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COCOMPLETION OF RESTRICTION CATEGORIES

RICHARD GARNER AND DANIEL LIN

Abstract. Restriction categories were introduced as a way of generalising the notion
of partial map category. In this paper, we define a notion of cocompleteness for restriction
categories, and describe the free cocompletion of a small restriction category as a suitably
defined category of restriction presheaves. We also consider free cocompletions in the
case where our restriction category is only locally small.

1. Introduction

The notion of a partial function is ubiquitous in many areas of mathematics, including
computability theory, complexity theory, algebraic geometry, algebraic topology and
analysis. It is thus unsurprising that over the years, many attempts have been made to
abstract the notion of partiality. One historical thread, starting with work of Ehresmann
on pseudogroups of partial transformations [Ehresmann, 1957], can be traced directly to
modern inverse semigroup theory [Lawson, 1998]

Another line of development is one motivated by theoretical computer science. This
began with [Heller, 1983]’s introduction of dominical categories as an axiomatisation of
a general notion of partiality. No doubt this work had an influence on [Longo & Moggi,
1984], where the authors introduced the notion of concrete category with partial morphisms ;
while [Rosolini, 1986] extends the notion of dominical category to that of a p-category, the
main difference being the exclusion of a zero map from the axioms. At around the same
time, [Carboni, 1987] studied bicategories with a partial map structure; while dominical
categories and their applications to recursion theory, were considered in greater detail in
[Di Paola & Heller, 1987].

In both dominical categories and p-categories, the domain of definition of a map
ϕ : X → Y is not expressed in terms of a subobject of X, but rather via an idempotent
domϕ : X → X, to be thought of as the partial identity map with the same degree of
definition as ϕ. This establishes the connection between partiality and idempotents, which
is also crucial in the context of semigroup theory. However, the step of presenting a
category of partial maps purely in terms of a “restriction structure”, assigning to each
map f : X → Y a suitable idempotent f̄ : X → X of its domain, was not made until
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[Grandis, 1990], wherein is introduced the notion of e-cohesive category. These were later
rediscovered by Cockett and Lack, who termed them restriction categories and investigated
their properties in the series of paper [Cockett & Lack, 2002, Cockett & Lack, 2003, Cockett
& Lack, 2007].

Since restriction categories are categories with extra structure, it would not be unreason-
able to think that one could give a notion of colimit in the restriction setting; for example,
[Cockett & Lack, 2007, Lemma 2.1] already describes a notion of restriction coproduct.
In this paper, as a first step towards understanding more general restriction colimits, we
introduce a notion of cocomplete restriction category, and describe the free completion of a
restriction category under colimits. In the follow-up paper [Lin, 2019], the second author
extends this notion of restriction cocompletion to join restriction categories, and uses it to
characterise the manifold completion of a join restriction category as described in [Grandis,
1990]. Possible future work would be to extend our notions to categories endowed with a
restriction tangent structure [Cockett & Cruttwell, 2014], and thereby show that the free
cocompletion of a restriction tangent category also has a restriction tangent structure.

The starting point for our work, in Section 2, is a revision of background material
from [Cockett & Lack, 2002]. In particular, we recall the notions of restriction category
and of M-category, and the relation between the two. An M-category is a category
C endowed with a class M of monomorphisms which is closed under composition and
pullback-stable; each such gives rise to a restriction category Par(C,M) of “M-partial
maps”, and a restriction category arises in this way precisely when it is split—meaning
that every idempotent f has a splitting.

In Section 3, we introduce cocomplete restriction categories, and free restriction
cocompletion. It will be convenient first to study the analogous notions for M-categories:
we recall from [Cockett & Lack, 2002] the presheaf M-category of an M-category, then
introduce notions of cocomplete M-category and cocontinuous M-functor, and prove
that the category of M-presheaves is the free M-cocompletion. Then, using the fact
that M-categories are the same as split restriction categories, can read off a definition of
cocomplete restriction category and cocontinuous restriction functor, and a construction
of the free restriction cocompletion, which we are able to identify as being exactly the
restriction category described in [Cockett & Lack, 2002, Theorem 3.8].

In Section 4, we give a second description of the free restriction cocompletion in terms
of restriction presheaves. We begin by introducing the notion of restriction presheaf on a
restriction category X, and form them into a split restriction category PShr(X). We then
show that this restriction category is equivalent to the one exhibited in Section 3 as the
restriction cocompletion, and so is itself a description of the restriction cocompletion.

Finally, in Section 5, we consider how restriction cocompletion can be extended to
the case of restriction categories which are not small, but only locally small. We begin
again with the case of M-categories, by associating to any locally small M-category an
M-category PM(C) of small presheaves. We show that this is not only locally small
and cocomplete, but also the free cocompletion of C. Then, like before, by transporting
across the equivalence with restriction categories, we are able to characterise the restriction
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cocompletion of a locally small restriction categories.

2. Restriction category preliminaries

Throughout the paper, we will use boldface C and sometimes calligraphic E to denote
ordinary categories and 2-categories, and reserve blackboard bold X for restriction cat-
egories. Later on, when we consider presheaves P : Cop → Set, we will often write the
action of a map f : B → A in C on an element x ∈ PA as x · f ∈ PB.

2.1. Restriction categories. In this section, we recall the definition of a restriction
category and basic lemmas from [Cockett & Lack, 2002].

2.2. Definition. A restriction category is a category X together with, for each pair of
objects A,B ∈ X, a function X(A,B)→ X(A,A), whose action we notate by f 7→ f̄ , all
subject to the following conditions:

(R1) f ◦ f̄ = f ;

(R2) ḡ ◦ f̄ = f̄ ◦ ḡ for f : A→ B, g : A→ C;

(R3) g ◦ f̄ = ḡ ◦ f̄ for f : A→ B, g : A→ C;

(R4) h̄ ◦ f = f ◦ h ◦ f for f : A→ B, h : B → C.

The assigments f 7→ f̄ collectively are called the restriction structure on X, and we call f̄
the restriction of f .

(Note that (R2) corresponds with property (v) in [Robinson & Rosolini, 1988, Proposi-
tion 1.4], and (R4) with property (iii) of the same proposition).

2.3. Examples.

(1) The category of sets and partial functions Setp is a restriction category, where the
restriction on each partial function f : A→ B is given by

f̄(a) =

{
a if f is defined at a ∈ A;

undefined otherwise.

(2) In a similar way, we have a restriction category Topp of topological spaces and
partial functions defined on an open subset of the domain.

(3) If E is any Grothendieck topos, then there is a restriction category Ep whose objects
are those of E , and whose maps from X to Y are partial maps in E : equivalence
classes of spans X � R → Y with left leg a monomorphism. We will see a more
general version of this construction in Section 2.7 below.

The restriction f̄ of any map f in a restriction category satisfies the following basic
properties (see [Cockett & Lack, 2002, pp. 227, 230] for details).
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2.4. Lemma. Let X be a restriction category, and let f : A → B and g : B → C be
morphisms in X. Then

(1) f̄ is idempotent;

(2) f̄ ◦ gf = gf ;

(3) ḡf = gf ;

(4) f̄ = ¯̄f ;

(5) f̄ = 1 if f is a monomorphism;

(6) X(A,B) has a partial order given by f ≤ f ′ if and only if f = f ′ ◦ f̄ .

(Note the fact that f̄ is idempotent corresponds with property (vi) in [Robinson &
Rosolini, 1988, Proposition 1.4], and that ḡf = gf is property (ii)).

A map f ∈ X is called a restriction idempotent if f = f̄ , and is total if f̄ = 1. If
f : A→ B and g : B → C are total maps in a restriction category, then gf is also total
since gf = ḡf = f = 1. Therefore, as identities are total, the objects and total maps of
any restriction category X form a subcategory Total(X).

2.5. Definition. A functor F : X→ Y between restriction categories is called a restriction
functor if F (f̄) = F (f) for all maps f ∈ X, and a natural transformation α : F ⇒ G is a
restriction transformation if its components are total. We denote by rCat the 2-category
of restriction categories, restriction functors and restriction transformations.

2.6. Split restriction categories. There is an important full sub-2-category rCats
of rCat, the objects of which are restriction categories whose restriction idempotents split.
Recall that a restriction idempotent f̄ splits if there exist maps m and r such that mr = f̄
and rm = 1. We call the maps m arising in this manner restriction monics.

The inclusion rCats ↪→ rCat has a left biadjoint Kr [Cockett & Lack, 2002, p. 242],
which on objects takes a restriction category X to the split restriction category Kr(X) with
the following data (note the construction is Freyd’s splitting of idempotents [Freyd, 1964]):

Objects are pairs (A, e), where A is an object of X and e : A → A is a restriction
idempotent on A;

Morphisms f : (A, e)→ (A′, e′) are morphisms f : A→ A′ in X satisfying the condi-
tion e′fe = f ;

Restriction of f : (A, e)→ (A, e′) is given by f̄ : (A, e)→ (A, e).

The unit at X of this biadjunction is the restriction functor J : X→ Kr(X) which takes
an object A to (A, 1A) and a map f : A→ A′ to f : (A, 1A)→ (A′, 1A′). In fact, J is a full
embedding.
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2.7. M-categories and partial map categories. A stable system of monics CM
in a category C is a collection of monics in C which includes all isomorphisms, is closed
under composition, and for which the pullback of any map in CM along any map of C
exists and is in CM. An M-category [Cockett & Lack, 2002, p. 245] is a category C
together with a stable system of monics CM. We usually write this as a pair (C,CM), or
sometimes, where the meaning is clear, simply as C.

If C and D are M-categories, a functor F between them is called an M-functor if
m ∈ CM implies Fm ∈ DM and moreover F preserves pullbacks along maps in CM.
If F,G : C → D are M-functors, then a natural transformation between them is called
M-cartesian if the naturality square of α at each m ∈ CM is a pullback (cf. [Cockett &
Lack, 2002, p. 247]). We denote by MCat the 2-category of M-categories, M-functors
and M-cartesian natural transformations.

