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FIBRATIONS OF AU-CONTEXTS BEGET FIBRATIONS OF TOPOSES

SINA HAZRATPOUR AND STEVEN VICKERS

Abstract. Suppose an extension map U : T1 → T0 in the 2-category Con of contexts
for arithmetic universes satis�es a Chevalley criterion for being an (op)�bration in Con. If
M is a model of T0 in an elementary topos S with nno, then the classi�er p : S[T1/M ]→
S satis�es the representable de�nition of being an (op)�bration in the 2-category ETop
of elementary toposes (with nno) and geometric morphisms.
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1. Introduction

For many special constructions of topological spaces (which for us will be point-free, and
generalized in the sense of Grothendieck), a structure-preserving morphism between the
presenting structures gives a map between the corresponding spaces. Two very simple
examples are: a function f : X → Y between sets already is a map between the cor-
responding discrete spaces; and a homomorphism f : K → L between two distributive
lattices gives a map in the opposite direction between their spectra. The covariance or
contravariance of this correspondence is a fundamental property of the construction.

In topos theory we can relativize this process. A presenting structure in an elementary
topos E will give rise to a bounded geometric morphism p : F → E , where F is the topos
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of sheaves over E for the space presented by the structure. Then we commonly �nd that
the covariant or contravariant correspondence mentioned above makes every such p an
op�bration or �bration in the 2-category of toposes and geometric morphisms.

If toposes are taken as bounded over some �xed base S, in the 2-category BTop/S, then
there are often easy proofs using the Chevalley criterion to show that the generic such p,
taken over the classifying topos for the relevant presenting structures, is an (op)�bration.
See [SVW12] for some simple examples of the idea, though there are still questions of
strictness left unanswered there.

However, often there is no natural choice of base topos S, and Johnstone [Joh02, B4.4]
proves (op)�brational results in BTop. These are harder both to state (the Chevalley
criterion is not available) and to prove, but stronger because slicing over S restricts the
2-cells.

In this paper we show how to use the arithmetic universe (AU) techniques of [Vic17]
to get simple proofs using the Chevalley criterion of the stronger, base-independent
(op)�bration results in ETop, the 2-category of elementary toposes with nno, and ar-
bitrary geometric morphisms.

Our starting point is the following construction in [Vic17], using the 2-category Con
of AU-contexts in [Vic19]. Suppose U : T1 → T0 is an extension map in Con, and M is a
model of T0 in S, an elementary topos with nno. Then there is a geometric theory T1/M ,
of models of T1 whose T0-reduct isM , and so we get a classifying topos p : S[T1/M ]→ S.
As a generalized space (relative to base S), we view it as the �bre of U overM . Our main
result (Theorem 8.2) is that �

if U is an (op)�bration in Con, using the Chevalley criterion,
then p is an (op)�bration is ETop, using the representable de�nition.

Throughout, we assume that all our elementary toposes are equipped with natural
numbers object (nno). Without an nno the ideas of generalized space do not go far
(because it is needed in order to get an object classi�er), and AU techniques don't apply.

2. Overview

In �3 we review relevant 2-categories of toposes, including our new 2-category GTop in
which the objects are bounded geometric morphisms.

In �4 we quickly review the main aspects of the theory of AU-contexts, our AU analogue
of geometric theories in which the need for in�nitary disjunctions in many situations has
been satis�ed by a type-theoretic style of sort constructions that include list objects (and
an nno). The contexts are �sketches for arithmetic universes� [Vic19], and we review the
principal syntactic constructions on them that are used for continuous maps and 2-cells.

�5 reviews the connection between contexts and toposes as developed in [Vic17], along
with some new results. A central construction shows how context extension maps U : T1 →
T0 can be treated as bundles of generalized spaces: if M is a point of T0 (a model of T0

in an elementary topos S), then the �bre of U over M , as a generalized space over S, is
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a bounded geometric morphism p : S[T1/M ] → S that classi�es the models of T1 whose
U -reduct is M . Much of the discussion is about understanding the universal property of
such a classi�er in the setting of GTop.

We then move in �6 and �7 to a review of two styles of de�nition for (op)�brations in
2-categories, the Chevalley and representable criteria.

A functor p : E → B is, trivially, a �bration i� the functor Cat(1, p) : Cat(1, E) →
Cat(1, B) is, and an obvious generalization is to replace Cat by some other 2-category K
to obtain a notion of �bration in K. However, even when K has a terminal object, there
may fail to be enough 1-cells from 1 to B to make a satisfactory de�nition this way. This
is generally the case with 2-categories of toposes such as ETop.

One therefore uses a more general representable de�nition, that for every A the func-
tor K(A, p) : K(A,E) → K(A,B) is a �bration, with the additional condition that the
naturality squares are �bred functors.

If K has pullbacks of p, then these can be considered the �bres of p. Suppose we have
α : g → f between B′ and B. Then by the representable de�nition α � f ∗p has a cartesian
lift α′ : g′ → p∗f :

f ∗E E

B′ B

p∗f

g′

f∗p p

f

g

α′

α

(1)

g′ now gives us a morphism from f ∗E to g∗E, in other words a morphism between the
�bres over f and g but in the opposite direction to that of α. This brings us closer to the
�indexed category� view of �brations, with 2-cells between base points (f and g) lifting
to maps between the �bres (f ∗E and g∗E), and to the examples mentioned at the outset.

Now suppose K has comma objects, which unfortunately ETop and BTop do not, so far
as we know, although BTop/S and our Con do. Then we may capture the data of the above
diagram in a generic way by taking B′ to be the cotensor 2 t B of B with the walking
arrow 2. In such a K, the �bration structure for arbitrary B′ and α can be derived from
generic structure for the generic α. The structure needs to be de�ned just once, instead
of many times for all B′. We shall call this a Chevalley criterion. For ordinary �brations
the idea was attributed to Chevalley by Gray [Gray66], and subsequently referred to as
the Chevalley criterion by Street [Str74].

As discussed in [Joh93], a shortcoming with all this is that examples such as ETop are
really bicategories, and this calls for a relaxed notion of �bration for the functors K(A, p).
We return to this in �7. Our main task in �6 is to clarify the 2-categorical structure
needed, and the strictness issues, when we apply the Chevalley criterion in Con.

�8 then provides the main result, Theorem 8.2. Suppose U : T1 → T0 is a context
extension map, and p : S[T1/M ]→ S is a classi�er constructed as in �5. Then if U is an
(op)�bration, so is p.
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3. Background: 2-categories of toposes

The setting for our main result is the 2-category ETop whose 0-cells are elementary toposes
(equipped with nno), whose 1-cells are geometric morphisms, and whose 2-cells are geo-
metric transformations.

However, our concern with generalized spaces means that we must also take care to
deal with bounded geometric morphisms. Recall that a geometric morphism p : E → S is
bounded whenever there exists an object B ∈ E (a bound for p) such that every A ∈ E is
a subquotient of an object of the form (p∗I) × B for some I ∈ S: that is one can form
following span in E , with the left leg a mono and the right leg an epi.

E

(p∗I)×B A

The signi�cance of this notion can be seen in the relativized version of Giraud's The-
orem (see [Joh02, B3.4.4]): p is bounded if and only if E is equivalent to the topos of
sheaves over an internal site in S. (In the original Giraud Theorem, relative to Set, the
bound relates to the small set of generators.) It follows from this that the bounded geo-
metric morphisms into S can be understood as the generalized spaces, the Grothendieck
toposes, relative to S.

Bounded geometric morphisms are closed under isomorphism and composition
(see [Joh02, B3.1.10(i)]) and we get a 2-category BTop of elementary toposes, bounded
geometric morphisms, and geometric transformations. It is a sub-2-category of ETop, full
on 2-cells.

