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HIGHER SEGAL SPACES VIA HIGHER EXCISION

TASHI WALDE

Abstract. We show that the various higher Segal conditions of Dyckerhoff and Kapra-
nov can all be characterized in purely categorical terms by higher excision conditions
(in the spirit of Goodwillie–Weiss manifold calculus) on the simplex category ∆ and the
cyclic category Λ.

1. Introduction

Starting with Segal’s [1974] original definition of special Γ- and ∆-spaces, many related
notions have been used as an efficient tool to describe monoids and categories which are
not strictly associative but only associative up to a coherent system of higher homotopies.
Important examples are the Segal categories of Dwyer et al. [1989] and Hirschowitz and
Simpson [1998], and the complete Segal spaces of Rezk [2001]. The unifying theme of
these Segal objects is that they are simplicial objects in an (∞-)category C—i.e., functors
X : ∆op → C on the simplex category ∆—satisfying a certain family of descent conditions.

The starting point for this work is the easy but little-known observation that Segal
objects can be concisely characterized by a condition that does not refer to the internal
workings of ∆ but only to its abstract category-theoretic properties.

1.0.1. Observation. A simplicial object ∆op → C is Segal if and only if it sends bicarte-
sian squares in ∆ to cartesian squares in C.

Dyckerhoff and Kapranov [2019] generalized Rezk’s Segal condition and introduced
what they call higher Segal spaces1. Their definition is very geometric in nature: They
consider the so called cyclic polytopes C(n, d), defined as the convex hull of n+1 points on
the d-dimensional moment curve t 7→ (t, t2, . . . , td). The main feature of these polytopes in
this context is that they have two canonical triangulations, called the lower triangulation
and the upper triangulation, respectively. Each of these triangulations defines a simpli-
cial subcomplex T of the standard n-simplex ∆n; Dyckerhoff and Kapranov then impose
conditions on simplicial objects by requiring that the value2 on the inclusion T ↪→ ∆n
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1not to be confused with the n-fold Segal spaces of Barwick [2005]
2Every simplicial object can be canonically evaluated on simplicial sets by Kan extension along the

Yoneda embedding; see Section 5.1.
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is an equivalence: a simplicial object is called lower (resp. upper) d-Segal if this is
true for the lower (resp. upper) triangulation of C(n, d) and d-Segal if this is true for all
triangulations of C(n, d).

The purpose of this article is to characterize the various flavors of higher Segal condi-
tions in terms of purely categorical notions of higher excision. We first do this for lower
(2k−1)-Segal spaces, since they are the most fundamental3 amongst all versions of higher
Segal spaces. The following is the first main result of this paper:

1.0.2. Theorem. [Theorem 7.2.2] Let X : ∆op → C be a simplicial object in an ∞-cate-
gory C with finite limits. The following are equivalent:

1. the simplicial object X is lower (2k − 1)-Segal;

2. the functor X sends every strongly bicartesian4 (k + 1)-dimensional cube in ∆ to a
limit diagram in C.

We call a functor Zop → C satisfying condition 2 of Theorem 1.0.2 weakly k-ex-
cisive; compare this with Goodwillie’s [1992] calculus of functors, where a (covariant)
functor Z → C is called k-excisive if it sends strongly cocartesian (k + 1)-dimensional
cubes in Z to limit diagrams in C.

We illustrate Theorem 1.0.2 with some examples.

� The cyclic polytope C(n, 1) is just the interval ∆{0,n}; its lower triangulation (see
Figure 1) yields the simplicial complex

Sp[n] := ∆{0,1} ∪ · · · ∪∆{n−1,n} ⊂ ∆n. (1)

Rezk’s Segal condition for a simplicial object says precisely that the inclusion
Sp[n] ↪→ ∆n needs to be sent to an equivalence; this is what Dyckerhoff and Kapra-
nov call the lower 1-Segal condition. For n = 1, this condition says precisely that
the bicartesian square

1 12

01 012

� (2)

in ∆ needs to be sent to a limit diagram. More generally, every square of the form

{i} {i, . . . , n}

{0, . . . , i} {0, . . . , n}

� (3)

3This vague assertion is made precise by the path space criterion (see Poguntke [2017, Proposition 2.7])
which expresses all higher Segal conditions in terms of lower (2k − 1)-Segal conditions.

4A cube is strongly bicartesian if each of its 2-dimensional faces is bicartesian; see Definition 3.3.4.
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0 1 2 3 4 5

Figure 1: The lower triangulation of the cyclic polytope C(n, 1), here depicted with
n = 5.

(for 0 < i < n) is bicartesian in ∆; it is in fact an often used characterization of
Segal objects to require these squares to be sent to pullbacks.

� The cyclic polytope C(4, 3) is a double triangular pyramid; its lower triangulation
(see Figure 2) induces the simplicial complex

T = ∆{1,2,3,4} ∪∆{0,1,3,4} ∪∆{0,1,2,3} ⊂ ∆4. (4)

By definition, a simplicial object satisfies the first lower 3-Segal condition if it sends
the canonical inclusion T ↪→ ∆4 to an equivalence; this is equivalent to sending the
cube

13 134

123 1234

013 0134

0123 01234

(5)

which is strongly bicartesian in ∆, to a limit diagram.

In general, the first non-trivial lower (2k−1)-Segal condition (i.e., the one for n = 2k)
can always be expressed in terms of a strongly bicartesian cube in ∆ of dimension k+1 and
this cube is the unique such cube which is in a certain sense “basic”. However, for bigger
n both the number of simplices in the lower triangulation of C(n, 2k− 1) and the number
of basic strongly bicartesian cubes grows very rapidly so that, a priori, the behavior of
weakly k-excisive simplicial objects and lower (2k−1)-Segal objects diverges dramatically.

Since the introduction of higher Segal spaces, most interest in the area was garnered
by 2-Segal spaces; more precisely by 2-Segal spaces that satisfy an additional condition
called unitality. For example, unital 2-Segal spaces were studied by Dyckerhoff [2018] from
the perspective of Hall algebras and by Gálvez-Carrillo, Kock and Tonks [2018a; 2018b;
2018c] from the perspective of bialgebras arising in combinatorics5. The ∞-category
of unital 2-Segal spaces was identified in a previous paper [Walde, 2017] as a certain

5Unital 2-Segal spaces are called decomposition spaces in this context.
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Figure 2: The three 3-simplices ∆{1234}, ∆{0134} and ∆{0123} (depicted in cyan, magenta
and yellow, respectively) assemble into the lower triangulation of the double triangular
pyramid C(4, 3).

sub-∞-category of the∞-category of∞-operads and recently by Stern [2019] as a certain
∞-category of algebras in correspondences. The main source of examples for unital 2-Segal
objects is Waldhausen’s [1985] S-construction from algebraic K-theory; Bergner, Osorno,
Ozornova, Rovelli and Scheimbauer [2018] showed that in a certain sense every unital
2-Segal space arises this way; Poguntke [2017] generalized Waldhausen’s construction
to higher dimensions, thus providing many examples for 2k-Segal spaces. Furthermore,
cyclic unital 2-Segal spaces—which can be identified with certain cyclic ∞-operads (see
Walde [2017]) or with Calabi–Yau algebras in correspondences (see Stern [2019])—play a
central role in the construction of topological Fukaya categories of marked surfaces due
to Dyckerhoff and Kapranov [2018].

We show that 2-Segal spaces, and more generally 2k-Segal spaces, can be characterized
by a relative version of higher weak excision which involves Connes’ cyclic category Λ.

1.0.3. Theorem. [Theorem 7.2.2] Let X : ∆op → C be a simplicial object in an ∞-cate-
gory C with finite limits. The following are equivalent:

1. the simplicial object X is 2k-Segal;

2. the functor X sends to cartesian cubes in C those (k + 1)-dimensional cubes in ∆
which become strongly bicartesian in Λ (under the canonical functor ∆→ Λ).

We again illustrate the theorem with some examples:

� The square (2) encoding the first Segal condition is typically not sent to a cartesian
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Figure 3: The lower and the upper triangulations of the cyclic polytope C(4, 2).

square by 2-Segal objects. This is explained by Theorem 1.0.3: while the square (2)
is bicartesian in ∆, it is no longer a pushout square in Λ.

� The 2-dimensional cyclic polytope C(4, 2) is a square. It has the two triangulations
(see Figure 3) whose corresponding Segal condition expresses that the two squares

13 123

013 0123

and
02 012

023 0123

(6)

in ∆ are sent to a limit diagram. Both of the squares (6) are bicartesian in Λ.

� The squares

11′ 011′

1 01

d0

s0 s1

d0

and
0′0 0′01

0 01

d2

s0 s0

d1

(7)

are bicartesian both in ∆ and in Λ. Hence they need to be sent to pullback squares
by every Segal object (by Theorem 1.0.2) and by every 2-Segal object (by Theo-
rem 1.0.3). While the first of these facts is easy, the second is non-trivial; it is
precisely the statement that 2-Segal spaces are automatically unital, which was
discovered only very recently by Feller, Garner, Kock, Proulx and Weber [2019].

We would like to point out the following corollary of Theorem 1.0.3, which cements
the importance of cyclic 2k-Segal objects and might help explain the particular usefulness
of cyclic 2-Segal objects.
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1.0.4. Corollary. [Corollary 7.2.3] Let C be an ∞-category with finite limits. The
cyclic 2k-Segal objects in C are precisely the weakly k-excisive functors Λop → C.

Finally, we remark that our main theorem implies a non-trivial bound (Proposi-
tion 7.3.1) on how many values of a higher Segal object can be trivial without the whole
object collapsing. Whether this bound is sharp is still unknown (at least to the author)
and remains to be investigated in future research.

1.1. Methods and structure of the paper. The main conceptual framework which
informs our approach is a version for the simplex category of the Goodwillie–Weiss man-
ifold calculus (see Weiss [1999]; Goodwillie and Weiss [1999]). In Section 2 we explain
a system of heuristic analogies between manifold calculus (in its version described by
Boavida de Brito and Weiss [2013]) and a “manifold calculus” on ∆. While the math-
ematics in the rest of the paper stands on its own, it is the author’s opinion that these
informal analogies to manifold calculus can be very helpful when digesting the definitions
and building intuition. Interestingly, they also explain how one might have guessed the
definition of higher Segal spaces without knowing about cyclic polytopes. One practical
upshot of the analogy to manifold calculus is that it inspires the definition of polynomial
simplicial objects, a notion which is implied by higher weak excision (while being, a priori,
weaker) and which can be compared more easily to the higher Segal conditions.

In Section 3 we recall basic definitions and facts about the categories ∆ and Λ,
(co)cartesian and strongly (co)cartesian cubes, as well as general notions of excision,
weak excision and descent. In Section 4, we explicitly classify strongly cartesian and bi-
cartesian cubes in ∆ and in Λ. In Section 5 we explain a descent theory on ∆ and study
polynomial simplicial objects in this framework6. In Section 6 we show that polynomial
simplicial objects agree with weakly excisive ones; our key arguments here are a version of
the ones of Feller et al. [2019] repackaged in a way which directly generalizes to arbitrary
dimensions. The main theorem (Theorem 7.2.2)—comparing higher Segal conditions with
weak excision—is proved in the last section (Section 7) by considering a series of descent
conditions which interpolate between the higher Segal conditions and the conditions of
being polynomial.