Associated with any M-category C is a split restriction category Par(C) called the
category of partial maps in C. It has the same objects as C, while morphisms from X to Y
are equivalence classes of spans m : X ← Z → Y : f with m ∈ CM. Here, the equivalence
relation is that (m, f) ∼ (n, g) if and only if there exists an isomorphism ϕ with mϕ = n
and fϕ = g. Composition in this category is by pullback, identities are of the form (1, 1)
and the restriction of (m, f) is (m,m) (cf. [Cockett & Lack, 2002, pp. 246, 247]).

The assignment C 7→ Par(C) is the action on objects of a 2-functor Par : MCat →
rCats. On 1–cells, if F : C→ D is an M-functor, then Par(F ) acts as F does on objects,
and on morphisms sends (m, f) to (Fm,Ff). On 2-cells, if α : F ⇒ G is M-cartesian,
then Par(α) is defined componentwise by Par(α)A = (1FA, αA).

2.8. Theorem. The 2-functor Par : MCat→ rCats is an equivalence of 2-categories.

Proof. This is [Cockett & Lack, 2002, Theorem 3.4].

3. Cocompletion of restriction categories

For any small category C, the category of presheaves PSh(C) is the free cocompletion of C.
That is, for any small-cocomplete category E , the following is an equivalence of categories:

(−) ◦ y : Cocomp(PSh(C), E)→ Cat(C, E)

where y is the Yoneda embedding, Cat is the 2-category of small categories and Cocomp
is the 2-category of small-cocomplete categories and cocontinuous functors. (For the rest
of this paper, we shall take colimits to mean small colimits, and cocomplete to mean
small-cocomplete unless otherwise indicated).

Our objective in this section is to show that there is an analogous notion of cocompletion
for small restriction categories X. To do so, we will exploit the 2-equivalence between
MCat and rCats, by first defining and constructing the free cocompletion of a small
M-category, and then transferring across the 2-equivalence to obtain corresponding notions
for restriction categories.
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3.1. An M-category of presheaves. If C is a small M-category, then there are
various ways of making the category PSh(C) of presheaves on the underlying category of
C into an M-category. For our purposes, we will be interested in the following one. We
say a map µ : P → Q is in PSh(C)M if for all D ∈ C and all presheaf maps γ : yD → Q,
there is a map m : C → D in CM making the following a pullback square:

yC //

ym

��

P

µ

��
yD γ

// Q

where y : C → PSh(C) is the usual Yoneda embedding. We denote the M-category
(PSh(C),PSh(C)M) arising in this way by PShM(C). It is easy to see that ym ∈ PSh(C)M
whenever m ∈ CM; since the Yoneda embedding also preserves all pullbacks, it is thus an
M-functor y : C→ PShM(C).

3.2. Cocomplete M-categories. It is well known that for any small category C,
the Yoneda embedding y : C→ PSh(C) exhibits PSh(C) as the free cocompletion of C.
It is therefore natural to ask whether there is a sense in which, for a small M-category
(C,CM), the Yoneda embedding y : (C,CM) → PShM(C) exhibits PShM(C) as a free
cocompletion of (C,CM). We now give appropriate definitions of cocomplete M-category
and cocontinuous M-functor which will make this true.

3.3. Definition. An M-category (C,CM) is said to be cocomplete if the underlying
category C is cocomplete and the inclusion C→ Par(C) preserves colimits. An M-functor
F : (C,CM) → (D,DM) is called cocontinuous if the underlying functor F : C → D
is cocontinuous. We denote by MCocomp the 2-category of cocomplete M-categories,
cocontinuous M-functors and M-cartesian natural transformations.

3.4. Example. Let Set denote the category of all small sets, and consider theM-category
(Set, Inj), where Inj are the injective functions. In this case, Set is cocomplete and the
inclusion Set ↪→ Par(Set, Inj) ∼= Setp has a right adjoint X 7→ X + {∗}. It follows that
(Set, Inj) is a cocomplete M-category.

In fact, as we now explain, this example is a particular instance of a much wider class
of cocomplete M-categories.

3.5. Definition. Let C be anM-category. AnM-subobject of D ∈ C is an isomorphism
class of CM-maps with codomain D. We write SubCM(D) for the set ofM-subobjects of D.

We noted above that the Yoneda embedding sends CM-maps to PSh(C)M-maps; in
fact, slightly more is true. The following result is [Rosolini, 1986, Proposition 3.1.1].

3.6. Lemma. Let C be an M-category. Then there exists an isomorphism as follows:

SubPSh(C)M
(yC) ∼= SubCM(C).
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Now consider an M-category (E , EM) with a terminal object for which there exists
a generic M-subobject τ : 1 → Σ. By this, we mean an EM-map τ : 1 → Σ with the
property that, for any map m : A→ B in EM, there is a unique map m̃ : B → Σ making
the following square a pullback:

A //

m
��

1

τ
��

B
m̃
// Σ .

Now, suppose that the pullback functor τ ∗ : E/Σ→ E has a right adjoint Πτ . Then by a
familiar argument—see, for example, [Johnstone, 2002, Proposition 2.4.7]—E has a partial
map classifier for every object C ∈ E given by the domain of Πτ (C × Σ→ Σ) and this in
turn implies that the inclusion E ↪→ Par(E , EM) has a right adjoint. In fact, the partial
map category Par(E , EM) is equivalent to the Kleisli category of the monad induced by
the adjunction E � Par(E , EM); see [Mulry, 1994, Lemma 2.10].

In this situation, E → Par(E , EM), being a left adjoint, will necessarily preserve all
colimits. Thus (E , EM) will be a cocomplete M-category so long as E itself is cocomplete.

3.7. Examples.

(1) Let E be a cocomplete elementary topos and M the class of all monics in E . By
definition of topos, there is a genericM-subobject, and every pullback functor has a
right adjoint as E is locally cartesian closed. So (E ,M) is a cocomplete M-category.

(2) Similarly, if E is a cocomplete quasitopos andM the class of all regular monics in E ,
then (E ,M) is a cocomplete M-category.

(3) For any small M-category (C,CM), the M-category PSh(C)M admits a generic
M-subobject τ : 1→ Σ, where Σ(C) = SubCM(C); see [Rosolini, 1986, Proposition
3.1.1]. Like before, PSh(C) is a cocomplete, locally cartesian closed category and so
we conclude that PSh(C)M is a cocomplete M-category.

The following result gives a characterisation of cocomplete M-categories.

3.8. Proposition. Suppose (C,CM) is an M-category, and C is cocomplete. Then the
following statements are equivalent:

(1) (C,CM) is a cocomplete M-category, i.e., C ↪→ Par(C) preserves colimits;

(2) The following conditions hold:

(a) If {mi : Ai → Bi}i∈I is a small family of maps in CM, then the coproduct∑
i∈Imi is in CM and the coproduct coprojection squares below are pullbacks

for every i ∈ I:

Ai
ıAi //

mi

��

∑
i∈I Ai∑

i∈I mi

��
Bi ıBi

//
∑

i∈I Bi .
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(b) Suppose m ∈ CM admits the same pullback h along parallel maps f, g of C. If
f ′, g′ are the pullbacks of f, g along m, and c, c′ are the coequalisers of f, g and
f ′, g′ respectively, then the unique induced map n making the right square below
commute is in CM and also makes the right square a pullback:

•
f ′

//

g′
//

h

��

• c′ //

m

��

•

n

��
•

f
//

g
// • c

// • .

(c) Colimits are stable under pullback along CM-maps.

Proof. For the proof of (1) =⇒ (2), we will be using Lemma 3.14 and Corollary 3.16
(both to be proven later).

(1) =⇒ (2a) Let I be a small set considered as a discrete category, and H,K : I → C
be functors taking objects i ∈ I to Ai and Bi respectively. Let α : H ⇒ K be the natural
transformation whose component at i is given by mi : Ai → Bi, and observe that all
naturality squares are trivially pullbacks. Then by Lemma 3.14, the sum

∑
i∈Imi is in

CM and for every i ∈ I, the coproduct coprojection squares are pullbacks.
(1) =⇒ (2b) In a similar way, take I to be the category with two objects and a pair of

parallel maps between them and apply Lemma 3.14.
(1) =⇒ (2c) See Corollary 3.16.
(2) =⇒ (1) To show that the inclusion C ↪→ Par(C) is cocontinuous, it is enough to

show that it preserves all small coproducts and coequalisers.
So suppose c is a coequaliser of f and g in C. To show the inclusion preserves this

coequaliser, we need to show that for any map (m, k) such that (m, k)(1, f) = (m, k)(1, g),
there is a unique map (n, q) making the following diagram commute:

•
(1,f)

//

(1,g)
// • (1,c)

//

(m,k)
��

•

(n,q)

��
•

Now the condition (m, k)(1, f) = (m, k)(1, g) is precisely the condition that the pullbacks
of m along f and g can be chosen to be the same map h, as displayed in:

•
f ′

//

g′
//

h

��

•

m

��
•

f
//

g
// •
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and that moreover kf ′ = kg′. Taking c′ to be the coequaliser of f ′ and g′, our assumption
then implies there is a unique map n ∈ CM making the following diagram a pullback:

• c′ //

m

��

•

n

��
• c

// •

Since c′ is the coequaliser of f ′ and g′ and kf ′ = kg′, there exists a unique map q such
that c′q = k. This gives a map (n, q) ∈ Par(C) such that (n, q)(1, c) = (m, k). To see it
must be unique, suppose (n′, q′) also satisfies the condition (n′, q′)(1, c) = (m, k). Since,
by assumption, colimits are stable under pullback along CM-maps, the pullback of c along
n′ must be a coequaliser of f ′ and g′, say c′′.

• c′′ //

m

��

c′ &&

•

n′

��

•

n

��

ϕ

??