Also [Joh02, B3.1.10(ii)], if a bounded geometric morphism q is isomorphic to pf ,
where p is also bounded, then so too is f . This means that if we are only interested in
toposes bounded over S, then we do not have to consider unbounded geometric morphisms
between them. We can therefore take the �2-category of generalized spaces over S� to be
the slice 2-category BTop/S, where the 1-cells are triangles commuting up to an iso-2-cell.
[Joh02, B4] examines BTop/S in detail.

For the (op)�brational results, [Joh02, B4] reverts to BTop. This is appropriate, since
the properties hold with respect to arbitrary geometric transformations, whereas working
in BTop/S limits the discussion to those that are isomorphisms over S.

Unbounded geometric morphisms are rarely encountered in practice, and so it might
appear reasonable to stay in BTop or BTop/S [Joh02, B3.1.14]. However, one notable
property of bounded geometric morphisms is that their bipullbacks along arbitrary ge-
ometric morphisms exist in ETop and are still bounded [Joh02, B3.3.6]. (Note that
where [Joh02] says pullback in a 2-category, it actually means bipullback � this is explained
there in section B1.1.) Thus for any geometric morphism of base toposes f : S ′ → S,
we have the change of base pseudo-2-functor f : BTop/S → BTop/S ′. One might say
the �2-category of Grothendieck toposes� is indexed over ETop∼= (where the 2-cells in
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ETop∼= are restricted to isos). [Vic17] develops this in its use of AU techniques to obtain
base-independent topos results, and there is little additional e�ort in allowing change
of base along arbitrary geometric morphisms. To avoid confronting the coherence is-
sues of indexed 2-categories it takes a �brational approach, with a 2-category GTop �of
Grothendieck toposes� �bred (in a bicategorical sense) over ETop∼=.

We shall take a similar approach, but note that our 2-category GTop, which we are
about to de�ne, is not the same as that of [Vic17] � we allow arbitrary geometric transfor-
mations �downstairs�. We shall write GTop∼= when we wish to refer to the GTop of [Vic17].

3.1. Definition. The 2-category GTop is de�ned as follows. We use a systematic
�upstairs-downstairs� notation with overbars and underbars to help navigate diagrams.
• 0-cells are bounded geometric morphisms x : x→ x.

• For any 0-cells x and y, the 1-cells from y to x are given by f = 〈f,
H
f , f〉 where

f : y → x and f : y → x are geometric morphisms, and the geometric transformation
H
f : xf ⇒ fy is an isomorphism.
• If f and g are 1-cells from y to x, then 2-cells from f to g are of the form α = 〈α, α〉
where α : f ⇒ g and α : f ⇒ g are geometric transformations so that the obvious
diagram of 2-cells commutes.

x

x

x

y x

y x

H
f ⇓

f

y

f

x

y x

y x

H
f ⇓

H
g ⇓

f

g

y
f

g

x

α

α

Composition of 1-cells k : z → y and f : y → x is given by pasting them together, more

explicitly it is given by fk := 〈f ◦ k,
H
f �

H
k , f ◦ k〉 where

H
f �

H
k := (f �

H
k ) ◦ (

H
f � k).

Vertical composition of 2-cells consists of vertical composition of upper and lower 2-cells.
Similarly, horizontal composition of 2-cells consists of horizontal composition of upper and
lower 2-cells. Identity 1-cells and 2-cells are de�ned trivially.

This is a particular case of our more general Construction 7.4. GTop is KD when K
is ETop and D is the class of bounded geometric morphisms.

Much of our development will turn on the codomain 2-functor

Cod : GTop→ ETop.

It is important to note that this codomain functor is not a �bration in any 2-categorical
sense, as it is not well behaved with respect to arbitrary 2-cells in ETop. This is easy to
see if one takes the point of view of indexed 2-categories, and considers the corresponding



FIBRATIONS OF AU-CONTEXTS BEGET FIBRATIONS OF TOPOSES 567

change-of-base functors. (It becomes a �bration if one restricts the downstairs 2-cells to
be isos, as in [Vic17].) However, it will still be interesting to consider its cartesian 1-cells
and 2-cells, which we do in section 7.

4. Background: The 2-category Con of contexts

The observation underlying [Vic19] is that important geometric theories can be expressed
in coherent logic (no in�nite disjunctions), provided that new sorts can be constructed in a
type-theoretic style that includes free algebra constructions. Models can then be sought in
any arithmetic universe (list-arithmetic pretopos), and that includes any elementary topos
with nno; moreover, the inverse image functors of geometric morphisms are AU-functors.

In the following table we illustrates some of the di�erences between the AU approach
and toposes. More details about the expressive power of AUs can be found in [MV12].

AUs Grothendieck toposes
Classifying category AU〈T〉 S[T]

T1 → T2 AU〈T2〉 → AU〈T1〉 S[T1]→ S[T2]
Base Base independent Base S

In�nities Intrinsic; provided by List Extrinsic; provided by S
e.g. N = List(1) e.g. in�nite coproducts

Results A single result in AUs A family of results by varying S

The system developed in [Vic19] expresses those geometric theories using sketches.
They are, �rst of all, �nite-limit-�nite-colimit sketches. Each has an underlying directed
graph of nodes and edges, re�exive to show the identity s(X) for each node X, and with
some triangles speci�ed as commutative. On top of that, certain nodes are speci�ed as
being terminal or initial, and certain cones and cocones are speci�ed as being for pullbacks
or pushouts. In addition, there is a new notion of list universal to specify parameterized
list objects, together with their empty list and cons operations. From these we can also
construct, for example, N, Z and Q. (R, however, cannot be constructed as an object, a
�set�. It is a point-free space of Dedekind sections, presented by a geometric theory.)

A homomorphism of AU-sketches preserves all the structure: it maps nodes to nodes,
edges to edges, commutativities to commutativities and universals to universals.

We shall need to restrict the sketches we deal with, to our contexts. These are built up
as extensions of the empty sketch 1, each extension a �nite sequence of simple extension
steps of the following types: adding a new primitive node, adding a new edge, adding a
commutativity, adding a terminal, adding an initial, adding a pullback universal, adding
a pushout, and adding a list object.

The following is an example of simple extension by adding a pullback universal.

4.1. Example. Suppose T is a sketch that already contains data in the form of a cospan

of edges:
u1 // u2oo . Then we can make a simple extension of T to T′ by adding a
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pullback universal for that cospan, a cone in the form

P
p2

•
//

p

��
p1

��

u2

��
u1

• //

Along with the new universal itself, we also add a new node P, the pullback; four new
edges (the projections p1, p2, p and the identity for P) and two commutativities u1p

1 ∼ p
and u2p

2 ∼ p.

An important feature of extensions is that the subjects of the universals (for instance,
P and the projections in the above example) must be fresh � not already in the unextended
sketch. This avoids the possibility of giving a single node two di�erent universal properties,
and allows the property that every non-strict model has a canonical strict isomorph.

The next fundamental concept is the notion of equivalence extension. This is an ex-
tension that can be expressed in a sequence of steps for which each introduces structure
that must be present, and uniquely, given the structure in the unextended sketch. Unlike
an ordinary extension, we cannot arbitrarily add nodes, edges or commutativities � they
must be justi�ed. Examples of equivalence extensions are to add composite edges; com-
mutativities that follow from the rules of category theory; pullbacks, �llins and uniqueness
of �llins, and similarly for terminals, initials, pushouts and list objects; and inverses of
edges that must be isomorphisms by the rules of pretoposes. Thus the presented AUs for
the two contexts are isomorphic.

