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THE FOLK MODEL CATEGORY STRUCTURE ON
STRICT ω-CATEGORIES IS MONOIDAL

DIMITRI ARA and MAXIME LUCAS

Abstract. We prove that the folk model category structure on the category of strict
ω-categories, introduced by Lafont, Métayer and Worytkiewicz, is monoidal, first, for
the Gray tensor product and, second, for the join of ω-categories, introduced by the first
author and Maltsiniotis. We moreover show that the Gray tensor product induces, by
adjunction, a tensor product of strict (m, n)-categories and that this tensor product is
also compatible with the folk model category structure. In particular, we get a monoidal
model category structure on the category of strict ω-groupoids. We prove that this
monoidal model category structure satisfies the monoid axiom, so that the category of
Gray monoids, studied by the second author, bears a natural model category structure.

Introduction
The category ω-Cat of strict ω-categories, that we shall simply call ω-categories in this
paper, is endowed with a model category structure, introduced by Lafont, Métayer and
Worytkiewicz [15], known as the folk model category structure. The weak equivalences of
this structure are the equivalences of ω-categories, higher dimensional generalization of
the equivalences of categories or of 2-categories; the cofibrant objects are the ω-categories
that are free in the sense of polygraphs [17]. This model category structure, which is also
called the canonical model category structure, is in some sense intrinsic to the notion of
ω-categories.

On the other hand, the category ω-Cat is endowed with two non-trivial monoidal
category structures. The first one is the Gray tensor product ⊗, sometimes called the
lax Gray tensor product, first introduced by Al-Agl and Steiner [1], and then studied by
Crans [5]. This tensor product generalizes the tensor product of 2-categories introduced
by Gray in [7], hence its name. It is somehow a lax version of the cartesian product. For
instance, one has

D1 ⊗D1 =
• //

��

•

��
• // • ,
{� D1 ⊗∆2 =

• //

��

• //

��

•

��
• // • // • ,
{� {�
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D1 ⊗D2 =

• %%

99

��

�� •

��
• %%

99�� • ,

��

jr

Wg

where
D1 = • // • , ∆2 = • // • // • and D2 = • ""

<<��
• .

In general, by iterating n times the Gray tensor product with D1 starting from D0, one
gets a lax cube of dimension n. This (non-symmetric) tensor product defines a biclosed
monoidal category structure and the two associated internal Hom are related to higher
lax and oplax transformations. The second monoidal category structure is given by the
join of ω-categories ?, introduced by the first author and Maltsiniotis in [2] to study slice
ω-categories in a similar way as Joyal did for quasi-categories (see the introduction of [2]
for more details). This operation, inspired by the topological join, is a higher dimensional
lax version of the classical join of categories. For instance, one has

D0 ?D0 = • // • = D1 , D0 ?D1 =
•

��

•

99

$$ • ,

CK

D1 ?D1 =
• //

�� ��

• • //

��

•

• // •

OO

• //

??

• .

OO

*4
�#{�

����

More generally, by iterating n times the join with D0 starting from D0, one gets Street’s
n-th oriental On [23]. The join only admits “local internal Hom”, in some appropriate
sense, that are given by “generalized slice ω-categories”. The Gray tensor product and
the join are two fundamental structures of the theory of ω-categories.

The main goal of this paper is to prove that both the Gray tensor product and the
join interact well with the folk model category structure or, more precisely, that they
both define a monoidal model category structure on ω-Cat endowed with the folk model
category structure. Concretely, this means that if i : X → Y and j : Z → T are two folk
cofibrations, then their pushout-product, that is, the ω-functor

i⊗′ j : Y ⊗ Z qX⊗Z X ⊗ T → Y ⊗ T
induced by the commutative square

X ⊗ Z
i⊗Z
��

X⊗j
// X ⊗ T

i⊗T
��

Y ⊗ Z
Y⊗j

// Y ⊗ T ,
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is a folk cofibration, and a folk trivial cofibration if moreover either i or j is a folk trivial
cofibration; and likewise for the join. This implies in particular that the Gray tensor
product and the join can be left-derived as functors of two variables.

Note that the fact that the pushout-product, for the Gray tensor product, of two
folk cofibrations is a folk cofibration was already proved by the second author in [16] by
means of cubical ω-categories. Moreover, the particular case saying that the Gray tensor
product of two cofibrant ω-categories is cofibrant was also established by Hadzihasanovic
in [8]. Our proof, which is based on Steiner’s theory of augmented directed complexes [22]
and results of the first author and Maltsiniotis about pushouts of these [2, Chapter 3], is
completely different and has the advantage to adapt easily to the case of the join. The
hard part in showing the compatibility of the Gray tensor product and the join with
the folk model category structure is then to prove that the pushout-product of a folk
cofibration and a folk trivial cofibration is a folk trivial cofibration.

In the case of the Gray tensor product, we prove a more general result. Let (m,n)-Cat,
for 0 6 n 6 m 6 ω, be the category of (m,n)-categories, that is, the category of
(strict) m-categories whose k-cells are strictly invertible as soon as k > n. Denote by
r : ω-Cat → (m,n)-Cat the left adjoint to the inclusion functor (m,n)-Cat ↪→ ω-Cat. It
follows from [15] and [3] that the folk model category structure can be transferred along
this adjunction to (m,n)-Cat. We prove, first, that the Gray tensor product induces, us-
ing r, a biclosed monoidal product for (m,n)-categories and, second, that this Gray tensor
product of (m,n)-categories is compatible with the transferred model category structure
on (m,n)-Cat. In particular, in the case n = 0, we get a monoidal model category struc-
ture on the category of (strict) m-groupoids. We prove that this structure is symmetric
and satisfies the so-called monoid axiom of Schwede and Shipley [21]. This implies that
the category of Gray monoids, that is, of monoid objects in the category of ω-groupoids
endowed with the Gray tensor product, bears a canonical model category structure. This
result was one of the motivating starting point of this work, as the second author showed
in [16] that Gray monoids provide a good framework for higher dimensional rewriting.

On our way to show these results, we prove several properties of independent interest
related to the Gray tensor product:

• We prove that if x is anm-cell of an ω-category X and y is an n-cell of an ω-category
Y , then the associated (m+ n)-cell x⊗ y is reversible (that is, weakly invertible) if
either x or y is reversible.

• We show that the analogous statement for strictly invertible cells holds. This implies
that the tensor product of two ω-groupoids is an ω-groupoid.

• We prove that if X is a cofibrant ω-category, then J1⊗X, where J1 is the ω-cate-
gory obtained by factorizing the codiagonal of the terminal ω-category into a folk
cofibration followed by a folk trivial fibration, is a cylinder object for X in the folk
model category structure.

• We show that the invertible cells of the ω-category Homoplax(X, Y ), defined by the
adjunction

Homω-Cat(T ⊗X, Y ) ' Homω-Cat(T,Homoplax(X, Y )),
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are precisely the component-wise invertible higher oplax transformations. This im-
plies that if Y is an (m,n)-category, then so is Homoplax(X, Y ).

• We construct an ω-functor

X ⊗ (Y ? Z)→ (X ⊗ Y ) ? Z,

natural in X, Y and Z in ω-Cat, defining a tensorial strength on the functor − ? Z
for the Gray tensor product.

Finally, in an appendix, we prove that the “local internal Hom” of the join, the so-
called generalized slices, can be right-derived as functors of two variables. By “local
internal Hom”, we mean the right adjoints of the functors

ω-Cat → X\ω-Cat
Y 7→ (X ? Y,X ↪→ X ? Y )

ω-Cat → Y \ω-Cat
X 7→ (X ? Y, Y ↪→ X ? Y ),

by opposition to the right adjoints of the functors

ω-Cat → ω-Cat
Y 7→ X ? Y

ω-Cat → ω-Cat
X 7→ X ? Y,

which do not exist in the case of the join. These two local internal Hom, like classical
internal Hom, can be promoted to functors of two variables, but in the local case, we get
functors from the twisted arrow category:

Tw(ω-Cat)→ ω-Cat
X

u−→ Z 7→ u\Z

Tw(ω-Cat)→ ω-Cat

Y
v−→ Z 7→ Z

co
/ v.

We prove, in the general setting of locally biclosed monoidal category introduced in [2],
that these functors can be right-derived. This requires the use the theory of right simplicial
derivability structures of Kahn and Maltsiniotis [12] as the twisted arrow category of a
complete and cocomplete category is neither finitely cocomplete nor finitely complete in
general.

We were unable to answer the following obvious question: is the tensor product of
two folk weak equivalences a folk weak equivalence? Of course, a similar question can be
asked for the join. We leave these two questions as open problems.

Our paper is organized as follows. In the first section, we recall the definitions related
to the folk model category structure on the category ω-Cat of (strict) ω-categories. In
particular, we define reversible cells (that is, weakly invertible cells). Using the Gray
tensor product, whose definition is recalled in the next section, we introduce oplax trans-
formations and reversible transformations. We recall the definition of the ω-category of
cylinders and we end the section by introducing some classical dualities of ω-Cat.

The purpose of the second section is to recall the definition of the Gray tensor product.
We start by a summary of Steiner’s theory of augmented directed complexes [22] and we
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use this theory to introduce, following [22] and [2], the Gray tensor product and its
associated internal Hom, namely Homoplax and Homlax.

The aim of the third section is to prove that the pushout-product, for the Gray tensor
product, of two folk cofibrations is a folk cofibration. We start by recalling the notion
of a rigid monomorphism of augmented directed complexes with basis and some results
from [2] of compatibility between pushouts of augmented directed complexes and pushouts
of ω-categories. We then prove that the pushout-product, for the tensor product of
augmented directed complexes, of two rigid monomorphisms is a rigid monomorphism.
We then deduce the analogous result for ω-categories and folk cofibrations.

In the fourth section, we prove that if X is a folk cofibrant ω-category, then J1⊗X,
where J1 is the ω-category obtained by factorizing the codiagonal of the terminal ω-cate-
gory into a cofibration followed by a trivial fibration, is a cylinder object for X in the folk
model category. On our way to do so, we prove that the tensor product of a reversible
(resp. invertible) m-cell by any other n-cell is reversible (resp. invertible). We start by
proving the case m = 1 providing explicit formulas and then prove the general case by
induction.

In the fifth section, we end the proof of the fact that the Gray tensor product makes
of ω-Cat endowed with the folk model category structure a monoidal model category. Our
strategy is abstracted in a general lemma whose main hypothesis, besides the fact that
the pushout-product of two generating cofibrations is a cofibration, is the fact that the
tensor product of a generating trivial cofibration and an object is a weak equivalence. We
prove this hypothesis for the Gray tensor product using results from the previous section.
We then prove some additional properties of the resulting monoidal model category.

In the sixth section, we introduce the category (m,n)-Cat of (strict) (m,n)-categories
and we study the interactions between the Gray tensor product and these (m,n)-cat-
egories. We prove that the invertible cells of the ω-category Homoplax(X, Y ), defined
by the adjunction Homω-Cat(T ⊗ X, Y ) ' Homω-Cat(T,Homoplax(X, Y )), are precisely the
component-wise invertible higher oplax transformations. As a consequence, we obtain that
if Y is an (m,n)-category, then so is Homoplax(X, Y ). This implies by a result of Day [6]
that the Gray tensor product induces, using the reflection functor r : ω-Cat → (m,n)-Cat,
a biclosed monoidal category structure on (m,n)-Cat. In the case of m-groupoids (that
is, the case n = 0), we show that the resulting monoidal product is symmetric. We
introduce the folk model category structure on (m,n)-Cat, that is, the model category
structure obtained by transferring along r the folk model category structure on ω-Cat, and
we prove that the monoidal product on (m,n)-Cat induced by the Gray tensor product is
compatible with this structure. In the case of m-groupoids, we prove that the resulting
monoidal model category satisfies the monoid axiom of Schwede and Shipley [21]. As a
consequence, by results of Harper [9] and Muro [19], we obtain model category structures
on the categories of algebras in ω-Gpd over a given non-symmetric operad in ω-Gpd.

In the seventh section, we recall the definition of the join of ω-categories, intro-
duced in [2], and its associated local internal Hom, the generalized slices. We prove
that the join makes of ω-Cat endowed with the folk model category structure a monoidal
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model category. The proof, that we only sketch, is very similar to the one for the Gray
tensor product, and only requires one additional tool: the existence of an ω-functor
X ⊗ (Y ? Z) → (X ⊗ Y ) ? Z defining a tensorial strength on the functor − ? Z for
the Gray tensor product.

Finally, in an appendix, we recall the definition of a monoidal model category and how
in this setting the monoidal tensor and, in the biclosed setting, the associated internal
Hom can be derived as functors of two variables. We then adapt this last result to the
case of locally biclosed monoidal products, introduced in [2], our example of interest being
the join of ω-categories. More precisely, we prove that the local internal Hom of such a
monoidal product can be right-derived as functors from the twisted arrow category. To do
so, we endow the twisted arrow category of a model category with a right simplicial deriv-
ability structure in the sense of Kahn and Maltsiniotis [12], proving that right simplicial
derivability structures can be lifted along discrete opfibrations.

1. Preliminaries on the folk model category structure
We will now describe the so-called “folk” model category structure on ω-Cat introduced by
Lafont, Métayer and Worytkiewicz in [15]. We start by describing the weak equivalences
of this structure: the equivalences of ω-categories.

1.1. We will denote by ω-Cat the category of strict ω-categories and strict ω-functors. As
all the ω-categories and ω-functors in this paper will be strict, we will drop the adjective
“strict” from now on. We will say that a cell of an ω-category is trivial if it is the identity
on a cell of lower dimension. If x is an n-cell of an ω-category with n > 1, we will denote
by 1x the identity on x, by sx its source (n − 1)-cell and by tx its target (n − 1)-cell. If
x is an n-cell with n > 0, for 0 6 k 6 n, we will denote by sk(x) its iterated source k-cell
and by tk(x) its iterated target k-cell.

1.2. Let X be an ω-category. By a structure of reversibility on X, we mean a set R of
cells of X such that, if u : x → y is an n-cell in R, then there exists an n-cell ū : y → x
and (n+ 1)-cells r̄ ∗n r → 1x and r ∗n r̄ → 1y all three in R. We say that an n-cell u of X
is reversible if n > 1 and if there exists a structure of reversibility R on X containing u.
A cell ū in R as in the definition of a structure of reversibility is then called a reverse
of u.

If C is a set of cells ofX, to prove that every cell of C is reversible, it suffices to produce,
for every n-cell u of C, a formula giving a reverse of u assuming that the (n + 1)-cells
of C are reversible. Indeed, one can then consider the subcategory R of X generated by
the reversible cells of X, the cells in C and the cells given by the formulas, and show
that the cells of R form a structure of reversibility. This is sometimes called reasoning by
coinduction.

1.3. An ω-functor f : X → Y is an equivalence of ω-categories or folk weak equivalence
if:
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• for every 0-cell y of Y , there exists a 0-cell x of X and a reversible 1-cell f(x)→ y
of Y ,

• for every n > 1, every pair of parallel (n − 1)-cells x, x′ of X and every n-cell
v : f(x) → f(x′) of Y , there exists an n-cell u : x → x′ of X and a reversible
(n+ 1)-cell f(u)→ v of Y .

We now move on to the description of generating cofibrations and trivial cofibrations
of the folk model category structure.

1.4. For every n > 0, we will denote by Dn the free-standing n-cell in ω-Cat. In other
words, the ω-category Dn corepresents the functor sending an ω-category to its set of
n-cells. This ω-category Dn is actually an n-category. It has a unique non-trivial n-cell
that we will call its principal cell. Here are pictures of Dn for small n:

D0 = {0} , D1 = 0 // 1 , D2 = 0
""

<<��
1 and D3 = 0

��

??
����
*4 1 .

If x is an n-cell of an ω-category X, we will denote by 〈x〉 : Dn → X the corresponding
ω-functor.

1.5. Let n > 0. We will denote by ∂Dn the (n − 1)-category obtained from Dn by
removing its principal cell. In other words, ∂D0 is the empty ω-category (which is a
(−1)-category!) and, for n > 1, ∂Dn is the free-standing pair of parallel (n − 1)-cells
in ω-Cat. Here are pictures of ∂Dn for small n:

∂D0 = { } , ∂D1 = { 0 1 } , ∂D2 = 0
!!

== 1 and ∂D3 = 0
��

AA
����

1 .

If n > 1 and x, y are two parallel (n − 1)-cells of an ω-category X, we will denote by
〈x, y〉 : ∂Dn → X the corresponding ω-functor.

For every n > 0, we have a canonical inclusion

in : ∂Dn ↪→ Dn,

and, for n > 1, two ω-functors
s, t : Dn−1 → ∂Dn

corresponding to the source and target of the principal cell of Dn, respectively.

1.6. We will denote by I the set

I = {in : ∂Dn ↪→ Dn | n > 0}.

As the category ω-Cat is locally presentable, this set generates a weak factorization system
on ω-Cat. The ω-functors in the left class (that is, the retracts of transfinite compositions
of pushouts of elements of I) will be called folk cofibrations or simply cofibrations; as for
the ω-functors in the right class (that is, the ω-functors having the right lifting property
with respect to I), they will be called folk trivial fibrations or simply trivial fibrations.
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1.7. Let n > 1. Consider the ω-functor 〈d, d〉 : ∂Dn ↪→ Dn−1, where d denotes the
principal cell of Dn−1. Fix a factorization

∂Dn
kn−→ Jn

qn−→ Dn−1

of this ω-functor into a folk cofibration kn followed by a folk trivial fibration qn. As in is
a folk cofibration and qn is a folk trivial fibration, the commutative square

∂Dn

in
��

kn // Jn

qn

��

Dn 〈1d〉
//

;;

Dn−1 ,

where d still denotes the principal cell of Dn−1, admits a lift. We fix such a lift

ln : Dn → Jn .