• c
// •

Now as coequalisers are unique up to isomorphism, there is an isomorphism ϕ such that
c′′ = ϕc′. Now the calculation n′ϕc′ = n′c′′ = cm = nc′ implies n′ϕ = n as c′ is an
epimorphism, so that n and n′ represent the same M-subobject. Similarly, q = q′ϕ, and
so we have (n, q) = (n′, q′).

Next, suppose
∑

i∈I Bi is a small coproduct in C, with coproduct coprojections
(ıBi

: Bi →
∑

i∈I Bi)i∈I . This coproduct will be preserved by C → Par(C) if for any
object D ∈ Par(C) and family of maps

(
(mi, fi) : Bi → D

)
i∈I , there exists a unique map

(µ, γ) :
∑

i∈I Bi → D making the following diagram commute for every i ∈ I:

Bi

(1, ıBi
)
//

(mi, fi) $$

∑
i∈I Bi

(µ, γ)

��
D.

By assumption,
∑

i∈Imi is in CM, and so the map
(∑

i∈Imi, f
)

:
∑

i∈I Bi → D is well-
defined, where f is the unique map

∑
i∈I dom(fi)→ D induced from the family of maps

{fi}i∈I using the universal property of coproduct. Since the coproduct coprojection squares
are pullbacks, taking µ =

∑
i∈Imi and γ = f certainly makes the above diagram commute.

The uniqueness of (µ, γ) now follows by the stability of colimits under pullback using an
analogous argument to the case of coequalisers.

Hence, as the inclusion C ↪→ Par(C) preserves all small coproducts and all coequalisers,
it preserves all small colimits.
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3.9. Remark. There is yet another formulation for the condition that the inclusion
C ↪→ Par(C) preserves all small colimits. Namely, the inclusion is cocontinuous if and only
if the presheaf SubCM : Cop → Set, which on objects takes C to the set of M-subobjects
of C, is continuous, and moreover, colimits are stable under pullback along maps in CM.
The proof of this result is similar to the proof of Lemma 3.8.

Also, by conditions (2a) and (2c), observe that cocomplete M-categories must be
M-extensive, meaning that for every i ∈ I (with I a small set), if the following square
commutes with the bottom row being coproduct injections and m,mi ∈M (for all i ∈ I),
then the top row must be a coproduct diagram if and only if each square is a pullback:

Ai

mi

��

// Z

m

��
Bi ıBi

//
∑

i∈I Bi.

Finally, compare this characterisation of cocomplete M-categories to the character-
isation of p-categories with coproducts in [Rosolini, 1988], where it was noted that these
coproducts were in fact preserved by embeddings into certain partial map categories.

We now use the previous result to give an example of an M-category with cocomplete
underlying category which is not itself cocomplete.

3.10. Example. Consider the category Ab of small abelian groups, made into an M-
category by equipping it with the class of all monomorphisms. Denote the trivial group
by 0 and the group of integers by Z. The coproduct of Z with itself is just the direct
sum Z ⊕ Z with coprojections ı1 : Z → Z ⊕ Z and ı2 : Z → Z ⊕ Z sending n to (n, 0)
and (0, n) respectively. Let ∆: Z → Z⊕ Z denote the diagonal map, which is clearly a
monomorphism, and observe that both squares in the following diagram are pullbacks:

0

��

// Z
∆
��

0

��

oo

Z ı1
// Z⊕ Z Z.ı2

oo

However, the top row is certainly not a coproduct diagram in Ab. Therefore (Ab, monos)
is not M-extensive, and hence by Proposition 3.8, is not a cocomplete M-category.

3.11. Cocompletion of M-categories. Our goal now is to show for any small
M-category C and cocomplete M-category D, the following is an equivalence:

(−) ◦ y : MCocomp(PShM(C),D)→MCat(C,D).

We will do so by making use of the following four lemmas.
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3.12. Lemma. Let C be an M-category and m ∈ CM. The following square is a pullback:

A
g
//

n
��

B

m
��

C
f
// D

if and only if the following diagram commutes in Par(C):

C
(1,f)

//

(n,1)
��

D

(m,1)
��

A
(1,g)
// B.

Proof. This is an easy diagram chase.

3.13. Lemma. Let X be a restriction category, I any small category and L : I → X a
functor. Suppose colimL exists and its colimiting coprojections (pI : LI → colimL)I∈I are
total. If ε : L⇒ L is a natural transformation such that each component is a restriction
idempotent, then colim ε is also a restriction idempotent:

LI
pI //

εI
��

colimL

colim ε
��

LI pI
// colimL.

Proof. By the facts that pI = 1 and εI = εI , we have

colim ε ◦ pI = pI ◦ colim ε ◦ pI = pI ◦ pI ◦ εI = pI ◦ pI ◦ εI = pI ◦ εI = pI ◦ εI .

Therefore, colim ε = colim ε by uniqueness.

3.14. Lemma. Let C be a cocomplete M-category, and let H,K : I→ C be functors (with
I small). Suppose α : H ⇒ K is a natural transformation such that for each I ∈ I, αI is
in CM and such that all naturality squares are pullbacks:

HI
Hf
//

αI

��

HJ

αJ

��
KI

Kf
// KJ.

Then colimα is in CM, and the following is a pullback for every I ∈ I:

HI
pI //

αI

��

colimH

colimα
��

KI qI
// colimK

where pI , qI are colimit coprojections.
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Proof. Applying the inclusion ı : C→ Par(C) gives the following commutative diagram
for each I ∈ I:

HI
(1,pI)

//

(1,αI)
��

colimH

(1,colimα)
��

KI
(1,qI)

// colimK.

Observe that there is a natural transformation β : ıK ⇒ ıH whose components are given
by βI = (αI , 1). Indeed, we may simply apply Lemma 3.12 to our assumption that αI is a
pullback of αJ along Kf .

Now the fact that the inclusion preserves the colimits (colimH, pI)i∈I and (colimK, qI)i∈I
implies the existence of a unique map colim β = (n, g) : colimK → colimH making the
following diagram commute for each I ∈ I:

KI
(1,qI)

//

(αI ,1)
��

colimK

(n,g)
��

HI
(1,pI)

//

(1,αI)
��

colimH

(1,colimα)
��

KI
(1,qI)

// colimK.

Observe that the left composite (1, αI)◦(αI , 1) = (αI , αI) is the component at I of a natural
transformation ε : ıK ⇒ ıK whose components are restriction idempotents. Therefore, by
Lemma 3.13, the composite on the right (1, colimα) ◦ (n, g) = (n, (colimα)g) must be a
restriction idempotent, and so n = (colimα)g.

On the other hand, the composite (αI , 1) ◦ (1, αI) = (1, 1) is the component of the
identity natural transformation γ : ıH ⇒ ıH at I, and so colim γ : colimH → colimH
must be (1, 1). However, as the following diagram also commutes, we must have (n, g) ◦
(1, colimα) = (1, 1) by uniqueness:

HI
(1,pI)

//

(1,αI)
��

colimH

(1,colimα)
��

KI
(1,qI)

//

(αI ,1)
��

colimK

(n,g)
��

HI
(1,pI)

// colimH.

So (1, colimα) ◦ (n, g) = (n, n) is a splitting of the restriction idempotent (n, n), which
means that (1, colimα) is a restriction monic. Therefore colimα ∈ CM, proving the first
part of the lemma.

Regarding the second part of the lemma, observe that (n, g) ◦ (1, colimα) = (1, 1)
implies g is an isomorphism (as n = (colimα)). Therefore, (n, g) = (colimα, 1) and so the
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following diagram commutes for all I ∈ I:

KI
(1,qI)

//

(αI ,1)
��

colimK

(colimα,1)
��

HI
(1,pI)

// colimH.

The result then follows by applying Lemma 3.12.

3.15. Lemma. Let C be a cocomplete M-category, H,K : I→ C functors (with I small),
and α : H ⇒ K a natural transformation such that each αI ∈ CM and all naturality
squares are pullbacks. Let n ∈ CM, and suppose x : colimH → X and y : colimK → Y
make the right square commute, and make the outer square a pullback for all I ∈ I:

HI
pI //

αI

��

colimH x //

colimα
��

X

n
��

KI qI
// colimK y

// Y.

Then the right square is also a pullback.

Proof. By Lemma 3.12, showing that the right square is a pullback is the same as showing
that the top-right square of the following diagram commutes:

KI
(1,qI)

//

(αI ,1)

��

colimK
(1,y)

//

(colimα,1)

��

Y

(n,1)

��
HI

(1,pI)
//

(1,αI)

��

colimH
(1,x)

//

(1,colimα)

��

X

(1,n)

��
KI

(1,qI)
// colimK

(1,y)
// Y.

Since (colimα, x) and (n, 1)(1, y) are both maps out of colimK, it is enough to show that

(colimα, x)(1, qI) = (n, 1)(1, y)(1, qI)

for all I ∈ I. But the left-hand side is equal to (αI , xpI) by commutativity of the top-left
square, and the right-hand side is also (αI , xpI) by assumption. Hence the result follows.

3.16. Corollary. If (C,CM) is a cocomplete M-category, then colimits in C are stable
under pullback along CM-maps.
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Proof. Let K : I→ C be a functor, P any object in C, and suppose µ : P → colimK is a
CM-map. Since µ ∈ CM, for each I ∈ I, we may take pullbacks of µ along the colimiting
coprojections of colimK, (kI : KI → colimK)I∈I, and these we call αI : HI → KI. This
gives a functor H : I → C, which on objects, takes I to HI, and on morphisms, takes
f : I → J to the unique map making all squares in the following diagram pullbacks:

HI
Hf
//

αI

��

pI

&&
HJ pJ

//

αJ

��

P

µ
��

KI
Kf
//

kI

88KJ
kJ // colimK.