The previous example, of adding a pullback universal, is already an equivalence ex-
tension. Another is that of adding a �llin edge. Suppose we have a pullback universal as
above, and we also have a commutative square

v1

��

v

��

v2
•
//

u2

��
u1

• //

Then as an equivalence extension we can add a �llin edge w // P , with commutativities
p1w ∼ v1 and p2w ∼ v2.

Similarly, if we have two �llin candidates with the appropriate commutativities, then
as an equivalence extension we can add a commutativity to say that the �llins are equal.

Any sketch homomorphism between contexts gives a model reduction map (in the
reverse direction), but those are much too rigidly bound to the syntax to give us a good
general notion of model map. We seek something closer to geometric morphisms, and in
fact we shall �nd a notion of context map that captures exactly the strict AU-functors
between the corresponding arithmetic universes AU〈T〉. A context map H : T0 → T1 is a
sketch homomorphism from T1 to some equivalence extension T′0 of T0.

Each model M of T0 gives � by the properties of equivalence extensions � a model of
T′0, and then by model reduction along the sketch homomorphism it gives a model M �H
of T1.
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Thus context maps embody a localization by which equivalence extensions become
invertible. Of course, every sketch homomorphism is, trivially, a map in the reverse
direction. Context extensions are sketch homomorphisms, and the corresponding maps
backwards are context extension maps. They have some important properties, which we
shall see in the next section.

At this point let us introduce the important example of the hom context T→ of a
context T. We �rst take two disjoint copies of T distinguished by subscripts 0 and 1,
giving two sketch homomorphisms i0, i1 : T → T→. Second, for each node X of T, we
adjoin an edge θX : X0 → X1. Also, for each edge u : X → Y of T, we adjoin a connecting
edge θu : X0 → Y1 together with two commutativities:

X0
θX
•
//

θu

!!
u0
��

X1

u1
��

Y0 θY

• // Y1

A model of T→ comprises a pair M0,M1 of models of T, together with a homomorphism
θ : M0 →M1.

We de�ne a 2-cell between maps H0, H1 : T0 → T1 to be a map from T0 to T→1 that
composes with the maps i0, i1 : T→1 → T1 to give H0 and H1

Finally, an objective equality between context maps H0 and H1 is a 2-cell for which the
homomorphism between strict models must always be an identity. This typically arises
when a context introduces the same universal construction twice on the same data.

From these de�nitions we obtain a 2-category Con whose 0-cells are contexts, 1-cells
are context maps modulo objective equality, and 2-cells are 2-cells. It has all �nite PIE-
limits (limits constructible from �nite products, inserters, equi�ers). Although it does
not possess all (strict) pullbacks of arbitrary maps, it has all (strict) pullbacks of context
extension maps along any other map.

We now list some of the most useful example of contexts. For more examples see [Vic19,
�3.2].

4.2. Example. The context O has nothing but a single node, X, and an identity edge
s(X) on X. A model of O in an AU (or topos) A is a �set� in the broad sense of an
object of A, and so O plays the role of the object classi�er in topos theory. There is also
a context O• which in addition to the generic node X has another node 1 declared as
terminal, and moreover, it has an edge x : 1→ X. (This is the e�ect of adding a generic
point to the context O.) Its models are the pointed sets. This time we must distinguish
between strict and non-strict models. In a strict model, 1 is interpreted as the canonical
terminal object.

There is a context extension map U : O• → O which corresponds to the sketch inclusion
in the opposite direction, sending the generic node in O to the generic node in O•. As a
model reduction, U simply forgets the point.

The context O→ comprises two nodes X0 and X1 and their identities, and an edge
θX : X0 → X1. A model of O→ in an AU (or topos) A is exactly a morphism in A.
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We can de�ne the diagonal context map πT : T → T→ by the opspan (id, F ) of sketch
morphisms where F sends edges θX to s(X), θu to u and commutativities to degenerate
commutativities of the form us(X) ∼ u and s(Y )u ∼ u.

One central issue for models of sketches is that of strictness. The standard sketch-
theoretic notion of models is non-strict: for a universal, such as a pullback of some given
opspan, the pullback cone can be interpreted as any pullback of the opspan. Contexts
give us good handle over strictness. The following result appears in [Vic17, Proposition
1]:

4.3. Remark. Let U : T1 → T0 be a context extension map, for an extension T1 of T0.
Suppose in some AU A we have a model M1 of T1, a strict model M ′

0 of T0, and an
isomorphism φ : M ′

0
∼= M1U .

T1

U
��

M ′
1

φ̃

∼=
//

_

��

M1_

��
T0 M ′

0

φ

∼=
//M1U

Then there is a unique model M ′
1 of T1 and isomorphism φ̃ : M ′

1
∼= M1 such that

(i) M ′
1 is strict,

(ii) M ′
1U = M ′

0,
(iii) φ̃U = φ, and
(iv) φ̃ is equality on all the primitive nodes used in extending T0 to T1.

We call M ′
1 the canonical strict isomorph of M1 along φ.

The fact that we can uniquely lift strict models to strict models as in the remark above
will be crucial in �5 and �8.

5. Background: Classifying toposes of contexts in GTop
In this part, we shall review how [Vic17] exploits the fact that, for any geometric morphism
f : E → F between elementary toposes with nno, the inverse image functor f ∗ is an AU-
functor. It preserves the �nite colimits and �nite limits immediately from the de�nition,
and the preservation of list objects follows quickly from their universal property and the
adjunction of f .

By straightforwardly applying f ∗ we transform a model of M of a context T in F to
a model in E . However, we shall be interested in strict models, and f ∗ is in general non-
strict as an AU-functor. For this reason we reserve the notation f ?M for the canonical
strict isomorph of the straightforward application. By this means, the 1-cells of ETop act
strictly on the categories of strict T-models. This extends to 2-cells. If we have geometric
morphisms f, g : E ⇒ F and a geometric transformation α : f ⇒ g, then we get a model
homomorphism α?M : f ?M → g?M .
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It will later be crucial to know how (−)? interacts with transformation of models by
context maps. Given a context map H : T1 → T0, the models f ?(M �H) and (f ?M)�H are
isomorphic but not always equal. For instance, take H : O• → O to be the non-extension
context map that sends the generic node of O to the terminal node in O•, and M a strict
model of O•. However, [Vic17, Lemma 9] demonstrates that if H is an extension map,
then they are indeed equal.

We take one step further to investigate the action of 1-cells and 2-cells in GTop on
strict models of context extensions.

5.1. Definition. Let U : T1 → T0 be a context extension map and p : p→ p a geometric
morphism.

Then a strict model of U in p is a pair M = (M,M) where M is a strict T0-model
in p and M is a strict T1-model in p such that M � U = p?M .

A U-morphism of models ϕ : M → M ′ is a pair (ϕ, ϕ) where ϕ : M → M
′
and

ϕ : M →M ′ are homomorphisms of T1- and T0-models such that ϕ � U = p?ϕ.
Strict U-models and U-morphisms in p form a category p -Mod-U .

5.2. Construction. Suppose f : q → p is a 1-cell in GTop and let M be a model of U
in p. We de�ne a model f ?M of U in q, with downstairs part f ?M , as follows.

Note that
H
f
?

M is an isomorphism of T0-models in q between f
?
p?M and q?f ?M .

Also, (f
?
M) � U = f

?
(M � U) = f

?
p?M . We de�ne the isomorphism

H
f
?

M : f
?
M → f ?M

to be the canonical strict isomorph of f
?
M along

H
f
?

M , and then f ?M := (f ?M, f ?M)
is a strict model of U in q.

The construction extends to U -model homomorphisms ϕ : M →M ′, as in the diagram
on the left.

f
?
M
′

f ?M
′

f
?
M f ?M

f ?p?M ′ q?f ?M ′

f
?
p?M q?f ?M

H
f
?

