
Theory and Applications of Categories, Vol. 35, No. 17, 2020, pp. 594�621.

SHIFTED DOUBLE LIE�RINEHART ALGEBRAS

JOHAN LERAY

Abstract. We generalize the notions of shifted double Poisson and shifted double Lie�
Rinehart structures, de�ned by Van den Bergh in [31, 32], to monoids in a symmetric
monoidal abelian category. The main result is that an n-shifted double Lie�Rinehart
structure on a pair (A,M) is equivalent to a non-shifted double Lie�Rinehart structure
on the pair (A,M [−n]).

Contents

1 Introduction 594
2 Notation and algebraic background 597
3 Σ-double Poisson algebras 599
4 Double Lie�Rinehart algebras 603
5 The shifting property 610

1. Introduction

1.1. Noncommutative geometry. In algebraic geometry, a commutative algebra C
over a �eld k corresponds to an a�ne scheme Spec(C), via the functor of points. The
scheme Spec(C) is the geometric object associated to its algebra of functions C. Work-
ing in noncommutative geometry, a natural question arises: for a noncommutative al-
gebra A, which is viewed as an algebra of noncommutative functions, what is the ge-
ometric object associated to A? Recently, Kontsevich and Rosenberg have proposed a
new approach to answer this question (see [18]). They consider the family of schemes{

RepV (A)//GL(V )
}
V
, the moduli space of representations of A, as successive approx-

imations of a hypothetical noncommutative a�ne scheme "NCSpec(A)". The scheme
RepV (A) is a�ne, i.e. there exists a commutative k-algebra, denoted by AV , such that
RepV (A) = Spec(AV ). The quotient RepV (A)//GL(V ) corresponds to taking AGL(V ), the
invariant part of the algebra AV for the action by conjugation of GL(V ).

This article is a part of the PhD thesis [20] of the author, which was supported by the project "Nou-
velle Équipe Topologie algébrique et Physique Mathématique", convention n◦2013-10203/10204 between
La Région des Pays de la Loire and the University of Angers. The author is indebted to G. Powell who
carefully read and corrected the two �rst versions of this paper.
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Kontsevich and Rosenberg assert that any (noncommutative) property of the non com-
mutative scheme "NCSpec(A)" associated to A should induce its commutative analogue
on RepV (A)//GL(V ), for all V : this is the Kontsevich�Rosenberg principle. Following
this principle, many authors have developed noncommutative structures; the reader can
refer to [15] for such constructions in noncommutative geometry.

1.2. Noncommutative Poisson brackets. It is natural to ask what a good de�nition
of a noncommutative Poisson structure. Recall that a Poisson bracket on an associative
commutative k-algebra B is a Lie bracket {−,−} : B⊗B → B which satis�es the Leibniz
rule {ab, c} = a{b, c} + {a, c}b for all a, b and c in B. For noncommutative algebras,
this de�nition is too restrictive, as shown by [13, Th. 1.2]: for A, an associative algebra
with a noncommutative domain, i.e. [A,A] 6= 0, a Poisson bracket is the commutator, up
to a multiplicative constant. In [10], Crawley-Boevey gives the minimal structure on an
associative algebra A which induces a Poisson bracket on AGL(V )

V for all V , which he calls
an H0-Poisson structure. An H0-Poisson structure on A is a Lie bracket 〈−,−〉 on A\ :=
A/[A,A] such that, for all a ∈ A (with class ā in A\), the application 〈ā,−〉 : A\ → A\
is induced by a derivation da : A → A. Crawley-Boevey shows that, if A is a H0-Poisson
algebra, then there exists a unique Poisson structure on AGL(V )

V that is compatible with
the trace morphism for all V (see [10, Th. 1.6]).

However, there are few examples of H0-Poisson structures which do not arise from a
richer structure. A good example of such a structure is a double Poisson bracket, de�ned
by Van den Bergh in [31]. A double Poisson bracket on an associative algebra A is a
morphism

{{−,−}} : A⊗ A −→ A⊗ A
a⊗ b 7−→ {{a, b}}′ ⊗ {{a, b}}′′

(using Sweedler's notation) which is antisymmetric, i.e. for all elements a and b in A,
{{a, b}} = −{{b, a}}′′ ⊗ {{b, a}}′, which is a derivation in its second variable and satis�es
the double Jacobi relation (see de�nition 3.10). There are lots of examples. In [30], Van
de Weyer studies double Poisson brackets on semi-simple algebras of �nite dimension.
However, that double Poisson structures are best suited to the noncommutative world:
for example, in [26], Powell shows that any double Poisson bracket on a free commutative
algebra with at least two generators is trivial. Van den Bergh shows that (see [31, Lem.
2.6.2]) a double Poisson bracket

(
A, {{−,−}}

)
induces a H0-Poisson structure on A, where

the Lie bracket {−,−}\ is induced by {−,−}\ := µ ◦ {{−,−}}, with µ the associative
product on A. Double Poisson brackets are connected with many mathematical areas, as
we'll now see.

In symplectic geometry, one can associate to an exact symplectic manifold M its
Fukaya category Fuk(M) (see [5]). For an exact symplectic 2d-dimensional manifold,
with vanishing �rst Chern class, Chen et al. show in [7, Th.17] that the linear dual of
the reduced bar construction of Fuk(M) has a naturally de�ned (2 − d)-double Poisson
bracket. This implies that the cyclic cohomology HC•(Fuk(M)) has a (2− d)-Lie bracket,
an analogue of the Chas�Sullivan bracket in string topology (see [7, Cor. 19]).
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To a �nite quiver Q (see [9]), Van den Bergh showed that the algebra kQ̄ of the double
quiver Q̄, has a natural double Poisson bracket (see [31]) which induces the Kontsevich
Lie bracket on (kQ̄)\.

Other examples are related to loop spaces of manifolds with boundary (see [23], [24]),
the Kashiwara-Vergne problem (see [1]), and noncommutative integrable systems (see
[11, 12, 4, 3]).

1.3. In this article. This paper is in two parts. In the �rst, we extend the de�nition of
a shifted double Poisson algebra to monoids in an additive symmetric monoidal category
(C,⊗). For Σ an element of the Picard group of C and A an associative monoid in C, a
Σ-double Poisson bracket on A is a morphism

{{−,−}} : ΣA⊗ ΣA −→ ΣA⊗ A

where ΣA := Σ ⊗ A, which satis�es the antisymmetry and derivation properties (see
de�nition 3.3) and the double Jacobi identity (see de�nition 3.10).

In the second part, we study a particular type of double Poisson algebras called linear
double Poisson algebras. They correspond to double Lie�Rinehart algebras (called double
Lie algebroids by Van den Bergh in [31, Sect. 3.2]), which are a noncommutative version
of Lie�Rinehart algebras (see [2, 14]). The principal result of this paper is the shifting
property of double Lie�Rinehart algebras:

1.4. Theorem. [cf. Theorem 5.2] Let C be an additive symmetric monoidal category C,
with unit 1, a monoid A, an A-bimodule M and Σ an invertible object in C. The following
assertions are equivalent:

1. (A,M, ρM , {{−,−}}M) is a Σ-double Lie�Rinehart algebra;

2. (A,ΣM,ρΣM , {{−,−}}ΣM) is a 1-double Lie�Rinehart algebra.

There is an equivalence of categories

Σ-DLRA ∼= 1-DLRA,

with Σ-DRLA, the category of Σ-double Lie�Rinehart algebras over the associative alge-
bra A.

This theorem is a �rst step to understand properadically what is a shifted double
Poisson algebra. (see subsection 5.1)

An example of a double Lie�Rinehart algebra is given by Van den Bergh in [31, App.
A]: the Koszul double bracket. We extend this example to the general case of a monoid
in an additive symmetric monoidal category (without shifting):

1.5. Theorem. [cf. Theorem 5.9] Let A be a Σ-double Poisson algebra in an additive sym-
metric monoidal category (C,⊗, τ) with enought coequalizers. The free A-algebra TAΩA

is a linear Σ-double Poisson algebra (see proposition 5.6 for the de�nition of ΩA).
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2. Notation and algebraic background

2.1. Symmetric monoidal category.We recall some classical material about monoidal
categories: see [6, section 6] for more details.

We consider (C,⊗), an additive category with monoidal structure ⊗, unit 1 and such
that the bifunctor − ⊗ − : C × C → C is additive in each entry. We assume that (C,⊗)
is symmetric for the natural transformation τ i.e., for all objects A and B in C, we have
the isomorphism τA,B : A ⊗ B → B ⊗ A which satis�es τB,AτA,B = idA⊗B. We say that
the category C is closed, if for every object C in the category C, there exists a functor
hom(C,−) which is the right adjoint of −⊗ C :

−⊗ C : C C : hom(C,−) .