By construction, (P, pI)I∈I is a cocone in C and α : H → K is a natural transformation.
Now form the colimit of H with colimiting coprojections (hI : HI → colimH)I∈I. By the
universal property of colimH, there exists a unique γ : colimH → P such that pI = γhI for
all I ∈ I, and by the functoriality of colimits, there is a map colimα : colimH → colimK
making the left square of the following diagram commute for all I ∈ I:

HI
hI
//

αI

��

pI

''
colimH γ

//

colimα
��

P

µ
��

KI

kI

66
// colimK colimK.

It is easy to see that the right square commutes, and since the left square is a pullback
for every I ∈ I, the right square must be a pullback by Lemma 3.15. Therefore, because
the pullback of the identity 1colimK is the identity, γ is invertible, so that colimits are
preserved by pullbacks along CM-maps.

We now show that for any small M-category C, the Yoneda embedding y : C →
PShM(C) exhibits the M-category of presheaves PShM(C) as the free cocompletion of C.

3.17. Theorem. For any small M-category C and cocomplete M-category D, the fol-
lowing is an equivalence of categories:

(−) ◦ y : MCocomp(PShM(C),D)→MCat(C,D). (3.1)

Proof. Since (−)◦y : Cocomp(PSh(C),D)→ Cat(C,D) is an equivalence of categories,
we know that, given a functor F : C→ D, there is a cocontinuous G : PSh(C)→ D such
that Gy ∼= F . So the functor in (3.1) will be essentially surjective on objects if this G is
an M-functor whenever F is one.
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To see that G takes monics in PSh(C)M to monics in DM, let µ : P → Q be a map in
PSh(C)M. Since every presheaf is a colimit of representables, we can write Q as a colimit
Q ∼= colimyD, where D : I→ C is a functor (with I small). Since µ ∈ PSh(C)M, we know
that for every I ∈ I, there is a map mI : CI → DI in M making the following a pullback:

yCI
pI //

ymI

��

P

µ

��
yDI qI

// Q

(where the maps qI are the colimit coprojections). It follows there is a functor C : I→ C
which on objects takes I to CI and on morphisms, takes f : I → J to the unique map Cf
making the diagram below commute and the left square a pullback:

yCI yCf
//

ymI

��

pI

%%
yCJ pJ

//

ymJ

��

P

µ

��
yDI

yDf
//

qI

88yDJ
qJ // Q.

(3.2)

The fact colimits in PSh(C) are stable under pullback implies (pI : yCI → P )I∈I is
colimiting. Now applying G to the above diagram gives

GyCI GyCf
//

GymI

��

GpI

''
GyCJ GpJ

//

GymJ

��

GP

Gµ

��
GyDI

GyDf
//

GqI

66GyDJ
GqJ // GQ.

(3.3)

Since G is cocontinuous, both (GpI)I∈I and (GqI)I∈I are colimiting. Also, as Gy ∼= F and
F is an M-functor, the left square is a pullback for every pair I, J ∈ I. Therefore, by
Lemma 3.14, Gµ must be in DM.

Observe that the same lemma (Lemma 3.14) says that for every I ∈ I, the outer square
in (3.3) is a pullback for every I ∈ I. In other words, G preserves pullbacks of the form

yCI
pI //

ymI

��

P

µ

��
yDI qI

// Q.

(3.4)
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Now to see that G preserves PSh(C)M-pullbacks, consider the diagram below, where
the right square is an PSh(C)M-pullback and the left square is a pullback for all I ∈ I:

yCI
pI //

ymI

��

P ∼= colimyC

µ

��

// P ′

µ′

��
yDI qI

// Q ∼= colimyD // Q′.

The result then follows by applying G to the diagram and using Lemma 3.15. This proves
that G is an M-functor whenever F is, so that (3.1) is essentially surjective on objects.

Finally, to show that the functor in (3.1) is fully faithful, we need to show for any
pair of cocontinuous M-functors F, F ′ : PShM(C)→ D and CM-cartesian α : Fy→ F ′y,
there exists a unique PSh(C)M-cartesian α̃ : F → F ′ such that α̃y = α. In other words,
we must show that we have an isomorphism:

(−) ◦ y : MNat(F, F ′)→MNat(Fy, F ′y)

where MNat(F, F ′) is the set of M-cartesian natural tranformations from F to F ′.
However, this condition may be reformulated as follows:

For all natural transformations α̃ : F → F ′, α̃ is PSh(C)M-cartesian if

α̃y : Fy⇒ F ′y is CM-cartesian.
(3.5)

To see that these two statements are equivalent, observe that the second statement amounts
to the following diagram being a pullback in Set:

MNat(F, F ′) //
� _

��

MNat(Fy, F ′y)
� _

��
Nat(F, F ′)

(−)◦y
//Nat(Fy, F ′y)

where Nat(F, F ′) is the set of natural transformations between F and F ′. However,
as the bottom function is an isomorphism, by the universal property of ordinary free
cocompletion, the top must also be an isomorphism and hence the two statements are
equivalent. Therefore, we show the functor in (3.1) is fully faithful by proving (3.5).

So let µ : P → Q be an PSh(C)M-map, and note that the left square below is a pullback
for every I ∈ I as F preserves PSh(C)M-pullbacks:

FyCI
FpI //

FymI

��

FP
α̃P //

Fµ

��

F ′P

F ′µ
��

FyDI FqI
// FQ

α̃Q

// F ′Q.

(3.6)
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To show that the right square is a pullback, we will show that the outer square is a pullback
for every I ∈ I and apply Lemma 3.15. Now by naturality of α̃, this outer square is the
outer square of the following diagram:

FyCI
α̃yCI //

FymI

��

F ′yCI
F ′pI //

F ′ymI

��

F ′P

F ′µ
��

FyDI α̃yDI

// F ′yDI
F ′qI

// F ′Q.

But α̃ ◦ y being CM-cartesian implies the left square is a pullback, and the right square is
also a pullback by the fact F ′ preserves pullbacks of the form (3.4). Thus, by Lemma 3.15,
each square on the right of (3.6) is a pullback, and so α̃ is PSh(C)M-cartesian.

3.18. Cocompletion of restriction categories. We have now explored in detail
the notion of cocomplete M-category, and wish to exploit this in order to investigate
cocomplete restriction categories. Given thatMCat and rCats are 2-equivalent, it makes
sense to define a restriction category to be cocomplete in such a way that Par(C) will be
cocomplete as a restriction category if and only if C is cocomplete as an M-category.

3.19. Definition. A restriction category X is cocomplete if it is split, its subcategory
Total(X) is cocomplete, and the inclusion Total(X) ↪→ X preserves colimits. A restriction
functor F : X → Y is cocontinuous if Total(F ) : Total(X) → Total(Y) is cocontinuous.
We denote by rCocomp the 2-category of cocomplete restriction categories, cocontinuous
restriction functors and restriction transformations.

As we said earlier, we would like Par(C) to be cocomplete as a restriction category if
and only if C is cocomplete as an M-category, and since Par(C) is always split, it makes
sense to impose this as a condition of being cocomplete. Another reason why a cocomplete
restriction category X ought to be split is because ordinary cocomplete categories have
splittings of all idempotents, and so it makes sense for X to have splittings of all restriction
idempotents. Observe that for any cocomplete restriction category X, MTotal(X) is a
cocompleteM-category since Total(X) is cocomplete and Total(X) ↪→ X ∼= Par(MTotal(X))
preserves colimits.

3.20. Example. For each class of examples from Example 3.7, Par(E , EM) is a cocomplete
restriction category. In particular, the restriction category of sets and partial functions
Setp is a cocomplete restriction category since Setp = Par(Set, Inj).

On the other hand, since the M-category Ab of abelian groups (with all monos) is
not cocomplete as an M-category, Par(Ab) is not cocomplete as a restriction category.

We know that for any small M-category C, PShM(C) is a cocomplete M-category,
and furthermore, Par(PShM(C)) is a cococomplete restriction category. In particular, the
split restriction category Par(PShM(MTotal(Kr(X)))) is a cocomplete restriction category
for any small restriction category X. Moreover, we can, following [Cockett & Lack, 2002,
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p. 252], embed X into this cocomplete restriction category via the composite:

Λ: X J−→ Kr(X)
ΦKr(X)−−−→ Par(MTotal(Kr(X)))

Par(y)−−−→ Par(PShM(MTotal(Kr(X)))) . (3.7)

We will now show that this embedding exhibits Par(PShM(MTotal(Kr(X)))) as the free
restriction cocompletion of X.

3.21. Theorem. For any small restriction category X and cocomplete restriction category
E, the following is an equivalence of categories:

(−) ◦ Λ: rCocomp(Par(PShM(MTotal(Kr(X)))),E)→ rCat(X,E)

where Λ is the Cockett and Lack embedding introduced in (3.7).

Proof. First note that E ∼= Par(D) for some cocomplete M-category D (as E is split),
and that

rCocomp(Par(PShM(C)),Par(D)) 'MCocomp(PShM(C),D)

since Par and MTotal are 2-equivalences. Therefore,

(−) ◦ Par(y) : rCocomp(Par(PShM(C)),E)→ rCat(Par(C),E)

is an equivalence since

(−) ◦ y : MCocomp(PShM(C),D)→MCat(C,D)

is an equivalence by Theorem 3.17. Therefore the following composite is an equivalence:

rCocomp(Par(PShM(MTotal(Kr(X)))),E)

(−)◦Par(y)
��

rCocomp(Par(MTotal(Kr(X))),E)

(−)◦ΦKr(X)◦J
��

rCat(X,E)

as ΦKr(X) is an isomorphism and J is the unit of the biadjunction i a Kr at X.