1.2. Acknowledgments. This work was done during my studies at the Hausdorff Cen-
ter for Mathematics (HCM) and is part of my doctoral thesis; I am very grateful to my
supervisors Catharina Stroppel and Tobias Dyckerhoff for supporting and encouraging
me during this time. This research was supported with a Hausdorff scholarship by the
Bonn International Graduate School for Mathematics (BIGS) and funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excel-
lence Strategy - GZ 2047/1, Projekt-ID 390685813. This paper was prepared for publi-
cation in Theory and Applications of Categories while the author was employed at the
Technical University of Munich (TUM).

6This framework has already proven its worth in the classification of higher Segal objects with values
in stable or additive ∞-categories; see Dyckerhoff et al. [2019] and Walde [2020].
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1.3. ∞-categorical conventions. Throughout this article, we will freely use the
theory of ∞-categories as developed by Lurie [2009]; most relevant will be the theory of
limits and Kan extensions developed in Chapter 4. We silently identify each ordinary
category with its nerve so that each ordinary category is in particular an ∞-category.
Given two (∞-)categories C and Z, we write Fun(Z,C) for the (∞-)category of functors
between them; for instance, Fun(∆op,C) denotes the ∞-category of simplicial objects in
the ∞-category C. When we talk about commutative diagrams in an ∞-category we will
usually only depict objects and arrows while leaving the higher coherence data implicit.
All limits and colimits are always meant to be taken in the homotopy-coherent (i.e.,
∞-categorical) sense.

2. A “manifold calculus” for the simplex category

A contravariant functor X defined on the topological (i.e., ∞-) category Man of smooth
d-manifolds and smooth embeddings is usually called polynomial of degree ≤ 1 if its value
on a manifold M can be computed by cutting M up into smaller open pieces, evaluating
X piece by piece and then reassembling the values. More precisely, for each pair of disjoint
closed subsets subsets A0, A1 ⊂M , one requires the canonical map

X (M) −→ X (M \ A0)×X (M\A0∪A1) X (M \ A1)

to be an equivalence.
Boavida de Brito and Weiss [2013] show that polynomial functors of degree ≤ 1 are

precisely the (homotopy) sheaves on Man for the Grothendieck topology J1 of open
covers. More generally, they consider a hierarchy Jk of Grothendieck topologies on Man
(with k ≥ 1), where Jk consists of those open covers (called k-covers) which have the
property that every set of k (or fewer) points is contained in some open set of the cover.
The manifold calculus of Boavida de Brito and Weiss is concerned with the systematic
study of sheaves on (Man,Jk). They introduce the following classes of open covers:

1. the class J h
k consists of open covers of the form

{M \ Ai ↪→M | i = 0, . . . , k} (8)

for pairwise disjoint closed subsets A0, . . . , Ak ⊂M of M .

2. the class J ◦k consists of good k-covers, i.e., k-covers with the property that every
finite intersection of open sets is diffeomorphic to a disjoint union of at most k balls.

While the classes J h
k and J ◦k are not Grothendieck topologies anymore, they are so called

coverages, hence they admit a well-behaved theory of descent and sheaves. Sheaves for
the coverage J h

k are called polynomial functors of degree ≤ k. One of the main results of
Boavida de Brito and Weiss in this context is the following theorem:



HIGHER SEGAL SPACES VIA HIGHER EXCISION 1055

2.0.1. Theorem. [Boavida de Brito and Weiss, 2013, Theorem 5.2 and Theorem 7.2]
The coverages Jk, J h

k and J ◦k define the same class of sheaves on Man.

We shall now describe a similar theory for simplicial objects, i.e., presheaves on the
simplex category ∆ (see Section 3.1 for the notation). It turns out that the following list
of analogies is useful; we put terms coming from the language of manifold in quotes to
emphasize that they should be thought of heuristically:

� We think of the object [n] = {0, . . . , n} ∈ ∆ as a “manifold” with “points” given by
pairs (x− 1, x) with x = 1, . . . , n.

� An “open subset” of [n] is simply an ordinary subset U ⊆ {0, . . . , n}; it contains
the “points” (x− 1, x) such that {x− 1, x} ⊆ U .

� We say that two “open subsets” U,U ′ of the “manifold” [n] are “disjoint” if they
are disjoint as subsets of [n]; note that this is a stronger condition than requiring U
and U ′ to share no “point”.

� A “closed set” A of [n] is an ordinary subset of A ⊆ [n]; it contains all the points
not contained in its complement [n] \A ⊆ [n] (viewed as an “open set”); explicitly,
A contains all “points” (x− 1, x) with x ∈ A or x− 1 ∈ A.

� We say that two “closed sets” A,A′ ⊆ [n] are “disjoint” if they share no “point”;
note that this is stronger than being disjoint as subsets of [n].

� Each “point” p = (x − 1, x) has a unique minimal “open neighborhood” given by
the subset Up = {x− 1, x} ⊆ [n], which we think of as a very small “open ball”
around the “point” p.

Armed with this intuition, we can define analogs of the coverings J h
k and J ◦k in the

simplex category:

1. The open covers (8) can be translated to ∆ by putting everything in quotation
marks: For every collection A0, . . . , Ak of “nonempty and pairwise disjoint closed
subsets” of the “manifold” [n], we can define the “open cover”

{[n] \ Ai ↪→ [n] | i = 0, . . . , k} (9)

of [n]. See also Section 5.2.

2. Heuristically7, one way to produce good k-covers of a manifold M is as follows: Fix
a Riemannian metric on M and, for every tuple p = (p1, . . . , pk) of k points in M ,
choose very small (with respect to the geodesic distance between the points pi) balls

Up
i 3 pi. Then the collection

{⋃̇k

i=1U
p
i

∣∣∣ p ∈Mk
}

is a k-good cover of M .

7For an actual proof, see for instance Boavida de Brito and Weiss [2013, Proposition 2.10].
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In our analogy, every “point” p of a “manifold” [n] ∈ ∆ has a canonical/minimal
“open ball” Up surrounding it. Hence each [n] ∈ ∆ has a canonical “good k-cover”
containing all those “open subsets” of [n] ∈ ∆ that can be written as union of the
form ⋃̇k

i=1
Upi ,

where p1, . . . , pk are “points” of the “manifold” [n] with “pairwise disjoint neighbor-
hoods” Upi . See also Section 7.1.

Inspired by the analogy, we call a functor ∆op → C polynomial of degree ≤ k if it
is a sheaf for the “open covers” of type 1 (see Definition 5.2.1).

The following easy observation was the author’s original motivation for this line of
inquiry because it shows on one hand that the canonical “good k-covers” are a mean-
ingful concept and on the other hand that a “manifold calculus” of ∆ can be a powerful
organizational principle for higher Segal spaces.

2.0.2. Observation. Sheaves on ∆ with respect to the canonical “good k-covers” of 2
are precisely the lower (2k − 1)-Segal spaces of Dyckerhoff and Kapranov.

The notion of polynomial simplicial objects might be a bit unsatisfying because its
very definition relies on an informal analogy to manifold calculus; without this analogy,
the “open covers” (8) might seem a bit mysterious and devoid of intrinsic meaning. We
will clarify this issue by showing that a functor ∆op → C is polynomial of degree ≤ k if
and only if it is weakly k-excisive (see Theorem 6.1.1). In this light, our main result (The-
orem 7.2.2) relating lower (2k − 1)-Segal objects with weakly k-excisive functors should
be seen as a discrete analog of Theorem 2.0.1 of Boavida de Brito and Weiss.

We will not spell out the whole story for 2k-Segal objects since it is very similar. Let us
just say that one should now consider a “manifold calculus” not on the simplex category
∆ but on Connes’ cyclic category Λ, where the “manifold” [n] = {0, . . . , n} now has an
additional “point” given by (n, 0).

3. Preliminaries

3.1. The simplex category. The augmented simplex category ∆+ is the category
of finite linearly ordered sets and order preserving (i.e., weakly monotone) maps between
them. The simplex category ∆ ⊂ ∆+ is the full subcategory spanned by the nonempty
finite linearly ordered sets. Every object in ∆ is isomorphic, by a unique isomorphism, to
a standard ordinal of the form [n] := {0 < 1 < · · · < n} for some n ∈ N; when convenient
can we therefore identify ∆ with its skeleton spanned by {[n] |n ∈ N}.
3.1.1. Definition. A simplicial object in an (∞-)category C is a functor ∆op → C.

The augmented simplex category has a monoidal structure

? : ∆+ ×∆+ −→ ∆+, (10)
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given by left-to-right concatenation or join of linearly ordered sets. Explicitly we have

{a0 < · · · < an} ? {b0 < · · · < bm} := {a0 < · · · < an < b0 < · · · < bm} ;

the monoidal unit for ? is the empty set ∅ ∈ ∆+. We use the convention [−1] := ∅ ∈ ∆+

and [n \ i] := {i+ 1 < · · · < n} for all −1 ≤ i ≤ n so that we always have [n] = [i]? [n \ i].
Given a simplicial object X : ∆op → C, the left path object P /X and the right path
object P .X are defined as the compositions

P /X : ∆op [0]?−−−−→ ∆op X−→ C and P .X : ∆op −?[0]−−−→ ∆op X−→ C,

respectively.
A morphism f : [m] → [n] in ∆ is called left active if it preserves the minimal

element (i.e., f(0) = 0) and right active if it preserves the maximal element (i.e.,
f(m) = n). We call f active if it is both left and right active. Denote by ∆min, ∆max and
∆act := ∆min ∩ ∆max the wide subcategories of ∆ containing the left active, right active
and active morphisms, respectively. Call a morphism f : [m]→ [n] left strict (resp. right
strict) if it satisfies f−1{0} = {0} (resp. f−1{n} = {m}). For each n ∈ N, we denote by
an : [1]→ [n] the unique active map; explicitly given as an(0) = 0 and an(1) = n.

3.2. The cyclic category. A finite cyclic set is a pair (N, T ) consisting of a finite set
N together with an endomorphism T : N → N which is transitive, i.e., for each x, y ∈ N
there is some i ∈ N such that T ix = y. A linearly ordered subset L = (L0,≺) of
(N, T ) is a subset L0 of N (called the underlying set of L) equipped with a linear order
≺ such that the restriction of T to L agrees with the successor function induced by ≺. A
morphism (f, f ?) : (N ′, T ′) −→ (N, T ) of finite cyclic sets consists of

� a map of sets N ′ → N which we also denote by f and

� an assignment f ?, which for each linearly ordered subset L ⊂ N produces a linearly
ordered subset f ?L ⊂ N ′ with underlying set f−1L such that f ?L = f ?L′ ? f ?L′′

whenever the linerly ordered subset L ⊂ N is decomposed as L = L′ ? L′′.

Composition of morphisms N ′′
(f ′,f ′?)−−−−→ N ′

(f,f?)−−−→ N between finite cyclic set is given by
the usual composition of underlying set maps and (f ◦ f ′)? = f ′? ◦ f ?.

3.2.1. Definition. [Connes, 1983] Connes’ cyclic category Λ consists of nonempty
finite cyclic sets and morphisms between them. A cyclic object in some (∞-)category C

is a functor X : Λop → C.