Throughout this paper, we �x Σ, an invertible object for the tensor product in C, with
inverse Σ− and an isomorphism ρ : Σ−⊗Σ→ 1. By the symmetry of C, we also have the
isomorphism ρτΣ,Σ− : Σ ⊗ Σ− ∼= 1. In particular, Σ induces the functor Σ ⊗ − : C → C
which is an equivalence of categories. For all objects C in the category C, we denote by

ΣC := Σ⊗ C

its image by this functor. We denote by As(C) the category of associative monoids in C :
objects in As(C) are objects A ∈ C with an associative product µ : A⊗ A → A, and, for
two monoids A and B, HomAs(C)(A,B) is the set of monoid morphisms.

To illustrate these notions, we recall the following classical example.

2.2. Example. Take C to be the category Chk of Z-graded chain complexes over a �eld
k. One can equip it with the monoidal structure ⊗ given by the tensor product of
complexes and the symmetry given, for homogeneous elements a ∈ A and b ∈ B, by
τA,B(a⊗ b) = (−1)|a||b|b⊗ a, where |a| is the degree of A. Take Σ to be the chain complex
k, concentrated in degree r, for r a �xed integer, so that (ΣA)n = An−r =: A[−r]. The
monoidal category (Chk,⊗k) is closed (see [34] for details). The category As(Chk) is the
category of di�erential Z-graded algebras, denoted DGAk.

2.3. A-bimodule structures on A ⊗ A. Fix A and B, two associative monoids in
C. The monoidal structure on A and B induce a monoidal structure on A ⊗ B. We
de�ne A◦, the opposite monoid of A, to be given by the same object but with the product
µA◦ := µA ◦ τA,A. We have the usual notion of left (respectively right) modules over A: we
denote by A-ModC (resp. ModC-A) the category of left A-modules (resp. right A-modules)
in the category C. There is an equivalence of categories ModC-A ∼= A◦-ModC.

We denote by (A,B)-BimodC := A-ModC-B, the category of (A,B)-bimodules in C,
which is equivalent to (A ⊗ B◦)-ModC. For M an (A,B)-bimodule and X and Y two
objects in C, the product X ⊗M ⊗ Y is also an (A,B)-bimodule by the symmetry of
C. Fix two (A,B)-bimodules M and N : the product M ⊗ N has a structure of (A,B)-
bimodule, called the external one, given by the left A-action onM and the right B-action
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on N . M⊗N also has an internal (A,B)-bimodule structure, given by by the left A-action
on N and the right B-action on M .

WhenA = B, we denote byA-BimodC, the category of (A,A)-bimodules (A,A)-BimodC.
We denote by Ae, the monoid A ⊗ A◦, so that the category A-BimodC is equivalent
to Ae-ModC. The symmetry of the category C gives us the isomorphism of monoids
τA,A : Ae ∼= (Ae)◦. The monoid structure of A ⊗ A◦ gives a canonical structure of Ae-
bimodule on Σ1A⊗Σ2A for all Σ1,Σ2 in C, i.e. two A-bimodule structures (we implicitly
use the isomorphism (Ae)◦ ∼= Ae):

1. the external structure given by

µeA :=(Σ1A⊗ Σ2µ) : (Σ1A⊗ Σ2A)⊗ A→ Σ1A⊗ Σ2A,

Aµ
e :=(Σ1µ⊗ Σ2A)(τA,Σ1 ⊗ A⊗ Σ2A) : A⊗ (Σ1A⊗ Σ2A)→ ΣA⊗ ΣA;

2. the internal structure given by

µiA :=(Σ1µ⊗ Σ2A)(Σ1A⊗ τΣ2A,A) : (Σ1A⊗ Σ2A)⊗ A→ Σ1A⊗ Σ2A,

Aµ
i :=(Σ1A⊗ Σ2µ)(τA,Σ1AΣ2 ⊗ A) : A⊗ (Σ1A⊗ Σ2A)→ Σ1A⊗ Σ2A.

2.4. Remark. Let Σ an invertible object in C with the isomorphism ρ : Σ− ⊗ Σ → 1

and A be a monoid in C. The functor Σ⊗− : C→ C induces an equivalence of categories
Σ⊗− : A-ModC → A-ModC.

2.5. Example. As in example 2.2, we consider the category of chain complexes Chk. Let
(A, µ) be an associative monoid in Chk, i.e. a di�erential graded algebra. Fix r ∈ Z, we
note s the generator of the chain complex equal to k concentrated in degree r (so |s| = r);
we note sa an element of A[r].

1. The external A-bimodule structure on A⊗A is given by the following two morphisms:

µeA : A[r]⊗ A[r]⊗ A −→ A[r]⊗ A[r],

Aµ
e : A⊗ A[r]⊗ A[r] −→ A[r]⊗ A[r],

where, for homogeneous elements a, b and c ∈ A,

µeA(sa⊗ sb⊗ c) = sa⊗ sµ(b, c) and Aµ
e(c⊗ sa⊗ sb) = (−1)d|c|sµ(c, a)⊗ sb.

2. The internal A-bimodule structure on A⊗A is given by the following two morphisms:

µiA : A[r]⊗ A[r]⊗ A −→ A[r]⊗ A[r],

Aµ
i : A⊗ A[r]⊗ A[r] −→ A[r]⊗ A[r],

where, for homogeneous elements a, b and c ∈ A,

µiA(sa⊗sb⊗c) = (−1)|c|(|b|+r)sµ(a, c)⊗sb and Aµ
i(c⊗sa⊗sb) = (−1)|c||a|sa⊗sµ(c, b).
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3. Σ-double Poisson algebras

In this section, we extend constructions given by Van den Bergh in [31] to a general
categorical framework. As in section 2, we consider (C,⊗) a symmetric monoidal additive
category and we �x Σ an invertible object in C with the isomorphism ρ : Σ−⊗Σ→ 1 and
(A, µ) a monoid in C.

3.1. Σ-double bracket.We recall that a morphism φ : A→M in C between an algebra
(A, µ) and an A-bimodule (M,µA,Aµ) is a derivation if φµ = µA(φ⊗A) +A µ(A⊗φ). We
denote by Der(A,M) (resp. Der(A)) the abelian group of derivations between A and M
(resp. between A and itself).

3.2. Remark. If the category C is closed, we can internalize the notion of derivation, so
that Der(A,M) is an object of C. For example, for a di�erential graded algebra A and an
A-bimodule M in Chk, the group Der(A,M) extends to a chain complex.

3.3. Definition. [Σ-shifted double bracket] Let (A, µ) be a monoid of (C,⊗). A Σ-shifted
double bracket or Σ-double bracket on A is a morphism

f := {{−,−}} : ΣA⊗ ΣA −→ ΣA⊗ A,

represented by the directed coloured graph

where the direction is from top to bottom and where blue edges represent the suspension
Σ. The Σ-double bracket f

• is antisymmetric if {{−,−}} = −ΣτA,A{{−,−}}τΣA,ΣA, i.e. in terms of directed
graphs:

= − ;

• is a left derivation if the double bracket f is a derivation in its �rst variable for the
internal A-bimodule structure of ΣA⊗ A, i.e.

f(Σµ⊗ ΣA) =A µ
i(A⊗ f)(τΣ,A ⊗ A⊗ ΣA) + µiA(f ⊗ A)(ΣA⊗ τA,ΣA).

This property can be described in terms of directed graphs:

= + .

If Σ = 1, a Σ-shifted double bracket is just called a double bracket.
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3.4. Definition. [Compatible morphism] Let (L, {{−,−}}L) and (H, {{−,−}}H) be two
objects of the category C, each equipped with a Σ-double bracket. A morphism φ : L→ H
of C is said to be compatible with the Σ-double brackets if the following diagram commutes:

ΣL⊗ ΣL
Σφ⊗Σφ //

{{−,−}}L
��

	

ΣH ⊗ ΣH

{{−,−}}H
��

ΣL⊗ L
Σφ⊗φ

// ΣH ⊗H .

3.5. Remark. Suppose that (A, µ, ι) is a monoid with unit ι : 1 → A in the category
C, with a Σ-double bracket f which is a left derivation. Then, as the following diagram
commutes

1⊗ 1

	

ι⊗ι //

∼=
��

A⊗ A
µ

��
1 ι

// A ,

the morphism 1⊗ A f(ι⊗1)−−−−→ A⊗ A is trivial.

3.6. Proposition. Let (A, µ) be a monoid of the category C, with an antisymmetric
Σ-double bracket f which is a left derivation. Then, the Σ-double bracket f is also a
right derivation, i.e. it is a derivation in its second variable for the external A-bimodule
structure of ΣA⊗ A. In terms of directed graphs:

= + .