By definition, the principal cell of Jn is the image of the principal cell of Dn by ln.
We will denote by

jn : Dn−1 → Jn
the composite

Dn−1
s−→ ∂Dn

kn−→ Jn,
that is, the ω-functor corresponding to the source of the principal cell of Jn, and by J the
set

J = {jn : Dn−1 → Jn | n > 1}.

1.8. Theorem. [Lafont–Métayer–Worytkiewicz] The category ω-Cat is endowed with a
model category structure, cofibrantly generated by I and J , whose weak equivalences are the
folk weak equivalences and whose cofibrations are the folk cofibrations. All the ω-categories
are fibrant for this model category structure.

Proof. This is [15, Theorem 4.39 and Proposition 5.1].
The model category structure of the previous theorem is known as the folk model

category structure on ω-Cat. We will now describe a path object for this structure. We
start by some preliminaries on oplax transformations.

1.9. If X and Y are two ω-categories, we will denote by X⊗Y their Gray tensor product.
We refer the reader to Section 2 for more details and a precise definition of this tensor
product, based on Steiner’s work [22]. Let us only recall that the Gray tensor product
defines a (non-symmetric) biclosed monoidal category structure whose unit is the terminal
ω-category D0. Its right and left internal Hom will be denoted by Homoplax and Homlax,
respectively, so that if X, Y and Z are three ω-categories, we have natural bijections

Homω-Cat(X,Homoplax(Y, Z)) ' Homω-Cat(X ⊗ Y, Z) ' Homω-Cat(Y,Homlax(X,Z)).
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1.10. Let X and Y be ω-categories. By adjunction, the set of 0-cells of Homoplax(X, Y )
can be identified with the set of ω-functors Homω-Cat(X, Y ). If f, g : X → Y are two
ω-functors, an oplax transformation α : f ⇒ g is a 1-cell of Homoplax(X, Y ) from f to g.
Such an oplax transformation can be identified with a functor

h : D1 ⊗X → Y

making the diagram
X f

##〈0〉⊗X %%

D1 ⊗X h // Y

X g

<<
〈1〉⊗X 99

,
where X is identified with D0⊗X, commute. Alternatively, again by adjunction, such an
oplax transformation can be seen as an ω-functor

k : X → Γ(Y ),

where Γ(Y ) = Homlax(D1, Y ), making the diagram

Y

X

f ..

g 00

k // Γ(Y )
π−

::

π+

##

Y ,

where Y is identified with Homlax(D0, Y ) and

π− = Homlax(〈0〉, Y ) and π+ = Homlax(〈1〉, Y ),

commute.
One can define lax transformations in a similar way.

1.11. Let x be an m-cell of an ω-category X and let y be an n-cell of an ω-category Y .
One defines an (m+n)-cell x⊗y of X⊗Y in the following way. The ω-category Dm⊗Dn

is an (m + n)-category that admits a unique non-trivial (m + n)-cell. We will call this
cell the principal cell of Dm⊗Dn. The (m+ n)-cell x⊗ y is the cell corresponding to the
ω-functor

Dm+n
〈p〉−→ Dm ⊗Dn

〈x〉⊗〈y〉−−−−→ X ⊗ Y,

where p denotes the principal cell of Dm ⊗Dn.
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1.12. Let f, g : X → Y be two ω-functors and let α : f ⇒ g be an oplax transformation.
Denote by h : D1 ⊗ X → Y the corresponding ω-functor and by (01) the principal cell
of D1. If x is an n-cell of X, the component of α at x is the (n+ 1)-cell of Y

αx = h((01)⊗ x).

As the ω-category D1⊗X is generated by cells of the form 0⊗x, 1⊗x and (01)⊗x, with
x a cell of X, the transformation α is entirely determined by its components. Further-
more, oplax transformations can be defined purely in terms of their components (see [2,
paragraph 1.9 and Section B.2]).

1.13. If Y is an ω-category, the n-cells of Γ(Y ) are called n-cylinders in Y . By adjunction,
they correspond to ω-functors c : D1 ⊗Dn → Y . If c is such an n-cylinder, we can set

x = c(0⊗ d) and y = c(1⊗ d)

and, for 0 6 k 6 n,

α−k = c((01)⊗ sk(d)) and α+
k = c((01)⊗ tk(d)),

where (01) denotes the principal cell of D1 and d the one of Dn. Note that α−n = α+
n and

we will often write αn for this cell. These cells completely determine c and we will often
write c = (x, y, α). Moreover, by [2, Proposition B.1.6], n-cells x and y and (k + 1)-cells
α−k , α

+
k , for 0 6 k 6 n, with α−n = α+

n , determine an n-cylinder if and only if one has

αεk : α+
k−1 ∗k−1 α

+
k−2 ∗k−2 · · · ∗1 α

+
0 ∗0 x

ε
k → yεk ∗0 α

−
0 ∗1 · · · ∗k−1 α

−
k−1,

for ε = ±, where x−k = sk(x) and x+
k = tk(x), and similarly for y.

If c = (x, y, α) is an n-cylinder, the cell α−n = α+
n is called the principal cell of c.

We say that c is reversible if all the cells αεk for 0 6 k 6 n and ε = ± are reversible.
It follows from the explicit formulas describing the operations of the ω-category Γ(Y )
(see [15, Appendix A] or [2, Proposition B.1.15]) that the graded subset Γrev(Y ) of Γ(Y )
consisting of reversible cylinders is actually a sub-ω-category.

1.14. Let f, g : X → Y be two ω-functors and let α : f ⇒ g be an oplax transformation.
The transformation α is said to be reversible if, for every cell x of X, the component αx is
a reversible cell of Y . A reversible oplax transformation will be simply called a reversible
transformation.

Essentially by definition, the transformation α is reversible if and only if the corre-
sponding ω-functor X → Γ(Y ) factors through the inclusion Γrev(Y ) ↪→ Γ(Y ). In other
words, the data of a reversible transformation α : f ⇒ g corresponds to the data of an
ω-functor

k : X → Γrev(Y )
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making the obvious diagram

Y

X

f ..

g 00

k // Γrev(Y )
π−

99

π+

%%
Y

commute.

1.15. Let f : X → Y be an ω-functor. The identity on f seen as a 0-cell of Homoplax(X, Y )
defines an oplax transformation 1f : f ⇒ f . This transformation is easily seen to be re-
versible (its components are identities).

In particular, by applying this to the identity ω-functor 1X : X → X, we get a
commutative diagram

X

X

1X ..

1X
00

ι // Γrev(X)
π−

99

π+

%%
X

or, in other words, a factorization

X
ι−→ Γrev(X) π−→ X ×X

of the diagonal functor.

1.16. Theorem. [Lafont–Métayer–Worytkiewicz] For every ω-category X, the factoriza-
tion

X
ι−→ Γrev(X) π−→ X ×X

of the diagonal is a path object for the folk model category structure, in the sense that ι a
weak equivalence and that π is a fibration.

Proof. This is [15, Proposition 4.45].

1.17. Remark. A right homotopy with respect to the path object of the previous theorem
is precisely a reversible transformation.

We will now describe the cofibrant objects of the folk model category structure.

1.18. Let X be an ω-category. For m > −1, we will denote by X6m the m-category
obtained from X by removing the non-trivial k-cells for k > m. In particular, if m = −1,
we have X6−1 = ∅. There is an obvious inclusion ω-functor X6m ↪→ X6m+1.
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Let B be a set of cells of X. We will say that X is freely generated by B if, for every
n > 0, the commutative square

∐
x∈Bn

∂Dn∐
x∈Bn

in

��

〈sx,tx〉
// X6n−1

��∐
x∈Bn

Dn 〈x〉
// X6n ,

where Bn denotes the set of n-cells in B and the right vertical arrow is the canonical
inclusion, is a pushout square.

One says that an ω-category is free in the sense of polygraphs if it admits a set of cells
that freely generates it.

1.19. Theorem. [Métayer] The cofibrant objects of the folk model category structure are
the ω-categories that are free in the sense of polygraphs.

Proof. This is the main result of [17].
We end the section by introducing important dualities of ω-Cat and some of their

properties.

1.20. IfX is an ω-category, we will denote byXop (resp. byXco) the ω-category obtained
from X by reversing the direction of the cells of odd (resp. even) dimension. The assign-
ments X 7→ Xop and X 7→ Xco are both involutive automorphisms of the category ω-Cat.
Moreover, they are anti-monoidal in the sense that the assignment x⊗ y 7→ y⊗ x defines
isomorphisms

(X ⊗ Y )op ' Y op ⊗Xop and (X ⊗ Y )co ' Y co ⊗Xco.

Furthermore, there are canonical isomorphisms

Homoplax(X, Y )op ' Homlax(Xop, Y op),
Homoplax(X, Y )co ' Homlax(Xco, Y co)

(see for instance [2, Propositions A.22 and A.23]).
The symmetry of the definition of a reversible cell shows that a cell is reversible in X

if and only if the corresponding cell is reversible in Xop (resp. in Xco). This easily implies
that an ω-functor f : X → Y is a folk weak equivalence if and only if f op : Xop → Y op

(resp. f co : Xco → Y co) is. Moreover, for every n > 0, the ω-functor iop
n (resp. ico

n ) can be
identified with the ω-functor in : ∂Dn ↪→ Dn. This implies that an ω-functor i is a folk
cofibration if and only if iop (resp. ico) is, and hence that j is a folk trivial cofibration if
and only if jop (resp. jco) is.



THE FOLK MODEL CATEGORY STRUCTURE ON ω-CATEGORIES IS MONOIDAL 757

2. Preliminaries on the Gray tensor product
The purpose of this section is to define the Gray tensor product of ω-categories. This
tensor product was introduced by Al-Agl and Steiner [1] as a generalization of Gray’s
tensor product of 2-categories [7], and is somehow a lax version of the cartesian product.
The definition we will give in this section is based on Steiner’s theory of augmented
directed complexes [22]. The strategy, due to Steiner, is the following. Steiner’s complexes
are a tool to describe a large subclass of the class of free ω-categories in the sense of
polygraphs. The usual tensor product of chain complexes induces a tensor product on
these free ω-categories. The general Gray tensor product is then obtained by density of
this subclass in the category of ω-categories.

We start by briefly recalling Steiner’s theory.

2.1. An augmented directed complex is an augmented chain complex of abelian groups
in nonnegative degree

· · · d−→ Kn
d−→ Kn−1

d−→ · · · d−→ K0
e−→ Z,

endowed with, for every n > 0, a submonoid K∗n of Kn of so-called positive elements. If
K and L and two augmented directed complexes, a morphism f : K → L is a morphism
of the underlying augmented chain complexes respecting the positive elements, that is,
such that, for every n > 0, we have f(K∗n) ⊂ L∗n. We will denote by Cad the category of
augmented directed complexes.

2.2. In [22], Steiner defines a functor

ν : Cad → ω-Cat.

We refer the reader to [22, Definition 1.6] (or [2, paragraph 2.4]) for a detailed definition.
Let us just mention that if K is an augmented directed complex, then the n-cells of the
ω-category ν(K) are given by tables(

x−0 · · · x−n
x+

0 · · · x+
n

)
,

where
• x−i and x+

i are in K∗i , for 0 6 i 6 n,
• x−n = x+

n ,
• d(x−i ) = x+

i−1 − x−i−1 = d(x+
i ), for 0 < i 6 n,

• e(x−0 ) = 1 and e(x+
0 ) = 1.

2.3. If K is an augmented directed complex, a basis of K is a graded set (Bn)n>0 such
that, for every n > 0,

• Bn is a basis of the Z-module Kn,
• Bn generates the submonoid K∗n.

One shows that if such a basis exists, then it is unique.
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2.4. If K is an augmented directed complex with basis (Bn), then for every n-chain x,
one can write x = ∑

b∈Bn
nbb, where the nb are integers, in a unique way, and we set

x− =
∑
b∈Bn
nb<0

(−nb)b and x+ =
∑
b∈Bn
nb>0

nbb.

If x is an n-chain with n > 0, we set

d−x = (dx)− and d+x = (dx)+.

2.5. Let K be an augmented directed complex with basis. For every n-chain x in the
basis, we define a table

〈x〉 =
(
x−0 · · · x−n
x+

0 · · · x+
n

)
,

by induction, setting
• x−n = x and x+

n = x,
• x−i = d−(x−i+1) and x+

i = d+(x+
i+1), for 0 6 i < n.

This table is an n-cell of ν(K) if and only if e(x−0 ) = 1 and e(x+
0 ) = 1. In this case, one

says that the n-cell 〈x〉 is the atom associated to x.
The augmented directed complex with basis K is said to be unital if, for every ele-

ment x of the basis of K, one has e(x−0 ) = 1 and e(x+
0 ) = 1.

2.6. One says that an augmented directed complexK with basis (Bn) is strongly loop-free
if there exists a partial order � on ∐n>0Bn such that, for every n > 0, every x in Bn, and
every y and z in the support (according to the basis Bn−1) of d−x and d+x, respectively,
one has

y � x � z.

2.7. A strong Steiner complex is an augmented directed complex with basis that is both
unital and strongly loop-free. We will denote by Stf the full subcategory of Cad consisting
of Steiner complexes.

2.8. Theorem. [Steiner] The functor ν|Stf : Stf → ω-Cat is fully faithful. Moreover, if
K is a strong Steiner complex, then ν(K) is freely generated (see paragraph 1.18) by its
atoms.
Proof. This follows from [22, Proposition 3.7, Theorem 5.6 and Theorem 6.1].

We will now define the Gray tensor product of ω-categories, starting with the tensor
product of augmented directed complexes.

2.9. The tensor product K⊗L of two augmented directed complexes K and L is defined
in the following way:

• The underlying augmented complex of K ⊗ L is the usual one:
– for n > 0, we have

(K ⊗ L)n =
⊕
i+j=n

Ki ⊗ Lj,



THE FOLK MODEL CATEGORY STRUCTURE ON ω-CATEGORIES IS MONOIDAL 759

– for x in Ki and y in Kj, we have

d(x⊗ y) = dx⊗ y + (−1)ix⊗ dy,

where by convention dz = 0 if the degree of z is 0,
– for x in K0 and y in L0, we have

e(x⊗ y) = e(x)e(y).

• The submonoid (K ⊗ L)∗n is defined to be generated by the subset⊕
i+j=n

K∗i ⊗ L∗j

of (K ⊗ L)n.
The tensor product defines a (non-symmetric) monoidal category structure on the cate-
gory of augmented directed complexes. Its unit, that we will denote by Z, is the complex
concentrated in degree 0 of value Z with the identity augmentation and N as the sub-
monoid of positive elements of degree 0. Steiner proved (see [22, Example 3.10]) that this
monoidal category structure restricts to the full subcategory of strong Steiner complexes.

2.10. Theorem. [Steiner, Ara–Maltsiniotis] There exists a unique, up to unique isomor-
phism, biclosed monoidal category structure on the category ω-Cat making the functor
ν|Stf : Stf → ω-Cat a monoidal functor, where Stf is endowed with the monoidal category
structure given by the tensor product.

Proof. See [22, Section 7], whose proof was completed by [2, Theorem A.15].

2.11. We define the Gray tensor product to be the tensor product given by the previous
theorem. If X are Y are two ω-categories, their Gray tensor product will be denoted
by X ⊗ Y . Explicitly, one has

X ⊗ Y = lim−→
ν(K)→X,K∈Stf
ν(L)→Y, L∈Stf

ν(K ⊗ L).

The unit of the Gray tensor product is the terminal ω-category D0.
The right and left internal Hom of the Gray tensor product will be denoted by Homoplax

and Homlax, respectively, so that if X, Y and Z are three ω-categories, we have natural
bijections

Homω-Cat(X,Homoplax(Y, Z)) ' Homω-Cat(X ⊗ Y, Z) ' Homω-Cat(Y,Homlax(X,Z)).

2.12. Examples. Here are some examples of Gray tensor products of ω-categories:

D1 ⊗D1 =
• //

��

•

��
• // • ,
{� D1 ⊗∆2 =

• //

��

• //

��

•

��
• // • // • ,
{� {�
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D1 ⊗D2 =

• %%

99

��

�� •

��
• %%

99�� • ,

��

jr

Wg

where ∆2 = • // • // • .

2.13. Remark. If x is anm-cell of an ω-category X and y is an n-cell of an ω-category Y ,
we saw in paragraph 1.11 that one can define an (m+n)-cell x⊗y of X⊗Y . For instance,
the tensor product of the principal cells of the disks appearing in the examples above is,
in both cases, the unique non-trivial cell of maximal dimension. The formula that we
gave as a definition for the Gray tensor product easily implies that the ω-category X ⊗Y
is generated by the set of cells of the form x⊗ y, with x a cell of X and y a cell of Y .

2.14. Remark. The Gray tensor product used in this paper is what we like to call
the oplax Gray tensor product. The lax version is the functor (X, Y ) 7→ Y ⊗ X and is
actually the one introduced by Gray in the 2-categorical case [7]. The natural isomorphism
(X ⊗ Y )op ' Y op⊗Xop and the stability of the data of the folk model category structure
by the duality Z 7→ Zop (see paragraph 1.20) show that the results we prove in this paper
for the oplax version of the Gray tensor product can be adapted to the lax version.

3. Compatibility of the tensor product with cofibrations
The purpose of this section is to prove that ω-Cat endowed with the Gray tensor product ⊗
satisfies the part of the axioms of monoidal model categories (see paragraph A.1) dealing
with cofibrations. In other words, given two folk cofibrations

i : X → Y and j : Z → T,

we will prove that the ω-functor

i⊗′ j : Y ⊗ Z qX⊗Z X ⊗ T → Y ⊗ T,

is also a folk cofibration. This immediately follow from the case of generating cofibrations,
for which we will use Steiner’s theory.