3.2.2. Remark. Following the usual naming convention, a cyclic object in the category
of sets would also be called a cyclic set, hence produce a naming clash with the finite
cyclic sets introduced above. This will not be an issue since cyclic objects in the category
of sets never explicitly appear in this article.
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For each n ∈ N, we have the standard finite cyclic set

〈n〉 :=
(
Z
/

(n+ 1),+1
)
.

It is easy to see that every nonempty finite cyclic set is (non-canonically) isomorphic to
exactly one such standard cyclic set. Motivated by this, we use the notation +m := Tm

and −m := T−m for arbitrary finite cyclic sets (N, T ) and omit T from the notation
entirely.

For every finite cyclic set (N,+1), the automorphism group AutΛ(N) is cyclic of order
|N | and is generated by the structure morphism +1: N → N where (+1)? := −1 is given
by

N ⊃ L 7−→ L− 1 := {x− 1 |x ∈ L} ⊂ N.

Specifying a morphism f : N → 〈0〉 amounts to the choice of what we call a linear
order on the cyclic set N , namely a linearly ordered subset f ?{0} ⊂ N with underlying
set f−1{0} = N . A commutative triangle

N ′ N

〈0〉
f ′ f

corresponds precisely to an order preserving map f ′?{0} → f ?{0}. We conclude that the
assignment f 7→ f ?{0} describes a functor

Λ/〈0〉
∼=−→ ∆,

which is easily seen to be an isomorphism of categories between ∆ and the slice of Λ
over 〈0〉. Under this identification, the object [n] ∈ ∆ corresponds to 〈n〉 ∈ Λ which is
equipped with the structure map [n] : 〈n〉 → 〈0〉 induced by the standard linear order
0 < 1 < · · · < n on Z / (n+ 1).

Composition in Λ induces a free and transitive right group action

Λ(N, 〈0〉)× AutΛ(〈n〉) −→ Λ(N, 〈0〉);
(f,+m) 7−→ f+m

which corresponds to cyclic rotation of linear orders: if [n] : 〈n〉 → 〈0〉 is the structure
map corresponding to the standard order < on [n], then [n]+m corresponds to the linear
order ≺ on the set {0, 1 . . . , n} given by n−m+ 1 ≺ · · · ≺ n ≺ 0 ≺ · · · ≺ n−m.

3.3. cartesian and cocartesian cubes. Fix a finite set S and denote by P(S) the
powerset of S, partially ordered by inclusion.

3.3.1. Definition. An S-cube in some (∞-)category C is a functor Q : P(S)→ C.
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3.3.2. Remark. Since the poset P(S) is canonically isomorphic to its opposite (via the
assignment S ⊇ T 7→ S \ T ), we will often write cubes in an (∞-)category Z as functors
Pop(S) → Z. This is convenient when studying contravariant functors X : Zop → C,
where we can then say that the cube Pop(S) → Z in Z is sent by X to the composite

P(S)→ Zop X−→ C; the main example in this paper is of course the case where Z = ∆ and
X : ∆op → C is a simplicial object in C.

Let s ∈ S and write S ′ := S \ {s}. We have an isomorphism of posets

∆1 ×P(S ′)
∼=−→ P(S) (11)

given by (0, T ) 7→ T and (1, T ) 7→ T ∪̇ {s}. For every ∞-category C we get an induced
equivalence

Fun(P(S),C)
'−→ Fun(∆1,Fun(P(S ′),C)) (12)

of ∞-categories, which we denote by Q 7→ Qs. We say that a cube Q is the pasting in
s-direction of two cubes Q′ and Q′′ if we have an identification Qs = Q′s ◦Q′′s.

Denote by P∗(S) := P(S) \ {∅} the poset of nonempty subsets of S.

3.3.3. Definition. An S-cube Q : P(S)→ C is called

� cartesian if it is a limit diagram in C; i.e., if Q is the right Kan extension of its
restriction to P∗(S).

� cocartesian if it is a colimit diagram in C; i.e., if Q is the left Kan extension of
its restriction to P(S) \ {S}.

3.3.4. Definition. An S-cube Q : Pop(S)→ Z is called strongly cartesian or strongly
cocartesian if, for each T ⊂ S and s, s′ ∈ S \ T with s 6= s′, the 2-dimensional face

T T ∪̇ {s}

T ∪̇ {s′} T ∪̇ {s, s′}

(13)

is sent by Q to a pullback square or a pushout square in Z, respectively. A cube is called
strongly bicartesian if it is both strongly cartesian and strongly cocartesian.

3.3.5. Remark. Denote by Pop
≤1(S) and by Pop

≥|S|−1(S) the subposet of Pop(S) spanned

by the subsets T ⊂ S of cardinality |T | ≤ 1 and |T | ≥ |S| − 1, respectively. It is easy
to see that a cube Q : Pop(S) → Z is strongly cartesian if and only if it is the right Kan
extension of its restriction to Pop

≤1(S); it is strongly cocartesian if and only if it is the left
Kan extension of its restriction to Pop

≥|S|−1(S).

3.3.6. Remark. If |S| ≥ 2, then every strongly (co)cartesian cube is also (co)cartesian;
thus justifying the terminology. Beware however, that for |S| = 1 an S-cube is just
an arrow; it is always strongly bicartesian and is (co)cartesian if and only if it is an
equivalence.
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3.3.7. Lemma. Let C be an ∞-category. Let s ∈ S and put S ′ := S \{s}. The restriction
functor

p : Fun(P(S ′),C) −→ Fun(P∗(S
′),C) (14)

is a cocartesian fibration which is cartesian if and only if C admits limits of shape P∗(S).
An S-cube Q : P(S) → C is cartesian if and only if the corresponding edge Qs : ∆1 →
Fun(P(S ′),C) is p-cartesian.

Proof. Lemma 3.3.7 is the higher dimensional analog of [Lurie, 2009, Lemma 6.1.1.1];
the proof is essentially the same.

We say that an S-cube Q is degenerate in direction s ∈ S if the correspond-
ing natural transformation Qs of S \ {s}-cubes is an equivalence. It follows directly
from Lemma 3.3.7 that degenerate cubes—cubes that are degenerate in at least one
direction—are automatically cartesian and cocartesian.

The following lemma is a standard argument which is useful to compare cartesian
cubes of different dimensions.

3.3.8. Lemma. Let Q : P(S) → C be an S-cube in an ∞-category C with finite limits.
Fix s ∈ S and write S ′ := S \ {s}. Assume that the S ′-cube Qs(1) : T 7→ Q(T ∪̇ {s}) is
cartesian. Then the canonical map

limQ
∣∣
P∗(S)

−→ limQ
∣∣
P∗(S′)

(15)

is an equivalence. In particular, the original S-cube Q is cartesian if and only if the
restricted S ′-cube Q

∣∣
P(S′)

= Qs(0) : T 7→ Q(T ) is cartesian.

Proof. Consider the following commutative diagram in C

Q(∅) limQ
∣∣
P∗(S)

Q({s})

limQ
∣∣
P∗(S′)

limQs(1)
∣∣
P∗(S′)

y
' (16)

which is induced by the universal properties of the various limits. By a standard de-
composition argument for limits, the rightmost square in the diagram (16) is cartesian;
moreover, the rightmost vertical map is an equivalence by assumption. It follows that the
left vertical map is also an equivalence; the result follows.

3.4. Čech cubes, descent and weak excision. Let Z be an ∞-category.

3.4.1. Definition. Let S be a finite set. An S-pronged claw (or just S-claw, for
short) F on an object N in Z is an S-indexed tuple F = (fs : Is → N | s ∈ S) of maps
fs in Z with common codomain N ∈ Z or, equivalently, a diagram F : Pop

≤1(S) → Z with
F(∅) = N .
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3.4.2. Example. A [2]-pronged claw F |= N looks as follows

I0 I1 I2

N
f0

f1
f2

(17)

(recall that [2] ∈ ∆ has three elements).

Given an S-claw F = (fs : Is → N | s ∈ S) on N ∈ Z, we write F |= N to make the
codomain N explicit in the notation while keeping the fs, the Is and sometimes even the
S anonymous. In a similar spirit we will use the symbol f ∈ F to mean fs for some
s. With this convention fs and fs′ should be considered distinct if s 6= s′, even if they
are the same map in Z. Each subset T ⊂ S induces a restricted T -claw of F given by
F
∣∣
T

:= (ft | t ∈ T ) |= N .

3.4.3. Definition. An S-claw F |= N in Z is called a candidate S-covering if it can
be extended to a strongly cartesian S-cube ČF : Pop(S)→ Z. In this case we call ČF the
Čech cube associated to F .

If it exists, the Čech cube ČF is given by the formula

S ⊇ T 7−→ limF
∣∣
T
. (18)

We shall sometimes think of the prongs fs : Is → N as generalized subobjects of N ; the
values (18) of the Čech cube should then be thought of as generalized intersections. In
this spirit it is sometimes convenient to use the notation

⋂
t∈T ft := ČF(T ) = limF

∣∣
T

and

denote, for instance, the Čech square of two maps f : I → N and f ′ : I ′ → N as follows:

I ∩ I ′ I ′

I N

f∩I′

I∩f ′ f∩f ′ f ′

f

(19)

3.4.4. Definition. Let F be a candidate covering in Z. A functor X : Zop → C is said
to satisfy descent with respect F if it sends the Čech cube ČF to a cartesian cube in
C; in this case we also say that F is X -local.

Following Boavida de Brito and Weiss we say that a coverage τ on Z is a collection
of candidate coverings. If F |= N is an element of τ then we say that F is a τ-covering;
if the coverage τ is implicit from the context then we say that F is a covering of N .

3.4.5. Definition. A C-valued sheaf for the coverage τ is a functor X : Zop → C which
satisfies descent with respect to all τ -coverings.
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3.4.6. Remark. For each k ≥ 0, there is a canonical coverage τk on Z which consists of
all candidate [k]-coverings. A presheaf Zop → C is a sheaf for this coverage τk if and only
if it is an k-excisive (covariant) functor in the sense of Goodwillie [1992], i.e., if it sends
strongly cocartesian [k]-cubes in Zop to cartesian cubes in C.

We say that an S-claw is strongly bicartesian if it is a candidate covering and if its
Čech cube is strongly cocartesian (hence strongly bicartesian).

3.4.7. Definition. A functor Zop → C is called weakly S-excisive if it is a sheaf for
the coverage of strongly bicartesian S-claws, i.e., if it sends all strongly bicartesian S-cubes
to cartesian cubes in C.

We will also need the following relative notion:

3.4.8. Definition. Let Z→ Z′ be a limit-preserving functor. We call a functor X : Zop →
C weakly S-Z′-excisive (with the functor Z→ Z′ left implicit) if it is a sheaf with respect
to those candidate S-coverings which become strongly bicartesian in Z′.

Clearly the property of being weakly S-excisive (both in the relative and in the absolute
sense) only depends on the cardinality of S. For k ∈ N, we say that X : ∆op → C is
weakly k-excisive if it is weakly [k]-excisive. We will stick to S-cubes instead of [k]-
cubes whenever possible, because the latter might suggest a dependency on the linear
order of the coordinates.

3.4.9. Remark. In the setting of Definition 3.4.8, if every candidate covering in Z′ admits
a lift to a candidate covering in Z then a functor Z′op → C is weakly S-excisive if and
only if its restriction to Z is weakly S-Z′-excisive.