3.7. Definition. [Double Jacobiator] Let A be an object of the category C, with a Σ-
double bracket f := {{−,−}} : ΣA⊗ΣA→ ΣA⊗A. The double Jacobiator associated to
f is the morphism

DJf := {{−,−,−}} : ΣA⊗ ΣA⊗ ΣA→ ΣA⊗ A⊗ A

de�ned by

{{−,−,−}}l + ΣτA,A⊗A{{−,−,−}}lτΣA⊗ΣA,ΣA + ΣτA⊗A,{{−,−,−}}lτΣA,ΣA⊗ΣA

where {{−,−,−}}l = (f ⊗ A)(ΣA ⊗ f); we can describe the double Jacobiator diagram-
matically by the following sum of directed graphs:

+ + .
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3.8. Remark. The double Jacobiator is stable under the diagonal action of Z/3Z, i.e.
DJf = ΣτA,A⊗A ◦DJf ◦ τΣA⊗ΣA,ΣA.

3.9. Definition. [Σ-double Lie algebra] Let L be an object of the category C, with an
antisymmetric Σ-double bracket f := {{−,−}} : ΣL⊗ΣL→ ΣL⊗L. The double bracket
f is a Σ-double Lie bracket if the associated double Jacobiator vanishes, i.e. DJf = 0. In
this case, we say that L is a Σ-double Lie algebra. The category of Σ-double Lie algebras
in C is denoted by Σ-DLieC; its morphisms are the morphisms of the category C which are
compatible with the Σ-double brackets (in the sense of de�nition 3.4).

3.10. Definition. [The category Σ-DPoissC] Let A be an object of the category C. A
double Poisson structure on A is the data of a monoidal product µ : A ⊗ A → A and a
Σ-double Lie bracket f := {{−,−}} : ΣA ⊗ ΣA −→ ΣA ⊗ A, which also satis�es the left
derivation property: such a Σ-double bracket is called a Σ-double Poisson bracket and A
is a Σ-double Poisson algebra in the category C.

Let (A, fA) and (B, fB) be two Σ-double Poisson algebras and φ : A→ B a morphism
in C. The morphism φ is a Σ-double Poisson algebra morphism if φ is a monoid morphism
and a Σ-double Lie morphism. We denote by Σ-DPoissC the category of Σ-double Poisson
algebras in C, so that there are forgetful functors

Σ-DPoissC −→ Σ-DLieC and Σ-DPoissC −→ As(C).

3.11. Definition. [Left Σ-Leibniz algebra] Let L be a object in C, Σ an invertible object
in C and f : ΣL⊗ ΣL→ ΣL. The pair (L, f) is a left Σ-Leibniz algebra if f satis�es the
Leibniz identity:

f(ΣA⊗ f) = f(f ⊗ ΣA) + f(ΣA⊗ f)(τΣA,ΣA ⊗ ΣA).

3.12. Proposition. [cf. [31]] Let (A, µ) be a monoid in C equipped with a Σ-double
Poisson bracket f . Then (ΣA,Σµf) is a Σ-left Leibniz algebra in C.

3.13. Double Poisson structure on a free monoid. Fix (A, µ) a monoid in C and
M an A-bimodule. Recall that an A algebra is a monoid B in the category C equip with
a morphism of monoid A→ B. We consider the free A-algebra on M :

TA(M) := A⊕
⊕
n∈N∗

M⊗An

satisfying the following universal property: for an A-algebra B with an A-bimodule mor-
phism M → B, we have the following canonical extension

M //� _

��

B

TA(M) ∃!φ

II

with φ an A-algebra morphism. There is a canonical inclusion A ⊕M ↪→ TAM . Then,
we have the following result:
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3.14. Lemma. Let A be a monoid and M be an A-bimodule. An antisymmetric Σ-double
bracket on TA(M) that satis�es the left derivation property is determined by its restrictions
to ΣA⊗ ΣA, ΣM ⊗ ΣA and ΣM ⊗ ΣM ⊂ ΣTA(M)⊗ ΣTA(M).

Let A and M be �xed in C, with A a monoid, M an A-bimodule and let {{−,−}} be
a Σ-double bracket on TA(M). We will de�ne three classes of Poisson double brackets on
TA(M) using the terminology of [25].

3.14.1. Constant double brackets.

3.15. Definition. [Constant double Poisson bracket] The double bracket {{−,−}} is a
constant Poisson double bracket if its restrictions to ΣA⊗ΣA and ΣM ⊗ΣA vanish and
if its restriction to ΣM ⊗ΣM takes values in ΣA⊗A, i.e. {{−,−}} is completely de�ned
by the morphism

{{−,−}} : ΣM ⊗ ΣM −→ ΣA⊗ A.

3.16. Example. If A = 1, a constant Σ-double Poisson bracket on T1(M), corresponds
to an antisymmetric bilinear form on ΣM .

3.17. Remark. This example should be compared to the commutative case: for every
�nite-dimensional vector space V of degree d, there is a natural one-to-one correspondence
between constant Poisson structures on V and skew-symmetric matrices of size d (see [19,
Proposition 6.2]).

3.17.1. Linear double brackets.

3.18. Definition. [Linear double Poisson bracket] The double bracket {{−,−}} is a linear
Poisson double bracket if its restriction to ΣA ⊗ ΣA vanishes and its restrictions to
ΣM ⊗ ΣA and ΣM ⊗ ΣM take values respectively in ΣA⊗ A and Σ(M ⊗ A⊕ A⊗M),
that is if {{−,−}} is determined by the morphisms

{{−,−}} : ΣM ⊗ ΣA −→ ΣA⊗ A and

{{−,−}} : ΣM ⊗ ΣM −→ Σ(M ⊗ A⊕ A⊗M) .

We denote by Σ-DPFreelin
A the category where objects are free A-algebras with a linear Σ-

double Poisson bracket, the morphisms are Σ-double Poisson algebra morphisms induced
by an A-bimodule morphism.

3.19. Example. [cf. [25, Sect. 2]] We consider {{−,−}}, a linear 1-double Poisson bracket
on T1M , which is determined by morphisms f : M⊗M −→M⊗1 and g : M⊗1 −→ 1⊗1.
By the derivation property of {{−,−}}, the morphism g vanishes and the double Jacobi
identity gives us the identity

prM⊗1⊗1{{−,−,−}}|M⊗3 = 0;

so we have (f ⊗ 1)(M ⊗ f)− (τ1,M ⊗ 1)(1⊗ f)(f ⊗M) = 0, which is equivalent to

f(M ⊗ f) = f(f ⊗M).
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This corresponds to an associative monoid structure on M (without unit). Futhermore,
we have the equivalence of categories

1-DPFreelin
1
∼= As(C).

3.20. Remark. This example should be compared to the commutative case: for every
�nite-dimensional vector space V , there is a natural one-to-one correspondence between
linear Poisson structures on V ∗ and Lie algebra structure on V (see [19, Proposition 7.3]).

3.20.1. Quadratic double Poisson brackets.

3.21. Definition. [Quadratic double Poisson bracket] We say that {{−,−}} is a quadratic
double Poisson bracket if its restrictions to ΣA ⊗ ΣA and ΣM ⊗ ΣA are trivial and its
restriction to ΣM ⊗ ΣM takes values in ΣM ⊗M , i.e. {{−,−}} is determined by the
antisymmetric Σ-double bracket

{{−,−}} : ΣM ⊗ ΣM −→ ΣM ⊗M.

We denote by Σ-DPFreequad
A the subcategory of free A-algebras with a quadratic Σ-double

Poisson bracket, where morphisms are induced by A-bimodules morphisms.

3.22. Proposition. The free associative functor T1(−) induces an equivalence of cate-
gories

T1(−) : Σ-DLieC
∼=−→ Σ-DPFreequad

1
.

Proof. We extend the Σ-double Lie bracket by the derivation property.

3.23. Example. In [25, Sect. 2.1], Odesskii et al. give a complete classi�cation of
quadratic double Poisson brackets on C〈x, y〉 with |x| = |y| = 0.

3.24. Example. In [27], Sokolov gives a complete classi�cation of quadratic double Pois-
son brackets on C〈x, y, z〉 with |x| = |y| = |z| = 0.

4. Double Lie�Rinehart algebras

In this section, we extend the notion of a double Lie�Rinehart algebra, �rst de�ned by
Van den Bergh in [32], which is a noncommutative version of a Lie�Rinehart algebra.

4.1. Recollections on Lie�Rinehart algebras. For a more complete exposition,
the reader is refered to [17], [22, Sect. 13.3.8] and [14, Sect. 5.1.2].

4.2. Definition. [Lie�Rinehart algebra] Let (C,⊗, τ) be an additive symmetric monoidal
category and A a commutative monoid in C. A Lie algebra (g, [−,−]) is a Lie�Rinehart
algebra over A if g is an A-module for Aµ : A⊗ g→ g, A is a g-module for ρ : g⊗A→ A
(which is called the anchor) and these module structures are compatible, i.e. satisfy the
following properties.
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1. The Lie algebra g acts by derivations on A:

ρ ◦ µ = µ(A⊗ ρ)(τA,g ⊗ A) + µ(ρ⊗ A) .