M
′

f
?
ϕ

H
f
?

M

f?ϕ

H
f
?

M ′

f
?
p?ϕ

H
f
?

M

q?f?ϕ

g?M g?M

f
?
M f ?M

g?p?M q?g?M

f
?
p?M q?f ?M

H
g
?

M

α?M

H
f
?

M

α?M

H
g
?

M
α?p?M

H
f
?

M

q?α?M

This can be encapsulated in the functor

f -Mod-U : p -Mod-U → q -Mod-U , M 7→ f ?M .

By the properties of the canonical strict isomorph, it is strictly functorial with respect to
f . Furthermore, if α : f ⇒ g is a 2-cell in GTop, then the bottom square in the above
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right-hand diagram commutes and we de�ne α?M to be the unique T1-model morphism
which completes the top face to a commutative square. We may also write f ?M and α?M
for f ?M and α?M .

The upshot is that each 2-cell α : f ⇒ g in GTop gives rise to a natural transformation
α -Mod-U between functors f -Mod-U and g -Mod-U and (α -Mod-U)(M) = α?M .
Hence () -Mod-U is actually a 2-functor.

5.3. Proposition. () -Mod-U : GTopop → Cat is a strict 2-functor.

A main purpose of [Vic17] is to explain how a context extension map U : T1 → T0 may
be thought of as a bundle, each point of the base giving rise to a space, its �bre. In terms
of toposes, a point of the base T0 is a model M of T0 in some elementary topos S. Then
the space is a Grothendieck topos over S, in other words a bounded geometric morphism.
It should be the classifying topos for a theory T1/M of models of T1 that reduce to M .

[Vic17] describes T1/M using the approach it calls �elephant theories�, namely that
set out in [Joh02, B4.2.1]. An elephant theory over S speci�es the category of models
of the theory in every bounded S-topos q : E → S, together with the reindexing along
geometric morphisms. Then T1/M is de�ned by letting E -Mod-T1/M be the category
of strict models of T1 in E that reduce by U to q?M .

The extension by which T1 was built out of T0 shows that the elephant theory T1/M ,
while not itself a context, is geometric over S in the sense of [Joh02, B4.2.7], and hence has
a classifying topos p : S[T1/M ] → S, with generic model G, say. Its classifying property
is that for each bounded S-topos E we have an equivalence of categories

Φ: BTop /S (E ,S[T1/M ]) ' E -Mod-T1/M

de�ned as Φ(f) := f ?G. (We shall take equivalence of categories to mean a functor that
is full, faithful and essentially surjective.)

5.4. Example. Consider the (unique) context map ! from O to the empty context 1. In
any elementary topos S there is a unique model ! of 1, and the classi�er forO/! is the object
classi�er over S, the geometric morphism [FinSet,S] → S where FinSet here denotes
the category of �nite sets as an internal category in S, its object of objects being the nno
N . The generic model of O in [FinSet,S] is the inclusion functor Inc : FinSet ↪→ Set.
As an internal diagram it is given by the second projection of the order < on N , since
{m | m < n} has cardinality n. Given an objectM of S, the classifying topos for O•/M is
the slice topos S/M . Hence the classifying topos of O• is the slice topos [FinSet,S]/Inc.
The generic model of O• in [FinSet,S]/Inc is the pair (Inc, π : Inc→ Inc× Inc) where ∆
is the diagonal transformation which renders the diagram below commutative:

Inc Inc× Inc

Inc

∆

id π2
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So far the discussion of p as classi�er has been �rmly anchored to S andM , but notice
that (G,M) is a model of U in p. We now turn to discussing how it �ts in more generally
with () -Mod-U by spelling out the properties of p as classifying topos that are shown
in [Vic17]. The main result there, Theorem 5.12, says that P is �locally representable�
over Q in the following �bration tower.

(GTop∼=-U)co (GTop∼=-(T0 ⊂ T0))co (ETop∼=-T0)coP Q

There is a slight change of notation from [Vic17]. GTop there, unlike ours, restricts the
2-cells to be isomorphisms downstairs. This is needed to make P and Q �brations. To
emphasize the distinction we have written GTop∼= above.

The objects of GTop∼=-U are pairs (q,N) where q : q → q is a bounded geometric

morphism and N = (N,N) is a model of U in q. A 1-cell from (q0, N0) to (q1, N1) is a
triple (f, f−, f−) such that f : q0 → q1 in GTop, (f−, f−) : N0 → f ?N1 is a homomorphism
of U -models, and f− is an isomorphism. It is P -cartesian i� f− too is an isomorphism.
A 2-cell is a 2-cell α : f ⇒ g in GTop∼= (α an iso) such that α?N1 ◦ (f−, f−) = (g−, g−).
GTop∼=-(T0 ⊂ T0) is similar, but without the Ns and f−s.
Let us now unravel the local representability. It says that for each (S,M) in ETop∼=-T0

there is a classi�er (p : S[T1/M ]→ S, (G,M)) in GTop∼=-U , where G is the generic model
of T1/M .

5.5. Proposition. [Vic17, Proposition 19] The properties that characterize p as classi-
�er are equivalent to the following.
(i) For every object (q,N) of GTop∼=-U , 1-cell f : q → p in ETop and isomorphism

f− : N → f ?M , there is a P -cartesian 1-cell (f, f−, f−) : (q,N) → (p, (G,M)) over
(f, f−). In other words, there is f over f and an isomorphism (P -cartesianness)

f− : N ∼= f ?G over f−.
(ii) Suppose (f, f−, f−), (g, g−, g−) : (q,N) → (p, (G,M)) in GTop∼=-U , with (g, g−, g−)

being P -cartesian (g− is an iso). Suppose also we have α : g ⇒ f so that α?M
commutes with f− and g−. (Note the reversal of 2-cells compared with [Vic17,
Proposition 19]. This is because the �bration tower uses the 2-cell duals (GTop∼=-U)co

etc.) Then α has a unique lift α : g ⇒ f such that (α?G)g− = f−.

In the case where we have identity 1-cells and 2-cells downstairs, it can be seen that
this matches the usual characterization of classi�er for T1/M in BTop/S.

Although the properties described above insist on the 2-cells α and model homo-
morphisms f− downstairs being isomorphisms, we shall generalize this in a new result,
Proposition 5.7.

We �rst remark on the construction of �nite lax colimits in the 2-category ETop and
more speci�cally cocomma objects which will be used in our proof. There is a forgetful
2-functor U from ETopop to the 2-category of categories which sends a topos E to its
underlying category E , a geometric morphism f : E → F to its inverse image part f ∗ : F →
E and a geometric transformation θ : f ⇒ g to the natural transformation θ∗ : f ∗ ⇒ g∗.
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The 2-functor U transforms colimits in ETop to limits in Cat. This in particular means
that the underlying category of a coproduct of toposes, for instance, is the product of their
underlying categories. The same is true for cocomma objects. More speci�cally, for any
topos E , with cocomma topos (idE ↑ idE) equipped with geometric morphisms i0, i1 : E ⇒
(idE ↑ idE) and 2-cell θ between them, the data 〈i?0, i?1, θ?〉 speci�es the corresponding
comma category idU(E) ↓ idU(E). For more details on the construction of cocomma toposes
see [Joh02, B3.4.2]. Another useful remark is about the relation of topos models of T→

and models of T.

5.6. Lemma. Models of T→ in a topos E are equivalent to models of T in the cocomma
topos (idE ↑ idE).

5.7. Proposition. Let U : T1 → T0 be a context extension map, M a strict model of T0

in an elementary topos S, and p : S[T1/M ] → S the corresponding classifying topos with
generic model G.