4. Strongly bicartesian cubes in ∆ and Λ

The goal of this section is to classify and explicitly describe the strongly bicartesian cubes
in the simplex category and the cyclic category.

4.1. Strongly bicartesian cubes in the simplex category.

4.1.1. Definition. An S-claw F = (fs | s ∈ S) on [n] in ∆+ is called

� backwards compatible if for each i ∈ [n] there is at most one s ∈ S such that the
preimage f−1

s {i} has more than one element;

� compatible if it satisfies the following two conditions:

BC1 for each i ∈ [n], there is at most one s ∈ S such that the preimage f−1
s {i} is

not a singleton;

BC2 for each 0 < i ≤ n, there is at most one s ∈ S such that the subset {i− 1, i} ⊆
[n] is not contained in the image of fs.
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4.1.2. Remark. The S-claw F satisfies condition BC1 if and only if it is backwards
compatible and: if the preimage f−1

s {i} is empty for some i ∈ [n] and s ∈ S then the
preimage f−1

s′ {i} is a singleton for all s′ ∈ S\s. In the language of Section 2, condition BC2
says precisely that the images of the maps fs are of the form [n]\As, where the (As | s ∈ S)
are “pairwise disjoint closed subsets” of the “manifold” [n].

We call a diagram in ∆+ left active or right active if it takes values in the subcat-
egory of ∆ spanned by the left active or right active morphisms, respectively.

4.1.3. Remark. It will be useful to visualize S-claws F |= [n] in ∆+ as arrays as in the
following example (with n = 9 and S = [3]):

0 1 2 3 4 5 6 7 8 9
0 ∗ ∗ ∗ ∗ ∗ 3 2 ∗ ∗ ∗
1 ∗ ∅ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∅ ∅ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∅ 2 ∅

(20)

There is one row for each prong fs : Is → [n] of F and one column for each i ∈ [n]; in the
entry (s, i) we draw:

� a star ∗ if the preimage f−1
s {i} is a singleton,

� the symbol ∅ if the preimage f−1
s {i} is empty or

� a number l if the preimage f−1
s {i} has l > 1 many elements.

A claw is backwards compatible if and only if in each column there is at most one entry
with more than one star. It is compatible if and only if it satisfies the following two
conditions:

� in each column there is at most one “special” entry, i.e., a cell which is not a star ∗;

� each pair of two empty cells is either in the same row or separated by a column with
no empty cells.

The example (20) depicts the left active compatible claw

{0, 2, 3, 4, 5, 6, 7, 8, 9} {0, 1, 2, 5, 6, 7, 8, 9} {0, 1, 2, 3, 4, 5, 6, 8, 8′}

{0, 1, 2, 3, 4, 5, 5′, 5′′, 6, 6′, 7, 8, 9} [9]

(21)
defined by i, i′, i′′ 7→ i ∈ [9].
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4.1.4. Proposition. Let F |= [n] be an S-claw in ∆+.

(a) The claw F is a candidate S-covering in ∆+ if and only if F is backwards compatible.
The Čech cube ČF : Pop(S)→ ∆+ is given explicitly by the formula

ČF : T 7−→ F
i∈[n]

∏
t∈T

f−1
t {i}. (22)

(b) The S-claw F is strongly bicartesian ( i.e., the Čech cube ČF of F is strongly bi-
cartesian) if and only if F is compatible.

4.1.5. Corollary. A claw in ∆ is strongly bicartesian if and only if it is compatible.

Proof. Corollary 4.1.5 follows directly from Proposition 4.1.4 and the easy observation
that the whole Čech cube of a compatible claw F |= [n] in ∆+ lies in ∆ provided that
n 6= −1.

4.1.6. Example. The [1]-claw
0 1 2
∅ ∗ ∗
∗ ∗ ∅

(23)

is compatible and gives rise to the bicartesian square

1 12

01 012

� (24)

in ∆ which encodes the lowest instance of Rezk’s Segal conditions.

Proof of Proposition 4.1.4.

(a) A priori, the formula (22) describes a strongly cartesian extension ČF : Pop(S) →
Pos of F in the category of posets. Since the canonical inclusion ∆+ ↪→ Pos
preserves limits, we conclude that ČF is a strongly cartesian extension of F in ∆+

if and only if ČF takes values in linearly ordered posets. This happens if and only if
each product

∏
t∈T f

−1
t {i} has at most one factor which is not empty or a singleton;

this is precisely the backwards compatibility condition on F .

(b) Assume that F is backwards compatible so that the Čech cube ČF := Pop(S)→ ∆+

is well defined by part (a). We need to understand when ČF is additionally strongly
cocartesian. By definition, the cube ČF is strongly cocartesian if and only it for
every subset T ⊂ S and every pair of distinct elements s, s′ ∈ S \ T , the square

F
i∈[n]

(
f−1
s {i} × f−1

s′ {i} ×
∏

t∈T f
−1
t {i}

)
F
i∈[n]

(
f−1
s′ {i} ×

∏
t∈T f

−1
t {i}

)
=: B′

B := F
i∈[n]

(
f−1
s {i} ×

∏
t∈T f

−1
t {i}

)
F
i∈[n]

(∏
t∈T f

−1
t {i}

)
=: N

(25)
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is a pushout in ∆+.

To show “if” in the claimed equivalence, assume that F is compatible; we will show
that then each square (25) is a pushout in ∆+. Condition BC1 implies that, for
every i ∈ [n], if one amongst f−1

s {i} and f−1
s′ {i} is empty then the other is a singleton;

it follows that the square (25) is a pushout on the level of underlying sets. It remains
to show that a map of sets β : N →M is weakly monotone if it is weakly monotone
when composed with B → N and B′ → N ; for this it is sufficient to show that each
pair of adjacent elements in N is contained in the image of B → N or in the image
of B′ → N . Let x < x+ 1 =: x′ be two adjacent elements of N and denote by i and
i′ their respective images in [n]. It is enough to show that the subset {i, i′} ⊆ [n] is
contained in the image of fs or in the image of fs′ . If i = i′ then this follows from
condition BC1; if i′ = i+1 then this follows from condition BC2. We may therefore
assume i < i+1 ≤ i′−1 < i′. For each i < i′′ < i′ the product

∏
t∈T f

−1
t {i′′} must be

empty by adjacency of x and x′. Hence there must be t, t′ ∈ T such that f−1
t {i+ 1}

and f−1
t′ {i′ − 1} are empty; in particular the subsets {i, i+ 1} and {i′ − 1, i} of [n]

are not contained in the image of ft and ft′ , respectively. Condition BC2 implies
that the sets {i, i+ 1}, {i′ − 1, i} and, a fortiori, {i, i′} are contained in the image
of both fs and fs′ .

To show “only if”, assume that the cube ČF is strongly bicartesian. We show that
conditions BC1 and BC2 hold, i.e., that F is compatible.

BC1 Let i ∈ [n] and s ∈ S be such that f−1
s {i} is empty. For each s′ ∈ S \ {s}

consider the following commutative diagram, where the inner solid square is
the pushout square (25) (for T = ∅):

F
j∈[n]

f−1
s {j} × f−1

s′ {j} F
j∈[n]

f−1
s′ {j}

F
j∈[n]

f−1
s {j} [n]

F
j∈[n]\{i}

f−1
s {j} [n] \ {i} [i− 1] ? f−1

s′ {j} ? {i+ 1, . . . , n}

The dashed arrow—which exists by the pushout property—exhibits f−1
s′ {i} as

a retract of the singleton {i}, hence as a singleton itself.

BC2 Fix 0 < i ≤ n and distinct elements s, s′ ∈ S. Consider the commutative
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diagram

F
j∈[n]

f−1
s {j} × f−1

s′ {j} F
j∈[n]

f−1
s′ {j}

F
j∈[n]

f−1
s {j} [n]

[n]

where [n] → [n] is the (not order preserving) map that exchanges i − 1 and
i. By the pushout property of the solid square, at least one of the dashed
composites must be not order preserving; this can only happen if least one of
the maps fs and fs′ contains the subset {i− 1, i} ⊆ [n] in its image.

4.1.7. Remark. An S-claw F = (fs | s ∈ S) is backwards compatible if and only if for
each pair of distinct elements s, s′ ∈ S the induced {s, s′}-subclaw is backwards com-
patible. Hence it follows from Proposition 4.1.4, that F admits a Čech cube in ∆+ if
and only if each pair fs, fs′ (for distinct s, s′ ∈ S) admits pullback in ∆+. Similarly, an
S-claw admits a strongly bicartesian Čech cube if and only if each two-pronged subclaw
is compatible.

4.2. Strongly bicartesian cubes in the cyclic category. In this section, we
characterize strongly bicartesian cubes in Λ. To this end, we introduce the cyclic analog
of a compatible claw. Heuristically, this corresponds to adding the new “point” (n, 0) to
the “manifold” [n] ∈ ∆.

4.2.1. Definition. An S-claw F |= [n] in ∆ is called cyclically compatible if the claw
F is compatible and all but at most one f ∈ F have the set {0, n} ⊆ [n] in their image.

4.2.2. Remark. Let ι : I ′′ ↪→ I0?I
′′?I1 = I and α : I ′′ → I ′ be an inert map and an active

map in ∆, respectively. Define [n] := I0 ? I
′ ? I1. It is easy to see that the [1]-claw (I ′ ↪→

[n], Id?α? Id : I → [n]) is cyclically compatible and that I ′′ is the associated pullback. By
definition, the decomposition spaces of Gálvez-Carrillo, Kock and Tonks [2018a; 2018b;
2018c] are precisely those simplicial objects which send to cartesian squares the bicartesian
squares that arise this way.

4.2.3. Example. The [1]-claws

0 1 2 3
∅ ∗ ∗ ∗
∗ ∗ ∅ ∗

and
0 1
∗ 2
∅ ∗

(26)
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are cyclically compatible and arise as the pushouts of the inert map d0 : [1] → [2] along
the active maps d1 : [1]→ [2] and s0 : [1]→ [0], respectively. They encode the first upper
2-Segal condition and an instance of unitality. The [1]-claw (23) of Example 4.1.6 is not
cyclically compatible because the “point” (2, 0) of the “manifold” [2] is not covered by
any prong; the corresponding Čech square (24) is not cocartesian in the cyclic category.

The following is the main result of this section:

4.2.4. Proposition. An S-claw F |= [n] in ∆ has a strongly bicartesian image in Λ if
and only if it is cyclically compatible.

4.2.5. Corollary. The following three classes of S-cubes in Λ agree:

� strongly bicartesian S-cubes in Λ

� images of left active strongly bicartesian S-cubes in ∆

� images of right active strongly bicartesian S-cubes in ∆.

Before we can prove Proposition 4.2.4 and Corollary 4.2.5 we need a couple of lemmas.

4.2.6. Lemma. Let F = (fs : Is → [n] | s ∈ S) be an S-claw in ∆. If F is compatible and
either left active or right active then F is cyclically compatible. Moreover, the following
are equivalent:

1. the claw F is cyclically compatible;

2. for every m ∈ [n], the cyclic rotation F+m :=
(
fs

+m : Is
+m → [n]+m

∣∣ s ∈ S) of the
claw F is compatible;

3. there is an m ∈ [n] such that the cyclic rotation F+m of the claw F is left active
and compatible;

4. there is an m ∈ [n] such that the cyclic rotation F+m of the claw F is right active
and compatible.