2. The bracket and the anchor satisfy the Leibniz relation:

[−,−](g⊗Aµ) = [−,−](ρ⊗ g) +Aµ(A⊗ [−,−])(τA,g ⊗ g) .

3. The bracket and the anchor satisfy the compatibility relation in Hom(g⊗2 ⊗ A,A):

ρ
(
[−,−]⊗ A

)
= ρ(g⊗ ρ)− ρ(g⊗ ρ)(τg,g ⊗ A).

Let (M,ρM , [−,−]M) and (N, ρN , [−,−]N) be two Lie�Rinehart algebras over A. An A-
module morphism φ : M → N is a morphism of Lie�Rinehart algebras if φ is a Lie algebra
morphism.

4.3. Remark. In the case where C is closed, condition 1 holds if and only if the anchor
corresponds to a morphism ρ∗ : g→ Der(A). Then, condition 3 holds if and only if ρ∗ is
a Lie algebra morphism.

For examples, the reader is refered to [17, Ex. 1.3.3] or [14, Chap. 5].

4.4. Proposition. [cf. [22, Prop. 13.3.8]] Any Lie�Rinehart algebra (A,L) gives rise to
a Poisson algebra P = A ⊕ L, where A ⊕ L is the square-zero extension as algebra and
the operations µ and {−,−} are as follows:

A⊗ A µ−→ A, A⊗ A {−,−}−−−→ 0,

A⊗ L µ−→ L, L⊗ A {−,−}−−−→ A,

L⊗ L µ−→ 0, L⊗ L {−,−}−−−→ L.

Conversely, any Poisson algebra P , whose underlying vector space can be split as P =
A ⊕ L and such that the two operations take values as indicated above, de�nes a Lie�
Rinehart algebra. The two constructions are inverse to each other.

4.5. Remark. (cf. [33, Prop. 3.6.2]) This result is operadic. In fact, a Lie�Rinehart
algebra is an algebra over the two-coloured operad LieRin.

4.6. Double Lie�Rinehart algebras. Now, we introduce the noncommutative ver-
sion of Lie�Rinehart algebras: double Lie�Rinehart algebras (called double Lie algebroids
by Van den Bergh in [32]; note that this notion is not related in any manner with those
of Mackenzie�Xu).
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4.7. Notation. Let A be a monoid in an additive symmetric monoidal category (C,⊗, τ),
M and N two A-bimodules and φ : M → N a morphism of A-bimodules. We canonically
extend the morphism φ to an A-bimodule morphism φ̃ : A⊗M⊕M⊗A −→ A⊗N⊕N⊗A
where the structures of A-bimodule are induced by those of M and N and such that the
restrictions to A⊗M and M ⊗ A are given by

φ̃|A⊗M = A⊗ φ and φ̃|M⊗A = φ⊗ A.

Hereafter, we do not distinguish between φ and φ̃.

4.8. Definition. [Σ-Double Lie�Rinehart algebra] Let (A, µ) be a monoid in an additive
symmetric monoidal category (C,⊗, τ) and (M,Aµ, µA) an A-bimodule. We say that M
is a Σ-double Lie�Rinehart algebra over A if M is equipped with:

1. an A-bimodule morphism (called the anchor)

ρ : ΣM ⊗ ΣA −→ ΣA⊗ A

(where, for the left term, the A-bimodule structure induced by that of M and, for
the right term, the internal structure) which is a derivation in the second input for
the external A-bimodule structure on the codomain;

2. a morphism
{{−,−}}M : ΣM ⊗ ΣM −→ Σ(M ⊗ A⊕ A⊗M)

with components {{−,−}}Ml := prΣM⊗A ◦ {{−,−}}M and {{−,−}}Mr := prΣA⊗M ◦
{{−,−}}M ; which satisfy the following conditions:

(Antisymmetry):

{{−,−}}MτΣM,ΣM = −Σ(τM,A, τA,M){{−,−}}M ;

The derivation property (Derivation): the �rst compatibility with the anchor: we
have the following commutative diagram

ΣM ⊗ ΣA⊗M ΣM⊗ΣAµ //

φl ++

ΣM ⊗ ΣM

{{−,−}}M
��

ΣM ⊗ ΣM ⊗ AΣM⊗ΣµAoo

φrss
Σ(M ⊗ A⊕ A⊗M),

where

φl :=(ΣA⊗Aµ)(ρ⊗M)

+ (Aµ
ΣM ⊗ A,A µΣA ⊗M)(A⊗ {{−,−}}M)(τΣMΣ,A ⊗M)

φr :=(ΣM ⊗ µ,ΣA⊗ µA)({{−,−}}M ⊗ A)

+ (ΣµA ⊗ A)(τM,Σ ⊗ A⊗ A)(M ⊗ ρ)(τΣMΣ,M ⊗ A) ;
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The anchor relation (Anchor): the second compatibility with the anchor: we have
the following relation in Hom(ΣA⊗ (ΣM)⊗2,ΣA⊗3)

(ρτ ⊗ A)(ΣA⊗ {{−,−}}Ml )

+ τΣA⊗ΣA,ΣA(ρ⊗ A)(ΣM ⊗ ρ)τΣA,ΣM⊗ΣM

+ τΣA,ΣA⊗ΣA(ρ⊗ A)(ΣM ⊗ ρτ )τΣA⊗ΣM,ΣM = 0

where ρτ := −(ΣτA,A)ρτΣA,ΣM : ΣA⊗ ΣM → ΣA⊗ A ;

The double Jacobi identity (Double Jacobi): which is the following relation in
Hom((ΣM)⊗3,ΣM ⊗ A⊗2):

({{−,−}}Ml ⊗ A)(ΣM ⊗ {{−,−}}Ml )

+ ΣτA,M⊗A({{−,−}}Mr ⊗ A)(ΣM ⊗ {{−,−}}Ml )τΣM⊗ΣM,ΣM

+ ΣτA⊗A,M(ρ⊗ A)(ΣM ⊗ {{−,−}}Mr )τΣM,ΣM⊗ΣM = 0.

Let (M, {{−,−}}M) and (N, {{−,−}}N) be two Σ-double Lie�Rinehart algebras over A. A
Σ-double Lie�Rinehart algebra morphism φ is an A-bimodule morphism such that:

φ
(
{{−,−}}M

)
= {{φ(−), φ(−)}}N .

We denote by Σ-DLRA the category of Σ-double Lie�Rinehart algebras over A.

4.9. Remark. In the case where C is a closed symmetric monoidal category (for example,
C = Chk), then, by adjunction, the anchor of a Σ-double Lie�Rinehart algebra A is
equivalent to the A-bimodule morphism ρ∗ : ΣM → Der(ΣA,ΣA⊗ A).

4.10. Remark. When the category C is the category Chk and when A is a �nitely gen-
erated di�erential graded associative algebra, the condition ((Anchor)) can be expressed
using the Schouten�Nijenhuis double bracket (introduced in section 5.11 below), as:

ρ∗
(
{{−,−}}M

)
= {{ρ∗, ρ∗}}SN

4.11. Example.

1. For a �nitely-generated di�erential graded associative algebra A, the A-bimodule
Der(A) of biderivations (cf. section 5.11 for the de�nition) with the Schouten�
Nijenhuis double Poisson bracket and the identity plays for the anchor, is a 0-double
Lie�Rinehart algebra over A.

2. In [14, Sect. 5.5], the noncommutative version of the Atiyah algebra is de�ned as
follows. Let A be an associative k-algebra and M a �nitely-presented A-bimodule.
We denote End(M), the A-bimodule Homk(M,M ⊗ A ⊕ A ⊗ M), and, for φ in
End(M), we denote φl := prM⊗A ◦ φ and φr := prA⊗M ◦ φ, the compositions with
the projections. The Atiyah double algebra on M , denoted At(M), is the set of
pairs (d, φ) with d ∈ Der(A) and φ ∈ End(M), with compatibilities analogous to
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the commutative case. The Atiyah double bracket is de�ned as follow: for (d1, φ1)
and (d2, φ2) in At(M)

{{(d1, φ1), (d2, φ2)}}At :=
(
{{d1, d2}}SN, {{(d1, φ1), (d2, φ2)}}E

)
,

where {{−,−}}SN is the Schouten�Nijenhuis double Poisson bracket (cf. section 5.11)
and {{−,−}}E is described in [14]. By [14, Prop. 5.5.3], At(M) equipped with the
Atiyah double bracket and the anchor morphism given by

ρ : At(M) −→ Der(A)
(d, φ) 7−→ d

is a 0-double Lie�Rinehart algebra over A and ρ is a morphism of double Lie�
Rinehart algebras.