We start by some supplements on pushouts of strong Steiner complexes.

3.1. If K is an augmented directed complex with basis, we will denote its basis by BK .
Let f : K → L be a monomorphism of augmented directed complexes with basis. One

says that f is a rigid monomorphism if it sends elements of the basis BK of K to elements
of the basis BL of L.
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3.2. Proposition. [Ara–Maltsiniotis] Consider a pushout square

K

f
��

u //M

g
��

L v
// N

in the category of augmented directed complexes such that:
• K, L, M , N are strong Steiner complexes,
• f and u are rigid monomorphisms.

Then
• we have BN = BL qBK

BM (as sets),
• the morphisms g and v are rigid monomorphisms,
• the functor ν : Cad → ω-Cat sends this square to a pushout square in ω-Cat.

Proof. The first assertion is a particular case of [2, Proposition 3.6]. The second one
follows from [2, Proposition 3.12]. As for the third one, it is a special case of [2, Theo-
rem 3.8].

3.3. Remark. The proposition remains true if one only assumes that the complexes are
Steiner complexes (named “augmented directed complexes with a loop-free unital basis”
in [1]) as opposed to strong Steiner complexes. We stated the more restrictive result only
because we did not include the definition of a Steiner complex in this paper.

3.4. If K and L are two augmented directed complexes with basis, one immediately
checks that K ⊗ L is an augmented directed complex with basis

BK⊗L = BK ⊗BL = {x⊗ y | x ∈ BK , y ∈ BL}.

3.5. Proposition. Let i : K → L and j : M → N be two rigid monomorphisms between
augmented directed complexes with basis. Then the morphism

i⊗′ j : L⊗M qK⊗M K ⊗N → L⊗N

is a rigid monomorphism between augmented directed complexes with basis which identifies
L⊗M qK⊗M K ⊗N with the subcomplex generated by BL ⊗BM ∪BK ⊗BN .
Proof. Colimits in the category of augmented directed complexes are computed degree-
wise (see [2, paragraph 3.1]). Let n > 0. If B is the basis of an augmented directed
complex, we will denote by Bn the set of n-chains in B. As the free abelian group
functor commutes with colimits, the abelian group (L ⊗M qK⊗M K ⊗ N)n is free with
basis (BL ⊗ BM)n q(BK⊗BM )n (BK ⊗ BN)n = (BL ⊗ BM)n ∪ (BK ⊗ BN)n. Similarly,
the submonoid (L ⊗ M qK⊗M K ⊗ N)∗n is generated by this basis. This proves that
L⊗M qK⊗M K ⊗N is free with basis BL ⊗BM ∪BK ⊗BN . Moreover, this shows that
the map (i⊗′ j)n : (L⊗M qK⊗M K ⊗N)n → (L⊗N)n can be identified with the image
of the map (BL ⊗BM)n ∪ (BK ⊗BN)n ↪→ (BL ⊗BN)n by the free abelian group functor.
As this functor preserves monomorphisms, this implies that i ⊗′ j is a monomorphism.
The fact that it is rigid being obvious, this ends the proof.
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3.6. Proposition. Let i : K → L and j : M → N be two rigid monomorphisms between
strong Steiner complexes. Then the pushout square associated to

L⊗M K ⊗Mi⊗M
oo

K⊗j
// K ⊗N

satisfies the hypotheses of Proposition 3.2.

Proof. Strong Steiner complexes and rigid monomorphisms are both stable under tensor
product by [22, Example 3.10] and [2, Proposition A.6]. It thus suffices to prove that
L⊗M qK⊗M K ⊗N is a strong Steiner complex. This follows immediately from the fact
that, by the previous proposition, L ⊗M qK⊗M K ⊗ N is a subcomplex of the strong
Steiner complex L⊗N generated by a subset of its basis.

3.7. Proposition. Let i : K → L and j : M → N be two rigid monomorphisms between
strong Steiner complexes. Then the ω-functor

ν(i)⊗′ ν(j) : ν(L)⊗ ν(M)qν(K)⊗ν(M) ν(K)⊗ ν(N)→ ν(L)⊗ ν(N)

is a folk cofibration.

Proof. By applying Proposition 3.2 to the pushout square of the previous proposition
and using the fact that the functor ν|Stf : Stf → ω-Cat is monoidal for the tensor product
(Theorem 2.10), one gets that the ω-functor

ν(i)⊗′ ν(j) : ν(L)⊗ ν(M)qν(K)⊗ν(M) ν(K)⊗ ν(N)→ ν(L)⊗ ν(N)

can be identified with

ν(i⊗′ j) : ν(L⊗M qK⊗M K ⊗N)→ ν(L⊗N).

As the functor ν respects monomorphisms (this follows from its concrete description but
also from the fact that it admits a left adjoint, see [22, Theorem 2.11]), the ω-category
ν(L⊗MqK⊗MK⊗N) can be identified with a sub-ω-category of ν(L⊗M). Moreover, by
Steiner’s Theorem 2.8, these two ω-categories are freely generated by their atoms, which,
by Proposition 3.5, are in bijection with BL⊗BM ∪BK ⊗BN and BL⊗BN , respectively.
The ω-category ν(L ⊗ N) can thus be obtained from ν(L ⊗M qK⊗M K ⊗ N) by freely
adding cells (in the sense of taking pushouts along some in : ∂Dn ↪→ Dn) indexed by
(BL ⊗BN)\(BL ⊗BM ∪BK ⊗BN). The inclusion morphism is therefore a cofibration.

To apply the previous proposition to the generating cofibrations, we need the following
lemma:

3.8. Lemma. Let n > 0. The ω-functor in : ∂Dn ↪→ Dn can be written ν(λ(in)), where
λ(in) : λ(∂Dn) ↪→ λ(Dn) is a rigid monomorphism between strong Steiner complexes.
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Proof. Let λ(Dn) be the free augmented directed complex with basis the set of non-
trivial cells of Dn (see [2, paragraph 4.10] for an explicit description), let λ(∂Dn) be the
augmented directed subcomplex generated by the subset of non-trivial cells of ∂Dn and
let λ(in) be the resulting inclusion morphism. One easily checks that in can be identified
with ν(λ(in)), that λ(Dn) is indeed a strong Steiner complex (see [22, Example 4.7] or [2,
paragraph 4.10]) and thus that any subset of its basis defines a strong Steiner subcomplex
whose inclusion morphism is a rigid monomorphism.

3.9. Theorem. If
i : X → Y and j : Z → T

are two folk cofibrations, then the ω-functor

i⊗′ j : Y ⊗ Z qX⊗Z X ⊗ T → Y ⊗ T

is also a folk cofibration.

Proof. By the classical Lemma A.3, it suffices to prove the result when the ω-functors i
and j are generating cofibrations. But this case follows from Proposition 3.7 by the
previous lemma.

3.10. Remark. The previous result was first established by the second author (see [16,
Proposition 5.1.2.7]) using cubical sets. The advantage of the method of the present paper
is that it will adapt directly to the join of ω-categories (see Section 7).

3.11. Corollary. The tensor product of two cofibrant ω-categories is a cofibrant ω-cat-
egory.

Proof. Let X and Y be two ω-categories. The corollary follows from the theorem applied
to the ω-functors ∅→ X and ∅→ Y .

3.12. Remark. This corollary was first proved directly by Hadzihasanovic (see [8, The-
orem 1.35]).

4. A cylinder object for the folk model category structure
In paragraph 1.7, we introduced an ω-category J1. The goal of this section is to prove
that if X is a cofibrant ω-category, then J1⊗X is a cylinder object for X in the folk model
category structure.

We will start by showing that the tensor product of a reversible cell by any other n-cell
is reversible, dealing first with the case n = 1. The proof will be a bit involved and we
begin by the following technical lemmas:

4.1. Lemma. Let u : x→ y be a reversible n-cell of an ω-category X. Fix ū a reverse of u
and ε : u∗n−1ū→ 1y a reversible cell. Then there exists a reversible n-cell η : 1x → ū∗n−1u
for which there exists a reversible (n+ 1)-cell (ε ∗n−1 u) ∗n (u ∗n−1 η)→ 1u.
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Proof. Considering the n-cell u : x → y, when n > 1, as a 1-cell of the ω-category of
cells of X from sx to ty, we reduce to the case n = 1.

In this case, since u is reversible, there exists a reversible 2-cell η′ : 1x → ū ∗0 u. We
set

η = (ū ∗0 u ∗0 η̄
′) ∗1 (ū ∗0 ε̄ ∗0 u) ∗1 η

′,

where η̄′ and ε̄ denote reverses of η′ and ε, respectively. The cell η is reversible, as a
composite of reversible cells. Moreover, we have

(ε ∗0 u) ∗1 (u ∗0 η)
= (ε ∗0 u) ∗1 (u ∗0 ū ∗0 u ∗0 η̄

′) ∗1 (u ∗0 ū ∗0 ε̄ ∗0 u) ∗1 (u ∗0 η
′)

= (u ∗0 η̄
′) ∗1 (ε ∗0 u ∗0 ū ∗0 u) ∗1 (u ∗0 ū ∗0 ε̄ ∗0 u) ∗1 (u ∗0 η

′)
= (u ∗0 η̄

′) ∗1 ((ε̄ ∗1 ε) ∗0 u) ∗1 (u ∗0 η
′)

→ (u ∗0 η̄
′) ∗1 (u ∗0 η) = u ∗0 (η̄′ ∗1 η)→ 1u,

where the two arrows are reversible 2-cells coming from the fact that ε̄ and η̄′ are reverses
of ε and η′, respectively, which concludes the proof of the lemma.

4.2. Lemma. Let X be an ω-category and let c be an n-cell of Γ(X). If c is reversible
in Γ(X), then the principal cell of c is reversible in X.

Proof. In this proof, we will use freely the explicit formulas for the structure of ω-cat-
egory of Γ(X), as given for instance in [2, Proposition B.1.15]. We prove the lemma
by coinduction (see paragraph 1.2). Let c = (x, y, α) be an n-cell of Γ(X) (see para-
graph 1.13). We have

αn : α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 x→ y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1.

Suppose that (x, y, α) is reversible in Γ(X) and let (x̄, ȳ, β) be a reverse. Note that x̄
and ȳ are reverses of x and y, respectively. The relationship between the source and
target of (x, y, α) and (x̄, ȳ, β) implies that

βεk = αεk if 0 6 k < n− 1 and ε = ±,
β−n−1 = α+

n−1 and β+
n−1 = α+

n−1,

βn : α−n−1 ∗n−1 α
+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 x̄→ ȳ ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2 ∗n−1 α

+
n−1.

By hypothesis, there exists a reversible cell

(εx, εy,Λ) : (x, y, α) ∗n−1 (x̄, ȳ, β)→ 1t(x,y,α).

In particular, the cells

εx : x ∗n−1 x̄→ 1tx and εy : y ∗n−1 ȳ → 1ty
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are reversible. The cell (x, y, α) ∗n−1 (x̄, ȳ, β) is of the form (x ∗n−1 x̄, y ∗n−1 ȳ, γ), with

γεk = αεk if 0 6 k < n− 1 and ε = ±,
γ−n−1 = β−n−1 = α+

n−1 and γ+
n−1 = α+

n−1,

γn = (y ∗0 α
−
0 ∗1 · · · ∗n−2 α

−
n−2 ∗n−1 βn) ∗n (αn ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 x̄)

and we have

Λn+1 : α+
n−1 ∗n−1 · · · ∗1 α

+
0 ∗0 εx → εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2 ∗n−1 α

+
n−1 ∗n γn.

Applying Lemma 4.1 to the cell (εx, εy,Λ) gives a reversible cell

(ηx, ηy,Γ) : 1s(x,y,α) → (x̄, ȳ, β) ∗n−1 (x, y, α)

and, using the projections π− and π+, reversible cells

(εx ∗n−1 x) ∗n (x ∗n−1 ηx)→ 1x and (εy ∗n−1 y) ∗n (y ∗n−1 ηy)→ 1y.

The cell (x̄, ȳ, β) ∗n−1 (x, y, α) is of the form (x̄ ∗n−1 x, ȳ ∗n−1 y, δ) with

δεk = αεk if 0 6 k < n− 1 and ε = ±,
δ−n−1 = α−n−1 and γ+

n−1 = β+
n−1 = α−n−1,

δn = (ȳ ∗0 α
−
0 ∗1 · · · ∗n−2 α

−
n−2 ∗n−1 αn) ∗n (βn ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 x)

and we have

Γn+1 : δn ∗n α−n−1 ∗n−1 α
+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 ηx → ηy ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1.

We now define our candidate n-cell ρ to be a reverse of αn:

ρ =
(
(εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 βn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 ηx)

)
.

We first produce a reversible cell between ρ ∗n αn and 1s(αn). We have

ρ ∗n αn
=
(
(εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 βn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 ηx)

)
∗n αn
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=
(
(εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 βn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
αn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 (x̄ ∗n−1 x))

)
∗n
(
(α+

n−1 ∗n−1 α
+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 x) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 ηx)

)
=
(
(εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 βn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
αn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x̄) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 (x ∗n−1 ηx)

)
=
(
(εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
([

(y ∗0 α
−
0 ∗1 · · · ∗n−2 α

−
n−2 ∗n−1 βn)

∗n−1 (α+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 x̄)

]
∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 (x ∗n−1 ηx)

)
=
(
(εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
γn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 (x ∗n−1 ηx)

)
=
(
(εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2 ∗n−1 α

+
n−1 ∗n γn) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 (x ∗n−1 ηx)

)
.

By coinduction, the cell

Λn+1 : α+
n−1 ∗n−1 · · · ∗1 α

+
0 ∗0 εx → εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2 ∗n−1 α

+
n−1 ∗n γn

is reversible and we thus get a reversible cell between ρ ∗n αn and the cell(
(α+

n−1 ∗n−1 · · · ∗1 α
+
0 ∗0 εx) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 (x ∗n−1 ηx)

)
= α+

n−1 ∗n−1 α
+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 ((εx ∗n−1 x) ∗n (x ∗n−1 ηx))

and hence a reversible cell between ρ ∗n αn and the identity on

α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 x = s(αn).
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We now produce a reversible cell between αn ∗n ρ and 1t(αn). We have

αn ∗n ρ
= αn

∗n
(
(εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 βn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 ηx)

)
=
(
(εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 (y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1)

)
∗n
(
((y ∗n−1 ȳ) ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 αn

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 βn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 x)

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 ηx)

)
=
(
(εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 (y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1)

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−2) ∗n−1

[
(ȳ ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2 ∗n−1 αn)

∗n (βn ∗n−1 α
+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 x)

])
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 ηx)

)
=
(
(εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 (y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1)

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−2) ∗n−1 δn

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α
+
0 ∗0 ηx)

)
=
(
(εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 (y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1)

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−2)

∗n−1 (δn ∗n α−n−1 ∗n−1 α
+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 ηx)

)
.

By coinduction, the cell

Γn+1 : δn ∗n α−n−1 ∗n−1 α
+
n−2 ∗n−2 · · · ∗1 α

+
0 ∗0 ηx → ηy ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1

is reversible and we thus get a reversible cell from αn ∗ ρ to(
(εy ∗0 α

−
0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 (y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1)

)
∗n
(
(y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−2) ∗n−1 (ηy ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1)

)
= ((εy ∗n−1 y) ∗n (y ∗n−1 ηy)) ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1

and hence a reversible cell between αn ∗n ρ and the identity on

y ∗0 α
−
0 ∗1 · · · ∗n−1 α

−
n−1 = t(αn),

hence the result.
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4.3. We will denote by Rn the free-standing reversible n-cell and by rn : Dn → Rn the
canonical ω-functor. This ω-category Rn is freely generated by

• two n-cells
r : x→ y, r̄ : y → x,

• four (n+ 1)-cells

α : r̄ ∗n−1 r → 1x, ᾱ : 1x → r̄ ∗n−1 r, β : r ∗n−1 r̄ → y, β̄ : y → r ∗n−1 r̄,

• eight (n+ 2)-cells comparing ᾱ ∗n α, α ∗n ᾱ, β̄ ∗n β and β ∗n β̄ to identities,
• etc. (see the remark below for a formal description).

The ω-functor rn : Dn → Rn sends the principal cell of Dn to r, the principal cell of Rn.
Note that this ω-functor is a folk cofibration. By definition, an n-cell x of an ω-category X
is reversible if and only if the ω-functor 〈x〉 : Dn → X factors through rn. Note that such
a factorization corresponds to a choice of witnesses that r is reversible and is hence not
unique.

4.4. Remark. More formally, the ω-category Rn is generated by two n-cells

r : x→ y, r̄ : y → x,

and, for every i > n, two sets of 2i−n i-cells

rl1,...,li−n
and r̄l1,...,li−n

,

where lj = ±1 for 1 6 j 6 i− n, whose sources and targets are given by

rl1,...,li−n−1,− : r̄l1,...,li−n−1
∗i−1 rl1,...,li−n−1

→ 1s(rl1,...,li−n−1 )

r̄l1,...,li−n−1,− : 1s(rl1,...,li−n−1 ) → r̄l1,...,li−n−1
∗i−1 rl1,...,li−n−1

rl1,...,li−n−1,+ : rl1,...,li−n−1
∗i−1 r̄l1,...,li−n−1

→ 1t(rl1,...,li−n−1 )

r̄l1,...,li−n−1,+ : 1t(rl1,...,li−n−1 ) → rl1,...,li−n−1
∗i−1 r̄l1,...,li−n−1

.