Proof. The first statement follows directly from the definitions. It is clear from the defi-
nition that the property of being cyclically compatible is preserved under cyclic rotation;
hence we have the implications (1 =⇒ 2), (3 =⇒ 1) and (4 =⇒ 1). Given a compatible
S-claw F = (fs | s ∈ S) on [n] in ∆, there is an element m ∈ [n] which is in the image of
all the fs. Then for any such m, the rotated claws F−m and F−m−1 are left active and
right active, respectively. We thus obtain the implications (2 =⇒ 3) and (2 =⇒ 4).
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4.2.7. Lemma. Let Q : Pop(S) → Λ be an S-cube in the cyclic category. The following
are equivalent:

1. the cube Q is strongly cartesian;

2. there is a strongly cartesian S-cube in ∆ which is mapped to Q under the canonical
functor ∆→ Λ;

3. every S-cube Q′ in ∆ which maps to Q is strongly cartesian.

Proof. The implications 2 =⇒ 1 =⇒ 3 follow from the general fact about slice categories
that the projection ∆ ∼= Λ/〈0〉 → Λ preserves and reflects pullbacks. The implication
3 =⇒ 2 holds because the cube Q lifts to a cube in ∆ ∼= Λ/〈0〉 by choosing any map
Q(∅)→ 〈0〉.

4.2.8. Lemma. Let

I ∩ I ′ I ′

I [n]

f∩I′

I∩f ′ � f ′

f

(27)

be the left active bicartesian Čech square associated to a left active compatible claw (f, f ′) |=
[n] in ∆. Then the image in Λ of the square (27) is a pushout.

Proof. Consider a solid commutative diagram

I ∩ I ′ I ′

I 〈n〉

N

f∩I′

I∩f ′

p′

f ′

p

f (28)

in Λ, where the top left square is the image of the square (27). We need to show that
there is a unique dashed morphism p : 〈n〉 → N of cyclic sets making the diagram (28)
commute.

� First, we treat the case N = 〈0〉. In this case the maps p : I → 〈0〉, p′ : I ′ → 〈0〉
and p′′ : I ∩ I ′ → 〈0〉 correspond to cyclic rotations ≺ of the linear order on I, I ′

and I ′′ := I ∩ I ′, respectively; we have to show that there is a unique linear order
≺ on the cyclic set 〈n〉 such that both f and f ′ are order preserving with respect
to ≺. Uniqueness is clear, because by compatibility of (f, f ′) each set {i− 1, i} (for
i ∈ [n]) is in the image of f or of f ′.

To construct the linear order ≺ on [n], denote by x and x′ the maximal elements
in the linearly ordered sets (I,≺) and (I ′,≺), respectively, i.e., the unique elements
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with x + 1 ≺ x and x′ + 1 ≺ x′. Without loss of generality, assume i′ := f(x′) ≤
f(x) =: i. Define ≺ to be the unique linear order on the cyclic set 〈n〉 which has
i as its maximum. We need to show that f and f ′ preserve the orders ≺; for this
it is enough to verify that i < f(x + 1) and i < f ′(x′ + 1) (because f(x) ≤ i and
f ′(x′) ≤ i).

Denote by z′′, z′ and z the <-minimal elements of I ′′, I ′ and I, respectively; they
satisfy (f ∩ I ′)(z′′) = z′, (I ∩ f ′)(z′′) = z and f(z) = 0 = f ′(z′) because the
square (27) was assumed to be left active.

– Assume that i = f(x) = f(x+ 1). Then by backwards compatibility of (f, f ′)
we must have a unique y′ ∈ I ′ with f ′(y′) = i. By the explicit formula for Čech
cubes we deduce that the order preserving map (with respect to both ≺ and <)

I ∩ f ′ : I ′′ → I restricts to a bijection I ′′ ∩ {i}
∼=−→ I ∩ {i} which is therefore an

isomorphism (with respect to ≺ and <). Denote by x, x+ 1 ∈ I ′′ the (unique)
preimages under I∩f ′ of x and x+1, respectively; they satisfy x+1 = x+ 1 ≺ x
by the isomorphism property, which means they are the maximal and minimal
element of the linearly ordered set (I ′′,≺), respectively. Since both x and x+ 1
are mapped to y′ by f ∩ I ′ we deduce that f ∩ I ′ : I ′′ → I ′ is constant. This
can only happen if f was already constant and f ′ was an equivalence. Hence
the square (27) is degenerate and therefore trivially a pushout in Λ.

– The case i′ = f ′(x′) = f(x′ + 1) is analogous.

We may therefore assume that x and x′ are the maximal elements (with respect
to both < and ≺) of their corresponding preimages f−1{i} and f ′−1{i′}. It follows
directly that f(x+ 1) > i and f ′(x′ + 1) > i′; it remains to show f ′(x′ + 1) > i and
we may assume that i′ < i. Next, we show that there is no j ∈ [n] with i′ < j ≤ i
which is in the image of f ′′ := f ∩ f ′ : I ′′ → [n]:

– Otherwise, choose w′′ ∈ I ′′ with f ′′(w′′) = j. Set w′ := (f ∩ I ′)(w′′) ∈ I ′ and
w := (I ∩ f ′)(w′′) ∈ I. We have z < w and z′ ≤ x′ < w′ by construction and
w ≤ x because x is maximal for < in the preimage f−1{i}. Hence we have
(after cyclic rotation and using that x and x′ are ≺-maximal) z ≺ w � x and
w′ ≺ z′ � x′, which implies z′′ ≺ w′′ and w′′ ≺ z′′, respectively. Contradiction.

Since i is in the image of f (by definition) and each j with i′ < j ≤ i is not in the
image of f ′′, it follows from the compatibility of (f, f ′) that each such j is not in
the image of f ′. Since we already know f ′(x′ + 1) > i′ we obtain f ′(x′ + 1) > i, as
desired; this concludes the case N = 〈0〉.

� We prove the case of a general N . To see the existence of the dashed map in the
diagram (28), choose any map N → 〈0〉. By the case N = 〈0〉 which we have just
shown, we can fill the dotted morphism 〈n〉 → 〈0〉 of cyclic sets in the following
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commutative diagram

I ∩ I ′ I ′

I 〈n〉

N 〈0〉

f∩I′

I∩f ′

p′

f

p

f (29)

Thus we have constructed a diagram in the overcategory Λ/〈0〉. Under the canonical
identification ∆ ∼= Λ/〈0〉, the top left square of the diagram (29) gets identified
with a cyclic rotation of the original diagram (27). Since any cyclic rotation of a
left active compatible claw is compatible, we deduce from Corollary 4.1.5 that the
corresponding Čech square is a pushout in ∆ ∼= Λ/〈0〉. We conclude by the pushout
property that the desired dashed map 〈n〉 → N in (29) and a fortiori in (28) exists.

To prove uniqueness, recall that the square (27) is a pushout on the level of un-
derlying sets, so that the dashed map is unique as a function of underlying sets. If
〈n〉 → N is constant then it factors uniquely as 〈n〉 → 〈0〉 → N , hence is unique by
the case N = 〈0〉. If 〈n〉 → N is not constant then it is uniquely determined by its
underlying function of sets.

Proof of Proposition 4.2.4. If F is cyclically compatible then by Lemma 4.2.6 there
is a cyclic rotation F−m of F which is left active and compatible. Since F and F−m
have isomorphic images in Λ, it is enough to show that the latter image is strongly
bicartesian. Since the Čech cube ČF−m is left active and strongly bicartesian, it follows
from Lemma 4.2.7 and Lemma 4.2.8 (applied to each 2-dimensional face of the cube) that
its image in Λ is still strongly bicartesian.

Conversely, let Q be a strongly bicartesian cube in Λ extending F . Then every choice
of m ∈ [n] yields a structure map [n]+m : Q(∅) = 〈n〉 → 〈0〉 which gives rise to a cube
Qm in Λ/〈0〉 ∼= ∆ that maps to Q and extends the claw F+m. Since the slice projection
∆→ Λ reflects pullbacks and pushouts, we deduce that each of these cubes Qm is strongly
bicartesian. Hence by Corollary 4.1.5 the corresponding claw F+m is compatible. We
conclude by Lemma 4.2.6 that the original claw F is cyclically compatible.

Proof of Corollary 4.2.5. Recall from Corollary 4.1.5 that strongly bicartesian S-
cubes in ∆ are precisely the Čech cubes of compatible S-claws. Hence Corollary 4.2.5
follows directly from Proposition 4.2.4 and Lemma 4.2.6.

4.3. Primitive decomposition of bicartesian cubes. In this section we show how
a strongly bicartesian cube in ∆ can be decomposed into simpler building blocks.
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4.3.1. Definition. A map f : I → [n] in ∆ is called primitive if there is exactly one
i ∈ [n] such that f−1{i} is not a singleton; the map f is called preprimitive if it is
primitive or an isomorphism. A candidate covering F in ∆+ (and the corresponding
Čech cube ČF) is called (pre)primitive if the claw F consists only of (pre)primitive
maps.

4.3.2. Construction. Let f : I → [n] be a map in ∆. For each i ∈ {−1, 0, . . . , n}, we
define objects

Ii := f−1[i] ? [n \ i]

in ∆. Then f admits a canonical factorization

f : I = In
fn−→ . . .

f i+1−−→ Ii
f i−→ . . .

f1−→ I0
f0−→ I−1 = [n] (30)

where each map f i : Ii → Ii−1 is given as

f i := Idf−1[i−1] ?
(
f ∩ {i} : f−1{i} → {i}

)
? Id[n\i].

Observe that each map f i is preprimitive.

4.3.3. Lemma. Let (f : I → [n], f ′ : I ′ → [n]) be backwards compatible and factorize f as
in Construction 4.3.2.

1. For each i ∈ [n], the composition Ii → [n] in (30) is backwards compatible with f ′

so that by Proposition 4.1.4 we can form the pullbacks

I ∩ I ′ In−1 ∩ I ′ . . . I1 ∩ I ′ I0 ∩ I ′ I ′

I In−1 . . . I1 I0 [n]

I∩f ′ In−1∩f ′ I1∩f ′ I0∩f ′ f ′

fn

f

fn−1 f2 f1 f0

(31)

which factorize the Čech square of f and f ′ into smaller Čech squares.

2. The original claw (f, f ′) is compatible if and only if the claw (f i, Ii−1 ∩ f ′) |= Ii−1

is compatible for each i ∈ [n].

3. The original claw (f, f ′) is cyclically compatible if and only if the claw (f i, Ii−1 ∩
f ′) |= Ii−1 is cyclically compatible for each i ∈ [n].

Proof. Follows by direct inspection of the explicit constructions.
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4.3.4. Lemma.

1. Every strongly bicartesian cube Q in ∆ can be decomposed into a pasting of preprim-
itive strongly bicartesian cubes. If Q was left active then each of these cubes can be
chosen to be left active. If Q was right active then each of these cubes can be chosen
to be right active.

2. Every cube in Q in ∆ which becomes strongly bicartesian in Λ can be decomposed
into a pasting of preprimitive strongly bicartesian cubes, each of which is left active
or right active.