4.12. Remark. A double Lie�Rinehart algebra is an algebra over a (coloured) properad.
Properads encode algebraic structures which have several inputs and outputs: they gener-
alize operads, which encode algebraic structures with several inputs and one output (see
[22]). Formally, a properad is a S-bimodule, i.e. a family of Sn×Sop

m -module with m and
n in N∗, which is a monoid for the connected product �c de�ned by Vallette in [28, 29].
This product is controlled by connected graphs: for two S-bimodules P and Q, elements
in P �c Q can be described as a sum of graphs of the following form:

· · · · · ·q1 qj qs

· · ·p1 pr

where p1, . . . , pr are elements in P and q1, . . . , qs are in Q. There is a notion of free
properad (see [29, Sect. 2.7]), so we can talk about properads presented by generators
and relations. As for operads, we have the notion of coloured properads (for the de�nition,
the reader can refer to [16]). The 2-coloured properad DLieRin which encodes double
Lie�Rinehart algebras (cf. de�nition 4.8), is generated by

f ⊗ k ⊕ ρ ⊗ k ⊕ µ ⊗ k[S2] ⊕ l ⊗ k ⊕ r ⊗ k;

these satisfy the following relations:

µ

µ

=
µ

µ

(associativity of µ)

1 2 3

1 2

=

2 1 3

1 2

+

1 2 3

1 2

; ((1) - derivation)
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ρ
l

1 2 3

1 2

=

1 2 3

1 2

ρ
µ ; ρ

r

1 2 3

1 2

=

21 3

1 2

ρ
µ ; ((1) - bimodule)

f
l

1 2 3

1 2

=

2 1 3

1 2

f

l ; f
r

1 2 3

1 2

=

31 2

1 2

f
µ +

2 1 3

1 2

ρ

r ; (right derivation)

f
l

1 2 3

1 2

=

1 2 3

1 2

f
µ ; f

r

1 2 3

1 2

=

21 3

1 2

f
r ; (bimodule)

2 3 1

3 2 1

ρ

ρ −

1 2 3

2 1 3

f

ρ −

3 2 1

3 1 2

ρ

ρ = 0 ; ((Anchor))

1 2 3

1 2 3

f

f −

3 1 2

1 3 2

f

f −

2 1 3

2 3 1

f

ρ = 0 . ((Double Jacobi))

In the next proposition, we establish the noncommutative version of the correspon-
dence between Lie�Rinehart algebras and a class of Poisson algebras stated in 4.4. Namely,
we explain the correspondence between Σ-double Lie�Rinehart algebras and linear Σ-
double Poisson algebras.

4.13. Proposition. [cf. [31, (3.4-1)-(3.4-8)] � [32, Sect. 3.2]] Let A be a monoid in C,
M an A-bimodule and Σ an invertible object in C. The following are equivalent:

1. M is a Σ-double Lie�Rinehart algebra over A ;

2. TA(M) is a linear Σ-double Poisson algebra.

We have the equivalence of categories

Σ-DPFreelin
A
∼= Σ-DLRA.

Proof. The anchor ρ of a Σ-double Lie�Rinehart algebra M over A is a morphism
ρ : ΣM ⊗ ΣA → ΣA ⊗ A which we extend, by antisymmetry, to a double bracket
{{−,−}}A : ΣM ⊗ ΣA⊕ ΣA⊗ ΣM → ΣA⊗ A.

The condition (Derivation) of de�nition 4.8 corresponds to the derivation properties
of the restriction ΣM ⊗ΣA⊕ΣA⊗ΣM of a linear Σ-double bracket on TAM . Hence, a
linear Σ-double bracket on TAM corresponds to an anchor ρ : ΣM ⊗ ΣA→ ΣA⊗A and
a morphism f : ΣM ⊗ ΣM → Σ(M ⊗ A⊕ A⊗M) such that conditions (Antisymmetry)
and (Derivation) of de�nition 4.8 are satis�ed.
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We will check that the conditions (Anchor) and (Double Jacobi) of de�nition 4.8
exactly correspond to the double Jacobi identity for the associated linear Σ-double bracket
on TAM . The double Jacobiator of TAM , restricted to ΣA⊗ ΣM ⊗ ΣM is given by the
following diagram

ΣM ⊗ ΣA⊗ ΣM

(ρ∗⊗A)(ΣM⊗ρ∗r)

��

ΣA⊗ ΣM ⊗ ΣM

(ρ∗r⊗A)(ΣA⊗{{−,−}}l)
��

τΣA,ΣM⊗ΣM //
τΣA⊗ΣM,ΣMoo ΣM ⊗ ΣM ⊗ ΣA

(ρ∗⊗A)(ΣA⊗ρ∗)

��

Σ
(
A
)⊗3

ΣτA,A⊗A
// Σ
(
A
)⊗3

Σ
(
A
)⊗3

,
ΣτA⊗A,A

oo

then, the morphisms ρ and {{−,−}} satisfy the condition (Anchor) of the Σ-double Lie�
Rinehart algebra. The restriction to (ΣM)⊗3 of the double Jacobiator on TAM takes
values in

Σ(M ⊗ A⊗2 ⊕ A⊗2 ⊗M ⊕ A⊗M ⊗ A).

By invariance under the Z/3Z-action (see remark 3.8), the vanishing of this restriction is
equivalent to the vanishing of its projection to ΣM ⊗A⊗2. This projection is given by the
sum of the morphisms (ΣM)⊗3 → ΣM⊗A⊗2 given in the following commutative diagram(

ΣM
)⊗3

({{−,−}}Mr ⊗A)(ΣM⊗{{−,−}}Ml )

��

(
ΣM

)⊗3

({{−,−}}Ml ⊗A)(ΣA⊗{{−,−}}Ml )

��

τΣM,ΣM⊗ΣM //
τΣM⊗ΣM,ΣMoo

(
ΣM

)⊗3

(ρM⊗A)(ΣM⊗{{−,−}}Mr )

��
ΣA⊗M ⊗ A

ΣτA,M⊗A
// ΣM ⊗ A⊗2 ΣA⊗2 ⊗M ;

ΣτA⊗A,M
oo

the vanishing of the restriction of the double Jacobiator to (ΣM)⊗3 is equivalent to the
condition (Double Jacobi) of de�nition 4.8.

Then, if we consider (TAM, f := {{−,−}}) a linear Σ-double Poisson algebra, by taking
the following restrictions of the linear Σ-double bracket, the morphisms

ρM := f |ΣM⊗A and {{−,−}}M := f |ΣM⊗ΣM

make M a Σ-double Lie�Rinehart algebra over A. Conversely, consider (M,ρ, {{−,−}})
a Σ-double Lie�Rinehart algebra over A. By the universal property of TA(M) (see 3.13),
we extend by derivation the morphism ρ : ΣM ⊗ A→ ΣA⊗ A to

ρ̃ : ΣTA(M)⊗ A→ ΣTA(M)⊗ TA(M),

which is a left derivation. We extend ρ̃ to a morphism

{{−,−}}A : ΣTA(M)⊗ ΣTA(M)→ ΣTA(M)⊗ TA(M)

by antisymmetry. Similarly, we extend {{−,−}} to a double derivation

{{−,−}}M : ΣTA(M)⊗ ΣTA(M)→ ΣTA(M)⊗ TA(M).
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The sum {{−,−}}A+{{−,−}}M gives a linear Σ-double Poisson bracket on TA(M) because
we have proved that the double Lie�Rinehart conditions (Antisymmetry), (Derivation),
(Anchor) and (Double Jacobi) are equivalent to the the double Poisson conditions.

Let (M, {{−,−}}M) and (N, {{−,−}}N) be two Σ-double Lie�Rinehart algebras and
φ : M → N , a double Lie�Rinehart algebra morphism. The morphism φ induces a mor-
phism of A-algebras φ′ : TAM → TAN . We have φ

(
{{−,−}}M

)
= {{φ(−), φ(−)}}N and,

as φ′ is an algebra morphism and the double brackets on {{−,−}}M and {{−,−}}N are
constructed by extending using the derivation property, then φ′ is a Σ-double Poisson
algebra morphism. Hence, we have de�ned the functor

TA(−) : Σ-DPFreelin
A → Σ-DLRA. (1)

Let ψ : TAM → TAN be a morphism of linear Σ-double Poisson algebras. The morphism
ψ′ : prN ◦ ψ ◦ i : M → N with i : M ↪→ TAM and prN : TAN � N is an A-bimodule mor-
phism, which commutes with the double brackets. Then, the functor (1) is an equivalence
of categories.

4.14. Remark. By proposition 3.12, if M is a 1-double Lie�Rinehart algebra over A,
then the morphism

{−,−} := µMA {{−,−}}Ml +Aµ
M{{−,−}}Mr : M ⊗M −→M

yields a left Leibniz algebra structure on M , which is an A-bimodule morphism, where
the A-bimodule structure onM⊗M is given by that of the right factor. The composition
of the anchor with the product of A is a derivation in its second input:

ρ̃ := µ ◦ ρ : M ⊗ A −→ A .