Let q : q → q be a bounded geometric morphism, and let (fi, f
−
i , fi−) : (q,Ni) →

(p, (G,M)) (i = 0, 1) be two P -cartesian 1-cells in GTop∼=-U .
Suppose ϕ : N0 → N1 is a homomorphism of U-models and α : f

0
⇒ f

1
is such that

the left hand diagram in below commutes. Then there exists a unique 2-cell α : f0 ⇒ f1

over α such that the right hand diagram commutes.

N0 f
0

?M

N1 f
1

?M

f0−

ϕ α?M

f1−

N0 f0
?G

N1 f1
?G

f−0

ϕ α?G

f−1

Proof. Note that we do not assume that α and ϕ are isomorphisms, so ϕ need not be a
1-cell in GTop∼=. To get round this, we use cocomma toposes.

Let q′ = q ↑ q and q′ = q ↑ q be the two cocomma toposes, with bounded geometric
morphism q′ : q′ → q′. We now have two 1-cells i0, i1 : q → q′ in GTop, equipped with

identities for
H
ı 0 and

H
ı 1, and a 2-cell θ : i0 ⇒ i1. The pair ϕ = (ϕ, ϕ) is a model of U in

q′.
The geometric transformation α gives us a geometric morphism a : q′ → S, with an

isomorphism a− : ϕ ∼= a?M , so a 1-cell in ETop∼=-T0. This lifts to a P -cartesian 1-cell
(a, a−, a−) : (q′, ϕ) → (p, (G,M)) in GTop∼=-U . We now have the following diagrams in
GTop and GTop∼=-U .
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q q′ p

i1

i0

f1

f0

a

µ0

µ1

θ

(q,N1)

(q′, ϕ) (p, (G,M))

(q,N0)

(i1,id,id)

(f1,f
−
1 ,f1−)

(a,a−,a−)
(i0,id,id)

(f0,f
−
0 ,f0−)

In the right hand diagram all the 1-cells are P -cartesian, and it follows there are unique
iso-2-cells µi : (f1, f

−
1 , f1−) → (a, a−, a−)(i1, id, id) lifting the identity 2-cells downstairs.

Now by composing µ0, a � θ and µ−1
1 we get the required α.

To show uniqueness of the geometric transformation α, suppose we have another, β,
with the same properties. In other words, α = β and α?(G,M) = β?(G,M). We thus
get two 1-cells a, b : q′ ⇒ p, a = (f0, α, f1) and b = (f0, β, f1). We have a = b and
a?(G,M) = b?(G,M) and it follows that there is a unique vertical 2-cell ι : a ⇒ b such
that ι?(G,M) is the identity.

By composing horizontally with θ, we can analyse ι as a pair of 2-cells ιλ : fλ ⇒ fλ
(λ = 0, 1) such that the following diagram commutes.

f0 f0

f1 f1

ι0

α β

ι1

Now we see that each ιλ is the unique vertical 2-cell such that ιλ
?(G,M) is the identity,

so ιλ is the identity on fλ and α = β.

6. The Chevalley criterion in Con

In [Str74], and later in [Str80], Ross Street develops an elegant algebraic approach to
study �brations, op�brations, and two-sided �brations in 2-categories and bicategories.
In the case of (op)�brations the 2-category is required to be �nitely complete, with strict
�nite conical limits1 and cotensors with the (free) walking arrow category 2. Given those,
it also has strict comma objects. Then he de�ned a �bration (op�bration) as a pseudo-
algebra of a certain right (resp. left) slicing 2-monad. In the case of bicategories, they
are de�ned via �hyperdoctrines� on bicategories.

For (op)�brations internal to 2-categories, he showed [Str74, Proposition 9] that his
de�nition was equivalent to a Chevalley criterion. However, for our purposes we prefer

1 i.e. weighted limits with set-valued weight functors. They are ordinary limits as opposed to a more
general weighted limit.
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to start from the Chevalley criterion and bypass Street's characterization via pseudo-
algebras.

Note also that Street weakened the original Chevalley criterion of Gray, by allowing
the adjunction to have isomorphism counit. We shall revert to the original and more
strict requirement of having the identity as the counit.

We do not wish to assume existence of all pullbacks since our main 2-category Con does
not have them. Instead, we assume our 2-categories in this section to have all �nite strict
PIE-limits [PR91], in other words those reducible to Products, Inserters and Equi�ers.
This is enough to guarantee existence of all strict comma objects since for any opspan

A
f−→ B

g←− C in a 2-category K with (strict) �nite PIE-limits, the comma object f↓g can
be constructed as an inserter of fπA, gπC : A×C ⇒ B. Moreover, it is a result of [Vic19,
Lemma 44] that Con has �nite PIE-limits.

Pullbacks are not PIE-limits, so sometimes we shall be interested in whether they
exist.

6.1. Definition. A 1-cell p : E → B in a 2-category K is carrable whenever a strict
pullback of p along any other 1-cell f : B′ → B exists in K . As usual, we write
f ∗p : f ∗E → B′ for a chosen pullback of p along f .

[Vic19] proves that all context extension maps are carrable.
From now on in this section, we assume that K is a 2-category with all �nite PIE-

limits. Note that for AUs and elementary toposes, we assume that the structure is given
canonically � this is essential if we are to consider strict models. For our K here we do
not assume there are canonical PIE-limits or pullbacks. Indeed, in Con (so far as we know)
they do not exist. 1-cells are de�ned only modulo objective equality, and the construction
of those limits depends on the choice of representatives of 1-cells.

We �rst describe the Chevalley criterion in the style of [Str74]. Suppose B is an object
of K , and p is a 0-cell in the strict slice 2-category K /B. By the universal property
of (strict) comma object B↓p, there is a unique 1-cell Γ1 : E↓E → B↓p with properties
R(p)Γ1 = d0(p↓p), d̂1Γ1 = e1, and φp � Γ1 = p � φE.

E↓E

B↓B B↓p E

B B

e1

p↓p
Γ1

d0

d̂1

R(p) p

1

φp⇑

(2)

6.2. Definition. Consider p as above. We call p a (Chevalley) �bration if the 1-cell
Γ1 has a right adjoint Λ1 with counit ε an identity in the 2-category K /B.
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Dually one de�nes (Chevalley) op�brations as 1-cells p : E → B for which the mor-
phism Γ0 : E↓E → p↓B has a left adjoint Λ0 with unit η an identity.

Street [Str74], but using isomorphisms for the counits ε instead of identities, showed
that the Chevalley criterion is equivalent to a certain pseudoalgebra structure on p.
Gray [Gray66] showed that Chevalley �brations in the 2-category Cat of (small) cate-
gories correspond to well-known (cloven) Grothendieck �brations.

Although pullbacks are not assumed to exist (they are not PIE-limits), the comma
objects p↓B and B↓p can be expressed as pullbacks along the two projections from B↓B
to B. Let us at this point reformulate the �bration property using the notation as it will
appear in Con when p is an extension map U : T1 → T0 (and hence carrable).

Let dom, cod: T→0 → T0 be the domain and codomain context maps correspond-
ing to sketch homomorphisms i0, i1 : T0 → T→0 . We de�ne the context extension maps
dom∗ T1 → T→0 and cod∗ T1 → T→0 as the pullbacks of U along dom and cod. A model
of dom∗(T1) is a pair (N, f : M0 → M1) where f is a homomorphism of models of T0

and N is a model of T1 such that N � U = M0. Models of cod∗(T1) are similar, except
that N � U = M1. There are induced context maps Γ0 : T→1 → dom∗(T1) and Γ1 : T→1 →
cod∗(T1). Given a model f : N0 → N1 of T

→
1 , Γi sends it to (Ni, f �U

→
: N0 �U → N1 �U).