4. Restriction presheaves

We have just seen that for any small restriction category X, the Cockett–Lack embedding of
(3.7) exhibits the restriction category Par(PShM(MTotal(Kr(X)))) as a free cocompletion
of X. However, this description of the free cocompletion seems rather unwieldy compared
to the characterisation of PSh(C) and PShM(C) as the free cocompletions of ordinary
categories and M-categories respectively.
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In this section, we give an alternate simpler definition in terms of a restriction category
PShr(X) of restriction presheaves. The underlying category of PShr(X) will be a full
subcategory of PSh(X) and the Yoneda embedding will factor through this subcategory
to yield a restriction functor yr : X→ PShr(X). We will show that the category PShr(X)
is equivalent to Par(PShM(MTotal(Kr(X)))), so that it gives another, easier, way of
describing free cocompletion in the restriction setting.

4.1. Definition. Let X be a restriction category. A restriction presheaf on X is an
ordinary presheaf P : Xop → Set equipped with, for each A ∈ X, a function PA→ X(A,A)
sending each x ∈ PA to a restriction idempotent x̄ : A → A in X, all subject to the
following three axioms:

(A1) x · x̄ = x;

(A2) x · f̄ = x̄ ◦ f̄ , where f̄ : A→ A is a restriction idempotent in X;

(A3) x̄ ◦ g = g ◦ x · g, where g : B → A in X.

We call the collection of functions PA→ X(A,A) above the restriction structure of P .

Unlike the restriction structure on a restriction category, the restriction structure on a
restriction presheaf is uniquely determined:

4.2. Lemma. Let X be a restriction category and P : Xop → Set a presheaf. Suppose P
has two restriction structures given by x 7→ x̄ and x 7→ x̃. Then x̄ = x̃ for all A ∈ X and
x ∈ PA.

Proof. We have
x̄ = x · x̃ = x̄ ◦ x̃ = x̃ ◦ x̄ = x̃ · x̄ = x̃

by the fact x̄ and x̃ are restriction idempotents and using (A1),(A2).

We also have the following analogues of basic results for restriction categories.

4.3. Lemma. Suppose P is a restriction presheaf on a restriction category X, and let
A ∈ X, x ∈ PA and g : B → A. Then

(1) ḡ ◦ x · g = x · g;

(2) x̄ ◦ g = x · g.

Proof. By (R2), (A2) and (R1),

ḡ ◦ x · g = x · g ◦ g = (x · g) · ḡ = x · (g ◦ ḡ) = x · g.

We also have
x̄ ◦ g = g ◦ x · g = ḡ ◦ x · g = x · g

by (A3), (R3) and the previous result.
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The lemma above shows that (A2) and (A3) together imply x̄ ◦ g = x · g. However,
what is perhaps surprising is that the converse is also true.

4.4. Lemma. Suppose P : Xop → Set is a presheaf, and let A ∈ X, x ∈ PA. If x̄ ◦ g =
x · g is true for all maps g : B → A, then x · e = x̄ ◦ e for all restriction idempotents
e : A→ A, and also x̄ ◦ g = g ◦ x · g.

Proof. The fact x̄ ◦ g = x · g implies x · e = x̄ ◦ e is straightforward, and by assumption,
we have g ◦ x · g = g ◦ x̄ ◦ g = ¯̄x ◦ g = x̄ ◦ g.

So in fact, we may replace restriction presheaf axioms (A2) and (A3) by the condition
that x̄ ◦ g = x · g for all maps g : B → A. Using this, we can give a further reformulation
of the restriction presheaf notion. Let us introduce the presheaf O : Xop → Set, sending
each A ∈ X to the set O(A) of restriction idempotents on A, and whose action by a map
f : B → A satisfies x · f = x ◦ f (cf. [Cockett & Lack, 2002, p. 253]).

Now for each presheaf P on X, there is an action by O on P in the following sense:
there is a natural transformation α : P ×O → P which on components, sends (x, e) to x · e
(for each A ∈ X, x ∈ PA and each restriction idempotent e : A→ A). There is also another
action on P given by π : P ×O → P , which sends (x, e) to x (the first projection). Since
we now know that restriction structures are unique, we may characterise the restriction
structure on any presheaf P in the following way.

4.5. Proposition. Let X be a restriction category. Then a presheaf P : Xop → Set may
be given a restriction structure if and only if there exists a (unique) section σ : P → P ×O
to both the actions α, π : P ×O → P described above.

Proof. The condition x · x̄ = x is given by the section σ, and the other necessary and
sufficient property that x̄ ◦ g = x · g is simply restating the fact that σ is natural.

We now describe how to form restriction presheaves into a restriction category.

4.6. Definition. The category of restriction presheaves on X, PShr(X), is the restriction
category whose objects are restriction presheaves and whose maps are arbitrary natural
transformations. The restriction of α : P → Q is the natural transformation ᾱ : P → P
given componentwise by ᾱA(x) = x · αA(x) for every A ∈ X and x ∈ PA.

We leave to the reader the straightforward calculations that the above does indeed
define a restriction structure on PShr(X). We also emphasise that the underlying category
of PShr(X) is a full subcategory of PSh(X); in particular, maps are not required to preserve
restrictions. In fact, the restriction-preserving maps are precisely the total maps:

4.7. Proposition. A map α : P → Q is total in PShr(X) if and only if αA(x) = x̄ for
all A ∈ X and x ∈ PA.
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Proof. Suppose α : P → Q is total in PShr(X). Then ᾱA(x) = 1PA(x) = x, or x ·αA(x) =
x. But this implies x̄ ≤ αA(x) since

x̄ = x · αA(x) = x̄ ◦ αA(x).

On the other hand, αA(x) ≤ x̄ as

αA(x) = αA(x · x) = αA(x) · x̄ = αA(x) ◦ x̄.

Therefore, α in PShr(X) is total if and only if α preserves restrictions.

Now if X is a restriction category, then each representable X(−, A) has a restriction
structure given by sending f ∈ X(B,A) to f̄ ∈ X. In particular, this implies that the
Yoneda embedding y : X→ PSh(X) factors (uniquely) as a functor yr : X→ PShr(X):

X yr //

y
##

PShr(X)
� _

��
PSh(X).

4.8. Lemma. For any restriction category X, the functor yr : X→ PShr(X) is a restriction
functor.

Proof. Let f : A→ B be a map in X. Then for all X ∈ X and x ∈ X(X,A), we have

yrfX(x) = x · (yrf)X(x) = x · f ◦ x = x ◦ f ◦ x = f ◦ x = (yrf)X(x)

and so yr is a restriction functor.

The restriction presheaf category has one more important property.

4.9. Proposition. Let X be a restriction category. Then PShr(X) is a split restriction
category.

Proof. Let ᾱ : P → P be a restriction idempotent in PShr(X). Since all idempotents
in PSh(X) split, we may write ᾱ = µρ for some maps µ : Q → P and ρ : P → Q such
that ρµ = 1. Componentwise, we may take µA to be the inclusion QA ↪→ PA with
QA = {x ∈ PA | ᾱA(x) = x}. Therefore, to show PShr(X) is split, it is enough to show
that Q is a restriction presheaf. However, P is a restriction presheaf and Q is a subfunctor
of P . Therefore, imposing the restriction structure of P onto Q will make Q a restriction
presheaf. Hence PShr(X) is a split restriction category.
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Before moving on to the main theorems in this section, let us recall the split restriction
category Kr(X), whose objects are pairs (A, e) (with e a restriction idempotent on A ∈ X).
Also recall the unit of the biadjunction i a Kr at X, J : X→ Kr(X), which sends objects A
to (A, 1A) and morphisms f : A→ B to f : (A, 1A)→ (B, 1B).

4.10. Proposition. PShr(X) and PShr(Kr(X)) are equivalent as restriction categories.

Proof. Since Kr(X) is a full subcategory of Split(X), the idempotent completion of
X, and idempotent completion does not affect categories of presheaves, the functor
(−) ◦ Jop : PSh(Kr(X))→ PSh(X) is an equivalence. Therefore, the result will follow if we
can show this functor restricts back to an equivalence between PShr(Kr(X)) and PShr(X).
In other words, we must show that (−) ◦ Jop sends restriction presheaves on Kr(X) to
restriction presheaves on X; that it is essentially surjective on objects; and that it is a
restriction functor.

So let P be a restriction presheaf on Kr(X). Then PJop is a restriction presheaf on X
if we define the restriction of x ∈ (PJop)(A) = P (A, 1A) to be the same as in P (A, 1A) for
all A ∈ X. Moreover, for any α : P ⇒ Q in PShr(Kr(X)), we have that

(α ◦ Jop)A(x) = α(A,1A)(x) = x · α(A,1A)(x) = x · (α ◦ Jop)A(x) =
(
α ◦ Jop

)
A

(x)

so that (−) ◦ Jop preserves restrictions. All that remains is to show essential surjectivity.
Let Q be a restriction presheaf on X, and define the restriction presheaf Q′ on Kr(X) by

taking Q′(A, e) = {x ∈ QA | x · e = x} and Q′(f)(y) = Q(f)(y) for all f : (A′, e′)→ (A, e)
in Kr(X). Note that the action on maps is well-defined since

Q(f)(y) = Q(f)(y · e′) = Q(f)Q(e′)(y) = Q(e′f)(y) = Q(fe)(y) = Q(f)(y) · e .

Moreover Q′ is a restriction presheaf under the same restriction structure as Q. Obvi-
ously Q′(A, 1A) = Q(A), and so Q′ ◦ Jop = Q. Hence, (−) ◦ Jop : PSh(Kr(X))→ PSh(X) is
essentially surjective on objects, and therefore PShr(X) and PShr(Kr(X)) are equivalent.

4.11. Theorem. Let C be an M-category. Then PShM(C) and MTotal(PShr(Par(C)))
are equivalent.

Proof. Our approach will be to find a pair of functors F : PSh(C)→ Total(PShr(Par(C)))
and G : Total(PShr(Par(C))) → PSh(C), and natural isomorphisms η : 1 ⇒ GF and
ε : FG ⇒ 1, and then show that F and G are in fact M-functors. (Note that η and ε
must necessarily be M-cartesian).