By proposition 4.13 and [31, Prop. 2.4.2] generalised to the categorical framework, the
double-Jacobi identity, restricted toM⊗M⊗A implies that ρ̃ gives A the structure of an
antisymmetrical representation of M (for the de�nition of representations of left Leibniz
algebras, the reader can refer to [8, Def. 1.2.1 and 1.2.4]).

5. The shifting property

5.1. The main result. In the case of algebras over an operad, a Σ-shifted structure on
an object M is equivalent to a non-shifted structure on ΣM (for more detail, the reader
can refer to [22]). However, this is not true for the case of algebras over a properad. For
example, for a chain complex A, an r-double Lie structure on A is the datum of a double
bracket

{{−,−}} : A[r]⊗ A[r] −→ (A⊗ A)[r]

and a 0-double Lie structure on A[r] is the datum of a double bracket

{{−,−}} : A[r]⊗ A[r] −→ A[r]⊗ A[r].
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These morphisms have di�erent degrees. However, this shifting property does hold for
double Lie�Rinehart algebras (which are algebras over the coloured properad DLieRin).
In fact, the equivalence of categories Σ ⊗ − : A-BimodC → A-BimodC induces an equiv-
alence of categories Σ-DLRA → 1-DLRA. In the following theorem and its proof, we
implicitly use the isomorphism Σ− ⊗ Σ ∼= 1.

5.2. Theorem. The following assertions are equivalent:

1. (A,M, ρM , {{−,−}}M) is a Σ-double Lie�Rinehart algebra;

2. (A,ΣM,ρΣM , {{−,−}}ΣM) is a 1-double Lie�Rinehart algebra.

Under this correspondance, there is an equivalence of categories

Σ-DLRA ∼= 1-DLRA.

5.3. Remark. In this theorem, the anchors are related by

ρΣM = (τΣ−,ΣM ⊗ A)(Σ− ⊗ ρM)

and the double brackets by

{{−,−}}ΣM = (ΣM ⊗ A, τΣ,A ⊗M) ◦ {{−,−}}M .

Proof. An A-bimodule structure on M canonically corresponds to an A-bimodule struc-
ture on ΣM (see section 2.3). The commutative square

Σ(M ⊗ A⊕ A⊗M)
∼= //

ΣτM,A
��

ΣM ⊗ A⊕ A⊗ ΣM

τΣM,A
��

Σ(M ⊗ A⊕ A⊗M) ∼=
// ΣM ⊗ A⊕ A⊗ ΣM

implies that we have a canonical correspondance between an antisymmetrical Σ-double
bracket {{−,−}}M : ΣM ⊗ΣM −→ Σ(M ⊗A⊕A⊗M) and an antisymmetrical 1-double
bracket {{−,−}}ΣM : ΣM ⊗ ΣM −→ ΣM ⊗ A⊕ A⊗ ΣM given by

{{−,−}}ΣM = (ΣM ⊗ A, τΣ,A ⊗M) ◦ {{−,−}}.

Futhermore, {{−,−}}M satis�es the double Jacobi identity if and only if {{−,−}}ΣM does.
By remark 2.4, the functor Σ− ⊗ − : A-BimodC → A-BimodC is an equivalence of

categories: the morphism ρM : ΣM ⊗ ΣA → ΣA ⊗ A corresponds to the morphism
ρΣM := (τΣ−,ΣM ⊗ A)(Σ− ⊗ ρM) : ΣM ⊗ A → A ⊗ A. Conversely, by the equivalence
Σ ⊗ − : A-BimodC → A-BimodC, a morphism ρΣM : ΣM ⊗ A → A ⊗ A corresponds to
ρM : ΣM ⊗ ΣA → ΣA ⊗ A. So ρM satis�es the condition ((Anchor)) of de�nition 4.8 if
and only if ρΣM satis�es the condition ((Anchor)).
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It remains to establish the anchors' compatibilities (condition ((Derivation)) of de�-
nition 4.8). We need to show that the following diagram

ΣM ⊗ A⊗ ΣM
∼=

uu

ψl
++

ΣM⊗Aµ // ΣM ⊗ ΣM
=

uu

{{−,−}}ΣM

��

ΣM ⊗ ΣM ⊗ AΣM⊗µAoo

=

uu
ψr

��

ΣM ⊗ Σ(A⊗M)
ΣM⊗ΣAµ //

φl **

ΣM ⊗ ΣM

{{−,−}}M
��

ΣM ⊗ Σ(M ⊗ A)
ΣM⊗ΣµAoo

φrtt
Σ(M ⊗ A⊕ A⊗M) ΣM ⊗ A⊕ A⊗ ΣM

∼=oo

commutes, with

ψl := ((Aµ, µ)⊗M)(A⊗ {{−,−}}ΣM)(τΣM,A ⊗ ΣM) + (A⊗Aµ)(ρΣM ⊗ ΣM) ;

ψr := (ΣM ⊗ µ+ A⊗ µA)({{−,−}}ΣM ⊗ A) + (µA ⊗ A)(ΣM ⊗ ρΣM)(τΣM,ΣM ⊗ A) ;

φl := (Aµ⊗M)(A⊗ {{−,−}}M)(τΣMΣ,A ⊗M) + (ΣA⊗Aµ)(ρM ⊗M) ;

φr := (ΣM ⊗ µ+ ΣA⊗ µA)({{−,−}}M ⊗ A)

+ (ΣµA ⊗ A)(τM,Σ ⊗ A⊗ A)(M ⊗ ρM)(τΣMΣ,M ⊗ A).

It su�ces to show that the following squares

ΣM ⊗ A⊗ ΣM
ψl//

∼=ΣM⊗τA,Σ⊗M
��

ΣM ⊗ A⊕ A⊗ ΣM

∼= (id,τA,Σ⊗M)
��

ΣM ⊗ Σ(A⊗M)
φl
// Σ(M ⊗ A⊕ A⊗M)

ΣM ⊗ ΣM ⊗ A ψr//

=
��

ΣM ⊗ A⊕ A⊗ ΣM

∼= (id,τA,Σ⊗M)
��

ΣM ⊗ Σ(M ⊗ A)
φr
// Σ(M ⊗ A⊕ A⊗M)

commute. The following diagrams are commutative:

ΣM ⊗ A⊗ ΣM

ρΣM⊗ΣM
��

ΣM⊗τA,Σ⊗M// ΣM ⊗ ΣA⊗M
ρM⊗M
��

A⊗ A⊗ ΣM

A⊗Aµ
��

ΣA⊗ A⊗M
ΣA⊗Aµ
��

A⊗ ΣM
τA,Σ⊗M

// ΣA⊗M

ΣM ⊗ ΣM ⊗ A = //

τΣM,ΣM⊗A
��

ΣM ⊗ ΣM ⊗ A
τΣMΣ,M⊗A
��

ΣM ⊗ ΣM ⊗ A
ΣM⊗ρΣM

��

M ⊗ ΣM ⊗ ΣA

M⊗ρM
��

ΣM ⊗ A⊗ A
µA⊗A

��

M ⊗ ΣA⊗ A
(ΣµA⊗A)(τM,Σ⊗A⊗A)

��
ΣM ⊗ A =

// ΣM ⊗ A

;

as {{−,−}}ΣM = (id, τΣ,A ⊗M) ◦ {{−,−}}M , the following equalities hold:

(id, τA,Σ ⊗M)((Aµ, µ)⊗M)(A⊗ {{−,−}}ΣM)(τΣM,A ⊗ ΣM) =

(Aµ⊗M)(A⊗ {{−,−}}M)(τΣMΣ,A ⊗M)(ΣM ⊗ τA,Σ ⊗M)
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and

(id, τA,Σ⊗M)(ΣM⊗µ+A⊗µA)({{−,−}}ΣM⊗A) = (ΣM⊗µ+ΣA⊗µA)({{−,−}}M⊗A)

so, �nally, (id, τA,Σ ⊗M) ◦ ψr = φr.

5.4. Example. When C is the category of chain complexes Chk, consider a linear 0-
double Poisson bracket on TM , as in example 3.19, which corresponds to a (non-unital)
associative product onM . Then, using proposition 4.13, the shifting property implies that
M [1] has a (non-unital) associative product of homological degree −1. This recovers the
shifting property of algebras over the operad As (see [22, Chapter 9] for the de�nition): a
(non-unital) associative product of degree−1 onM corresponds to a non-unital associative
algebra structure of degree 0 on M [−1].

5.5. Example: the Koszul double bracket. For this example, we suppose that the
category C has coequalizers. We begin by recalling the de�nition of the A-bimodule of
noncommutative one forms associated to a unital monoid A (see [21] for details in the
case of C = Chk).