T→1 > cod∗(T1)

dom∗(T1) T1

T→0

T→0 T0

Γ0

Γ1

U→

π1

Λ1

π0

U0 U
cod

dom

θT0

(3)

6.3. Remark. A consequence of the counit of the adjunction Γ1 a Λ1 being the identity is
that the adjunction triangle equations are expressed in simpler forms; we have Γ1�η1 = idΓ1

and η1 � Λ1 = idΛ1 .

6.4. Remark. The composite Γ0Λ1 is a 1-cell from cod∗(T1) to dom∗(T1). Moreover,

there is a 2-cell from π0Γ0Λ1 to π1 constructed as π0Γ0Λ1

θT1Λ1

===⇒ π1Γ1Λ1 = π1. These two,
the 1-cell and the 2-cell, will appear again as the structure discussed in Remark 7.10.

7. The representable de�nition in ETop
In this section we turn to the representable de�nition of �bration, particularly in ETop.
The only �brations there that we shall be interested in are bounded as geometric
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morphisms, and we �nd it convenient to consider them as objects in GTop. Part of
our analysis will consider cartesian properties with respect to the codomain functor
Cod : GTop→ ETop, and so relates to work on 2-categorical or bicategorical �brations.

[Her99] generalizes the notion of �bration to strict 2-functors between strict 2-
categories. His archetypal example of strict 2-�bration is the 2-category Fib of
Grothendieck �brations, �bred over the 2-category of categories via the codomain functor
Cod : Fib→ Cat. Much later [Bak12] in his talk, and [Buc14] in his paper develop these
ideas to de�ne �brations of bicategories.

We shall examine the cartesian 1-cells and 2-cells for our codomain 2-functor
Cod : GTop → ETop, but we might as well do this in the abstract. We assume for
the rest of this section that K is a 2-category (abstracting ETop).

7.1. Remark.We recall that a bipullback of an opspan A
f−→ C

g←− B in a 2-category K
is given by a 0-cell P together with 1-cells d0, d1 and an iso-2-cell π : fd0 ⇒ gd1 satisfying
the following universal properties.

(BP1) Given any iso-cone (l0, l1, λ : fl0 ∼= gl1) over f, g (with vertex X), there exists a 1-cell
u with two iso-2-cells γ0 and γ1 such that the pasting diagrams below are equal.

X

P B

A C

u

l0

l1

∼=γ0

∼=γ1

d1

d0 g∼=π

f

=

X

B

A C

l0

l1

g

∼=λ

f

(BP2) Given 1-cells u, v : X ⇒ P and 2-cells αi : diu⇒ div such that

fd0u fd0v

gd1u gd1v

f �α0

π�u π�v

g�α1

,

then there is a unique β : u⇒ v such that each αi = di � β.

The two conditions (BP1) and (BP2) together are equivalent to saying that the functor

K (X,P )
'−→ K (X, f) ↓∼= K (X, g),

obtained from post-composition by the pseudo-cone 〈d0, π, d1〉, is an equivalence of cate-
gories. The right hand side here is an isocomma category.

Note the distinction from pseudopullbacks, for which the equivalence is an isomorphism
of categories.
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7.2. Definition. (cf. De�nition 6.1.) A 1-cell x : x→ x in K is bicarrable whenever
a bipullback of p along any other 1-cell f exists in K . We frequently use the diagram
below to represent a chosen such bipullback:

f ∗x x

y x

f

f∗x x

f

H
f ⇓

where the 2-cell
H
f is an iso-2-cell.

Similarly, we say x is pseudocarrable if pseudopullbacks exist.

Of course, bipullbacks are de�ned up to equivalence and the class of bicarrable 1-cells
is closed under bipullback.

An important fact in ETop is that all bounded geometric morphisms are bi-
carrable [Joh02, B3.3.6].

We now recall the representable de�nition of �bration from [Joh93, de�nition 3.1].

7.3. Definition. Let K be a 2-category and x : x→ x a 1-cell in K .
(a) A 2-cell α : f ⇒ e : y → x is cartesian (with respect to x) if, for every 1-cell h : w →

y, the whiskering α �h is cartesian with respect to the functor K (w, x) : K (w, x)→
K (w, x).

(b) x is a �bration in K if, given any e : y → x, f : y → x and α : f ⇒ xe, there exists

a cartesian 1-cell α : f ⇒ e and an iso-2-cell
H
f : xf ∼= f such that x � α = α

H
f . We

say x is a strict �bration if the above condition always holds with
H
f = idf .

Note that (b) is stronger than just saying K (y, x) is a �bration. The stronger def-
inition of cartesian in (a) covers the additional stipulation that the naturality squares
should be �bred functors, that is, for any 1-cell h : w → y, the top row functor in the
commutative diagram below preserves cartesian morphisms.

K (y, x) K (w, x)

K (y, x) K (w, x)

K (h,x)

K (y,x) K (w,x)

K (h,x)

Now, x is a strict (resp. weak) �bration in K i� the natural transformation
K (−, x) : K (−, x) ⇒ K (−, x) is a (representable) presheaf over K of Grothendieck
(resp. Street aka weak) �brations. (We have ignored the fact that K is a 2-category, and
typically large.)
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7.4. Construction. Suppose K is a 2-category. Let D be a chosen class of bicarrable
1-cells in K , which we shall call �display 1-cells�, with the following properties.
• Every identity 1-cell is in D.
• If x : x→ x is in D, and f : y → x in K , then there is some bipullback y of x along
f such that y ∈ D.

We form a 2-category KD whose 0-cells are the elements x ∈ D, and whose 1-cells and 2-
cells are taken in exactly the same manner as for GTop (De�nition 3.1), using elements of
D for bounded geometric morphisms and 1-cells and 2-cells in K for geometric morphisms
and geometric transformations.

Notice that KD is a sub-2-category of the 2-category K 2 := Funps(2,K ), where
the latter consists of (strict) 2-functors, pseudo-natural transformations and modi�-
cations from the interval category (aka free walking arrow category) 2. We write
Cod,Dom : K 2 → K (and also for their restrictions to KD) for the (strict) 2-functors
that map everything to the downstairs or upstairs parts. Thus Cod maps x 7→ x, f 7→ f ,
and 〈α, α〉 7→ α.

We now examine cartesian 1-cells and 2-cells of KD with respect to Cod : KD → K ,
following the de�nitions of [Buc14, 3.1]. Note that, although we deal only with 2-categories
and 2-functors between them, we follow the bicategorical de�nitions, in which uniqueness
appears only at the level of 2-cells.

7.5. Proposition. A 1-cell f : y → x in KD is cartesian with respect to Cod i�, as
square in K , it is a bipullback.

Proof. Consider the following diagram.

KD(w, y) KD(w, x)

K (w, y) K (w, x)

K (w, y) K (w, x)

K (w, y) K (w, x)

KD(w,f)

Dom

Cod

Dom

Cod

K (w,f)

K (w,y)

K (w,x)
K (w,f)

K (w,y)

K (w,x)

K (w,f)

(4)

The top, bottom and back faces all commute up to identity. The left and right faces
commute up to iso-2-cells, corresponding to those in the 1-cells of KD. By de�nition,
they are both iso-comma squares (pseudopullbacks). The front face has an iso-2-cell, by

whiskering the iso-2-cell
H
f .

The de�nition of cartesianness for f is that, for all w, the back face is a bipullback. f
itself is a bipullback (in K ) i�, for all objects w of K , the front face is a bipullback of
categories.
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⇒: Given w, let w = idw : w → w. The back face is a bipullback by hypothesis. Then
the two edges Dom in the diagram are both equivalences and the edges K (w, y) and
K (w, x) are identities. It follows that the front face is a bipullback.
⇐: Given w, by hypothesis the front face is a bipullback. The iso-comma for the back

face has objects (g : w → y, h : w → x, θ : fg ∼= h), and this is equivalent to the category

of structures (g, u : w → y, φ : gw ∼= u, h,
H
h : xh ∼= fu). The result now follows from the

fact that the front and left faces are bipullback and iso-comma.