3. If the original cube Q in 1 or 2 is non-degenerate then the pastings can be chosen
to consist of primitive cubes.

Proof. By Corollary 4.1.5, each strongly bicartesian cube in ∆ is the Čech cube ČF of
some compatible S-claw F = (fs | s ∈ S). By Proposition 4.2.4, each cube in ∆ which
becomes strongly bicartesian in Λ is of this form ČF where F is cyclically compatible. For
each s ∈ S, consider the factorization of fs into preprimitive maps from Construction 4.3.2.
By a repeated application of Lemma 4.3.3, we can decompose the cube ČF into a pasting
of Čech cubes of compatible claws which are cyclically compatible if F was. Parts 1
and 2 of Lemma 4.3.4 now follow by applying Corollary 4.1.5, Proposition 4.2.4 and by
the observing that preprimitive cyclically compatible claws are automatically either left
active or right active. Part 3 follows with the same procedure by dropping all identities
appearing in the factorizations produced by Construction 4.3.2.

5. Precovers and intersection cubes

Let F |= [n] be a S-claw on [n] in ∆. If all of the maps in the claw F are injective then
we call F an (S-)precover on [n]. Since precovers are trivially backwards compatible,
Proposition 4.1.4 guarantees the existence of the Čech cube ČF ; we call it the intersec-
tion cube of F . If we view the injective maps F 3 fs : Is ↪→ [n] as subsets Is ⊆ [n] of
[n] then the intersection cube of F is given explicitly by the intersections

T 7−→
⋂
t∈T

It, (32)

(where the empty intersection is [n] by convention); thus the terminology “intersection
cube” is justified. A cover (not to be confused with covering as in Section 3.4) is a
precover F whose prongs are jointly surjective, i.e.,

⋃
F = [n] when we identify the

prongs of F with subsets of [n].

5.1. Membrane spaces and refinements. By right Kan extension along the Yoneda
embedding ∆ ↪→ Fun(∆op,Set), we can extend any simplicial object X : ∆op → C to a
functor

X : Fun(∆op,Set)op −→ C, (33)
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which we still denote by X . Given any simplicial set K, we can calculate the value of X
at K—which Dyckerhoff and Kapranov call the object of K-membranes in X—by the
pointwise formula for Kan extensions:

XK ' lim
((

∆/K

)op → ∆op X−→ C
)

(34)

The inclusion ∆ ↪→ Fun(∆op,Set) factors as ∆ ↪→ ∆+ ↪→ Fun(∆op,Set), where the
second map sends the initial object ∅ to the initial presheaf. We can therefore evaluate
any simplicial objet X : ∆op → C at ∅ and the value will be a terminal object in C.

Given a candidate covering F = (fs : Is → [n] | s ∈ S) in ∆, we obtain a simplicial set

F̃ as the colimit

F̃ := colim

(
P∗

op(S)
ČF−−→ ∆ ↪−→ Fun(∆op,Set)

)
(35)

which comes equipped with a canonical map F̃ → ∆n. It is easy to see that if F is
a precover (i.e., if all maps fs are injective) then F̃ ⊆ ∆n can be identified with the

simplicial subset F̃ :=
⋃

Is∈S ∆Is of the n-simplex. We say that a precover F ′ |= [n] is

a refinement of F |= [n]—written F ′ � F—if and only if F̃ ′ is a simplicial subset of

F̃ ; explicitly, this means that for every I ′ ∈ F ′ there is at least one I ∈ F such that
I ′ ⊆ I (as subobjects of [n]). We say the refinement F ′ � F is degenerate if F̃ ′ = F̃ .

For each [n] ∈ ∆ the assignment F 7→ F̃ describes an equivalence of categories between
the category (which is just a preorder) of precovers and refinements on [n] and the full
subcategory of the overcategory Fun(∆op,Set)/∆n spanned by the simplicial subsets of
∆n. An explicit inverse is given by identifying each simplicial subset K ⊆ ∆n with the
precover given by the maximal simplices of K. We will implicitly use this identification
and write

F̃ :=
(
I
∣∣∣∆I ↪→ F̃ maximal

)
|= [n] (36)

for the precover obtained from a precover F by “removing redundant subsets”.

5.1.1. Remark. For every precover F , the restriction ČF
∣∣
P∗op(S)

: P∗
op(S) → ∆+/F̃ of

the Čech cube of F has a left adjoint given by

([m], α : ∆m → F̃) 7−→
{
s ∈ S

∣∣α(∆m) ⊆ ∆Is
}

(37)

which becomes a right adjoint after passing to opposite categories. Since left adjoints are
homotopy initial8, the canonical map

XF̃ ' limX
∣∣
(∆+/F̃)

op
'−→ limX ◦ ČF

∣∣
P∗(S)

(38)

is an equivalence. In particular, X satisfies descent with respect to F if and only if X
sends the inclusion F̃ ↪→ ∆n to an equivalence.

8Here we use the terminology of Dugger [2008]: He calls homotopy terminal what Joyal and Lurie
would call cofinal; homotopy initial is then the dual notion.
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5.1.2. Definition. We say that a refinement F ′ � F of precovers [n] is X -local if the

induced morphism F̃ ′ → F̃ of simplicial sets is sent by X to an equivalence in C.

The following lemma (which is essentially [Dyckerhoff et al., 2019, Corollary 3.16])
is the main tool to compare to one another descent conditions with respect to various
precovers.

5.1.3. Lemma. Let F |= [n] be a precover in ∆ and I ⊂ [n] a subset. Let X : ∆op
+ → C

be an augmented simplicial object and assume that the restricted precover

F ∩ I := (I ′ ∩ I | I ′ ∈ F) |= I

on I is X -local. Then the refinement F � F̃ ∪ {I} is X -local. In particular, the original

precover F is X -local if and only if the extended precover F̃ ∪ {I} is X -local.

Proof. The refinement F � F̃ ∪ {I} can be written as the composition of refinements

F � F ∪ {I} � F̃ ∪ {I}. (39)

The first refinement in the composition (39) is X -local by Lemma 3.3.8 (due to the
assumption of the Lemma 5.1.3 and using the identification of Remark 5.1.1); the second
refinement is degenerate, hence always local. The claim follows.

5.2. Polynomial simplicial objects. Recalling the analogy to manifold calculus de-
scribed in Section 2, we observe that compatible precovers can be identified precisely with
the “open covers” of the form (9). Indeed, an S-precover F on [n] ∈ ∆ is compatible if
and only if every “point” (x− 1, x) of the “manifold” [n] is contained in all but at most
one of the elements of F , which we think of as “open subsets” of [n]; in other words,
F consists precisely of “open subsets” with “pairwise disjoint closed complements”. The
analogy thus motivates the following definition:

5.2.1. Definition. We call a functor ∆op → C polynomial of degree ≤ |S| (or S-
polynomial, for short) if X satisfies descent with respect to all compatible S-covers in
∆.

5.2.2. Example. We depict, for k = 1, 2, 3, the unique non-degenerate compatible [k]-
cover on [2k]:

0 1 2
∅ ∗ ∗
∗ ∗ ∅

0 1 2 3 4
∅ ∗ ∗ ∗ ∗
∗ ∗ ∅ ∗ ∗
∗ ∗ ∗ ∗ ∅

0 1 2 3 4 5 6
∅ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∅ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∅ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∅

(40)

Note that for n < 2k, there are no non-degenerate compatible [k]-covers on [n].

The number of compatible S-covers on [n] ∈ ∆ grows quite rapidly in n. Thus a priori
to determine that a simplicial object is S-polynomial, there is an increasing number of
conditions to check in each dimension. We show now that it suffices to check any one
non-trivial condition in each dimension.
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5.2.3. Proposition. Let X : ∆op → C be a simplicial object in some ∞-category with
finite limits. Assume that for each n ≥ 2k there exists a non-degenerate compatible [k]-
cover F |= [n] in ∆ which is X -local. Then all compatible [k]-covers are X -local.

Proof. Assume the assumption of Proposition 5.2.3. Recall that degenerate covers are
automatically local. Hence there is nothing to show for n < 2k because in this case there
are no non-degenerate compatible [k]-covers on [n]. We prove by induction on n ≥ 2k
that all non-degenerate compatible [k]-covers are X -local. The inductions start is the case
n = 2k, which is trivial because there is a unique non-degenerate compatible [k]-cover on
[2k]. For the induction step consider the following directed graph:

� Vertices are non-degenerate compatible [k]-covers on [n].

� Let F be a non-degenerate compatible [k]-cover and let I ∈ F and x ∈ [n] \ I such

that I ′ := I ∪ {x} 6= [n]. Then the cover F ′ := ˜F ∪ {I ′} is easily seen to be again
[k]-pronged, compatible and non-degenerate. We add the refinement

F � ˜F ∪ {I ′}

to the graph as an arrow F → F ′. Observe that in the language of Remark 4.1.3,
the cover F ′ arises from the cover F by choosing a row with at least two ∅’s and
replacing one of them by ∗.

With the notation above it is easy to see that the restricted [k]-cover F ∩ I ′ |= I ′ is
still compatible, hence X -local by the induction hypothesis (since I ′ ( [n]). It follows
from Lemma 5.1.3 that every arrow in the graph corresponds to an X -local refinement.
The proof of Proposition 5.2.3 is concluded by the easy combinatorial observation that
the graph is connected as an undirected graph, i.e., one can connect every pair of non-
degenerate compatible [k]-covers by a zigzag of X -local refinements as above.

5.2.4. Remark. The directed graph constructed in the proof of Proposition 5.2.3 is just
the Hasse diagram of the poset of non-degenerate compatible [k]-covers under refinement.
Our proof therefore shows that if there is an n ≥ 2k such that X satisfies descent with
respect to all compatible [k]-covers in ∆<n then all refinements between non-degenerate
compatible [k]-covers on [n] are X -local.

6. Weakly excisive and weakly Λ-excisive simplicial objects

Fix an ∞-category C with finite limits. Recall from Section 3.4 that a simplicial object
X : ∆op → C is

� weakly S-excisive if it sends strongly bicartesian S-cubes in ∆ to cartesian cubes in
C.

� weakly S-Λ-excisive if it sends to cartesian cubes in C those S-cubes in ∆ which
become strongly bicartesian in Λ after applying the canonical functor ∆→ Λ.
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6.0.1. Remark. It follows from Remark 3.4.9 that a cyclic object Λop → C is weakly
S-excisive if and only if its restriction to ∆ is weakly S-Λ-excisive.

We can refine the notion of weak Λ-excision as follows:

6.0.2. Definition. A simplicial object X : ∆op → C in C is called

� lower weakly S-Λ-excisive if X sends every left active strongly bicartesian S-cube
in ∆ to a cartesian cube in C;

� upper weakly S-Λ-excisive if X sends every right active strongly bicartesian S-
cube in ∆ to a cartesian cube in C.

The terminology is justified by the following easy lemma.

6.0.3. Lemma. A simplicial object is weakly S-Λ-excisive if and only if it is both lower
weakly S-Λ-excisive and upper weakly S-Λ-excisive.

Proof. By Lemma 4.3.4, every S-cube in ∆ with strongly bicartesian image in Λ can be
decomposed into a pasting of strongly bicartesian cubes each of which is left active or right
active; thus we have “if”. The converse “only if” follows from the fact (Corollary 4.2.5)
that every strongly bicartesian in ∆ which is left active or right active has a strongly
bicartesian image in Λ.