5.6. Proposition. [Noncommutative di�erential 1-forms] Let (A, µ, ι) be a unital asso-
ciative monoid in C. We de�ne the A-bimodule of noncommutative di�erential 1-forms
ΩA as the coequalizer

A⊗4

µ⊗A⊗2+A⊗2⊗µ
//

A⊗µ⊗A // A⊗3 d̃ // ΩA

in the category of A-bimodules in C, where the A⊗i, for i = 3, 4, are equipped with their
external A-bimodule structure. We denote by

d : d̃(ι⊗ A⊗ ι) : A −→ ΩA

the universal derivation.

5.7. Proposition. Let A be a unital associative monoid. The A-bimodule ΩA satis�es
the following universal property: for an A-bimodule M and a derivation h : A→M , there
exists a unique A-bimodule morphism ih : ΩA →M such that h = ih ◦ d. That is, we have
the canonical isomorphism

Der(A,M)
∼=−→ HomA-Bimod(ΩA,M)

h 7−→ ih
,

where Der(A,M) is the subgroup of HomC(A,M) of morphisms satisfying the derivation
property, i.e. φ : A → M ∈ Der(A,M) if φ ◦ µ = µA(φ⊗ A) +Aµ(A⊗ φ). We also have
the following canonical isomorphism of A-bimodules: for an A-bimodule M and X and Y
two objects in C

Der(X ⊗ A⊗ Y,M) ∼= HomA-Bimod(X ⊗ ΩA ⊗ Y,M).
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In this section, we consider a unital associative monoid A, with a Σ-double Poisson
bracket {{−,−}} : ΣA⊗ ΣA −→ ΣA⊗A . We associate to this double-bracket, a natural
Σ-double Lie�Rinehart structure (over A) on ΩA, the A-bimodule of noncommutative one
forms. By the derivation property of {{−,−}}, proposition 5.7 implies that we can extend
the double bracket to the following Ae-bimodule morphism:

φ : ΣΩA ⊗ ΣΩA −→ ΣA⊗ A,

where the Ae-bimodule structure is given by the external and internal A-bimodule struc-
tures. By composition with d (extended as a derivation to A ⊗ A), we obtain, in the
category C, the Koszul double bracket {{−,−}}Ω :

ΣA⊗ ΣA
{{−,−}} //

Σd⊗Σd

��

ΣA⊗ A
d⊗A+A⊗d
��

ΣΩA ⊗ ΣΩA

φ

33

=:{{−,−}}Ω
// Σ
(
ΩA ⊗ A⊕ A⊗ ΩA

)
.

As in de�nition 4.8, we denote by:

{{−,−}}Ω
r := prΣΩA⊗A ◦ {{−,−}}Ω and {{−,−}}Ω

l := prΣA⊗ΩA ◦ {{−,−}}Ω

the projections of {{−,−}}Ω to ΣΩA ⊗ A and ΣA ⊗ ΩA. By the derivation property of
{{−,−}} and proposition 5.7, we extend the double bracket canonically to two A-bimodule
morphisms:

• the morphism
ρΩ
l : ΣΩA ⊗ ΣA −→ ΣA⊗ A

with, for the left term, the A-bimodule structure induced by that of ΩA and, for the
right term, the internal structure;

• the morphism
ρΩ
r : ΣA⊗ ΣΩA −→ ΣA⊗ A

with for the left term, the A-bimodule structure induced by that of ΩA and the
external structure for the right term.

By de�nition, the following diagrams commute:

ΣA⊗ ΣA
{{−,−}} //

Σd⊗ΣA
��

ΣA⊗ A

ΣΩA ⊗ ΣA ρΩ
l

;; and ΣA⊗ ΣA
{{−,−}} //

ΣA⊗Σd
��

ΣA⊗ A

ΣA⊗ ΣΩA ρΩ
r

;; .
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As {{−,−}} is antisymmetric, we have the following anticommutative diagram:

ΣΩA ⊗ ΣA
ρΩ
l //

τΣΩA,ΣA

��
�

ΣA⊗ A
ΣτA,A
��

ΣA⊗ ΣΩA
ρΩ
r

// ΣA⊗ A.

To simplify, we use the notation ρΩ := ρΩ
l . In the next proposition, we prove that the

morphisms ρΩ and {{−,−}}Ω provide the A-bimodule ΩA with a Σ-double Lie�Rinehart
algebra structure.

5.8. Remark. Van den Bergh gives a similar construction in [31, Prop. A.2.1] but with
a weight shifting. Here, give a construction in the general categorical setting, but without
the shifting. Section 5 applied to the particular case of chain complexes, allows us to
recover Van den Bergh's result.

5.9. Theorem. Let A be a Σ-double Poisson algebra in an additive symmetric monoidal
category (C,⊗, τ) with coequalizers. The morphisms ρΩ and {{−,−}}Ω endow the A-
bimodule ΩA with a Σ-double Lie�Rinehart algebra structure.

5.10. Remark. By proposition 4.13, the morphisms ρΩ and {{−,−}}Ω also endow the
free A-algebra TAΩA with a linear Σ-double Poisson algebra.

Proof. Let (A, {{−,−}}) be a Σ-double Poisson algebra, we writeΩ := ΩA with Aµ
Ω

and µΩ
A the morphisms which de�ne the A-bimodule structure of Ω. We'll show that the

morphisms ρΩ and {{−,−}}Ω endow Ω with a Σ-double Lie�Rinehart algebra structure.
The double bracket {{−,−}}Ω is antisymmetric: in fact, it is de�ned by the following
commutative diagram

ΣA⊗ ΣA
{{−,−}} //

d⊗d
��

ΣA⊗ A
d⊗A+A⊗d
��

ΣΩ⊗ ΣΩ
{{−,−}}Ω

// Σ
(
Ω⊗ A⊕ A⊗ Ω

)
so that {{−,−}}Ω satis�es the antisymmetry condition ((Antisymmetry)) of de�nition 4.8
by the antisymmetry of the double bracket of A.

We will show that ρΩ and {{−,−}}Ω satisfy the derivation condition ((Derivation)) of
de�nition 4.8. We write A1 = A = A2; we have the diagram of �gure (1). The front and
back faces commute by de�nition of {{−,−}}Ω

l . The left and right faces commute because
d is a derivation and the top face commutes because ρΩ is a derivation. Then the bottom
face commutes. Similarly, the diagram of �gure (2) commutes. Then, the morphisms ρΩ

and {{−,−}}Ω satisfy the compatibility condition ((Derivation)) of de�nition 4.8.
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ΣΩ⊗ ΣA ρΩ //

ΣΩ⊗Σd

��

ΣA⊗ A

Σd⊗A

��

ΣΩ⊗ ΣA1 ⊗ A2

ΣΩ⊗Σµ

44

(ρΩ⊗A)+(A⊗ρΩ)(τΣΩ⊗Σ,A1
⊗A2) //

ΣΩ⊗Σd⊗A+ΣΩ⊗ΣA⊗d)

��

ΣA⊗A⊗A2
⊕A1⊗ΣA⊗A

(Σd⊗A⊗A,d⊗ΣA⊗A+A1⊗Σd⊗A)

��

(ΣA⊗µ,(Σµ⊗A)(τA1,Σ
⊗A⊗2)

55

ΣΩ⊗ ΣΩ
{{−,−}}Ωl

// ΣΩ⊗ A

ΣΩ⊗ΣΩ⊗A2
⊕ΣΩ⊗ΣA1⊗Ω

(
{{−,−}}Ωl ⊗A2+ΣΩ⊗ρΩ

+(A1⊗{{−,−}}Ωl )(τΣΩ⊗Σ,A1
⊗Ω)
) //

(ΣΩ⊗ΣµΩ
A,ΣΩ⊗ΣAµ

Ω)

55

ΣΩ⊗A⊗A2
⊕Ω⊗ΣA⊗A
⊕A1⊗ΣΩ⊗A

Φl

55

with Φl :=
(
ΣΩ⊗ µ, (ΣµΩ

A ⊗ A)(τΩ,Σ ⊗ A⊗2), (ΣAµ
Ω ⊗ A)(τA,Σ ⊗ Ω⊗ A)

)
.

Figure 1: First diagram of compatibility ((Derivation))

We show that ρΩ and {{−,−}}Ω satisfy the condition ((Anchor)). We call ΨL the
morphism

{{
−, {{−,−}}

}}
L

=
(
{{−,−}} ⊗ A

)(
ΣA ⊗ {{−,−}}

)
. We have the following

diagram with commuting vertical faces:(
ΣA
)⊗3

ΨL



Σd⊗ΣA⊗Σd

��

(
ΣA
)⊗3 τΣA,ΣA⊗ΣA //

τΣA⊗ΣA,ΣAoo

ΨL



ΣA⊗Σd⊗Σd

��

(
ΣA
)⊗3

ΨL

��

(Σd)⊗2⊗ΣA
��

ΣΩ⊗ ΣA⊗ ΣΩ

(ρΩ
l ⊗A)(ΣΩ⊗ρΩ

r )
xx

ΣA⊗ ΣΩ⊗ ΣΩ

(ρΩ
r ⊗A)(ΣA⊗{{−,−}}Ωl )

xx

τΣA,ΣΩ⊗ΣΩ //
τΣA⊗ΣΩ,ΣΩoo

(
ΣΩ
)⊗2 ⊗ ΣA

(ρΩ
l ⊗A)(ΣΩ⊗ρΩ

l )
yy

Σ
(
A
)⊗3

ΣτA,A⊗A
// Σ
(
A
)⊗3

Σ
(
A
)⊗3

ΣτA⊗A,A
oo .