7.6. Remark. A 2-cell α : f ⇒ g : y → x in KD is cartesian for Buckley's de�nition if it
is cartesian as a 1-cell with respect to the functor Codyx : KD(y, x)→ K (y, x).

We now de�ne a notion that, on the one hand, conveniently leads to a characterization
of when P is a �bration; but, on the other hand, turns out in the next section to be useful
even when P is not a �bration.

7.7. Definition. Let P : E → B be a 2-functor. We call an object e of E �brational
with respect to P i�
(B1) every f : b′ → b = P (e) has a cartesian lift,
(B2) for every 0-cell e′ in E , the functor

Pe′,e : E (e′, e)→ B(P (e′), P (e))

is a Grothendieck �bration of categories, and
(B3) whiskering on the left preserves cartesianness of 2-cells in E between 1-cells with

codomain e.

Clearly, every object of E is �brational i� P is a �bration in the sense of [Her99,
Theorem 2.8]. Buckley's de�nition requires a strengthening of (B3) in which cartesianness
is also preserved by whiskering on the right � see [Buc14, Remark 2.1.9]. It is also
noteworthy that conditions (B2) and (B3) together make the 2-functor P−,e : E op →
Cat ↓Cat lift to P−,e : E op → Fib for every e ∈ E .

7.8. Lemma. Let x be an object of KD and let α : g ⇒ f : y → x be a 2-cell.
(a) If α is cartesian with respect to x (De�nition 7.3), then α is cartesian with respect

to Cod.
(b) If x satis�es condition (B3) of De�nition 7.7 then the converse also holds.

Proof. (a) Suppose we have h : y → x, γ : h ⇒ f and β : h ⇒ f with γ = α ◦ β. By

cartesianness with respect to x, we can �nd unique β : h ⇒ g over
H
g −1 ◦ (βy)◦

H
h such

that γ = α ◦ β. Then 〈β, β〉 : h⇒ g is the required 2-cell in KD.
(b) Let α′ be got by whiskering α with the 1-cell 〈1y, idy, y〉 : y → y, where y, as object

of KD, denotes 1y. The 2-cell α
′ is cartesian with respect to Cod : KD(y, x)→ K (y, x).

KD(y, x) is equivalent to K (y, x), and it follows that α = α′ is cartesian for K (y, x).
The rest of De�nition 7.3 (a) follows by whiskering α with 〈h, id, yh〉 : w → y.
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7.9. Proposition. Let x be an object of KD. Then x is a �brational object with respect
to Cod i� it is a �bration (De�nition 7.3 (b)) in K .

Proof. ⇒: Suppose we have e, f and α as in De�nition 7.3 (b). Any cartesian lift

α : f ⇒ e of α provides us with the required α, f and
H
f ; then by Lemma 7.8, α is

cartesian.
⇐: Condition (B1) of De�nition 7.7 follows from Proposition 7.5, as every 1-cell in D

is bicarrable in K .
For condition (B2), suppose we have e : y → x and α : f ⇒ e : y → x. Let α : f ⇒ e,

with
H
f , be a cartesian lift of

H
e −1 ◦ (α � y) : fy → xe. These provide us with α : f ⇒ e as

required, and it is cartesian by Lemma 7.8.
For condition (B3), let α : g ⇒ f : y → x be cartesian for Cod. The above construction

applied to α, together with uniqueness of cartesian lifts up to isomorphism, shows that
α is cartesian for x. If h : w → y then it is clear from the de�nition that α � ~ is also
cartesian for x, and now by Lemma 7.8 α � h is cartesian for Cod.

Note that the weak nature of De�nition 7.3 (b), with the appearance of
H
f , is dealt

with in the de�nition of KD, where 1-cells are squares commuting only up to isomorphism.
De�nition 7.7 (B2) always uses strict �brations.

7.10. Remark. Suppose x is a �brational object in KD, and α : f ⇒ g : y → x is a 2-cell.
Let f : xf → x and g : xg → x be cartesian lifts of f and g (obtained as bipullbacks), so
xf = xg = y. By (B2) α has a cartesian lift α′ : f ′ ⇒ g. We can then factor f ′, up to an
iso-2-cell γ, as f ◦ `α where `α is vertical (`α = idy) and f : xf → x. From α′ and γ we
obtain a cartesian 2-cell α : f ◦ `α ⇒ g (diagram on the left below).

After appropriate changes of notation, this translates into the diagram on the right,
which summarizes the structure used in [Joh02, B4.4.1].

xg x

xf x

`α

g

f

α

g∗E E

f ∗E E

A B

A B

`(α)

p∗g

g∗p

p
p∗f

f∗p

p

α̃

∼=
g

f

α

That structure, together with various coherence isomorphisms to deal with the fact that
xf and xg are de�ned only up to equivalence, and `α only up to isomorphism, is the
elementary unravelling of a de�nition shown in [Joh93, Proposition 3.3] to be equivalent
to the representable de�nition of �bration. (Note how our consistent notation allows the
diagrams of [Joh93] to be collapsed in the vertical dimension.)
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Despite being quite complex, this description is closer to underlying intuitions of �-
bration as indexed category, and to some of our motivating examples. The 1-cells f and
g may be thought of as �generalized objects� of the base x, and then xf and xg are the
generalized �bres over them. Then for a generalized morphism α, `α gives (contravari-
antly) the corresponding map between the �bres. α shows how morphisms in x work
across �bres.

8. Main results

We are now at a stage that we can state our main theorem.

8.1. Lemma. Let U : T1 → T0 be a context extension map with the �bration property in
the Chevalley style (De�nition 6.2), let M be a model of T0 in an elementary topos S, and
let p : S[T1/M ]→ S be the classi�er for T1/M with generic model G. Suppose f, g : q ⇒ p
are 1-cells in GTop and α : f ⇒ g a 2-cell. We write ϕ := α?(G,M), so that ϕ = α?G is
a model of T→1 in q.

Then α is a cartesian 2-cell (in GTop over ETop) i� ηϕ is an isomorphism, where
(ηϕ, id) is the unit for q -Mod- Γ1 a q -Mod- Λ1.

Proof. (⇒): LetN be the domain of ϕ�Γ1�Λ1, and letN := f ?M . Then (see diagram (3))

N � U = ϕ � Γ1 � Λ1 � Γ0 � π0 � U = ϕ � Γ1 � Λ1 � U
→
� dom = ϕ � Γ1 � Λ1 � Γ1 � U1 � dom

= ϕ � Γ1 � U1 � dom = ϕ � U
→
� dom = ϕ � dom �U = (f ?G) � U = q?N ,

and so N := (N,N) is a model of U in q.

f ?G g?G

N g?G

e?G g?G

ϕ:=α?G

ηϕ

β′?G
ϕ�Γ1�Λ1

e−

γ?G

β?G

By the classi�er property of p (Proposition 5.5), and taking e := f and e− := id: N =
f ?M , we obtain e : q → p and (e−, id) : N ∼= e?(G,M). Now by Proposition 5.7 we get a
unique γ : e ⇒ g over γ := α such that ϕ � Γ1 � Λ1 = (γ?G)e−. Again by Proposition 5.7
we get a unique β′ : f ⇒ e over idf such that e−ηϕ = β′?G, and since (γ?G)(β′?G) = α?G
it follows that γβ′ = α.