We define F on objects as follows. Let P be a presheaf on C. If X ∈ Par(C), then
(FP )(X) is the set of equivalence classes

(FP )(X) = {(m, f) | m : Y → X ∈ CM, f ∈ PY }

where (m, f) ∼ (n, g) if and only if there exists an isomorphism ϕ such that n = mϕ and
g = f · ϕ. To define FP on morphisms, given (n, g) : Z → X in Par(C) and an element
(m, f) ∈ (FP )(X), define (

(FP )(n, g)
)

(m, f) = (nm′, f · g′)



COCOMPLETION OF RESTRICTION CATEGORIES 831

where (m′, g′) is the pullback of (m, g), as in:

• g′
//

m′

��

•
m

��
• g

// • .

Defining the restriction of (m, f) ∈ (FP )(X) to be (m,m) makes FP : Par(C)op → Set
a restriction presheaf. This defines F on objects. Now suppose α : P → Q is a map in
PSh(C). Define Fα : FP → FQ componentwise as follows:

(Fα)X(m, f) = (m,αdom m(f)).

Then Fα is natural (by naturality of α) and also total, making F a functor from PSh(C)
to Total(PShr(Par(C))).

We now give the data for the functor G from Total(PShr(Par(C))) to PSh(C). Let P
be a restriction presheaf on Par(C), and define GP : Cop → Set as follows. If X ∈ C, then

(GP )(X) = {x | x ∈ PX, x̄ = (1, 1)}.

And if f : Z → X is a map in C, define

(GP )(f) = P (1, f).

Note that (GP )(f) is well-defined since for every x ∈ (GP )(X),

P (1, f)(x) = x · (1, f) = x̄ ◦ (1, f) = (1, 1),

and so (GP )(f) is a function from (GP )(X) to (GP )(Z).
Finally, if α : P → Q is a total map in PShr(Par(C)), define Gα : GP → GQ compon-

entwise by (Gα)X(x) = αX(x). for every X ∈ C and x ∈ (GP )(X). Again, to see that
Gα is well-defined, note that α total implies αX(x) = x = 1 (Proposition 4.7) and so
αX(x) ∈ (GQ)(X). This makes G a functor from Total(PShr(Par(C))) to PSh(C).

The next step is defining isomorphisms η : 1⇒ GF and ε : FG⇒ 1. To define η, we
need to give components for every presheaf P on C, and this involves giving isomorphisms
(ηP )X : PX → (GFP )(X). But (GFP )(X) = {(1, f) | f ∈ PX}. Therefore, defining
(ηP )X(f) = (1, f) makes η an isomorphism, and naturality is easy to check.

Similarly, to define ε, we need to define isomorphisms (εP )X : (FGP )(X)→ PX for
every restriction presheaf P on Par(C) and object X ∈ Par(C). Since

(FGP )(X) = {(m, f) | m : Y → X ∈ CM, f ∈ PY, f̄ = (1, 1)},

we may define (εP )X(m, f) = f · (m, 1). Its inverse (εP )−1
X : PX → (FGP )(X) is then

given by
(εP )−1

X (x) = (n, x · (1, n))
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where x̄ = (n, n) (as P is a restriction presheaf on Par(C)). Checking the naturality of
ε is again straightforward. All that remains is to show that both F : PShM(C) →
MTotal(PShr(Par(C))) and G : MTotal(PShr(Par(C))) → PShM(C) are M-functors.
However, as F and G are equivalences in Cat, they necessarily preserve limits, and
so it suffices to show that they preserve M-maps.

So let µ : P → Q be in PSh(C)M. To show Fµ is a restriction monic, we need to show
Fµ is the equaliser of 1 and some restriction idempotent α : FQ → FQ. To define this
α, let X ∈ Par(C) and (n, g) ∈ (FQ)(X) where n : Z → X, say. Now as g ∈ QZ, there
exists a corresponding natural transformation ĝ : yZ → Q by Yoneda. However, as µ is in
PSh(C)M, there exists an mg : B → Z in CM making the following a pullback:

yB

ymg

��

// P

µ

��
yZ

ĝ
// Q.

So define α by its components as follows,

αX(n, g) = (nmg, g ·mg).

It is then not difficult to show this α is well-defined, is a natural transformation and is a
restriction idempotent.

Now to show that Fµ equalises 1 and α, we need to show (Fµ)X : (FP )(X)→ (FQ)(X)
is an equaliser of 1 and α(FQ)(X) in Set for all X ∈ Par(C). In other words, that (Fµ)X is
injective, and that:

(n, g) ∈ (FQ)(X) satisfies (n, g) = (Fµ)X(m, f) = (m,µdom m(f)) for some

(m, f) ∈ (FP )(X) if and only if αX(n, g) = (n, g).
(4.1)

To show (Fµ)X is injective, suppose (Fµ)X(m, f) = (Fµ)X(m′, f ′), or equivalently,
(m,µdom m(f)) = (m′, µdom m′(f ′)). That is, there exists an isomomorphism ϕ such that
m′ = mϕ and µdom m′(f ′) = µdom m(f) ·ϕ. But the naturality of µ implies µdom m′(f ·ϕ) =
µdom m(f) · ϕ = µdom m′(f ′). Therefore, as µ is monic, we must have f · ϕ = f ′. Hence
(m, f) = (m′, f ′), and so (Fµ)X is injective.

To prove (4.1), let (n, g) ∈ (FQ)(X) and suppose αX(n, g) = (n, g). This says that
(nmg, g ·mg) = (n, g), or equivalently that mg is an isomorphism. This happens if and
only if ymg is an isomorphism; but since ymg is a pullback of µ along ĝ, this happens in

turn if and only if ĝ = µĥ for some ĥ : yZ → P :

yB

ymg

��

// P

µ

��
yZ

ĝ
//

ĥ

>>

Q.
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But by Yoneda, the statement ĝ = µĥ is equivalent to the statement that g = µZ(h)
for some h ∈ PZ, which is the same as saying (n, g) = (n, µZ(h)) = (Fµ)X(n, h), with
(n, h) ∈ (FP )(X). Therefore, (Fµ)X is an equaliser of 1 and α(FQ)(X) in Set for all
X ∈ Par(C), and hence, Fµ equalises 1 and α.

Now to see that G is also an M-functor, let µ : P → Q be a restriction monic in
PShr(Par(C)). To show Gµ is in PSh(C)M, we need to show that for any given θ̂ : yC → Q,
there exists a monic m : D → C in CM and a map δ̂ : yD → P making the following a
pullback:

yD δ̂ //

ym

��

GP

Gµ

��
yC

θ̂

// GQ.

Here we make two observations. First, commutativity says m and δ must satisfy Gµ ◦ δ̂ =

θ̂ ◦ ym. On the other hand, Yoneda tells us that θ̂ ◦ ym = θ̂ ·m and Gµ ◦ δ̂ = ̂(Gµ)D(δ),
where θ ∈ QC and δ ∈ PD are the unique transposes of θ̂ and δ̂ respectively. Therefore,
m and δ must satisfy the following condition:

(Gµ)D(δ) = θ ·GQ m. (4.2)

That is, µD(δ) = θ ·Q (1,m). Secondly, m and δ must make the following a pullback in
Set (for all objects X ∈ C):

C(X,D)
δ̂X=δ·GP (−)

//

m◦(−)
��

(GP )(X)

(Gµ)X
��

C(X,C)
θ̂X=θ·GQ(−)

// (GQ)(X).

In other words, for any f ∈ C(X,C) and x ∈ (GP )(X) such that θ ·GQ f = (Gµ)X(x) (i.e.,
such that θ ·Q (1, f) = µX(x)), there exists a unique g ∈ C(X,D) such that

δ ·GP g = x, and mg = f. (4.3)

Alternatively, δ ·P (1, g) = x and mg = f .
We now find m and δ satisfying (4.2) and (4.3). To find mthat because µ is a restriction

monic, there exists a ρ such that µρ = ρ̄ and ρµ = 1. Since θ ∈ QC, applying ρC to θ and
then taking its restriction gives ρC(θ) = (m,m) for some m ∈ CM.

This gives us m. To get δ, note that P (1,m) is a function from PC to PD. So define

δ = ρC(θ) ·P (1,m).

Then δ ∈ (GP )(D) since

δ̄ = ρC(θ) ◦ (1,m) = (m,m) ◦ (1,m) = (1,m) = (1, 1).
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So all that remains is to show m and δ satisfy (4.2) and (4.3). To show m and δ satisfy
(4.2), one simply substitutes the given values into the equation, using the fact µρ = ρ̄. To
see that (4.3) is also satisfied, suppose there exist f ∈ C(X,C) and x ∈ (GP )(X) such
that θ ·P (1, f) = µX(x). Then applying ρX to both sides gives

ρC(θ) ·P (1, f) = x

since ρµ = 1. We need to show there exists a g such that mg = f and δ ·P (1, g) = x. But
mg = f implies

x = ρC(θ) ·P (1, f) = ρC(θ) ·P (1,mg) = ρC(θ) ·P (1,m) ·P (1, g) = δ ·P (1, g).

Therefore, we just need to find g satisfying mg = f .
Consider the composite (m,m) ◦ (1, f) = (m′,mf ′), where (m′, f ′) is the pullback of

(m, f):

X ×C D
f ′
//

m′

��

D

m
��

X
f

// C.

Note that if m′ is an isomorphism, then g = f ′(m′)−1 will satisfy the condition mg = f .
Now by restriction presheaf axioms and naturality of ρ̄, we have θ ·Q (m′,mf ′) = θ ·Q (1, f).
But θ ∈ (GQ)(C) implies

θ ·Q (m′,mf ′) = θ̄ ◦ (m′,mf ′) = (m′,mf ′) = (m′,m′)

and
θ ·Q (1, f) = θ̄ ◦ (1, f) = (1, f) = (1, 1).

Therefore, m′ must be an isomorphism, which means m and δ satisfy (4.3). Hence, G is
also an M-functor and PShM(C) and MTotal(PShr(Par(C))) are equivalent.