6.1. Weakly excisive = polynomial. As explained in Section 5.2, a polynomial
functor of degree ≥ k is a simplicial object ∆op → C which sends all strongly bicartesian
intersection [k]-cubes to cartesian cubes in C. A priori, this does not agree with weak
k-excision, because it only takes into account strongly bicartesian cubes which consist of
injective maps. The next theorem states that this discrepancy is illusory both for weak
(∆-)excision and for (lower and/or upper) weak Λ-excision.

6.1.1. Theorem. Let C be an ∞-category with all finite limits. A simplicial object
X : ∆op → C is

(a) weakly S-excisive if and only if it sends primitive strongly bicartesian intersection
S-cubes in ∆ to cartesian cubes in C;

(b) lower weakly S-Λ-excisive if and only if it sends primitive strongly bicartesian left
active intersection S-cubes in ∆ to cartesian cubes in C;

(c) upper weakly S-Λ-excisive if and only if it sends primitive strongly bicartesian right
active intersection S-cubes in ∆ to cartesian cubes in C.

Before we prove Theorem 6.1.1, we deduce the following criterion for detecting weak
Λ-excision of a simplical object in terms of weak (∆-)excision of its path objects.
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6.1.2. Corollary. [Path space criterion] A simplicial object X : ∆op → C in an ∞-
category with all finite limits is

� lower weakly S-Λ-excisive if and only if the left path object P /X := X ◦ ([0] ?−) is
weakly S-excisive;

� upper weakly S-Λ-excisive if and only if the right path object P .X := X ◦ (− ? [0])
is weakly S-excisive.

Proof. Observe that composition with the functor [0] ?− : ∆→ ∆ identifies compatible
S-covers in ∆ with left active compatible S-covers in ∆; hence by Corollary 4.1.5 it iden-
tifies strongly bicartesian intersection S-cubes in ∆ with left active strongly bicartesian
intersection S-cubes ∆. The first statement of Corollary 6.1.2 now follows directly from
Theorem 6.1.1; the proof of the second statement is analogous.

6.1.3. Remark. The proof of Corollary 6.1.2 makes crucial use of Theorem 6.1.1 because
in general a left active diagram in ∆ need not factor through the functor [0] ?− : ∆→ ∆.
It is the fact that we can reduce to diagrams of injective maps that makes this argument
work.

To prove Theorem 6.1.1 we isolate the following key lemma which we prove separately
below. Recall that, for each m ≥ 0, we denote the unique active maps [1]→ [m] in ∆ by
am.

6.1.4. Lemma. [Key lemma] Let p : C→ B be a cartesian fibration of ∞-categories. Let
X : ∆op → C be a simplicial object. Assume that, for all m ≥ 1, the edge X (am) of C is
p-cartesian. Then the edge X (α) is also p-cartesian for every active morphism α in ∆.

Proof of Theorem 6.1.1. We will prove part (a); the proof for (b) or (c) is the same,
word by word, by only considering cubes which are left or right active, respectively. The
direction “only if” is trivial.

To prove “if” let X : ∆op → C be a simplicial object which sends primitive strongly
bicartesian intersection S-cubes in ∆ to cartesian cubes in C. Assume that there is a
counterexample to Theorem 6.1.1, i.e., a compatible S-claw F = (fs | s ∈ S) on [n] ∈ ∆
such that the corresponding Čech cube ČF is not sent by X to a cartesian cube in
C. By Lemma 4.3.4 we may choose F to be preprimitive. We may assume that F is
primitive because otherwise it would be degenerate; and degenerate cubes are always sent
to cartesian cubes. By induction we may additionally assume that the number

dF := |{s ∈ S | fs is not injective}| (41)

is minimal amongst all counterexamples. The number dF has to be at least one, because
otherwise ČF would be an intersection S-cube which is not a counterexample by assump-
tion. Choose an s ∈ S such that fs is not injective and write S ′ := S \ {s}. Since fs is
primitive, it is of the form

fs = Id[i−1] ?
(
f−1
s {i} → {i}

)
? Id[n\i].
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for some i ∈ [n], where |f−1
s {i}| > 1 by assumption. Denote by L, A and R the S-claws

obtained by restricting the S-claw F to [i− 1], {i} and [n \ i], respectively. Hence we
have F = L?A?R. Denote by L′ and R′ the S ′-claws induced from L and R, respectively.
Since the restriction of fs to both [i− 1] and [n \ i] is the identity, the edges

ČsL : ∆1 −→ Fun(Pop(S ′),∆) and ČsR : ∆1 −→ Fun(Pop(S ′),∆),

corresponding to the Čech cubes ČL and ČR, are the identity on the objects ČL′ and ČR′

of Fun(Pop(S ′),∆), respectively. Denote by const : ∆ → Fun(Pop(S ′),∆) the constant-
diagram functor and define a cosimplicial object Y in Fun(Pop(S ′),∆) by

Y : ∆
const−−−→ Fun(Pop(S ′),∆)

ČL′?(−)?ČR′−−−−−−−−−→ Fun(Pop(S ′),∆)

Denote by Y the simplicial object

Y : ∆op Y op

−−→ Fun(Pop(S ′),∆)op = Fun(P(S ′),∆op)
X◦−−−−→ Fun(P(S ′),C)

and by
p : Fun(P(S ′),C) −→ Fun(P∗(S

′),C)

the cartesian fibration of Lemma 3.3.7. Observe, that the value of Y at the (active) edge
fs∩{i} : (f−1

s {i} → {i}) is precisely the edge ČsF in Fun(P(S ′),∆) associated to the Čech
cube ČF . By Lemma 3.3.7, the simplicial object X sends the cube ČF to a cartesian
cube if and only if the edge Y(fs ∩ {i}) is p-cartesian.

To complete the proof we set up an application of the key lemma (Lemma 6.1.4) to
show that this edge Y(fs∩{i}) is p-cartesian, so that the cube ČF was not a counterexam-
ple after all. Let m ≥ 1 and consider the S-claw Fm = (fm

s′ | s′ ∈ S) on [i− 1]? [m]? [n \ i]
given by

fm
s′ := (fs′ ∩ [i− 1]) ? Id[m] ? (fs′ ∩ [n \ i])

for all s′ 6= s and by
fm
s := Id[i−1] ? (am : [1]→ [m]) ? Id[n\i].

It is clear that the S-claw Fm inherits compatibility from F and that the Čech cube ČFm

corresponds precisely to the edge

Y (am) : ∆1 am−→ ∆
Y−→ Fun(Pop(S ′),∆).

Since we have |f−1
s {i}| > 1 by assumption, the compatibility of F implies that for each

s′ ∈ S \ {s} the preimage f−1
s′ {i} is a singleton; hence the map fm

s′ is injective if and only
if fs′ is injective. Furthermore, the map fm

s is injective (this is where we use the condition
m 6= 0); hence the number dFm is smaller than dF . By the minimality assumption on the
counterexample F , we conclude that the simplicial object X sends the Čech cube ČFm

to a cartesian cube. By Lemma 3.3.7 this translates to the fact that the corresponding
edge X ◦ ČsFm = Y(am) in Fun(P(S ′),C) is p-cartesian. Finally, we apply the key lemma
(Lemma 6.1.4) to the cartesian fibration p and the simplicial object Y to deduce that Y
sends all active maps in ∆ to p-cartesian edges; in particular this is true for the active
map fs ∩ {i} : f−1

s {i} → {i}. This completes the proof.
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6.2. Proof of the key lemma.

6.2.1. Construction. Via the functor

J 7−→ J ∪̇ {∞}

we identify the augmented simplex category ∆+ with the wide subcategory ∆rstr ⊂ ∆max

spanned by the right strict morphisms. For every right active morphism f : [m] → [n] in
∆ we define a left active morphism f− : [n]→ [m] by the formula

f− : j 7−→ min f−1 {j, . . . , n} .

For every left active morphism g : [n] → [m] in ∆ we define a left active morphism
g+ : [m]→ [n] by the formula

g+ : i 7−→ max g−1 {0, . . . , i} .

6.2.2. Lemma. [Joyal duality] The assignments f 7→ f− and g 7→ g+ of Construc-
tion 6.2.1 are mutually inverse and assemble to an isomorphism of categories

∆max ∼=←→ ∆min,op

(given by the identity on objects) which restricts to an isomorphism

∆+
∼= ∆rstr ∼=←→ ∆act,op.

Proof. This is a straightforward calculation.

The category ∆act has an initial object [1] and a terminal object [0] which, under the
identification ∆+

∼= ∆act,op of Lemma 6.2.2 correspond to the objects [0] and ∅ of ∆+,
respectively.

6.2.3. Lemma. Let X : ∆op → C be a simplicial object in any ∞-category C. Then the
restriction of X to the subcategory ∆act,op ⊂ ∆op is a limit cone.

Proof. [Lurie, 2009, Lemma 6.1.3.16] states (after passing to opposite categories) that
every augmented cosimplicial object ∆+

∼= ∆rstr → C which extends to a diagram ∆max →
C is automatically a limit diagram. Hence by Lemma 6.2.2 every diagram ∆min,op → C

and, a fortiori, every simplicial object ∆op → C restricts to a limit diagram ∆act,op → C.
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Proof of they key lemma, Lemma 6.1.4. For each active map α : [m]→ [n] in ∆ we
have an ◦ α = am; hence by the left cancellation property of p-cartesian edges (see Lurie
[2009, Proposition 2.4.1.7]) it is enough to prove that the edge X (am) is p-cartesian for
all m ≥ 0. For m ≥ 1 this is precisely our assumption, so it remains to show that the
edge X (a0 : [1]→ [0]) is p-cartesian.

Denote by X act the restriction of X to ∆act. Denote by ∆act
≥1 the full subcategory of

∆act spanned by the objects [m] with m ≥ 1. Applying Lemma 6.2.3 twice we deduce that
X act and p ◦ X act are limit cones; it follows from [Lurie, 2009, Proposition 4.3.1.5] that
X act is also a p-limit cone, i.e., a right p-Kan extensions of its restriction to ∆act,op

≥1 . Since
the object [1] ∈ ∆act is initial, the assumption of Lemma 6.1.4 expresses precisely that the
restriction of X act to ∆act,op

≥1 is the right p-Kan extension of its restriction to {[1]} ⊂ ∆act.
We conclude by transitivity of p-Kan extensions (see Lurie [2009, Proposition 4.3.2.8]) that
X act is a right p-Kan extension of its restriction to {[1]}, which implies by the pointwise
formula at [0] ∈ ∆act that the edge X (a0 : [1]→ [0]) is p-cartesian.

7. Higher Segal conditions

In this last section, we explain the relationship between the higher Segal spaces of Dyck-
erhoff and Kapranov and the notions of higher weak excision studied in Section 6.

7.1. Higher Segal covers. Fix a positive natural number k ≥ 1. Given a subset
I ⊆ [n], a gap of I (with [n] implicit) is an element x ∈ [n] with x /∈ I. A gap x of I ⊆ [n]
is called even if the cardinaity |{y ∈ I | x < y}| is even. A subset I ⊆ [n] is called even if
all its gaps are even. Note that even subsets I ⊆ [n] of cardinality 2k are precisely those
which can be written as a disjoint union of the form

I =
⋃̇k

i=1
{xi − 1, xi},

with 0 ≤ x1 − 1 < x1 < x2 − 1 < · · · < xk−1 < xk − 1 < xk ≤ n.