Then, since {{−,−}} satis�es the double Jacobi identity, the term

(ρΩ
r ⊗ A)(ΣA⊗ {{−,−}}Ω

l )

+τΣA⊗ΣA,ΣA(ρΩ
l ⊗ A)(ΣΩ⊗ ρΩ

l )τΣA,ΣΩ⊗ΣΩ

+τΣA,ΣA⊗ΣA(ρΩ
l ⊗ A)(ΣΩ⊗ ρΩ

r )τΣA⊗ΣΩ,ΣΩ

is equal to zero, hence the {{−,−}}Ω and ρΩ satisfy the condition ((Anchor)) of de�nition
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ΣΩ⊗ ΣA ρΩ //

ΣΩ⊗Σd

��

ΣA⊗ A

ΣA⊗d

��

ΣΩ⊗ ΣA1 ⊗ A2

ΣΩ⊗Σµ

44

(ρΩ⊗A)+(A⊗ρΩ)(τΣΩ⊗Σ,A1
⊗A2) //

ΣΩ⊗Σd⊗A+ΣΩ⊗ΣA⊗d)

��

ΣA⊗A⊗A2
⊕A1⊗ΣA⊗A

(ΣA⊗d⊗A+ΣA⊗A⊗d,A⊗ΣA⊗d)

��

(ΣA⊗µ,(Σµ⊗A)(τA1,Σ
⊗A⊗2)

55

ΣΩ⊗ ΣΩ
{{−,−}}Ωr

// ΣA⊗ Ω

ΣΩ⊗ΣΩ⊗A2
⊕ΣΩ⊗ΣA1⊗Ω

(
{{−,−}}Ωr ⊗A2,ρΩ⊗Ω

+(A1⊗{{−,−}}Ωr )(τΣΩ⊗Σ,A1
⊗Ω)
) //

(ΣΩ⊗ΣµΩ
A,ΣΩ⊗ΣAµ

Ω)

55

ΣA⊗Ω⊗A2
⊕A1⊗ΣA⊗Ω
⊕ΣA⊗A⊗Ω

Φr

55

with Φr := (ΣA⊗ µΩ
A, (Σµ⊗ Ω)(τA,Σ ⊗ A⊗ Ω),ΣA⊗A µΩ).

Figure 2: Second diagram of compatibility ((Derivation))

4.8. We have the following diagram with commuting vertical faces:(
ΣA
)⊗3

ΨL



(Σd)⊗3

��

(
ΣA
)⊗3 τΣA,ΣA⊗ΣA //

τΣA⊗ΣA,ΣAoo

ΨL

��

(Σd)⊗3

��

(
ΣA
)⊗3

ΨL



(Σd)⊗3

��(
ΣΩ
)⊗3

({{−,−}}Ωr ⊗A)(ΣΩ⊗{{−,−}}Ωl )

xx

(
ΣΩ
)⊗3

({{−,−}}Ωl ⊗A)(ΣΩ⊗{{−,−}}Ωl )

xx

τΣΩ,ΣΩ⊗ΣΩ //
τΣΩ⊗ΣΩ,ΣΩoo

(
ΣΩ
)⊗3

;

(ρΩ
l ⊗A)(ΣΩ⊗{{−,−}}Ωr )

xx
ΣA⊗ Ω⊗ A

ΣτA,Ω⊗A
// ΣΩ⊗ A⊗2 ΣA⊗2 ⊗ Ω

ΣτA⊗A,Ω
oo

as {{−,−}} satis�es the double Jacobi identity, the term

({{−,−}}Ω
l ⊗ A)(ΣΩ⊗ {{−,−}}Ω

l )

+ΣτA,Ω⊗A({{−,−}}Ω
r ⊗ A)(ΣΩ⊗ {{−,−}}Ω

l )τΣΩ⊗ΣΩ,ΣΩ

+ΣτA⊗A,Ω(ρΩ
l ⊗ A)(ΣΩ⊗ {{−,−}}Ω

r )τΣΩ,ΣΩ⊗ΣΩ

is equal to zero. By invariance under the Z/3Z-action of the double Jacobiator, the double
bracket {{−,−}}Ω satis�es the double Jacobi identity.

Using the shifting property, we recove the original construction of the Koszul double
bracket of Van den Bergh as follows: in [31, Ann. A], Van den Bergh constructs the
Koszul double bracket as a Gerstenhaber double bracket, i.e. a Poisson double bracket of
degree −1, on TA(ΩA[1]). The shifting property 5.2, applied to our Koszul double bracket
construction, recovers the original Koszul double bracket of Van den Bergh.

5.11. Example: the Schouten�Nijenhuis double bracket. For this example, we
take C = DGAk with k a �eld and we consider a di�erential graded algebra A. We start
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by the de�nition of the A-bimodule of biderivations of A; biderivations play the role of
derivations in noncommutative geometry.

The (external) A-bimodule of biderivations of A, denoted by Der(A), is de�ned by

Der(A) := Der(A,A⊗ A),

where A⊗ A is equipped with its external A-bimodule structure.
We recall the de�nition of the Schouten Nijenhuis 0-double Poisson bracket following

Van den Bergh [31, Sect. 3.2]. We consider A, a �nitely-generated di�erential graded
algebra: this implies that the A-bimodule ΩA is �nitely-generated. The morphisms
Φ,Ψ: Der(A)⊗2 ⊗ A→ A⊗3 de�ned by

Φ :=(A⊗ τA,A)
(

(ev ⊗ A)(Der(A)⊗ ev)

− (A⊗ ev)(τDer(A),A ⊗ A)(Der(A)⊗ ev)(τDer(A),Der(A) ⊗ A)
)

Ψ :=(τA,A ⊗ A)
(

(A⊗ ev)(τDer(A),A ⊗ A)(Der(A)⊗ ev)

− (ev ⊗ A)(Der(A)⊗ ev)(τDer(A),Der(A) ⊗ A)
)

yield, by adjunction, the morphisms

Φ∗ := {{−,−}}SN
l : Der(A)⊗ Der(A)→ Hom(A,A⊗3),

Ψ∗ := {{−,−}}SN
r : Der(A)⊗ Der(A)→ Hom(A,A⊗3).

As the A-bimodule ΩA is �nitely-generated, the following chain complexes are isomorphic
Der(A,A⊗3) ∼= HomAe(ΩA, A⊗ A)⊗ A . So, the morphism {{−,−}}SN

l (resp. {{−,−}}SN
r )

factorizes through Der(A) ⊗ A (resp. A ⊗ Der(A)) (see [31, Prop. 3.2.1]). Using the
theorem of Van den Bergh [31, Th. 3.2.2], we apply theorem 5.2: the morphisms

{{−,−}}SN
l + {{−,−}}SN

r : Der(A)⊗ Der(A)→ Der(A)⊗ A⊕ A⊗ Der(A)

(ev,−τA,A ◦ ev ◦ τA,Der(A)) : Der(A)⊗ A⊕ A⊗ Der(A)→ A⊗ A
(2)

induce an A-linear 0-double Poisson algebra structure on the free A-algebra TADer(A)
(see [31, Thm. 3.2.2]) called the Schouten�Nijenhuis double bracket. Using theorem 4.13,
this structure corresponds to a A-double Lie�Rinehart structure on Der(A).

Now, consider A a �nitely-generated di�erential graded algebra with a double Poisson
bracket. The A-bimodule ΩA is a double Lie�Rinehart algebra for the Koszul structure
(ρΩ, {{−,−}}Ω) (see section 5.5). As the category Chk is closed, the anchor ρΩ corresponds
to a morphism

(ρΩ)∗ : Ω→ Hom(A,A⊗ A)

which factorizes through Der(A).

5.12. Proposition. [Relation between the Schouten�Nijenhuis and Koszul double brack-
ets] Let A be a �nitely-generated di�erential graded algebra with a double Poisson bracket.
The morphism (ρΩ)∗ is an A-double Lie�Rinehart morphism between ΩA and Der(A).
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Proof. As remarked in 4.10, in this case, the compatibility condition ((Anchor)) can be
expressed using the Schouten�Nijenhuis double bracket introduced in (2), as:

(ρΩ)∗
(
{{−,−}}M

)
= {{(ρΩ)∗, (ρΩ)∗}}SN.
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