We now use the above theorem to prove the following result.

4.12. Proposition. Let C be an M-category. There is an equivalence of restriction
categories L : Par(PShM(C))→ PShr(Par(C)) satisfying the relation yr = L ◦ Par(y).

Proof. Since Par and MTotal are 2-equivalences, the following is an isomorphism of
categories:

MCat
(
PShM(C),MTotal(PShr(Par(C)))

)
∼= rCat

(
Par(PShM(C)),PShr(Par(C))

)
.

We know from Theorem 4.11 that F : PShM(C)→MTotal(PShr(Par(C))) is an equival-
ence. So define L = F̃ , the transpose of F . Explicitly, F̃ = Φ−1

PShr(Par(C)) ◦ Par(F ), where
ΦPShr(Par(C)) is the unit of the 2-equivalence between Par and MTotal.
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Now define ỹr : C → MTotal(PShr(Par(C))) as the transpose of yr : Par(C) →
PShr(Par(C)). Explicitly, ỹr is the unique map whose underlying functor (also called ỹr
by an abuse of notation) makes the following diagram commute:

C
ỹr //

� _

��

Total(PShr(Par(C)))
� _

��
Par(C) yr

// PShr(Par(C)).

Since ỹr = Fy will imply yr = L ◦ Par(y), we prove the former. So let A ∈ Par(C). Then
ỹr(A) = Par(C)(−, A) by definition. On the other hand, (Fy)(A) defined on objects
B ∈ Par(C) is the following set:

(FyA)(B) = {(m, f) | m : Y → B ∈ CM, f ∈ C(Y,A)}.

In other words, elements of (FyA)(B) are spans B
m←− Y

f−→ A with m ∈ CM.
Clearly (FyA)(B) = Par(C)(B,A) = (ỹrA)(B). Likewise, if (n, g) : C → B is a map

in Par(C), then (FyA)(n, g) = (−) ◦ (n, g) = (ỹrA)(n, g), and so ỹr(A) = (Fy)(A).
Now let h : B → C be a map in C. Then (Fy)(h) : Par(C)(−, B)⇒ Par(C)(−, C) has

components given by

(Fyh)D(n, g) = (n, (yh)dom n(g)) = (n, hg) = (1, h) ◦ (n, g)

for all D ∈ Par(C) and (n, g) ∈ Par(C)(D,C). But ỹr(h) = yr(1, h) also has components
given by

(
yr(1, h)

)
D

= (1, h) ◦ (−) at D ∈ Par(C). Therefore, (Fy)(h) = ỹr(h) and so
Fy = ỹr. Hence, yr = L ◦ Par(y).

We now prove the main result of this section.

4.13. Theorem. Let X be a restriction category. Then

PShr(X) ' Par(PShM(MTotal(Kr(X))))

and the following diagram commutes up to isomorphism:

X
yr

ww

Λ

''
∼=

PShr(X) Par(PShM(MTotal(Kr(X))))'
oo

where Λ is the Cockett–Lack embedding of (3.7).
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Proof. Consider the following diagram, where C =MTotal(Kr(X)) and the top composite
is the Cockett–Lack embedding Λ from (3.7):

X
ΦKr(X)◦J //

yr

��

Par(C)
Par(y)

//

yr

��

Par(PShM(C))

L
��

PShr(X) PShr(Par(C))
(−)◦(ΦKr(X)◦J)op
oo PShr(Par(C)).

By Proposition 4.12, the right square commutes up to isomorphism. However, the left
square also commutes up to isomorphism as ΦKr(X) ◦ J is fully faithful. Hence the result
follows.

4.14. Corollary. For any small restriction category X, the embedding yr : X→ PShr(X)
exhibits PShr(X) as the free restriction cocompletion of X.

5. Free cocompletion of locally small restriction categories

So far in our discussions, we have considered the free cocompletion of a small M-category
C and of a small restriction category X, given by PShM(C) and PShr(X) respectively. We
now turn our attention to the cases where our categories may not necessarily be small, but
only locally small. When C is an ordinary locally small category, we can construct its free
cocompletion as the full subcategory P(C) of PSh(C) on the small presheaves. (Recall
that a presheaf on C is called small if it can be written as a small colimit of representables
[Day & Lack, 2007].)

In an entirely analogous way, we would like to define, for each locally smallM-category,
an M-category of small presheaves which will be its free cocompletion, and then transfer
this result across to locally small restriction categories. To begin, we define what we mean
by a locally small M-category.

5.1. Definition. An M-category (C,CM) is called locally small if C is locally small
and M-well-powered. That is, for any object C ∈ C, the M-subobjects of C form a small
partially ordered set.

5.2. Remark. Note that this definition is exactly what is required for Par(C) to be a
locally small category, as noted by [Robinson & Rosolini, 1988, p. 99].

By analogy with the case of locally small categories, we define for any locally small
M-category (C,CM), the M-category of small presheaves PM(C) = (P(C),P(C)M),
where P(C)M is defined in exactly the same way as for PSh(C)M. We begin by showing
that P(C)M is a stable system of monics.

5.3. Lemma. Let C be a locally smallM-category, and let µ : P → Q be a map in P(C)M.
If γ : Q′ → Q is a map in P(C), then the pullback of µ along γ calculated in PSh(C) is in
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P(C)M:

P ′ //

µ′

��

P

µ

��
Q′ γ

// Q.

Proof. Certainly µ′ exists and is in PSh(C)M by the fact that PShM(C) is anM-category.
So all we need to show is that P ′ is a small presheaf. Since Q′ is small, we may express
Q′ as colimyD for some functor D : I → C with I small. Let us write the colimiting
coprojections as qI : yDI → Q′. Now µ is a map in P(C)M, which means that for each
I ∈ I and composite γ ◦ qI , there exists an mI : CI → DI in CM making the outer square
a pullback in:

yCI
pI //

ymI

��

P ′ //

µ′

��

P

µ

��
yDI qI

// Q′ γ
// Q.

By the same argument as in the proof of Theorem 3.17, it follows that there is a functor
C : I→ C which on objects, takes I to CI , and that there is a unique map pI : yCI → P ′

making the left square a pullback for every I ∈ I. However, because colimits are stable
under pullback in PSh(C), this means (pI : yCI → P ′)I∈I is colimiting, which ensures that
P ′ is a small presheaf.

5.4. Remark. Note that the previous result implies that P(C) admits pullbacks along
P(C)M-maps, and that these are computed pointwise.

Having now shown that P(C)M is a stable system of monics, so that PM(C) is an
M-category, we claim that PM(C) is indeed the free cocompletion of C. To do so, however,
will first require showing that PM(C) is both locally small and cocomplete.

5.5. Lemma. If C is a locally small M-category, then PM(C) is locally small.

Proof. Since P(C) is a locally small category [Day & Lack, 2007], all we need to do is show
that PM(C) is M-well-powered. So let Q be a small presheaf, and rewrite Q ∼= colimyD,
where D : I→ C is a functor with I small. Again denote the colimiting coprojections by
(qI : yDI → Q)I∈I.

As before, if µ : P → Q is an M-subobject of Q, then µ induces a functor C : I→ C,
which on objects, takes I → CI , and takes maps f : I → J to the unique map Cf making
the diagram in (3.2) commute and the left square of that diagram a pullback. Note that
P ∼= colimyC as colimits are stable under pullback in P(C). There is also a natural
transformation α : C ⇒ D, given componentwise on I by mI ∈ CM and whose naturality
squares are pullbacks for every I ∈ I.

So given a small presheaf Q, the functors C : I→ C induced by the M-subobjects of
Q (together with D : I→ C from Q) form an M-category ([I,C], [I,C]M), with the maps
in [I,C]M being just the natural transformations whose components are maps in CM. It
is easy to see that ([I,C], [I,C]M) is locally small.
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Let SubM : SubP(C)M(Q)→ Sub[I,C]M(D) be the function taking the M-subobjects
of Q to the M-subobjects of D. So to show that PM(C) is M-well-powered, it is enough
to show that SubM is injective. Let µ : P → Q and µ : P ′ → Q be two M-subobjects of
Q which are mapped to the same M-subobject of D. That is, there is an isomorphism
from C to C ′ making the following diagram commute:

C
∼= //

α
  

C ′

α′
}}

D.

But because P ∼= colimyC ∼= colimyC ′ ∼= P ′, this induces an isomorphism between P
and P ′ making the following diagram commute:

yCI
pI //

yαI

��

∼=

""

P
∼=

��

µ

��

yC ′I

yα′
I||

p′I // P ′

µ′��
yDI qI

// Q.

In other words, µ and µ′ are the same M-subobject of Q, and so the function SubM is
injective. Hence, if C is a locally small M-category, then so is PM(C).

Next, to show that PM(C) is cocomplete, we exploit Proposition 3.8 and the following
two lemmas.

5.6. Lemma. Let C be a locally small M-category and I a small set. If {µi : Pi → Qi}i∈I
is a family of maps in P(C)M, then their coproduct

∑
i∈I µi is also in P(C)M.

Proof. To show that
∑

i∈I µi is in P(C)M, we need to show that for any map h : yD →∑
i∈I Qi in P(C) there is a map m : C → D in CM making the following diagram a

pullback:
yC //

ym

��

∑
i∈I Pi∑

i∈I µi
��

yD
h
//
∑

i∈I Qi.

Since P(C)
(
yD,

∑
i∈I Qi

) ∼= (∑i∈I Qi

)
(D) by the Yoneda lemma, and

(∑
i∈I Qi

)
(D) ∼=∑

i∈I QiD as coproducts in P(C) are taken pointwise, this means h corresponds uniquely
with some element in

∑
i∈I QiD. This, together with the naturality of the bijection

P(C)(yD,Qi) ∼= QiD for each i ∈ I, imply that h : yD →
∑

i∈I Qi factors through
exactly one of the coproduct injections ıQj

: Qj →
∑

i∈I Qi. By extensivity of the presheaf
category PSh(C), the pullback of

∑
i∈I µi along ıQi

must be µi. However, as µj is an
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P(C)M-map, there exists an m : C → D in CM making the left square of the following
diagram commute:

yC //

ym

��

Pj
ıPj
//

µj

��

∑
i∈I Pi∑

i∈I µi
��

yD h′ //

h

66
Qj

ıQj
//
∑

i∈I Qi.

