂K of K.

4.3. Lemma. Let c(1,5) ∶= ∑1≤i≤4 c(0, i, i + 1). One has

∂0c(1,5) = 2∆′({0,1}) − 2∆′({0,5}) −∆′({1,0}) +∆′({5,0})
∂1c(1,5) = −∆′({0,1}) +∆′({0,5}) +∆′({1,0}) −∆′({5,0})
∂2c(1,5) = ∆′({0,1}) −∆′({0,5}) − 2∆′({1,0}) + 2∆′({5,0})

Proof. The cancelations follow from the equalities

∑
1≤i≤4

(∆′({0, i}) −∆′({0, i + 1})) = ∆′({0,1}) −∆′({0,5})

∑
1≤i≤4

(∆′({i,0}) −∆′({i + 1,0})) = ∆′({1,0}) −∆′({5,0})

and from the following one which uses the rules (46)

∑
1≤i≤4

(∆({i, i + 1}) −∆({i + 1, i})) = 0

since (46) shows that the following terms all vanish

∆({1,2})−∆({4,3}), ∆({2,3})−∆({5,4}), ∆({3,4})−∆({2,1}), ∆({4,5})−∆({3,2})

We thus get the required formulas.

4.4. Moore normalization for a Riemann surface of genus g > 1. Let g > 1 and
P be obtained (see Figure 7) as the union of g copies P (w) = P(1+4w,5+4w) for 0 ≤ w < g, of
the basic polygon Conv(0,1,2,3,4,5) of Figure 2, where the side (0,5+4w) is common to
P (w) and P (w+1) for w < g−1 and is common to P (g−1) and P (0) for w = g−1, while the
external sides are identified pairwise as in P . The quotient of P by these identifications
is a surface Σ(g) of genus g.
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4.5. Lemma. The singular chain

c = c(1,5) + c(5,9) + . . . + c(1+4w,5+4w) + . . . + c(1+4(g−1),1)

is closed and normalized, i.e. one has ∂jc = 0 for j ∈ {0,1,2}.

Proof. By Lemma 4.3 one gets for 0 ≤ w ≤ g − 1, and with 5 + 4(g − 1) ∼ 1,

∂0c(1+4w,5+4w) = 2∆′({0,1 + 4w}) − 2∆′({0,5 + 4w}) −∆′({1 + 4w,0}) +∆′({5 + 4w,0})

which gives
∂0c = ∂0 ∑

0≤w≤g−1

c(1+4w,5+4w) = ∑
0≤w≤g−1

∂0c(1+4w,5+4w) = 0.

The same reasoning applies to show that ∂jc = 0 for j ∈ {1,2}.

4.6. Lemma. The singular chain c of Lemma 4.5 represents the singular homology class
8[Σ] ([Σ] = fundamental class of Σ).

Proof. The result follows since each chain c(0, i, i + 1) as in (47) is homologous to
8∆′({0, i, i + 1}) while the 4g triangles ∆′({0, i, i + 1}) for 1 ≤ i ≤ 4g give a triangula-
tion of Σ.

4.7. Lemma. The `1-norm of the singular chain c of Lemma 4.5 is ≤ 32g.

Proof. This follows from the triangle inequality and the definition (47) of the chain
c(0, i, j) whose `1-norm is ≤ 8.

4.8. Theorem. Let Σ be a compact Riemann surface and [Σ] its fundamental class in
homology. Then [Σ] belongs to the range of the canonical map H2(Σ, ∥HR∥λ) →H2(Σ,R)
if and only if λ is larger than the Gromov norm of [Σ].
Proof. The result follows from Theorem 3.9 if one shows that the fundamental class [Σ]
fulfills the equality

∥[Σ]∥nor = ∥[Σ]∥1

The inequality ≥ follows from (38). Moreover, as recalled in section 3.3, for a surface
of genus g the Gromov norm ∥[Σ]∥1 is equal to 4(g − 1). Thus it remains to show that
∥[Σ]∥nor ≤ 4(g−1). By applying Lemmas 4.6 and 4.7 one obtains the inequality ∥[Σ]∥nor ≤
4g. One then applies a standard technique which is to use the same inequality for the
covering space Σ′ of Σ associated to an infinite cyclic subgroup of the fundamental group
π1(Σ). The genus of a cyclic cover Σ′ of degree n is g′ = n(g − 1) + 1 since the Euler
characteristic is multiplied by n. Thus the inequality ∥[Σ′]∥nor ≤ 4g′ entails

n∥[Σ]∥nor ≤ 4g′ = 4(n(g − 1) + 1).

By passing to the limit when n→∞ one obtains the desired inequality ∥[Σ]∥nor ≤ 4(g−1).
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