(With this notation, the (n + 1)-cells α and β of the previous paragraph are α = r−
and β = r+.)

4.5. Proposition. If x is a 1-cell of an ω-category X and y is a reversible n-cell of an
ω-category Y , then x⊗ y is reversible in X ⊗ Y .
Proof. Since y is reversible, 〈y〉 : Dn → Y factors through rn : Dn → Rn. Tensoring
by 〈x〉, we therefore get an ω-functor D1⊗Rn → X⊗Y , which corresponds by adjunction
to an ω-functor Rn → Γ(X⊗Y ) and hence to a reversible cell of Γ(X⊗Y ). By Lemma 4.2,
the principal cell of this cylinder is reversible in X⊗Y . But this principal cell corresponds
to the composite

Dn+1
〈p〉−→ D1 ⊗Dn

〈x〉⊗〈y〉−−−−→ X ⊗ Y,
where p denotes the principal cell of D1 ⊗Dn, which is 〈x⊗ y〉. This shows that x⊗ y is
reversible.
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4.6. Corollary. If x is a reversible n-cell of an ω-category X and y is a 1-cell of an
ω-category Y , then x⊗ y is reversible in X ⊗ Y .

Proof. We will use the duality Z 7→ Zop introduced in paragraph 1.20, denoting by zop

the cell of Zop corresponding to a cell z of Z. By this same paragraph, if x is a reversible
cell of X and y is a 1-cell of Y , then x⊗ y is reversible in X ⊗ Y if and only if (x⊗ y)op

is reversible in (X ⊗ Y )op if and only if yop ⊗ xop is reversible in Y op ⊗ Xop. As xop is
reversible in Xop, the result thus follows from the previous proposition.

We will now show that the tensor product of a reversible cell by any cell is reversible.
We will need a specific ω-functor from Dn−1 ⊗D1 to Dn that we now introduce.

4.7. Let n > 1. The ω-category obtained from Dn−1 ⊗D1 by collapsing, independently,
the sub-ω-categories Dn−1 ⊗ {0} and Dn−1 ⊗ {1} is canonically isomorphic to Dn. (This
follows for instance from [2, Corollary B.6.6] using the duality X 7→ Xco.) In particular,
there is a canonical ω-functor

Dn−1 ⊗D1 → Dn

sending Dn−1 ⊗ {0} to 0, Dn−1 ⊗ {1} to 1, and the principal cell of Dn−1 ⊗ D1 to the
principal cell of Dn.

By iterating this construction, we get an ω-functor

D⊗n1 → Dn

sending the principal cell of D⊗n1 , that is, the tensor product of the principal cells of the
n copies of D1, to the principal cell of Dn.

4.8. Lemma. If r is the principal cell of Rk and d is the principal cell of Dn, then r ⊗ d
is reversible in Rk⊗Dn.

Proof. By the Corollary 4.6, for every m > 0, the tensor product of the principal cells
of Rm and D1 is reversible, showing that there exists an ω-functor p′ : Rm+1 → Rm⊗D1
making commutative the square

Dm+1

p

��

rm+1
// Rm+1

p′

��

Dm ⊗D1 rm⊗D1
// Rm⊗D1 ,
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where p corresponds to the principal cell of Dm ⊗ D1. Denote this square by Sm. By
composing the n squares Sn+k−1−m ⊗D⊗m1 for 0 6 m 6 n− 1

Dn+k

��

// Rn+k

��

Dn+k−1 ⊗D1

��

// Rn+k−1⊗D1

��

(Dn+k−2 ⊗D1)⊗D1

��

// (Rn+k−2⊗D1)⊗D1

��

(Dk ⊗D1)⊗D⊗n−1
1

// (Rk⊗D1)⊗D⊗n−1
1 ,

we get a commutative square

Dn+k

��

rn+k
// Rn+k

��

Dk ⊗D⊗n1
rk⊗D⊗n

1

// Rk⊗D⊗n1 .

By composing this square with the ω-functor D⊗n1 → Dn of the previous paragraph, we
get a commutative square

Dn+k

��

rn+k
// Rn+k

��

Dk ⊗Dn rk⊗Dn

// Rk⊗Dn

showing that 〈r ⊗ d〉 factors through rn+k and hence that r ⊗ d is reversible.

4.9. Proposition. Let x be an m-cell of an ω-category X and let y be an n-cell of an
ω-category Y . If either x or y is reversible, then x⊗ y is reversible in X ⊗ Y .

Proof. We start with the case where x is reversible. The cell x⊗ y then corresponds to
the composite

〈x⊗ y〉 : Dm+n
〈r⊗d〉−−−→ Rm⊗Dn

〈x〉⊗〈y〉−−−−→ X ⊗ Y,

where r and d denotes the principal cells of Rm and Dn respectively. But by the previous
lemma, r ⊗ d is reversible, and thus so is

x⊗ y = (〈x〉 ⊗ 〈y〉)(r ⊗ d).

Suppose now that y is reversible. Then yop is reversible, and so is yop⊗xop in Y op⊗Xop

by the previous case. This proves that x⊗ y = (yop ⊗ xop)op is reversible.
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We will use the previous proposition to study the notion of a J1-transformation that
we now introduce.

4.10. Let f, g : X → Y be two ω-functors. A J1-transformation from f to g is an
ω-functor

h : J1⊗X → Y

making commutative the diagram

X f

""〈0〉⊗X %%

J1⊗X h // Y

X g

==
〈1〉⊗X 99

,

where we denoted by 0 and 1 the image by l1 : D1 → J1 (see paragraph 1.7) of the objects
0 and 1 of D1.

Note that if h : J1⊗X → Y is a J1-transformation then the composite

D1 ⊗X
l1⊗X−−−→ J1⊗X

h−−→ Y

defines an oplax transformation from f to g.

4.11. Proposition. The oplax transformation associated to a J1-transformation is re-
versible.

Proof. Let h : J1⊗X → Y be a J1-transformation and let x be an n-cell of X. We have
to show that h((01)⊗ x), where (01) denotes the principal cell of J1 (see paragraph 1.7)
is reversible. It suffices to show that (01)⊗ x is reversible and hence, by Proposition 4.9,
that (01) is reversible in J1. As the ω-functor r1 : D1 → R1 is a cofibration and the
ω-functor q1 : J1 → D0 is a trivial fibration, the commutative square

D1

r1
��

l1 // J1

q1
��

R1 //

>>

D0

admits a lift, showing that (01) is indeed reversible in J1.

4.12. We say that an ω-functor i : X → Y is an oplax transformation retract (resp. a
reversible transformation retract, resp. a J1-transformation retract) if it admits a retrac-
tion r, that is, an ω-functor r : Y → X such that ri = 1X , and an oplax transformation
(resp. a reversible transformation, resp. a J1-transformation) α : ir ⇒ 1Y .

It follows from the fact that reversible transformations are right homotopies for the
folk model category structure (see Remark 1.17) that a reversible transformation retract
is a folk weak equivalence.
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We say that a transformation retract i : X → Y (oplax, reversible or J1-) is strong if
r and α as above can be chosen so that α ∗ i = 1i, in the sense that, if α is given by an
ω-functor

h : D1 ⊗ Y → Y or h′ : J1⊗Y → Y,

then the diagrams

D1 ⊗X
D1⊗i

��

p
// X

i or
��

D1 ⊗ Y h
// Y

J1⊗X
J1⊗i

��

p′
// X

i
��

J1⊗Y
h′
// Y ,

where p and p′ are the “projection” ω-functors induced by D1 → D0 and J1 → D0,
commute.

By [15, Corollary 4.30], every folk trivial cofibration is a strong reversible transforma-
tion retract. (Note that strong reversible transformation retracts are called “immersions”
in [15].)

4.13. Proposition. A J1-transformation retract is a reversible transformation retract
and in particular a folk weak equivalence.

Proof. This follows immediately from Proposition 4.11.

4.14. Proposition. For every ω-category X, the ω-functors X → J1⊗X, obtained by
tensoring 〈0〉, 〈1〉 : D0 → J1 by X, are J1-transformation retracts and hence folk weak
equivalences.

Proof. The class of J1-transformation retracts is clearly stable under tensor product
by an object on the right. Therefore it suffices to prove that 〈0〉, 〈1〉 : D0 → J1 are
J1-transformation retracts. Let ε = 0, 1. The ω-functor r : J1 → D0 is clearly a retraction
of 〈ε〉. Moreover, a J1-transformation 〈ε〉r ⇒ 1J1 is precisely a lift to the lifting problem

∂D1 ⊗ J1

k1⊗J1
��

〈ε〉rq J1
// J1

��

J1⊗ J1 //

77

D0 ,

where we identified ∂D1 ⊗ J1 with J1q J1. As k1 is a cofibration and J1 is a cofibrant
object, it follows from Theorem 3.9 that the left vertical arrow is a cofibration. As the
right vertical arrow is a trivial fibration by definition of J1, the desired lift exists, thereby
proving the result.
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4.15. Theorem. Let X be an ω-category.
(a) The ω-functor J1⊗X → X, obtained by tensoring J1 → D0 by X, is a folk weak

equivalence.
(b) If moreover, X is cofibrant, then the factorization

X qX → J1⊗X → X

of the codiagonal, obtained by tensoring

∂D1
k1−→ J1 → D0

by X, is a cylinder object for the folk model category structure, in the sense that the
first arrow is a cofibration and the second one is a weak equivalence.

Proof. The ω-functor J1⊗X → X is a retract of any of the ω-functors X → J1⊗X
considered in the previous proposition and is hence a weak equivalence by this same
proposition. This proves the first point. As for the second one, it follows from Theorem 3.9
since k1 is a cofibration and X is cofibrant.

4.16. Remark. The ω-functor X qX → J1⊗X is not a folk cofibration in general. To
see this, recall first that if p : y0 → y1 is a 1-cell in an ω-category Y and f : x0 → x1,
g : x1 → x2 are two 1-cells in an ω-category X, then the following relation holds in Y ⊗X:

((y1 ⊗ g) ∗0 (p⊗ f)) ∗1 ((p⊗ g) ∗0 (y0 ⊗ f)) = p⊗ (g ∗0 f).

Diagrammatically, this means that the following 2-cells are equal:

y0 ⊗ x0
y0⊗f

//

p⊗x0

��

y0 ⊗ x1
y0⊗g

//

p⊗x1

��

y0 ⊗ x2

p⊗x2

��

y1 ⊗ x0 y1⊗f
// y1 ⊗ x1 y1⊗g

// y1 ⊗ x2

p⊗f
u}

p⊗g
u}

y0 ⊗ x0
y0⊗(g∗0f)

//

p⊗x0

��

y0 ⊗ x2

p⊗x2

��

y1 ⊗ x0
y1⊗(g∗0f)

// y1 ⊗ x2 .

p⊗(g∗0f)
u}

Now take X to be the category generated by one object x and one arrow f : x → x,
subject to the relation f ∗0 f = 1x. In other words, X is the cyclic group with 2 elements,
seen as a one-object category. Let p : y0 → y1 be the principal cell of J1. Then the
previous formula (taking g = f) shows that the following equality holds in J1⊗X:

((y1 ⊗ f) ∗0 (p⊗ f)) ∗1 ((p⊗ f) ∗0 (y0 ⊗ f)) = 1p⊗x.

This relation implies that any ω-functor from J1⊗X to a cofibrant ω-category must send
p⊗ f to an identity. Consider now u : J1⊗X → Z the pushout of the obvious ω-functor
X qX → D0 qD0 = ∂D1 along the ω-functor X qX → J1⊗X. One can check that the
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cell u(p⊗ f) is non-trivial in Z. Factoring the map ∂D1 → Z into a cofibration followed
by a trivial fibration t : Z ′ → Z, we get a commutative square

X qX //

��

Z ′

t
��

J1⊗X u
// Z ,

with Z ′ a cofibrant ω-category. But this square cannot admit a lift for such a lift would
map p⊗f to an identity in Z ′, contradicting the fact that u(p⊗f) is non-trivial. Therefore
the map X qX → J1⊗X is not a cofibration.

4.17. Corollary. Let f, g : X → Y be two ω-functors, where X is a cofibrant ω-cat-
egory. If there exists a reversible transformation from f to g, then there exists a J1-
transformation from f to g.
Proof. As all the ω-categories are fibrant for the folk model category structure and
X is cofibrant by hypothesis, the relations of left homotopy and right homotopy on
Homω-Cat(X, Y ) coincide. We get the result using the path object Γrev(Y ) (see Theo-
rem 1.16) and the cylinder object J1⊗X given by the previous theorem.

4.18. Corollary. Any reversible transformation retract whose target is cofibrant is a
J1-transformation retract.
Proof. This follows immediately from the previous corollary.

4.19. Remark. The following diagram sums up the relationship between the different
classes of ω-functors considered in this section in between folk trivial cofibrations and folk
weak equivalences:

folk trivial
cofibration

[15, Cor 4]
��

Prop 5.7

qy
J1-transformation

retract
Prop 4.13 +3

reversible
transformation

retract
[15, Lem 16]

+3

Cor 4.18
ks

folk weak
equivalence

.

(The dotted arrow means that the implication holds under the additional assumption that
the target is cofibrant.)

5. The folk model category structure is monoidal for the tensor product
In this section, we will end the proof of the compatibility of the Gray tensor product with
the folk model category structure and give some supplements on the resulting monoidal
model category.

We start by a general lemma abstracting our strategy to prove this compatibility:
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5.1. Lemma. LetM be a cofibrantly generated model category endowed with a (not nec-
essarily symmetric nor closed) monoidal category structure satisfying the following hy-
potheses:
H1) the unit of the tensor product ⊗ is cofibrant,
H2) the sources of the generating cofibrations are cofibrant,
H3) if i is a cofibration (resp. a trivial cofibration), then so are i⊗∅ and ∅⊗ i, where

∅ denotes the initial object ofM,
H4) for every generating cofibrations i : A→ B and j : C → D, the pushout-product

i⊗′ j : B ⊗ C qA⊗C A⊗D → B ⊗D

is a cofibration,
H5) for every generating trivial cofibration i and every cofibrant object A, the morphisms

i⊗ A and A⊗ i are weak equivalences.
ThenM is a monoidal model category.

Proof. First note that by Remark A.2, the hypothesis H1) and H3) imply that the unit
axiom (see paragraph A.1) is satisfied.

Moreover, by the classical Lemma A.3 (see also Remark A.4), the pushout-product
axiom (see again paragraph A.1) can be checked on generators. The hypothesis H4) thus
implies that the pushout-product of two cofibrations is a cofibration, and it suffices to show
that if, either i : A→ B is a generating trivial cofibration and j : C → D is a generating
cofibration, or i is a generating cofibration and j is a generating trivial cofibration, then
i⊗′ j is a weak equivalence. Let us prove the first case, the proof of the second one being
dual.

Consider the commutative diagram

A⊗ C A⊗j
//

i⊗C
��

A⊗D

ε2

��

i⊗D

��

B ⊗ C ε1 //

B⊗j
11

B ⊗ C qA⊗C A⊗D
i⊗′j
**

B ⊗D ,

where ε1 and ε2 are the canonical morphisms. The pushout-product axiom for cofibrations
and hypothesis H3) imply that the tensor product of a cofibration and a cofibrant object
is a cofibration (see Remark A.2). It thus follows from H2) and H5) that i ⊗ C is a
trivial cofibration. The morphism ε2 being a pushout of i⊗C, it is a trivial cofibration as
well. For the same reasons as above, the morphism i ⊗D is a weak equivalence and the
two-out-of-three property implies that i ⊗′ j is also a weak equivalence, thereby proving
the lemma.
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5.2. Remark. Note that under the hypothesis H1), H2) and H3) of the lemma, the
fact that M is a monoidal model category is actually equivalent to the hypothesis H4)
and H5).

5.3. Remark. The hypothesis H1) and H2) are fulfilled by the folk model category
structure. Moreover, the hypothesis H3) is fulfilled in any biclosed monoidal structure
(we will also apply this lemma to the join of ω-categories which is not biclosed). To prove
that the folk model category structure is monoidal for the Gray tensor product, it thus
suffices to prove H4) and H5). The hypothesis H4) is Theorem 3.9 and will now prove H5).

Let us see that H5) is a direct consequence of results from the previous section.

5.4. Proposition. Let i : X → Y be a folk trivial cofibration between cofibrant objects.
Then, for any ω-category Z, the ω-functor i⊗Z : X ⊗Z → Y ⊗Z is a J1-transformation
retract and in particular a folk weak equivalence.

Proof. As noted in paragraph 4.12, it is proved in [15] that such an ω-functor i is a
reversible transformation retract. As Y is cofibrant, Corollary 4.18 implies that i is a
J1-transformation retract. But it is immediate that J1-transformation retracts are stable
by tensoring by an object on the right, hence the result by Proposition 4.13.

5.5. Corollary. Let i : X → Y be a folk trivial cofibration between cofibrant objects.
Then, for any ω-category Z, the ω-functor Z ⊗ i : Z ⊗ X → Z ⊗ Y is a folk weak
equivalence.

Proof. We will use the duality T 7→ T op introduced in paragraph 1.20. By this same
paragraph, this duality preserves cofibrations, trivial cofibrations and weak equivalences,
and we have a natural isomorphism (A ⊗ B)op ' Bop ⊗ Aop. This implies that the
ω-functor iop : Xop → Y op is a trivial cofibration between cofibrant objects and hence,
by the previous proposition, that iop ⊗ Zop : Xop ⊗ Zop → Y op ⊗ Zop is a folk weak
equivalence. This shows that Z ⊗ i, that can be identified with (iop ⊗ Zop)op, is indeed a
folk weak equivalence.