Therefore, as both squares are pullbacks, ym is a pullback of
∑

i∈I µi along h, which
means

∑
i∈I µi ∈ P(C)M.

5.7. Lemma. Let C be a locally small M-category, and suppose m is a map in P(C). If
the pullback of m along some epimorphism is an P(C)M-map, then m must also be in
P(C)M.

Proof. Let m : P → Q be a map in P(C), and suppose m′ : P ′ → Q′ is a pullback of m
along some epimorphism f : Q′ → Q. To show that m is an P(C)M, let g : yD → Q be
any map in P(C). Again by Yoneda, there is a bijection P(C)(yD,Q) ∼= QD, giving a
corresponding element g̃ ∈ QD. Since f is an epimorphism in P(C), its component at D,
fD : Q′D → QD, must also be an epimorphism, which means there exists some element
f̃ ′ ∈ Q′D such that fD(f̃ ′) = g̃. The naturality of the bijection P(C)(yD,Q) ∼= QD then
implies there is a map f ′ : yD → Q′ such that g = ff ′. Now using the fact m′ is an
P(C)M-map, there exists a map n ∈ CM such that yn is the pullback of m′ along f ′:

yC //

yn

��

P ′ //

m′

��

P

m

��
yD

f ′
//

g

99Q′
f
// Q.

Then as both squares are pullbacks, yn must be the pullback of m along g = ff ′, making
m an P(C)M-map.

5.8. Lemma. Let (C,CM) be a locally small M-category. Then (P(C),P(C)M) is a
cocomplete M-category.

Proof. We begin by noting that the category of small presheaves on C, P(C), is
cocomplete. Therefore, it remains to show that the inclusion P(C) ↪→ Par(P(C),P(C)M)
is cocontinuous. However, by Proposition 3.8, it is enough to show that the following
conditions hold:

(a) If {mi : Pi → Qi}i∈I is a family of maps in P(C)M indexed by a small set I, then
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i∈Imi is also in P(C)M and the following squares are pullbacks for each i ∈ I:

Pi
ıPi //

mi

��

∑
i∈I Pi∑

i∈I mi

��
Qi ıQi

//
∑

i∈I Qi.

(b) Given the following diagram,

P ′
f ′
//

g′
//

m′

��

P

m

��

c′ // G

n

��
Q′

f
//

g
// Q c

// H

if m ∈ P(C)M and the left two squares are pullbacks, and c, c′ are the coequalisers of
f, g and f ′, g′ respectively, then the unique map n making the right square commute
is in P(C)M and the right square is also a pullback.

(c) Colimits in P(C) are stable under pullback along P(C)M-maps.

To see that (c) holds, recall that P(C) admits pullbacks along P(C)M-maps, and that
these are calculated pointwise as in Set (Remark 5.4). The result then follows from the
fact that colimits in P(C) are also calculated pointwise together with the fact colimits are
stable under pullback in Set.

For (b), it will be enough to show that the square on the right in (b) is a pullback (by
Lemma 5.7). Now the right square is a pullback in P(C) if and only if componentwise for
every A ∈ C, it is a pullback in Set. So consider the diagram in (b) componentwise at
A ∈ C:

P ′A
f ′A //

g′A

//

m′
A
��

PA

mA

��

c′A // GA

nA

��
Q′A

fA //
gA
// QA cA

// HA.

The two left squares remain pullbacks in Set, and cA, c
′
A remain coequalisers of fA, gA and

f ′A, g
′
A respectively since colimits in P(C) are calculated pointwise. Observe also that mA

is a monomorphism as maps between small presheaves in P(C) are monic if and only if
they are componentwise monic for every A ∈ C (by a Yoneda argument). Now we know
that the M-category (Set, Inj) (where Inj are all the injective functions) is a cocomplete
M-category (Example 3.4), and since mA is monic, the square on the right must be a
pullback in Set. Therefore, as pullbacks in P(C) are calculated pointwise, the square on
the right of (b) must also be a pullback.
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For (a), we know that
∑

i∈I mI ∈ P(C)M from Lemma 5.6. Then, as (Set, Inj) is
cocomplete and both pullbacks and colimits in P(C) are computed pointwise as in Set,
the result follows by an analogous argument to (b).

Therefore, (P(C),P(C)M) is a cocomplete M-category.

5.9. Theorem. Let C be a locally small M-category, and let D be a locally small,
cocomplete M-category. Then the following is an equivalence of categories:

(−) ◦ y : MCocomp(PM(C),D)→MCAT(C,D)

where MCAT is the 2-category of locally small M-categories.

Proof. The proof follows exactly the same arguments presented in the proof of Theorem
3.17.

5.10. Corollary. For any locally small restriction category X and locally small, cocom-
plete restriction category E, the following is an equivalence of categories:

(−) ◦ Λ: rCocomp(Par(PM(MTotal(Kr(X)))),E)→ rCAT(X,E)

where Λ is the Cockett and Lack embedding introduced in (3.7) and rCAT is the 2-category
of locally small restriction categories.

Given that a small presheaf on an ordinary category is one that can be written as a
colimit of small representables, it is natural to ask whether there is a similar notion of
small restriction presheaf. So let X be a locally small restriction category, and denoting
the M-category MTotal(Kr(X)) by C, the previous corollary says that Par(PM(C)) is
the free cocompletion of X. Since P(C) is a full replete subcategory of PSh(C) and
Par(PShM(C)) ' PShr(X), there exists a full subcategory Pr(X) ⊂ PShr(X) which is
equivalent to Par(PM(C)):

Pr(X) ' //
� _

��

Par(PM(C))
� _

��
PShr(X) '

// Par(PShM(C))

where the above square is a pullback and the bottom map is the equivalence from
Theorem 4.13.

To see what objects should be in Pr(X), it is enough to apply Total to the above
diagram, giving the following pullback:

Total(Pr(X)) //
� _

��

P(Total(Kr(X)))
� _

��
Total(PShr(X))

G
// PSh(Total(Kr(X)))



842 RICHARD GARNER AND DANIEL LIN

where G is an equivalence. Since the above diagram is a pullback, an object P will be
in Total(Pr(X)) (and hence in Pr(X)) if GP is an object in P(Total(Kr(X))); that is,
GP ∼= colimyCI , where C : I → Total(Kr(X)) is a functor with I small. If we define
H to be a pseudo-inverse for G, then an object will be in Pr(X) if it is of the form
P ∼= colimHyCI , for some small I and functor C : I→ Total(Kr(X)). We call such a P a
small restriction presheaf.

We also give an explicit description of a small restriction presheaf as follows. Since GP
is an object in P(Total(Kr(X))), it will be the colimit of a small diagram whose vertices
are of the form y(A, e), where (A, e) is an object in Kr(X). Now given (A, e) ∈ Kr(X),
note the following splitting in PShr(X):

Q(A, e)
$$

$$
yrA

:: ::

yre
// yrA.

This gives a functor Q : Kr(X)→ PShr(X). Then a restriction presheaf is called small if it
is the colimit of some functor D : I → PShr(X) (I small), where each DI is of the form
Q(A, e) for some (A, e) ∈ Kr(X), and each D(f : I → J) is total. We denote by Pr(X) the
restriction category whose objects are small restriction presheaves on X. By construction,
it is also the free cocompletion of X. It is not difficult to check that when X is a small
restriction category, restriction presheaves on X are small, and so Pr(X) = PShr(X).
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Différentielle Catég. 28, 111-126.

[Cockett & Cruttwell, 2014] J. Cockett & G. Cruttwell (2014). Differential structure, tangent
structure, and SDG. Appl. Categ. Structures 22, 331-417.

[Cockett & Lack, 2002] J. Cockett & S. Lack (2002). Restriction categories I: categories of
partial maps. Theoret. Comput. Sci. 270, 223-259.

[Cockett & Lack, 2003] J. Cockett & S. Lack (2003). Restriction categories II: partial map
classification. Theoret. Comput. Sci. 294, 61-102.

[Cockett & Lack, 2007] J. Cockett & S. Lack (2007). Restriction categories III: colimits, partial
limits and extensivity. Math. Structures Comput. Sci. 17, 775-817.

[Day & Lack, 2007] B. Day & S. Lack (2007). Limits of small functors. J. Pure Appl. Algebra
210, 651-663.



COCOMPLETION OF RESTRICTION CATEGORIES 843

[Di Paola & Heller, 1987] R. Di Paola & A. Heller (1987). Dominical categories: recursion
theory without elements. J. Symbolic Logic 52, 594-635.

[Ehresmann, 1957] C. Ehresmann (1957). Gattungen von lokalen Strukturen. Jahresbericht der
Deutschen Mathematiker-Vereinigung 60, 49–77.

[Freyd, 1964] P. Freyd (1964). Abelian categories: An Introduction to the Theory of Functors.
Harper & Row. Republished in Reprints in Theory and Applications of Categories,
No. 3 (2003), 23-164.

[Grandis, 1990] M. Grandis (1990). Cohesive categories and manifolds. Ann. Mat. Pura Appl.
(4) 157, 199-244.

[Heller, 1983] A. Heller (1983). Dominical categories and recursion theory. In C. Bernadi & P.
Pagli (eds), Atti degli incontri di Logica Matematica Volume 2, 339-344. Università
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Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: ross.street@mq.edu.au
Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be


	Introduction
	Restriction category preliminaries
	Cocompletion of restriction categories
	Restriction presheaves
	Free cocompletion of locally small restriction categories