7.1.1. Definition. For each n ≥ 2k, the lower (2k − 1)-Segal cover on [n] ∈ ∆ is
defined as follows:

lSegk
n := {I ⊂ [n] | I even with of cardinality |I| = 2k} |= [n]

Observe that the lower (2k − 1)-Segal covers are precisely the canonical “good k-
covers” described in Section 2. The first lower (2k− 1)-Segal cover lSegk

n, i.e., the one for
n = 2k, is the unique non-degenerate compatible [k]-cover on [n]. As n grows bigger, the
behavior of lower (2k − 1)-Segal covers on [n] and non-degenerate compatible [k]-covers
on [n] diverges dramatically: In the first case the number of prongs increasingly rapidly
with [n], but each subset of [n] remains of constant size 2k; in the second case it is the
number of prongs (k + 1) that stays constant, while most of the subsets appearing in a
compatible [k]-cover are large. This dichotomy should remind the reader of the analogous
behavior of J ◦k and J h

k described in Section 2:
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� Good k-covers of a manifold typically consist of a large number of open subsets;
however, each of these subsets is simple and small (just a disjoint union of at most
k balls)

� The open covers in J h
k always contain exactly k + 1 open subsets M \Ai; however,

each of these open subsets is usually big and complicated.

7.1.2. Example. The following is a depiction of the first two lower 3-Segal covers:

0 1 2 3 4
∅ ∗ ∗ ∗ ∗
∗ ∗ ∅ ∗ ∗
∗ ∗ ∗ ∗ ∅

and

0 1 2 3 4 5
∅ ∅ ∗ ∗ ∗ ∗
∅ ∗ ∗ ∅ ∗ ∗
∗ ∗ ∅ ∅ ∗ ∗
∅ ∗ ∗ ∗ ∗ ∅
∗ ∗ ∅ ∗ ∗ ∅
∗ ∗ ∗ ∗ ∅ ∅

(42)

Observe that the left cover is the unique non-degenerate compatible [2]-cover on [4] = [2k].

We now come to the definition of higher Segal objects. The definition we will use is not
the original one, but rather a reformulation called the path space criterion; see Poguntke
[2017, Proposition 2.7].

7.1.3. Definition. A simplicial object X : ∆op → C is called

� lower (2k − 1)-Segal if, for each n ≥ 2k, it satisfies descent with respect to the
lower (2k − 1)-Segal cover lSegk

n;

� lower 2k-Segal if the left path object P /X is lower (2k − 1)-Segal;

� upper 2k-Segal if the right path object P .X is lower (2k − 1)-Segal;

� 2k-Segal if X is both lower and upper 2k-Segal.

7.2. Segal = polynomial = weakly excisive. We come now to the main result
of this article, the comparison of higher Segal conditions and weak excision. The key
ingredient is the following theorem, which identifies the hierarchy of lower odd Segal
objects with the hierarchy of polynomial functors.

7.2.1. Theorem. Let C be an ∞-category with finite limits. The lower (2k − 1)-Segal
objects in C are precisely the polynomial functors ∆op → C of degree ≤ k.

Before we prove Theorem 7.2.1, we use it to deduce our main theorem.

7.2.2. Theorem. A simplicial object in an ∞-category with finite limits is

1. lower (2k − 1)-Segal if and only if it is weakly k-excisive.

2. lower 2k-Segal if and only if it is lower weakly k-Λ-excisive.

3. upper 2k-Segal if and only if it is upper weakly k-Λ-excisive.

4. 2k-Segal if and only if it is weakly k-Λ-excisive.
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Proof of Theorem 7.2.2. In Theorem 6.1.1 we have seen that a functor ∆op → C is
polynomial of degree ≤ k if and only if it is weakly k-excisive; thus part 1 is an immediate
consequence of Theorem 7.2.1. The rest of Theorem 7.2.2 then follows immediately from
the path space criterion for weak Λ-excision (Corollary 6.1.2).

Recall that a cyclic object Λop → C is defined to be 2k-Segal if the underlying simplicial
object ∆op → Λop → C is 2k-Segal.

7.2.3. Corollary. A cyclic object in an ∞-category with finite limits is 2k-Segal if and
only if it is weakly k-excisive.

Proof. Corollary 7.2.3 follows directly from Theorem 7.2.2 and Remark 6.0.1.

We now give the proof of Theorem 7.2.1.

Proof of Theorem 7.2.1. Fix a simplicial object X : ∆op → C in an ∞-category C

with finite limits. By the characterization of strongly bicartesian intersection cubes in ∆
(Corollary 4.1.5) we only need to show that X satisfies descent with respect to all lower
(2k − 1)-Segal covers if and only if X satisfies descent with respect to all compatible
[k]-covers. In view of Proposition 5.2.3, we only have to relate, for each n ≥ 2k, the lower
(2k−1)-Segal cover to one non-degenerate compatible k-cover. For each n ≥ 2k and each
j ∈ {−1, 0, . . . , k}, we define a cover Fn

j |= [n] (with the k left implicit since it is fixed
throughout the proof) to consist of the following subsets of [n]:

� Ini := [n] \ {2i} for i = 0, . . . , j

� those I ∈ lSegn
k that satisfy [2j] = {0, 1, . . . , 2j} ⊂ I.

Clearly Fn
−1 is nothing but the lower (2k − 1)-Segal cover lSegn

k |= [n]. Moreover, we
have a chain of refinements

lSegn
k = Fn

−1 � Fn
0 � . . . � Fn

k (43)

because every I ∈ lSegn
k with [2(j − 1)] ⊂ I must either satisfy [2j] ⊂ I or 2j /∈ I. The

last cover Fn
k = (Ini | i ∈ k) in the refinement (43) is a non-degenerate compatible [k]-

claw; in this sense, the chain (43) is an interpolation between the Segal condition and the
descent condition with respect to the family {Fn

k |n ≥ 2k} of non-degenerate compatible
[k]-covers in ∆.

We establish the following two facts:

1. If n = 2k then the chain (43) of refinements collapses, i.e., we have

lSeg2k
k = F2k

−1 = F2k
0 = · · · = F2k

k .

2. For every n > 2k and every j = 0, . . . , n the refinement Fn
j−1 � Fn

j is X -local

provided that the cover Fn−1
j−1 |= [n− 1] is X -local.
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Fact 1 is immediate from the definition. For each j = 0, . . . , k we have Fn
j = ˜Fn

j−1 ∪
{
Inj
}

and the cover Fn
j−1∩Inj |= Inj is easily seen to be isomorphic (under the unique isomorphism

Inj
∼= [n− 1]) to the cover Fn−1

j−1 |= [n− 1]; hence fact 2 follows from Lemma 5.1.3.
By a straightforward inductive argument, facts 1 and 2 imply that the following three

conditions are equivalent:

� For all n ≥ 2k, the cover lSegn
k = Fn

−1 |= [n] is X -local.

� For all n ≥ 2k and all j = −1, . . . , k, the cover lSegn
k = Fn

j |= [n] is X -local.

� For all n ≥ 2k, the (nondegenerate, compatible, [k]-pronged) cover Fn
k |= [n] is

X -local.

We have therefore related the Segal conditions to one hierarchy of descent conditions
with respect to non-degenerate compatible [k]-covers; Proposition 5.2.3 precisely states
that this is enough, hence the proof is concluded.

7.3. Triviality bounds for higher Segal objects. Let X : ∆op → C be a lower or
upper d-Segal object in C. Since for each m > d the d-Segal conditions express the value
Xm as a cubical limit of the values Xn with n ≤ d, it is obvious that X is trivial (i.e., Xn

is a terminal object in C for each [n] ∈ ∆) as soon as X is trivial when restricted to ∆≤d.
From the comparison with weak excision we can deduce the following sharper bounds:

7.3.1. Proposition. Fix d ≥ 2 and let X : ∆op → C be a lower or upper d-Segal object
in an ∞-category C with finite limits. If X is trivial when restricted to ∆<d then X is
trivial.

7.3.2. Remark. Since not every monoid is trivial, it is not true that a lower 1-Segal
object (i.e., a Segal object in the sense of Rezk) is trivial as soon as its restriction to ∆≤0

is trivial. Hence the assumption d ≥ 2 in Proposition 7.3.1 is necessary.

Proof of Proposition 7.3.1. First, we prove the case of lower odd Segal objects. Let
k ≥ 2 and assume that X : ∆op → C is lower (2k − 1)-Segal and trivial on ∆<2k−1. It
suffices to show that X[2k−1] is trivial. Consider the following compatible [k]-claw F on
[2k − 2]:

0 1 2 3 4 · · · 2k − 4 2k − 3 2k − 2
0 ∗ 2 ∗ ∗ ∗ · · · ∗ ∗ ∗
1 ∅ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗
2 ∗ ∗ ∅ ∗ ∗ · · · ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∅ · · · ∗ ∗ ∗
...

k − 1 ∗ ∗ ∗ ∗ ∗ · · · ∅ ∗ ∗
k ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∅

(44)

The corresponding bicartesian Čech cube ČF : Pop([k])→ ∆ satisfies ČF({0}) ∼= [2k − 1]
and ČF(T ) ∈ ∆<2k−1 for all T 6= {0}. It follows that the [k]-cube X ◦ ČF sends every
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T ⊆ [k], except possibly T = {0} , to a terminal object in C. Since X is weakly k-excisive
by Theorem 7.2.2, this cube in C is cartesian. It then follows that we have a cartesian
square

(X ◦ ČF)(∅) lim
0/∈T⊆[k]
∅6=T

(X ◦ ČF)(T )

(X ◦ ČF)({0}) lim
0∈T⊆[k]
{0}6=T

(X ◦ ČF)(T )

y

in C, where all but the lower left corner are trivial; we conclude that (X ◦ ČF)({0}) '
X[2k−1] is also trivial.

If d = 2k is even with k ≥ 1 then the same proof works for lower or upper 2k-Segal
objects by considering instead of (44) the left active compatible k-claw

0 1 2 3 · · · 2k − 3 2k − 2 2k − 1
0 2 ∗ ∗ ∗ · · · ∗ ∗ ∗
1 ∗ ∅ ∗ ∗ · · · ∗ ∗ ∗
2 ∗ ∗ ∗ ∅ · · · ∗ ∗ ∗
...

k − 1 ∗ ∗ ∗ ∗ · · · ∅ ∗ ∗
k ∗ ∗ ∗ ∗ · · · ∗ ∗ ∅

on [2k − 1] or its obvious right active analog.
Poguntke [2017, Proposition 2.7] proved that a simplicial object is upper (2k+1)-Segal

if and only if its left path object is upper 2k-Segal (or, equivalently, if its right path object
is lower 2k-Segal); the result for upper odd Segal objects thus follows immediately from
the one for (lower or upper) even Segal objects.

It is not known to the author if the bounds in Proposition 7.3.1 are sharp. More
precisely, the author does not know the answer to the following question, which remains
to be investigated in future work:

7.3.3. Question. Let k ≥ 1 and let X be a simplicial object which is lower (2k − 1)-
Segal, or upper 2k-Segal or lower 2k-Segal. If X is trivial when restricted to ∆≤k, does it
follow that X is trivial?
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