5.6. Theorem. The folk model category structure on ω-Cat is monoidal for the Gray
tensor product.

Proof. This follows from Lemma 5.1, whose non-trivial hypothesis are fulfilled by The-
orem 3.9, and the previous proposition and its corollary.

The previous theorem implies that the tensor product of a folk trivial cofibration and
a cofibrant object is a weak equivalence. We will now prove that this still holds if we
remove the cofibrancy hypothesis.

5.7. Proposition. Any folk trivial cofibration is a strong J1-transformation retract.
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Proof. Let i : X → Y be a trivial cofibration. As every ω-category is fibrant, the lifting
problem

X

i
��

X

Y

>>

admits a solution r : Y → X giving a retraction of i. Similarly, by Theorem 5.6, the
lifting problem

J1⊗X q∂D1⊗X ∂D1 ⊗ Y

k1⊗′i

��

(ip,(ir,1Y ))
// Y

J1⊗Y

66

,
where p denotes the “projection” ω-functor p : J1⊗X → X, admits a solution h. Such an
h : J1⊗Y → Y is precisely a J1-transformation as in the definition of a strong J1-trans-
formation retract.

5.8. Proposition. Strong J1-transformation retracts are stable under pushouts.
Proof. The analogous statement for strong reversible transformation retracts is [15,
Lemma 17], whose proof applies mutatis mutandis.

5.9. Proposition.
(a) Transfinite compositions of pushouts of tensor products of an object (on the left) and

a folk trivial cofibration are folk weak equivalences.
(b) Transfinite compositions of pushouts of tensor products of a folk trivial cofibration

and an object (on the right) are folk weak equivalences.
Proof. The second assertion can be deduced from the first one using the dualityX 7→ Xop

as in the proof of Corollary 5.5. As for the first one, by Proposition 5.7, trivial cofibrations
are strong J1-transformation retracts. But J1-transformation retracts are stable by ten-
soring by an object on the left, essentially by definition, and by pushouts by the previous
proposition. As J1-transformation retracts are weak equivalences (by Proposition 4.14),
the result follows from the fact that folk weak equivalences are stable under transfinite
compositions (see [15, Lemma 4.12]).

5.10. Remark. In particular, the tensor product of a folk trivial cofibration by an object
(on the left or on the right) is a folk weak equivalence.

5.11. Remark. We proved more precisely that the ω-functors of the first assertion of
the proposition are transfinite compositions of J1-transformation retracts.

6. The case of (m,n)-categories
In this section, we fix m and n such that 0 6 n 6 m 6 ω.
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6.1. Recall that an (m,n)-category is an ω-category X such that
• X is an m-category, that is, every k-cell of X with k > m is an identity,
• every k-cell x of X, for k > n, is invertible, meaning that there exists a k-cell y such

that
y ∗k−1 x = 1sx and x ∗k−1 y = 1tx.

We will denote by (m,n)-Cat the full subcategory of ω-Cat consisting of (m,n)-cate-
gories. Note that (m,m)-categories are nothing but m-categories, and (m, 0)-categories
are m-groupoids, whose category will be denoted by m-Gpd.

The category (m,n)-Cat is a reflective subcategory of ω-Cat. In other words, the
inclusion functor (m,n)-Cat ↪→ ω-Cat admits a left adjoint r : ω-Cat → (m,n)-Cat.

The goal of this section is to prove, first, that the Gray tensor product of ω-categories
induces, using the ω-functor r : ω-Cat → (m,n)-Cat, a monoidal category structure on
(m,n)-Cat and, second, that this monoidal category structure is compatible with the folk
model category structure on (m,n)-Cat.

To prove the first point, we will use Day’s reflection theorem:

6.2. Proposition. [Day] Let C be a biclosed monoidal category and let D ⊂ C be a
reflective subcategory of C. Then the following conditions are equivalent:
(a) for every object X of C and every object Y of D, the objects Homr

C(X, Y ) and
Homl

C(X, Y ) (see paragraph A.6) are in D,
(b) for every objects X and Y of C, the canonical morphism

r(X ⊗ Y ) ∼−→ r(r(X)⊗ r(Y )),

where r : C → D denotes the left adjoint to the inclusion functor, is an isomorphism.
Moreover, when these conditions are satisfied, the tensor product

X ⊗D Y = r(X ⊗ Y )

defines a biclosed monoidal category structure on D, whose unit and internal Hom are
those of C.

Proof. The analogous statement for closed symmetric monoidal categories is a particular
case of [6, Theorem 1.2]. The proof applies mutatis mutandis to the case of biclosed
monoidal categories.

We will prove that condition (a) is satisfied in our case of interest, that is, that if X is
an ω-category and Y is an (m,n)-category, then both Homoplax(X, Y ) and Homlax(X, Y )
are (m,n)-categories. We start by some preliminaries on invertible cells.

6.3. We will denote by In the free-standing invertible n-cell in ω-Cat. In other words, In
is the n-category obtained from Dn by formally inverting the principal cell of Dn. We have
a canonical ω-functor Dn → In. The image of the principal cell of Dn by this ω-functor is
the principal cell of In. By definition, an n-cell x of an ω-category X is invertible if and
only the corresponding ω-functor 〈x〉 : Dn → X factor through In.
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6.4. Proposition. Let x be an m-cell of an ω-category X and let y be an n-cell of an
ω-category Y . If either x or y is invertible, then x⊗ y is invertible in X ⊗ Y .
Proof. The proof is similar to the proof of the analogous fact for reversible cells (Propo-
sition 4.9). More precisely, one first proves the statement analogous to Lemma 4.2 using
the same calculations as in its proof and one then proves the statements analogous to
Proposition 4.5, Corollary 4.6, Lemma 4.8 and, finally, Proposition 4.9, by a straightfor-
ward adaptation consisting essentially in replacing the ω-category Rn by In.

6.5. Let Y be an ω-category. We will say that an n-cylinder c = (x, y, α) (see para-
graph 1.13) is invertible if all the αεk, for 0 6 k 6 n and ε = ±, are invertible cells
of Y . For the same reasons as for reversible cylinders, the graded subset Γinv(Y ) of Γ(Y )
consisting of invertible cylinders forms a sub-ω-category.

We will now prove that the ω-functor
Homlax(I1, Y )→ Homlax(D1, Y ) = Γ(Y ),

induced by the canonical ω-functor D1 → I1, gives an isomorphism of ω-categories between
Homlax(I1, Y ) and Γinv(Y ) ⊂ Γ(Y ). (This will be achieved in Proposition 6.8.)

6.6. Let Y be an ω-category. By adjunction, n-cells of Homlax(I1, Y ) correspond to
ω-functors I1 → Homoplax(Dn, Y ), that is, to invertible 1-cells of Homoplax(Dn, Y ). Again
by adjunction, 1-cells of Homoplax(Dn, Y ) corresponds to n-cylinders c = (x, y, α) in Y
(and that the source and target of such a c correspond to the cells x and y respec-
tively). This means that the composition of 1-cells in Homoplax(Dn, Y ) defines a compo-
sition on n-cylinders in Y , that we will call the vertical composition, and that the n-cells
of Homlax(I1, Y ) correspond to the n-cylinders in Y invertible for the vertical composition.
In particular, this shows that the ω-functor Homlax(I1, Y )→ Γ(Y ) identifies Homlax(I1, Y )
with a sub-ω-category of Γ(Y ).

The vertical composition of n-cylinders can be described in the following way. Let
c = (x, y, α) and let d = (y, z, β) be two n-cylinders in Y (see paragraph 1.13). We define
by induction on k such that 0 6 k 6 n four (k+1)-cells aεk and bεk, with ε = ±, as follows:

aεk = b+
k−1 ∗k−1 · · · ∗1 b

+
0 ∗0 α

ε
k,

bεk = βεk ∗0 a
−
0 ∗1 · · · ∗k−1 a

−
k−1.

The vertical composition of d and c, denoted by d∗v c, is then given by the triple (x, z, γ),
where

γεk = bεk ∗k aεk.
Note that the unit of an n-cell x for the vertical composition is the n-cylinder (x, x, α),
where α−k = 1sk(x) and α+

k = 1tk(x).

6.7. Proposition. Let c = (x, y, α) be an invertible n-cylinder in an ω-category Y . Then
c is invertible for the vertical composition with inverse (y, x, β) given by:

βεk = ᾱ+
0 ∗0 (ᾱ+

1 ∗1 · · · ∗k−2 (ᾱ+
k−1 ∗k−1 ᾱ

ε
k ∗k−1 ᾱ

−
k−1) ∗k−2 · · · ∗1 ᾱ

−
1 ) ∗0 ᾱ

−
0 ,

for 0 6 k 6 n and ε = ±, where ᾱεl denotes the inverse of αεl in Y .
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Proof. Let us first show that (y, x, β) is an n-cylinder. Let 1 6 k 6 n. We have to show
that

t(βεk) = xεk ∗0 β
−
0 ∗1 · · · ∗k−1 β

−
k−1.

For i ≤ k ≤ n, we set

βεk,i = ᾱ+
i ∗i (ᾱ+

i+1 ∗i+1 · · · ∗k−2 (ᾱ+
k−1 ∗k−1 ᾱ

ε
k ∗k−1 ᾱ

−
k−1) ∗k−2 · · · ∗i+1 ᾱ

−
i+1) ∗i ᾱ−i

and
ui = (α+

i−1 ∗i−1 · · · ∗1 α
+
0 ∗0 x

ε
k) ∗i β−i,i ∗i+1 · · · ∗k−1 β

−
k−1,i.

In particular, we have

βεk,0 = βεk, ᾱ+
i−1 ∗i βεk,i ∗i ᾱ−i−1 = βεk,i−1 and βεk,k = ᾱεk,

and

u0 = xεk ∗0 β
−
0 ∗1 · · · ∗k−1 β

−
k−1,

uk = α+
k−1 ∗k−1 · · · ∗1 α

+
0 ∗0 x

ε
k = s(αεk).

We have to show the equality t(βεk) = u0. More generally, we will prove by descending
induction on i such that 0 ≤ i ≤ k that we have t(βεk,i) = ui. For i = k, we have

t(βεk,k) = t(ᾱεk) = s(αεk) = uk.

For 0 6 i < k, using the induction hypothesis, we have

t(βεk,i) = t(α+
i ∗i βεk,i+1 ∗i α−i )

= α+
i ∗i ui+1 ∗i α−i

= ᾱ+
i

∗i
(
(α+

i ∗i · · · ∗1 α
+
0 ∗0 x

ε
k) ∗i+1 β

−
i+1,i+1 ∗i+2 · · · ∗k−1 β

−
k−1,i+1

)
∗i ᾱ−i

=
(
ᾱ+
i ∗i (α+

i ∗i · · · ∗1 α
+
0 ∗0 x

ε
k) ∗i ᾱ−i

)
∗i+1 (ᾱ+

i ∗i β−i+1,i+1 ∗i ᾱ−i ) ∗i+2 · · · ∗k−1 (ᾱ+
i ∗i β−k−1,i+1ᾱ

−
i )

=
(
ᾱ+
i ∗i (α+

i ∗i · · · ∗1 α
+
0 ∗0 x

ε
k) ∗i ᾱ−i

)
∗i+1 β

−
i+1,i ∗i+2 · · · ∗k−1 β

−
k−1,i

=
(
α+
i−1 ∗i−1 · · · ∗1 α

+
0 ∗0 x

ε
k

)
∗i β−i,i

∗i+1 β
−
i+1,i ∗i+2 · · · ∗k−1 β

−
k−1,i

= ui.

A similar calculation shows that

s(βεk) = β+
k−1 ∗k−1 · · · ∗1 β

+
0 ∗0 y

ε
k.
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Let us now prove that (y, x, β) is an inverse of (x, y, α) for the vertical composition.
Consider (x, x, γ) = (y, x, β) ∗v (x, y, α). We have to prove that γεk is an identity for every
0 6 k 6 n and ε = ±. Recall that by definition (see paragraph 6.6), we have

γεk = bεk ∗k aεk,

where

aεk = b+
k−1 ∗k−1 · · · ∗1 b

+
0 ∗0 α

ε
k,

bεk = βεk ∗0 a
−
0 ∗1 · · · ∗k−1 a

−
k−1.

We will start by proving, by induction on k, that

aεk = ᾱ+
0 ∗0 ᾱ

+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 α

ε
k,

bεk = ᾱ+
0 ∗0 ᾱ

+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 ᾱ

ε
k.

For k = 0, the formulas boil down to the equalities aε0 = αε0 and bε0 = ᾱε0 which hold by
definition. Suppose k > 0. For 0 6 i ≤ j ≤ n, we set

aεj,i = ᾱ+
i ∗i ᾱ+

i+1 ∗i+1 · · · ∗j−2 ᾱ
+
j−1 ∗j−1 α

ε
j ,

bεj,i = ᾱ+
i ∗i ᾱ+

i+1 ∗i+1 · · · ∗j−2 ᾱ
+
j−1 ∗j−1 ᾱ

ε
j .

In particular, we have
aεj,j = ᾱεj and bεj,j = ᾱεj .

By induction hypothesis, for i ≤ j < k, we have

bεj = bεj,0.

We thus have

aεk = b+
k−1 ∗k−1 · · · ∗1 b

+
0 ∗0 α

ε
k

= b+
k−1,0 ∗k−1 · · · ∗1 b

+
0,0 ∗0 α

ε
k

= (ᾱ+
0 ∗0 b

+
k−1,1) ∗k−1 · · · ∗2 (ᾱ+

0 ∗0 b
+
1,1) ∗1 ᾱ

+
0 ∗0 α

ε
k

= ᾱ+
0 ∗0 (b+

k−1,1 ∗k−1 · · · ∗2 b
+
1,1 ∗1 α

ε
k)

= · · ·
= ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗i−2 ᾱ

+
i−1 ∗i−1 (b+

k−1,i ∗k−1 · · · ∗i+1 b
+
i,i ∗i αεk)

= · · ·
= ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 α

ε
k
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and
bεk = βεk ∗0 a

−
0 ∗1 · · · ∗k−1 a

−
k−1

= βεk,0 ∗0 a
−
0,0 ∗1 · · · ∗k−1 a

−
k−1,0

= ᾱ+
0 ∗0 β

ε
k,1 ∗0 ᾱ

−
0 ∗0 α

−
0 ∗1 (ᾱ+

0 ∗0 a
−
1,1) ∗2 · · · ∗k−1 (ᾱ+

0 ∗0 a
−
k−1,1)

= ᾱ+
0 ∗0 (βεk,1 ∗1 a

−
1,1 ∗2 · · · ∗k−1 a

−
k−1,1)

= · · ·
= ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗i−2 ᾱ

+
i−1 ∗i−1 (βεk,i ∗i a−i,i ∗i+1 · · · ∗k−1 a

−
k−1,i)

= · · ·
= ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 β

ε
k,k

= ᾱ+
0 ∗0 ᾱ

+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 ᾱ

ε
k,

which ends the proof of the announced formulas. Finally, we get that

γεk = bεk ∗k aεk
=
(
ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 ᾱ

ε
k

)
∗k
(
ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 α

ε
k

)
= ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 (ᾱεk ∗k αεk)

= 1ᾱ+
0 ∗0ᾱ

+
1 ∗1···∗k−2ᾱ

+
k−1
.

This proves that (y, x, β) ∗v (x, y, α) is indeed the identity. Similar calculations show that
(x, y, α) ∗v (y, x, β) is the identity as well, thereby ending the proof.

6.8. Proposition. Let Y be an ω-category. The ω-functor

Homlax(I1, Y )→ Homlax(D1, Y ) = Γ(Y ),

induces an isomorphism between Homlax(I1, Y ) and Γinv(Y ) ⊂ Γ(Y ).
Proof. We saw in paragraph 6.6 that this ω-functor is injective. It thus suffices to prove
that its image is precisely Γinv(Y ).

Let us first prove that the ω-functor lands into Γinv(Y ). Consider an n-cell of the
ω-category Homlax(I1, Y ), seen as an ω-functor c : I1⊗Dn → Y . Let (x, y, α) be the
associated cylinder. By definition, we have

α−k = c((01)⊗ sk(d)) and α+
k = c((01)⊗ tk(d)),

for 0 6 k 6 n, where (01) and d denote the principal cells of I1 and Dn, respectively.
As (01) is invertible in I1, so is its tensor product with any cell by Proposition 6.4, and
the αεk are thus invertible. This proves that (x, y, α) is an invertible cylinder.

Reciprocally, if c is an invertible n-cylinder, then, by the previous proposition, the
cylinder c is invertible for the vertical composition, and hence corresponds to an n-cell
of Homlax(I1, Y ) (see paragraph 6.6), thereby proving the result.
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6.9. Remark. In particular, an n-cylinder is invertible in the sense of paragraph 6.5 if
and only if it invertible for the vertical composition introduced in paragraph 6.6.

6.10. Proposition. An n-cell of Homoplax(X, Y ), seen by adjunction as an ω-functor
H : Dn ⊗ X → Y , is invertible if and only if, for every m-cell x of X, the (n + m)-cell
H(d⊗ x), where d denotes the principal cell of Dn, is invertible in Y .
Proof. Suppose that H : Dn ⊗X → Y is invertible as an n-cell of Homoplax(X, Y ). By
universal property of In and by adjunction, this means that H factors through In⊗X, so
that H(d⊗x) = H ′(d′⊗x), where H ′ : In⊗X → Y and d′ is the principal cell of In. As d′
is invertible in In, so is d′⊗x by Proposition 6.4. This implies that H(d⊗x) = H ′(d′⊗x)
is invertible, showing one implication.

Let us show the converse. We will argue by induction on n > 1. Suppose n = 1.
The hypothesis implies that the associated ω-functor k : X → Γ(Y ) factors through
Γinv(Y ) ⊂ Γ(Y ). The result thus follows from the bijections

Homω-Cat(X,Γinv(Y )) ' Homω-Cat(X,Homlax(I1, Y ))
' Homω-Cat(I1,Homoplax(X, Y )),

the first bijection being a consequence of the previous proposition.
Suppose now that n > 1. Denote by s : Dn−1⊗D1 → Dn the ω-functor of paragraph 4.7

and consider the ω-functor
H(s⊗X) : Dn−1 ⊗D1 ⊗X → Y.

Denote by e the principal cell of Dn−1. We will prove that, for every cell z of D1⊗X, the
cell H(s⊗X)(e⊗ z) is invertible in Y . Since the ω-category D1⊗X is generated by cells
of the form 0⊗x, 1⊗x and (01)⊗x, where (01) denotes the principal cell of D1 and x is a
cell of X, it suffices to show that H(s⊗X)(e⊗z), where z is one of these generators, is an
invertible cell. Since s(e⊗ ε)⊗x, for ε = 0, 1, is an identity by definition of s and the fact
that e is of dimension at least 1, the cell H(s⊗X)(e⊗ ε⊗ x) is invertible. Furthermore,
the cell

H(s⊗X)(e⊗ (01)⊗ x) = H(s(e⊗ (01))⊗ x) = H(d⊗ x)
is invertible by hypothesis on H. By induction hypothesis, this implies that H(s⊗X) is
invertible as an (n − 1)-cell of Homoplax(D1 ⊗X, Y ). This means that H(s ⊗X) factors
trough In−1⊗(D1 ⊗X), so that we get an ω-functor H ′ : In−1⊗(D1 ⊗X) → Y . Denote
by d′ and e′ the principal cells of In and In−1, respectively. Using the fact that, by
Proposition 6.4, the cell e′⊗ (01) is invertible in In−1⊗D1, we get a commutative diagram

Dn ⊗X
〈d′〉⊗X

��

〈e⊗(01)〉⊗X
// Dn−1 ⊗D1 ⊗X

s⊗X
//

〈e⊗(01)〉⊗D1⊗X
��

Dn ⊗X //H // Y

In⊗X
〈e′⊗(01)〉⊗X

// In−1⊗D1 ⊗X
H′

22

.
Since s〈e ⊗ (01)〉 = 1Dn , the composite of the three composable horizontal arrows of the
diagram is H : Dn ⊗X → Y . This implies that H factors through In⊗X and hence that
it is invertible as a cell of Homoplax(X, Y ).
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6.11. Remark. In particular, an oplax transformation is invertible as a 1-cell of the
ω-category Homoplax(X, Y ) if and only it its components are invertible in Y .

6.12. Proposition. If X is an ω-category and Y is an (m,n)-category, then both the
ω-categories Homoplax(X, Y ) and Homlax(X, Y ) are (m,n)-categories.
Proof. Since

Homlax(X, Y ) ' Homoplax(Xop, Y op)op

(see paragraph 1.20) and (m,n)-categories are stable under the duality Z 7→ Zop, it
suffices to prove that Homoplax(X, Y ) is an (m,n)-category.

The fact that Homoplax(X, Y ) is an m-category is already known (see for instance [2,
Proposition A.29]). Let us prove that this m-category is an (m,n)-category. Consider a
k-cell of Homoplax(X, Y ), with k > n, seen as an ω-functor H : Dk⊗X → Y . Let d be the
principal cell of Dk and let x be a cell of X. The cell H(x⊗ d) is a cell of Y of dimension
at least k. It is therefore invertible as Y is an (m,n)-category. Proposition 6.10 thus
shows that H is invertible in Homoplax(X, Y ).

6.13. Theorem. The Gray tensor product of (m,n)-categories

X ⊗m,n Y = r(X ⊗ Y ),

where r : ω-Cat → (m,n)-Cat denotes the left adjoint to the inclusion functor of (m,n)-Cat
into ω-Cat, defines a monoidal category structure on the category (m,n)-Cat, whose unit
is the (m,n)-category D0 and whose internal Hom are Homoplax and Homlax.

Proof. This follows from the previous proposition by Day’s reflection theorem (Propo-
sition 6.2).

6.14. Remark. The case of m-categories was already proved in [2, Appendix A].
We now focus on the case of m-groupoids (that is, the case n = 0).

6.15. Proposition. If X and Y are two ω-groupoids, then X ⊗ Y is an ω-groupoid, so
that

X ⊗ω,0 Y = X ⊗ Y.

Proof. The ω-category X ⊗Y is generated by n-cells of the form x⊗ y, where x a k-cell
of X and Y an l-cell of Y with n = k + l. If n > 0, then k > 0 or l > 0, so that x or y
is invertible. It follows from Proposition 6.4 that x⊗ y is invertible, thereby proving the
result.

6.16. Remark. Note that it is not true that the tensor product of an ω-groupoid X and
an ω-category Y is an ω-groupoid in general, as the tensor product of a 0-cell of X and
a non-invertible n-cell of Y is not invertible in X ⊗ Y .

6.17. Lemma. The functor X 7→ Xop is naturally isomorphic to the identity when re-
stricted to the category m-Gpd of m-groupoids.
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Proof. Let X be an m-groupoid. Recall that for any n-cell x of X and any i < n, the
cell x is invertible for the composition ∗i (see for instance [3, Proposition 1.3]). We will
denote this inverse by wi(x). Note that for any i, j < n, we have wi(wj(x)) = wj(wi(x)).
We define an ω-functor δX : Xop → X by setting δX(x) = w1(w3(· · ·wk(x) · · · )), for any
n-cell x of X, where k is the largest odd integer strictly smaller than n. The fact that this
defines an ω-functor natural in X follows from a straightforward calculation. Clearly, the
ω-functor δX is an isomorphism with inverse δXop , thereby proving the result.

6.18. Proposition. The Gray tensor product on m-Gpd is symmetric.

Proof. If X and Y are two m-groupoids, then, using the natural isomorphism of the
previous lemma, we get an isomorphism

X ⊗m,0 Y = X ⊗ Y ' (X ⊗ Y )op ' Y op ⊗Xop ' Y ⊗X = Y ⊗m,0 X.

One checks that this isomorphism defines a symmetry for the Gray tensor product.
Let us come back to the general case 0 6 n 6 m 6 ω. We will now show that the

tensor product of (m,n)-categories is compatible with the so-called folk model category
structure on (m,n)-Cat that we now recall:

6.19. Theorem. [Lafont–Métayer–Worytkiewicz, Ara–Métayer] The folk model category
structure on ω-Cat can be transferred along the adjunction

r : ω-Cat → (m,n)-Cat, (m,n)-Cat ↪→ ω-Cat.

In particular, we get a model category structure on (m,n)-Cat, whose weak equivalences are
the folk equivalences between (m,n)-categories and which is cofibrantly generated by r(I)
and r(J) (see paragraphs 1.6 and 1.7).

Proof. The case of m-categories is [15, Theorem 5] and the case of (ω, n)-categories is [3,
Theorem 3.19 and Remark 3.20]. Combining these two proofs, one easily gets the general
case.

The compatibility between the tensor product of (m,n)-categories and the folk model
category structure on (m,n)-Cat will follow formally from the following general statement:

6.20. Proposition. Let M be a biclosed monoidal model category, which is cofibrantly
generated by sets I and J , and whose unit for the tensor product is cofibrant, and let
N ⊂ M be a reflective subcategory of M. Denote by r : M→ N the left adjoint to the
inclusion functor. Suppose that
(a) N ⊂ M satisfies the equivalent conditions of Day’s reflection theorem (Proposi-

tion 6.2), so that
X ⊗N Y = r(X ⊗ Y )

defines a biclosed monoidal category structure on N ,
(b) N is endowed with a model category structure cofibrantly generated by r(I) and r(J).

Then N endowed with the tensor product ⊗N is a monoidal model category.
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Proof. The hypothesis implies that r is a left Quillen functor. In particular, the unit
of ⊗N is cofibrant. By Lemma A.3, it suffices to show that if i is in I and j is in I, then
r(i) ⊗′N r(j) is a cofibration of N , and that if either i is in I and j is in J , or i is in J
and j is in I, then r(i) ⊗′N r(j) is a trivial cofibration. Using the definition of ⊗N , the
natural isomorphism r(X ⊗ Y ) ' r(r(X)⊗ r(Y )) and the fact that r preserves pushouts,
we get that r(i)⊗′N r(j) can be identified with r(i⊗′ j). The result thus follows from the
pushout-product axiom inM and the fact that r is a left Quillen functor.

6.21. Theorem. The folk model category structure on (m,n)-Cat is monoidal for the
Gray tensor product of (m,n)-categories.
Proof. This follows from the previous proposition, whose hypothesis are fulfilled by
Proposition 6.12 and Theorem 6.19.

6.22. Remark. In [13], slightly corrected by [14], Lack proves that the folk model cate-
gory structure on 2-Cat is monoidal for the pseudo Gray tensor product. This is different
from the result we get from the previous theorem in the case m = 2 and n = 2, which
deals with the oplax Gray tensor product.

6.23. Proposition. The folk model category structure on (m,n)-Cat satisfies the two
following properties:
(a) Transfinite compositions of pushouts of tensor products of an object (on the left) and

a folk trivial cofibration are folk weak equivalences.
(b) Transfinite compositions of pushouts of tensor products of a folk trivial cofibration

and an object (on the right) are folk weak equivalences.

Proof. The second assertion can be deduced from the first one using the dualityX 7→ Xop

as in the proof of Corollary 5.5. As for the first one, using the fact that the tensor product
of (m,n)-categories is biclosed and hence commutes with colimits in each variable, it
suffices to consider transfinite compositions of pushouts of tensor products of an object
and an element of r(J). As the functor r commutes with colimits, such a transfinite
composition is of the form r(f), where f is a transfinite composition of pushouts of tensor
products of an object and an element of J . By Remark 5.11, such an f is a transfinite
composition of J1-transformation retracts. As folk weak equivalences are stable under
transfinite compositions, it suffices to show that r sends J1-transformation retracts to
weak equivalences. But if h : J1⊗X → Y is a J1-transformation from an ω-functor
u : X → Y to an ω-functor v : X → Y , then by precomposing r(h) : r(J1⊗X) → r(Y )
by the natural ω-functor

J1⊗r(X)→ r(J1)⊗ r(X)→ r(r(J1)⊗ r(X)) ' r(J1⊗X),

one gets an ω-functor J1⊗r(X) → r(Y ) defining a J1-transformation from r(u) to r(v).
This proves that r sends J1-transformation retracts to J1-transformation retracts, hence
the result by Proposition 4.13.
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6.24. Remark. In the case n = 0, in which the tensor product is symmetric, the previous
proposition asserts that the so-called monoid axiom of Schwede and Shipley [21] holds
in m-Gpd.

6.25. Corollary. Let us endow m-Gpd with the Gray tensor product.
(a) If P is a non-symmetric (m-Gpd)-operad, then the category of P-algebras inm-group-

oids is endowed with a right proper combinatorial model category structure whose
weak equivalences (resp. fibrations) are the morphisms whose underlying m-functor
is a folk weak equivalence (resp. a folk fibration) of m-groupoids.

(b) If P is a non-symmetric (m-Gpd)-operad such that P(n) is a cofibrant m-groupoid
for every n > 0, and if A is a cofibrant P-algebra in m-Gpd, then the underlying
m-groupoid of A is cofibrant.

Proof. Using the previous remark, the first point is [9, Theorem 1.2] (or also [19, Theo-
rem 1.3], taking V = C = m-Gpd).

Let us prove the second point using results and terminology from [4]. Let P̃ be the free
symmetric operad on the non-symmetric operad P . We have P̃(n) = Σn × P(n), where
Σn denotes the symmetric group, the action of Σn on P̃(n) being the obvious one. Since
P(n) is cofibrant by hypothesis, this implies that, in the terminology of [4], the operad P̃
is Σ-cofibrant. Moreover, the category of P̃-algebras is isomorphic to the category of
P-algebras via a functor constant on the underlying object and, by the first point, this
category is thus endowed with a model category structure compatible with the forgetful
functor to m-Gpd. In the terminology of [4], this means that P̃ is an admissible operad.
The result thus follows from [4, Corollary 5.5].

6.26. Remark. In particular, the first point applied to the operad of monoids (seen as
an (m-Gpd)-operad by using the inclusion functor of sets into m-groupoids) gives a model
category structure on the category of monoids in the category of m-groupoids endowed
with the Gray tensor product.

6.27. Remark. The monoid axiom implies many other interesting properties of the ho-
motopy theory of operads and their algebras. Another important setting to obtain these
kinds of results has been introduced by Berger and Moerdijk in [4]. One easily checks
that the folk model category structure on m-Gpd, equipped with the Gray tensor prod-
uct, satisfies the hypothesis of [4, Theorem 3.1], the “Hopf interval” being simply the
m-groupoid I1.

7. The folk model category structure is monoidal for the join
In this section, we will recall the definition of the join of ω-categories, introduced by the
first author and Maltsiniotis in [2], and we will prove that the resulting monoidal category
structure is compatible with the folk model category structure.

The strategy to define the join is similar to the one for the Gray tensor product. In
particular, we start by defining the join at the level of augmented directed complexes.
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7.1. The join K ? L of two augmented directed complexes K and L is defined in the
following way:

• For n > 0, we have
(K ? L)n =

⊕
i+1+j=n
i>−1,j>−1

Ki ⊗ Lj,

where by convention K−1 = Z and L−1 = Z. The positive generator of K−1 or L−1
will be denoted by ∅. If x is in Ki and y is in Kj, we will denote by x?y the element
x⊗ y seen as an (i+ 1 + j)-chain of K ? L.

• For x in Ki and y in Kj with i+ 1 + j > 1, we have

d(x ? y) = dx ? y + (−1)i+1x ? dy,

where by convention dz = e(z)∅ if the degree of z is 0, and dz = 0 if the degree of
z is −1.

• For x in K0 and y in L0, we have

e(x ?∅) = e(x) and e(∅ ? y) = e(y).

• The submonoid (K ? L)∗n is defined to be generated by the subset⊕
i+1+j=n
i>−1,j>−1

K∗i ⊗ L∗j

of (K ? L)n.
The join defines a (non-symmetric) monoidal category structure on the category of aug-
mented directed complexes. Moreover, the first author and Maltsiniotis proved (see [2,
Corollary 6.21]) that this monoidal category structure restricts to the full subcategory of
strong Steiner complexes.

7.2. Theorem. [Ara–Maltsiniotis] There exists a unique, up to unique isomorphism,
locally biclosed monoidal category structure (see paragraph A.12) on ω-Cat making the
functor ν|Stf : Stf → ω-Cat a monoidal functor, where Stf is endowed with the monoidal
category structure given by the join.

Proof. This is [2, Theorem 6.29].

7.3. We define the join of ω-categories to be the monoidal product given by the previous
theorem. If X and Y are two ω-categories, their join will be denoted by X ?Y . Explicitly,
one has

X ? Y = lim−→
ν(K)→X,K∈Stf
ν(L)→Y, L∈Stf

ν(K ? L).

The unit of the join is the empty ω-category. As a consequence, if X and Y are two
ω-categories, we get canonical ω-functors ι1 : X → X ? Y and ι2 : Y → X ? Y .
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The fact that the join is locally biclosed means that the functors

ω-Cat → X\ω-Cat
Y 7→ (X ? Y, ι1 : X → X ? Y )

and

ω-Cat → Y \ω-Cat
X 7→ (X ? Y, ι2 : Y → X ? Y )

admit right adjoints. We thus get pairs of adjoint functors

ω-Cat → X\ω-Cat,
Y 7→ (X ? Y, ι1)

X\ω-Cat → ω-Cat
(Z,X u−→ Z) 7→ u\Z

and

ω-Cat → Y \ω-Cat,
X 7→ (X ? Y, ι2)

Y \ω-Cat → ω-Cat,

(Z, Y v−→ Z) 7→ Z
co
/ v

so that, if X and Y are ω-categories and u : X → Z and v : Y → Z are ω-functors, we
have natural bijections

HomX\ω-Cat((X ? Y, ι1), (Z, u)) ' Homω-Cat(Y, u\Z),

HomY \ω-Cat((X ? Y, ι2), (Z, v)) ' Homω-Cat(X,Z
co
/ v).

(See [2, Remark 6.37] for the reason for the decoration “co” in Z
co
/ v .)

One important consequence of the existence of these adjoints is that the join commutes
with connected colimits in each variable.

7.4. Examples. Here are some examples of joints of ω-categories:

D0 ?D0 = • // • = D1 , D0 ?D1 =
•

��

•

99

$$ • ,

CK

D1 ?D1 =
• //

�� ��

• • //

��

•

• // •

OO

• //

??

• .

OO

*4
�#{�

����

We now begin to prove that the join is compatible with the folk model category
structure.
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7.5. Proposition. If
i : X → Y and j : Z → T

are two folk cofibrations, then the ω-functor

i ?′ j : Y ? Z qX?Z X ? T → Y ? T

is also a folk cofibration.

Proof. The proof is essentially the same as the one of Theorem 3.9. It is immediate
that if K and L are two augmented directed complexes with basis (that we denote by BK

and BL, respectively, following the notation introduced in paragraph 3.1), then K?L (see
paragraph 7.1) is an augmented directed complex with basis

BK?L = {x ? y | x ∈ BK , y ∈ BL} ∪ {x ?∅ | x ∈ BK} ∪ {∅ ? y | y ∈ BL}.

From this, one deduces as in Proposition 3.5 that if i : K → L and j : M → N are
two rigid monomorphisms between augmented directed complexes with basis, then the
morphism

i ?′ j : L ?M qK?M K ? N → L ? N

is a rigid monomorphism between augmented directed complexes with basis which iden-
tifies L ?M qK?M K ? N with the subcomplex generated by

BL ? BM ∪BK ? BN ∪BL ? {∅} ∪ {∅} ? BN .

One then deduces, as in Proposition 3.7, that if K, L, M and N are assumed to be strong
Steiner complexes, then the ω-functor

ν(i) ?′ ν(j) : ν(L) ? ν(M)qν(K)?ν(M) ν(K) ? ν(N)→ ν(L) ? ν(N)

is a folk cofibration. To do so, one needs the fact that rigid monomorphisms and strong
Steiner complexes are stable under join (see [2, Proposition 6.17 and Corollary 6.21]) and
that the functor ν|Stf : Stf → ω-Cat is monoidal for the join (see [2, Theorem 6.29]). The
result then follows from the fact that generating cofibrations are of the form ν(i) for i a
rigid monomorphism between strong Steiner complexes (see Proposition 3.8).

7.6. Corollary. The join of two cofibrant ω-categories is a cofibrant ω-category.

Proof. This follows immediately from the previous proposition.
To end the proof of the compatibility of the join with the folk model category structure,

we will apply Lemma 5.1. The only non-trivial remaining hypothesis to be checked is H5).
To do so, we will prove that the class of J1-transformations is stable by taking the join by
an object on the right (a fact which was trivial for the tensor product) by showing that,
for every ω-category T , the functor − ? T can be endowed with what is called a tensorial
strength for the Gray tensor product. We start by defining this tensorial strength at the
level of augmented directed complexes.
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7.7. Let K, L and M be three augmented directed complexes. We define a morphism

σ : K ⊗ (L ?M)→ (K ⊗ L) ? M,

natural in K, L and M , in the following way. For n > 0, we set

σn(x⊗ (y ? z)) =
e(x)(y ? z) if |y| = −1,

(x⊗ y) ? z if |y| > 0,

where by convention e(x) = 0 if x is not of degree 0.

7.8. Proposition. The morphisms σn define a morphism of augmented directed com-
plexes σ : K ⊗ (L ?M)→ (K ⊗ L) ? M .
Proof. It is immediate that σn respects positive elements. Let us prove that σ0 is
compatible with the augmentations. If the degree of x⊗ (y ? z) is 0 then |x| = 0 and

• either |y| = −1 and |z| = 0, in which case we have

e(σ0(x⊗ (y ? z))) = e(e(x)(y ? z)) = e(x)e(y ? z) = e(x⊗ (y ? z)),

• or |y| = 0 and |z| = −1, in which case we can assume that z = ∅ and we have
e(σ0(x⊗ (y ?∅))) = e((x⊗ y) ?∅) = e(x⊗ y)

= e(x)e(y) = e(x)e(y ?∅) = e(x⊗ (y ?∅)).

Suppose now that the degree n of x⊗ (y ? z) is at least 1 and let us prove that

σn−1d(x⊗ (y ? z)) = dσn(x⊗ (y ? z)).

We will freely use the conventions for the differentials of tensors and joins introduced in
paragraphs 2.9 and 7.1. We distinguish four cases:

• If |y| = −1, then we have

σn−1d(x⊗ (y ? z)) = σn−1
(
dx⊗ (y ? z) + (−1)|x|x⊗ d(y ? z)

)
= e(dx)(y ? z) + (−1)|x|e(x)d(y ? z)

(being careful with the case |z| = 0)
= e(x)d(y ? z)

(as ed = 0 and e(x) = 0 if |x| 6= 0)
= d(e(x)(y ? z))
= dσn(x⊗ (y ? z)).

• If |y| = 0 and |z| = −1, then we have
σn−1d(x⊗ (y ? z)) = σn−1(dx⊗ (y ? z))

= (dx⊗ y) ? z
= d(x⊗ y) ? z
= d((x⊗ y) ? z)
= dσn(x⊗ (y ? z)).
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• If |y| = 0 and |z| > 0, then we have

σn−1d(x⊗ (y ? z))
= σn−1

(
dx⊗ (y ? z) + (−1)|x|x⊗ d(y ? z)

)
= σn−1

(
dx⊗ (y ? z) + (−1)|x|x⊗ (e(y)∅ ? z) + (−1)|x|+|y|+1x⊗ (y ? dz)

)
= (dx⊗ y) ? z + (−1)|x|e(x)e(y)(∅ ? z) + (−1)|x|+|y|+1(x⊗ y) ? dz

(being careful with the case |z| = 0)
= (dx⊗ y) ? z + (e(x⊗ y)∅ ? z) + (−1)|x⊗y|+1(x⊗ y) ? dz

(as the second term is null if |x| 6= 0)
= d(x⊗ y) ? z + (−1)|x⊗y|+1(x⊗ y) ? dz

(distinguishing the cases |x| = 0 and |x| 6= 0)
= d((x⊗ y) ? z)
= dσn(x⊗ (y ? z)).

• If |y| > 1, then we have

σn−1d(x⊗ (y ? z))
= σn−1

(
dx⊗ (y ? z) + (−1)|x|x⊗ d(y ? z)

)
= σn−1

(
dx⊗ (y ? z) + (−1)|x|x⊗ (dy ? z) + (−1)|x|+|y|+1x⊗ (y ? dz)

)
= (dx⊗ y) ? z + (−1)|x|(x⊗ dy) ? z + (−1)|x|+|y|+1(x⊗ y) ? dz

(being careful with the cases |z| = −1 and |z| = 0)
= d(x⊗ y) ? z + (−1)|x⊗y|+1(x⊗ y) ? dz
= d((x⊗ y) ? z)
= dσn(x⊗ (y ? z)),

thereby proving the result.

7.9. Proposition. For any augmented directed complex T , the morphism σ of the pre-
vious proposition defines a tensorial strength for the tensor product on the functor

Cad → Cad

K 7→ K ? T,

meaning that, for every augmented directed complexes K, L and M , the triangles

K ⊗ L⊗ (M ? T ) K⊗s
//

s
((

K ⊗ ((L⊗M) ? T )

s
vv

(K ⊗ L⊗M) ? T
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and
Z⊗ (K ? T ) s //

λ
%%

(Z⊗K) ? T

λ?T
yy

K ? T ,
where we have neglected the associativity constraints and λ denotes the left unit constraint,
are commutative.

Proof. This follows from direct calculations.

7.10. Let X, Y and Z be three ω-categories. We define an ω-functor

s : X ⊗ (Y ? Z)→ (X ⊗ Y ) ? Z,

natural in X, Y and Z, in the following way. First, recall that any ω-category T is a
canonical colimit of ω-categories associated to strong Steiner complexes in the sense that
we have a canonical isomorphism

T ' lim−→
ν(K)→T, T∈Stf

ν(K).

(This follows from the fact that ν(Stf) contains Joyal’s category Θ which is dense in ω-Cat,
see also [22, Theorem 7.1].) This colimit is connected as the null augmented directed com-
plex is an initial object of the category of strong Steiner complexes. As by Theorems 2.10
and 7.2, both the Gray tensor product and the join commute with connected colimits in
each variable and are compatible with the functor ν|Stf : Stf → ω-Cat, we get canonical
isomorphisms

X ⊗ (Y ? Z) ' lim−→
ν(K)→X,K∈Stf
ν(L)→Y, L∈Stf
ν(M)→Z,M∈Stf

ν(K ⊗ (L ?M)),

(X ⊗ Y ) ? Z ' lim−→
ν(K)→X,K∈Stf
ν(L)→Y, L∈Stf
ν(M)→Z,M∈Stf

ν((K ⊗ L) ? M).

We thus obtain our ω-functor s : X⊗(Y ?Z)→ (X⊗Y )?Z by taking the colimit over K,
L and M of the ω-functors

ν(σ) : ν(K ⊗ (L ?M))→ ν((K ⊗ L) ? M),

where σ : K ⊗ (L ?M)→ (K ⊗ L) ? M is the morphism of Proposition 7.8.
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7.11. Proposition. For any ω-category T , the ω-functor s of the previous paragraph
defines a tensorial strength for the Gray tensor product on the functor

ω-Cat → ω-Cat
X 7→ X ? T,

meaning that, for every ω-categories X, Y and Z, the triangles

X ⊗ Y ⊗ (Z ? T ) X⊗s
//

s
((

X ⊗ ((Y ⊗ Z) ? T )

s
vv

(X ⊗ Y ⊗ Z) ? T

and
D0 ⊗ (X ? T ) s //

λ
%%

(D0 ⊗X) ? T

λ?T
yy

X ? T ,
where we have neglected the associativity constraints and λ denotes the left unit constraint,
are commutative.
Proof. Using the same arguments as for the definition of s in terms of σ, we get that these
two triangles are colimits of the image by ν of triangles as in Proposition 7.9. The result
thus follows from this proposition, which asserts that these triangles are commutative.

7.12. Proposition. Let f, g : X → Y be two ω-functors. If h : J1⊗X → Y is a
J1-transformation from f to g, then, for any ω-category Z, the ω-functor

J1⊗(X ? Z) s−→ (J1⊗X) ? Z h?Z−−→ Y ? Z

defines a J1-transformation from f ? Z to g ? Z.
Proof. This follows from the commutativity of the diagram

X ? Z

'
��

'

))

f?Z

��

D0 ⊗ (X ? Z) s //

〈0〉⊗(X?Z)
��

(D0 ⊗X) ? Z
(〈0〉⊗X)?Z
��

J1⊗(X ? Z) s // (J1⊗X) ? Z h?Z // Y ? Z

D0 ⊗ (X ? Z) s //

〈1〉⊗(X?Z)

OO

(D0 ⊗X) ? Z

(〈1〉⊗X)?Z

OO

X ? Z

'
OO

'

55

g?Z

EE

,
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the two squares in the middle of the diagram being commutative by naturality of s, the
two triangles by the previous proposition, and the two other small diagrams by hypothesis
on h.

7.13. Remark. The analogous statement for oplax transformations, obtained by replac-
ing J1 by D1, is true as well, the proof applying mutatis mutandis.

7.14. Theorem. The folk model category structure on ω-Cat is monoidal for the join.

Proof. We apply Lemma 5.1. The hypothesis H1) and H2) are true for the folk model cat-
egory structure and the hypothesis H3) is true for any locally biclosed monoidal category,
as the initial object is the tensor unit. The hypothesis H4) follows from Proposition 7.5.

It remains to prove H5). Let i be a generating trivial cofibration and let Z be an
ω-category. As seen in the proof of Proposition 5.4, the ω-functor i is a J1-deformation
retract. The previous proposition thus implies that i ? Z is also a J1-deformation retract,
and therefore a weak equivalence by Proposition 4.13. The fact that Z ? i is also a weak
equivalence follows from a duality argument, as in the proof of Corollary 5.5, using the
canonical natural isomorphism

(X ? Y )op ' Y op ? Xop

(see [2, Proposition 6.35]). This ends the proof of H5) and hence of the theorem.
The statement analogous to Proposition 5.9 holds as well, the proof being a direct

adaption:

7.15. Proposition.
(a) Transfinite compositions of pushouts of join of an object (on the left) and a folk

trivial cofibration are folk weak equivalences.
(b) Transfinite compositions of pushouts of join of a folk trivial cofibration and an object

(on the right) are folk weak equivalences.

7.16. Remark. In particular, the join of a folk trivial cofibration by an object (on the
left or on the right) is a folk weak equivalence.

Finally, as for the Gray tensor product, the join of ω-categories induces a join of
m-categories, which is compatible with the folk model category structure on m-Cat:

7.17. Theorem. [Ara–Maltsiniotis] Let m > 0. The join of m-categories

X ?m Y = r(X ? Y ),

where r : ω-Cat → m-Cat denotes the left adjoint to the inclusion functor m-Cat ↪→ ω-Cat,
defines a locally biclosed monoidal category structure on m-Cat.

Proof. This is the main result of [2, Chapter 8].
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7.18. Theorem. The folk model category structure on m-Cat is monoidal for the join of
m-categories.
Proof. This follows from a straightforward adaption of the proof of Proposition 6.20,
which only uses connected colimits, with whom any locally biclosed monoidal tensor
commutes.

A. Monoidal model categories and derived tensor products
In this appendix, we recall classical results on biclosed monoidal model categories and
extend them to locally biclosed monoidal model categories. In particular, we will get that
the “local internal Hom” of the join, the so-called generalized slices, can be right-derived
as functors of two variables.

A.1. A monoidal model category is a model category whose underlying category is en-
dowed with a monoidal category structure satisfying the following compatibility axioms:
M1) the tensor product ⊗ : M ×M → M satisfies the pushout-product axiom: if

i : A→ B and j : C → D are two cofibrations, then the morphism

i⊗′ j : B ⊗ C qA⊗C A⊗D → B ⊗D,

induced by the commutative square

A⊗ C
i⊗C
��

A⊗j
// A⊗D

i⊗D
��

B ⊗ C
B⊗j

// B ⊗D ,

is a cofibration. Moreover, if either i or j is a trivial cofibration, then so is i⊗′ j.
M2) the tensor product satisfies the unit axiom: for every cofibrant replacement of the

tensor unit p : QI ∼−� I and every cofibrant object A, both p⊗A : QI ⊗A→ I ⊗A
and A⊗ p : A⊗QI → A⊗ I are weak equivalences.

A.2. Remark. The pushout-product axiom implies that, if the cofibrations (resp. the
trivial cofibrations) are stable by tensoring by the initial object ∅, then they are stable by
tensoring by any cofibrant object X. In particular, if this condition for trivial cofibrations
is satisfied and the tensor unit I is cofibrant, then, by Ken Brown’s lemma, the pushout-
product axiom implies the unit axiom.

A.3. Lemma. Let M be a cofibrantly generated model category with sets of generating
cofibrations I and of generating trivial cofibrations J and let ⊗ : M ×M → M be
a functor which commutes with pushouts and transfinite compositions in each variable.
Then for ⊗ to satisfy the pushout-product axioms, it suffices that it holds for cofibrations
in I and trivial cofibrations in J .
Proof. See for instance (the proof of) [18, Lemma 4.1.4].
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A.4. Remark. More precisely, in the situation of the previous lemma, each of the three
conditions appearing in the pushout-product axiom can be checked on “generators”.

A.5. Proposition. If M is a monoidal model category having the additional property
that trivial cofibrations are stable by tensoring by the initial object, then the tensor product
admits a total left derived functor ⊗L : Ho(M)×Ho(M)→ Ho(M) and this derived tensor
product defines a monoidal category structure on Ho(M).
Proof. It follows from Remark A.2 that the tensor product of two trivial cofibrations
between cofibrant objects is a weak equivalence. By Ken Brown’s lemma, this implies that
the tensor product preserves weak equivalences between cofibrant objects and hence, by
a classical result of Quillen [20, I.4, Proposition 1], that its total left derived functor ⊗L

exists. Checking that ⊗L indeed defines a monoidal category structure on Ho(M) is not
difficult (see the proof of [10, Theorem 4.3.2]).

A.6. Recall that a monoidal category C is said to be biclosed if, for every object X of C,
the functor

C → C
Y 7→ X ⊗ Y

and, for every object Y of C, the functor

C → C
X 7→ X ⊗ Y

admit right adjoints. In this case, we get pairs of adjoint functors

C → C
Y 7→ X ⊗ Y

C → C
Z 7→ Homl

C(X,Z)

and

C → C
X 7→ X ⊗ Y

C → C
Z 7→ Homr

C(Y, Z).

Moreover, Homl
C and Homr

C extend to functors

Homl
C,Homr

C : Cop × C → C

and, if X, Y and Z are three objects, we get natural bijections

HomC(X,Homr
C(Y, Z)) ' HomC(X ⊗ Y, Z) ' HomC(Y,Homl

C(X,Z)).

A.7. Remark. Let C be a monoidal category. If C is biclosed, then its tensor product
preserves colimits in each variable. By a classical adjoint theorem, the converse holds
provided that the category C is locally presentable.
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A.8. Proposition. LetM be a model category endowed with a biclosed monoidal cate-
gory structure. Then the following conditions are equivalent:

i) the tensor product satisfies the pushout-product axiom,
ii) for every cofibration i : A→ B and every fibration p : X → Y , the induced map

Homl
M(B,X)→ Homl

M(A,X)×Homl
M(A,Y ) Homl

M(B, Y )

is a fibration that is trivial if either i or p is,
iii) for every cofibration j : C → D and every fibration p : X → Y , the induced map

Homr
M(D,X)→ Homr

M(C,X)×Homr
M(C,Y ) Homr

M(D, Y )

is a fibration that is trivial if either j or p is.

Proof. See for instance [10, Lemma 4.2.2].

A.9. A biclosed monoidal model category is a monoidal model category whose underlying
monoidal category is biclosed. Our example of interest in this paper is the folk model
category structure on ω-Cat (or more generally (m,n)-Cat) endowed with the Gray tensor
product (see Theorems 5.6 and 2.10). Since tensoring any object by the initial object gives
the initial object in a biclosed monoidal model category, the hypothesis of Proposition A.5
are satisfied in such a model category and the monoidal tensor ⊗ thus admits a total right
derived functor ⊗L.

A.10. Proposition. Let M be a biclosed monoidal model category. Then, if X is a
cofibrant object ofM, the adjoint pair

M→M
Y 7→ X ⊗ Y

M→M
Z 7→ Homl

M(X,Z)

is a Quillen pair and, likewise, if Y is a cofibrant object ofM, the adjoint pair

M→M
X 7→ X ⊗ Y

M→M
Z 7→ Homr

M(Y, Z)

is a Quillen pair.

Proof. It suffices to show that the left adjoints respect cofibrations and trivial cofibra-
tions. This follows from the pushout-product axiom (see Remark A.2).

A.11. Theorem. [Hovey] Let M be a biclosed monoidal model category. Then the
monoidal category structure on Ho(M) defined by the derived tensor product is biclosed.
Moreover, the functors

Homl
M,Homr

M :Mop ×M→M
admit total right derived functors and we have

RHoml
M = Homl

Ho(M) and RHomr
M = Homr

Ho(M) .
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Proof. This is [10, Theorem 4.3.2]. Let us just briefly recall why these functors admit
total right derived functors: one deduces from Proposition A.8 that these functors preserve
trivial fibrations between fibrant objects; by Ken Brown’s lemma, this implies that they
preserve weak equivalences between fibrant objects and hence that they admit total right
derived functors.

We now move on to locally biclosed monoidal categories, as introduced in [2].

A.12. Let C be a monoidal category. Let us denote by ? the tensor product of C and
suppose that its tensor unit is an initial object ∅. If X and Y are two objects, we get
morphisms

X
ι1−→ X ? Y

ι2←− Y

by precomposing the morphisms

X ?∅ X?∅Y−−−→ X ? Y
∅X?Y←−−− ∅ ? Y,

where ∅Z denotes the unique morphism from ∅ to Z, with the unit constraints. Using
these morphisms, we obtain, for every object X of C, a functor

C → X\C
Y 7→ (X ? Y, ι1)

and, for every object Y of C, a functor

C → Y \C
X 7→ (X ? Y, ι2).

We say that C is locally biclosed if its tensor unit is an initial object and if the two
above functors admit right adjoints. In this case, we thus get pairs of adjoint functors

C → X\C
Y 7→ (X ? Y, ι1)

X\C → C
(Z,X u−→ Z) 7→ u\Z

and

C → Y \C
X 7→ (X ? Y, ι2)

Y \C → C
(Z, Y v−→ Z) 7→ Z/v.

By abuse of notation, we will often denote u\Z by X\Z and, similarly, Z/v by Z/Y .
These functors are called the slice functors. By definition, we have natural bijections

HomX\C((X ? Y, ι1), (Z, u)) ' HomC(Y,X\Z)

and
HomY \C((X ? Y, ι2), (Z, v)) ' HomC(X,Z/Y ).
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Similarly to what happened in the case of biclosed monoidal categories, the functors
(Z, u : X → Z) 7→ X\Z and (Z, v : Y → Z) 7→ Z/Y can be made functorial in X and Y ,
respectively. More precisely, they canonically extend to functors

Tw(C)→ C
X → Z 7→ X\Z

Tw(C)→ C
Y → Z 7→ Z/Y ,

where Tw(C) denotes the twisted arrow category of C. (Recall that the objects of Tw(C)
are arrows f : X → Y of C and that a morphism of Tw(C) from an object f : X → Y to
an object f ′ : X ′ → Y ′ is a pair of morphisms g : X ′ → X and h : Y → Y ′ of C making
the square

X

f
��

X ′
g

oo

f ′

��

Y
h
// Y ′

commute.) Indeed, if
X

u
��

X ′
g

oo

u′

��

Z
h
// Z ′

is a commutative square, one defines a morphism

(g∗, h∗) : X\Z → X ′\Z ′

using the Yoneda lemma. If T is any object of C, then

HomC(T,X\Z) ' HomX\C((X ? T, ι1), (Z, u))
HomC(T,X ′\Z ′) ' HomX′\C((X

′ ? T, ι1), (Z ′, u′))

and the natural map

HomC(g ? T, h) : HomC(X ? T,Z)→ HomC(X ′ ? T, Z ′)

induces the desired morphism. Note that this morphism (g∗, h∗) is the diagonal of the
commutative square

X\Z
h∗ //

g∗

��

X\Z ′

g∗

��

X ′\Z h∗
// X ′\Z ′ ,

where g∗ = (g∗, 1∗) and h∗ = (1∗, h∗). A similar construction applies to the other slice
functor.
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A.13. Remark. Let C be a monoidal category. If C is locally biclosed, then its tensor
product preserves connected colimits in each variable (as the forgetful functor C → Z\C
preserves these colimits). By a classical adjoint theorem, the converse holds provided that
the category C is locally presentable (as colimits in Z\C can be computed as connected
colimits in C).

A.14. A locally biclosed monoidal model category is a monoidal model category whose
underlying monoidal category is locally biclosed. Our example of interest in this paper
is the folk model category structure on ω-Cat (or more generally n-Cat) endowed with
the join (see Theorems 7.14 and 7.2). Note that in the locally biclosed setting, the unit
axiom is a consequence of the pushout-product axiom. This follows from Remark A.2
as the tensor unit is the initial object and is thus cofibrant. Moreover, Proposition A.5
shows that the monoidal tensor ? of such a model category admits a total right derived
functor ?L.

A.15. Proposition. Let M be a locally biclosed monoidal model category. For every
cofibrant object X ofM, the adjoint pair

M→ X\M
Y 7→ (X ? Y, ι1)

X\M →M
(Z,X → Z) 7→ X\Z

is a Quillen pair and, likewise, for every cofibrant object Y ofM, the adjoint pair

M→ Y \M
X 7→ (X ? Y, ι2)

Y \M →M
(Z, Y → Z) 7→ Z/Y

is a Quillen pair.

Proof. It suffices to show that the left adjoints respect cofibrations and trivial cofibra-
tions. As the cofibrations and trivial cofibrations of Z\M are defined using the forgetful
functor Z\M →M, this follows from the pushout-product axiom by Remark A.2.

The goal of the rest of this appendix is to derive the slice functors of a locally biclosed
monoidal model categoryM, as functors of source Tw(M), where the weak equivalences
of Tw(M) are the level-wise weak equivalences. Unfortunately, the category Tw(M) is
neither finitely cocomplete (it does not even have an initial object) nor finitely complete
in general, and therefore cannot be endowed with a model category structure. We will
see that it can be endowed with a right simplicial derivability structure in the sense of
Kahn and Maltsiniotis (see [12, Definition 6.7]) and that this is enough to derive the slice
functors.

We start by recalling this notion of right simplicial derivability structure and the
corresponding result of derivation.
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A.16. A localizer, or relative category, is a pair (C,W), where C is a category and W
is a class of morphisms of C called weak equivalences. Such a localizer is said to be
multiplicative if W contains all the identities and is stable under composition. In this
case, the class W can be identified with a subcategory of C with same objects as C.

A morphism from a localizer (C,W) to a localizer (C ′,W ′) is a functor F : C → C ′
such that F (W) ⊂ W ′.

If (C,W) is a localizer and I is a small category, then we get a localizer (CI ,WI), where
CI denotes the category Hom(I, C) of functors from I to C and WI the class of natural
transformations between these functors which are object-wise weak equivalences. This
construction is functorial in I in an obvious way: if F : (C,W)→ (C ′,W ′) is a morphism
of localizers, we get a morphism FI : (CI ,WI)→ (C ′I ,W ′I).

A.17. Fix K : (C0,W0) → (C,W) a morphism of multiplicative localizers and denote
by K[ the induced functor K[ : W0 → W . If X is an object of C, the category of right
K-resolutions of X is the comma category X ↓ K[, that is, the category whose objects
are pairs (Y,X w−→ KY ), where Y is an object of C0 and w is a weak equivalence of C, and
whose morphisms from an object (Y,w) to an object (Y ′, w′) are the weak equivalences
w0 : Y → Y ′ of C0 such that K(w0)w = w′.

If I is a small category and F : I → C is a functor, then, by considering the induced
morphism of localizers KI , we get a notion of category of right KI-resolutions for F . In
particular, considering I = {0 < 1}, we get a notion of category of right K-resolutions
of an arrow of C, and taking I = {0 < 1 < 2}, we get a notion of category of right
K-resolutions of a pair of composable arrows of C.

A.18. Let (C,W) be a multiplicative localizer. A right simplicial derivability structure
on (C,W) consists of a multiplicative localizer (C0,W0) and a morphism of localizers
K : (C0,W0)→ (C,W) satisfying the following conditions:
(a) for every object X of C, the category of right K-resolutions of X is 1-connected

(that is, simply connected and non-empty),
(b) for every arrow f of C, the category of right K-resolutions of f is 0-connected (that

is, connected and non-empty),
(c) for every pair (g, f) of composable arrows of C, the category of right K-resolutions

of (g, f) is −1-connected (that is, non-empty).

A.19. Example. IfM is a model category, then (M,W), where W is the class of weak
equivalences of M, is naturally endowed with a right simplicial derivability structure
K : (M0,W0) → (M,W), where M0 denotes the full subcategory of M consisting of
fibrant objects and W0 the class of weak equivalences between fibrant objects (see the
“table of implications” at the very end of [12]).

A.20. Proposition. [Kahn–Maltsiniotis] Let F : (C,W) → (C ′,W ′) be a morphism of
localizers. If there exists a right simplicial derivability structure K : (C0,W0) → (C,W)
on (C,W) such that FK(W0) ⊂ W ′, then F admits a total right derived functor:

RF : C[W−1]→ C ′[W ′−1].
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Proof. See [12, Proposition 5.9 and paragraph 6.8].
We will now prove a general result allowing to lift a right simplicial derivability struc-

ture along a discrete opfibration, result that we will then apply to the discrete opfibration
Tw(M)→Mop ×M.

A.21. Proposition. Let (C,W) be a multiplicative localizer endowed with a right sim-
plicial derivability structure K : (C0,W0) → (C,W) and let p : C̃ → C be a discrete
opfibration. Set W̃ = p−1(W). Then (C̃, W̃) is endowed with a natural simplicial deriv-
ability structure K̃ : (C̃0, W̃0)→ (C̃, W̃), obtained by pulling back K along p.

Proof. Let I be a small category and let F̃ : I → C̃ be a functor. We are going to
show that the categories of right K̃I-resolutions of F̃ and of right KI-resolutions of pF̃
are isomorphic. This will immediately imply the result.

By definition, we have a pullback square

(C̃0, W̃0) K̃ //

��

(C̃, W̃)
p

��

(C0,W0)
K
// (C,W)

in the category of localizers. Note that pullbacks in this category are computed component-
wise. By applying the Hom(I,−) functor, we get a commutative square

((C̃0)I , (W̃0)I)
K̃I //

��

(C̃I , W̃I)
pI

��

((C0)I , (W0)I) KI

// (CI ,WI) ,

that is easily seen to still be a pullback square. As the Hom(I,−) functor preserves discrete
opfibrations, the functor pI : C̃I → CI and therefore its restriction (pI)[ : W̃I → WI are
still discrete opfibrations.

By definition, the category of right K̃I-resolutions of F̃ : I → C̃ is the comma category
F̃ ↓ (K̃I)[, while the category of right KI-resolutions of pI(F̃ ) = pF̃ : I → C is the comma
category pI(F̃ ) ↓ (KI)[. The result thus follows from the following lemma, applied to the
pullback square

(W̃0)I
(K̃I)[

//

��

W̃I

(pI)[

��

(W0)I
(KI)[

//WI ,

lemma which is probably well known and whose proof is left as an easy exercise to the
reader.
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A.22. Lemma. Let
X ′ G //

��

X
p

��

B′
F
// B

be a pullback square of categories, where p is a discrete opfibration. Then, for every
object X of X , the functor p induces an isomorphism between the comma categories X ↓ G
and p(X) ↓ F .

A.23. LetM be a model category. We will say that a morphism

X

f
��

X ′
g

oo

f ′

��

Y
h
// Y ′

of Tw(M) from f to f ′ is
• a weak equivalence if g and h are,
• a fibration if g is a cofibration and h is a fibration.

The category Tw(M) admits as a terminal object the unique arrow ∅ → ∗ from the
initial object ofM to the terminal object ofM, and we will say that an object X → Y
of Tw(M) is fibrant if the unique morphism from this object to the terminal object is a
fibration. This amounts to saying that X is cofibrant and Y is fibrant.

We will denote by (Tw(M), W̃) the resulting localizer and by (Tw(M)0, W̃0) the
induced localizer on the full subcategory of Tw(M) consisting of fibrant objects.

A.24. Proposition. IfM is a model category, then the inclusion morphism

(Tw(M)0, W̃0) ↪→ (Tw(M), W̃)

is a right simplicial derivability structure.

Proof. It is immediate that the functor

Tw(M)→Mop ×M
X → Y 7→ (X, Y )

is a discrete opfibration. We thus get the result by applying Proposition A.21 to this
functor and to the right simplicial derivability structure associated to the model cate-
goryMop ×M (see Example A.19).
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To use Proposition A.20 to derive the slice functors, we now need to prove that these
functors preserve weak equivalences between fibrant objects. To do so, we will generalize
Proposition A.8 to the locally biclosed setting.

A.25. Let C be a locally biclosed monoidal category. If i : A → B and j : C → D are
two morphisms of C, note that the morphism

i ?′ j : B ? C qA?C A ? D → B ? D

is naturally above both B and D. If now p : (X, f)→ (Y, g) is a morphisms of B\C, using
i and p we get a morphism

i\′p : B\X → A\X ×A\Y B\Y

induced by the commutative square

B\X
p∗
//

i∗

��

B\Y

i∗

��

A\X p∗
// A\Y .

Similarly, from j and a morphism p : (X, f)→ (Y, g) of D\C, we get a morphism

p/′j : X/D → X/C ×Y/C Y/D.

A.26. Lemma. [Joyal] Let C be a locally biclosed monoidal category. If i : A → B and
j : C → D are two morphisms of C and p : X → Y is a morphism of C above D, then we
have

i ?′ j ⊥D\C p if and only if j ⊥C i\′p if and only if i ⊥C p/′j,
where ⊥D denotes the relation of weak orthogonality in the category D.
Proof. The lemma is inspired by Joyal’s Lemma 3.6 in [11], whose proof applies mutatis
mutandis.

A.27. Proposition. LetM be a model category endowed with a locally biclosed monoidal
category structure. Then the following conditions are equivalent:

i) the tensor product ? satisfies the pushout-product axiom,
ii) for every cofibration i : A → B, every fibration p : X → Y and every map

f : B → X, the induced map

i\′p : B\X → A\X ×A\Y B\Y

is a fibration that is trivial if either i or p is,
iii) for every cofibration j : C → D, every fibration p : X → Y and every map

f : D → X, the induced map

p/′j : X/D → X/C ×Y/C Y/D

is a fibration that is trivial if either j or p is.
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Proof. This follows directly from the previous lemma and the fact that
i ?′ j ⊥M p if and only if for every f : B → X, we have i ?′ j ⊥B\M p,

if and only if for every f : D → X, we have i ?′ j ⊥D\M p.

A.28. Proposition. IfM is a locally biclosed monoidal model category, then the func-
tors

Tw(M)→M
X → Z 7→ X\Z

Tw(M)→M
Y → Z 7→ Z/Y

both send fibrations (resp. trivial fibrations) between fibrant objects to fibrations (resp.
trivial fibrations). Moreover, they preserve weak equivalences between fibrant objects.
Proof. Let us prove the result for the first functor, the proof for the second one being
similar. Let

X

u
��

X ′
g

oo

u′

��

Z
h
// Z ′

be a morphism of Tw(M) between fibrant objects u and u′. The morphism
(g∗, h∗) : X\Z → X ′\Z ′

factors as
X\Z

g∗−→ X ′\Z
h∗−→ X ′\Z ′.

These morphisms g∗ and h∗ are the images of g and h by the functors
(M/Z)op →M

(X,X → Z) 7→ X\Z
X ′\M →M

(Z,X ′ → Z) 7→ X ′\Z,

and it therefore suffices to show that the first of these functors sends cofibrations (resp.
trivial cofibrations) of M/Z to fibrations (resp. trivial fibrations) of M and that the
second one preserves fibrations and trivial fibrations. Note that by Ken Brown’s lemma
(which cannot be applied directly to Tw(M)), this will imply that the first functor pre-
serves weak equivalences between cofibrant objects of M/Z (an object of M/Z being
cofibrant if its underlying object in M is) and that the second functor preserves weak
equivalences between fibrant objects in X ′\M (an object of X ′\M being fibrant if its
underlying object inM is), thereby proving the second assertion.

For the first functor, observe that the morphism g∗ can be identified with the morphism

g\′p : X\Z → X ′\Z ×X′\∗ X\∗

of paragraph A.25, where p : Z → ∗ denotes the unique morphism from Z to the terminal
object ∗. As Z is fibrant, Proposition A.27 implies that this first functor sends cofibrations
(resp. trivial cofibrations) of M/Z to fibrations (resp. trivial fibrations) of M. As for
the second functor, since X ′ is cofibrant, it preserves fibrations and trivial fibrations by
Proposition A.15.
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A.29. Theorem. IfM is a locally biclosed monoidal model category, then the functors

Tw(M)→M
X → Z 7→ X\Z

Tw(M)→M
Y → Z 7→ Z/Y

both admit total right derived functors.

Proof. Since by the previous proposition these functors preserve weak equivalences be-
tween fibrant objects, the result follows from the derivability condition of Kahn and
Maltsiniotis (Proposition A.20) applied to the right simplicial derivability structure of
Proposition A.24.

A.30. Corollary. The functors

Tw(ω-Cat)→ ω-Cat
X

u−→ Z 7→ u\Z

Tw(ω-Cat)→ ω-Cat

Y
v−→ Z 7→ Z

co
/ v

(see paragraph 7.3 for the notation), where ω-Cat is endowed with the folk model category
structure, admit total right derived functors.

Proof. This follows from the previous theorem applied to the folk model category struc-
ture on ω-Cat endowed with the join (see Theorems 7.14 and 7.2).
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