By cartesianness of α we also have a unique β : e⇒ f over idf such that γ = αβ, and
since αββ′ = γβ′ = α it follows that ββ′ = idf . We deduce that (β?G)e−ηϕ = idf?G.

Finally ηϕ(β?G)e− = idN follows from the adjunction Γ1 a Λ1, because both sides
reduce by Γ1 to the identity. Hence ηϕ is an isomorphism, with inverse (β?G)e−.
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(⇐): Let e : q → p with γ : e⇒ f such that γ = αβ.

f ?G g?G

N g?G

e?G g?G

ϕ:=α?G

ηϕ

ϕ�Γ1�Λ1

γ?G

ψ

β?G

f ?M g?M

N g?M

e?M g?M

ϕ:=α?M

ϕ:=α?M

γ?M

β?M

β?M

By the adjunction Γ1 a Λ1 there is a unique T1-morphism ψ : e?G → N over β?M

such that (ϕ �Γ1 �Λ1)ψ = γ?G. Because ηϕ is an isomorphism this corresponds to a unique

ψ
′
: e?G → f ?G over β?M such that ϕψ

′
= γ?G. By Proposition 5.7 this corresponds to

a unique β : e ⇒ f over β such that (α?G)(β?G) = γ?G, i.e. unique such that αβ = γ.
This proves that α is cartesian.

8.2. Theorem. If U : T1 → T0 is a context extension map with (op)�bration property
in the Chevalley style (De�nition 6.2), and M a model of T0 in an elementary topos S,
then p : S[T1/M ] → S is an (op)�bration in the 2-category ETop by the representable
de�nition.

Proof. Here we only prove the theorem for the case of �brations. A proof for the op�-
bration case is similarly constructed. According to Proposition 7.9, in order to establish
that p is a �bration in the 2-category ETop, we have to verify that conditions (B1)-(B3)
in De�nition 7.7 hold for P = Cod : KD → K , where K = ETop, D is the class of
bounded geometric morphisms, and so KD is GTop.

By Proposition 7.5, condition (B1) follows from the fact that p is bicarrable.
To prove condition (B2), let q : q → q be a bounded geometric morphism, let g : q → p

be a 1-cell in KD, let f : q → S be geometric morphism and α : f ⇒ g a geometric
transformation.

q S[T1/M ]

q S

H
g ⇓

f

g

q

g

p

α

We seek f over f with a cartesian lift α : f ⇒ g of α. Notice that for the given model
M of T0 in S, the component M of the natural transformation α gives us a morphism
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α?M : f ?M → g?M of T0-models in q, hence a T→0 -model in q. Let us write it as ϕ : N f →
N g. Then q

?ϕ is a model of T→0 in q.
Let G be the generic model of T1/M in S[T1/M ], so that (G,M) is a model of U in

p. Hence we get (N g, N g) := g?(G,M) a model of U in q, and

g := (N g, q
?ϕ) ∈ q -Mod- cod∗(T1).

Then g�Λ1 (see diagram (3)) is a model ϕ : N f → N g of T
→
1 in q, with N f = g�(Λ1; Γ0; π0).

We also see that ϕ�U→ = g�(Λ1;U
→

) = q?ϕ, so ϕ := (ϕ, ϕ) : Nf → Ng is a homomorphism
of U -models in q.

N f N g

q?N f q?N g

ϕ

q?ϕ

Thus we get two objects (q,Nf ) and (q,Ng) of GTop∼=-U together with ϕ as in
Proposition 5.7. In addition we have (p, (G,M)), and a P -cartesian 1-cell

(g, (id : N g = g?G, id : N = g?M)) : (q,Ng)→ (p, (G,M)).

By the classi�er property we can also �nd a P -cartesian 1-cell

(f, (f−, f−)) : (q,Nf )→ (p, (G,M)).

We can now apply Proposition 5.7 to �nd a 2-cell α : f ⇒ g over α that gives us ϕ.
Since ϕ is de�ned to be of the form g � Λ1, so ϕ � Γ1 � Λ1 = ϕ, we �nd that ηϕ is the

identity and ηα?G is an isomorphism. It follows from Lemma 8.1 that α is cartesian.
For proving (B3), suppose we have f, g : q ⇒ p and a cartesian 2-cell α : f ⇒ g. By

Lemma 8.1, ηα?G is an isomorphism. Take any 1-cell k : q′ → q in GTop where q′ : q′ → q′.
Relative to the isomorphism of models k?(g �Λ1) ∼= (k?g) �Λ1, k

? preserves the unit η, and
so ηk?α?G is an isomorphism and, by Lemma 8.1, α � k is cartesian.

8.3. Remark. There is a shorter proof2 of Theorem 8.2 which circumvents the 2-
functor Cod and directly uses Proposition 5.7. It goes as follows: for an (op)�bration
U : T1 → T0 of AU-contexts, and any AU A, we get a Grothendieck (op)�bration
A -Mod-U : A -Mod-T1 → A -Mod-T0 of categories (of strict models), and moreover,
given an (strict) AU-functor F : A → B, we get a morphism of Grothendieck (op)�brations
(i.e. a strictly commuting square where the top functor preserves cartesian arrows):

A -Mod-T1 B -Mod-T1

A -Mod-T0 B -Mod-T0

F -Mod-T1

A -Mod-U B -Mod-U

F -Mod-T0

2We are indebted to the anonymous referee for this elegant proof.
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Therefore the right vertical functor in the diagram below is a Grothendieck �bration of
presheaves of categories (or equivalently a presheaf of Grothendieck �brations and �bred
functors), where J : ETop ↪→ AUop is the inclusion of the 2-category of elementary toposes
into the opposite of 2-category of AUs.

ETop(−,S[T1/M ]) J(−) -Mod-T1

ETop(−,S) J(−) -Mod-T0

Ĝ

p∗ J(−) -Mod-U

M̂

(5)

In above M̂ and Ĝ are respectively the natural transformations induced by strictifying
pullbacks of models M and G.

Now, we claim that Proposition 5.7 implies that the diagram above is a bipullback of
presheaves of categories. To witness this pointwise, for any elementary topos E , having
a geometric morphism f : E → S of elementary toposes together with a strict model N

of T1 in E which reduces, via U , to M̂(f) := f ?M is equivalent to a 1-cell f : 1E → p in

GTop which is the same as a geometric morphism f : E → S[T1/M ] satisfying p ◦ f ∼= f

and f
?
G = N . It is easy to see that these pointwise bipullbacks are preserved under the

base change along arbitrary geometric morphisms E ′ → E , and therefore, the diagram (5)
is a bipullback of presheaves of categories.

It is a classical fact that a bipullback of a Grothendieck �bration is a Street (aka
weak) �bration, and this fact implies that p∗ is a Street �bration, and therefore by [Joh93,
Proposition 3.3], the geometric morphism p : S[T1/M ]→ S is a �bration in the 2-category
ETop.

Theorem 8.2 can now be applied to the examples in section 6.

9. Examples and applications

We begin this section by the detailing one of the simplest non-trivial op�brations of
contexts, which classi�es the base-independent local homeomorphisms of toposes via
Theorem 8.2. We then outline two other important examples of context extensions, the
�rst an op�bration and the second a �bration. We do not have space here to give full
details as sketches. Rather, our aim is to explain why the known geometric theories can
be expressed as contexts. At the end of this section we conjecture several other examples.
Further details are in [Haz19].

9.1. Example. Local homeomorphisms are op�brations. The context extension U : O• →
O (Example 4.2) is an extension map with the op�bration property. First we form the
pullbacks of the context extension U along the two context maps dom and cod. U0 and
U1 are U reindexed along dom and cod: the same simple extension steps, but with the
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data for each transformed by dom or cod.

dom∗(O•) O•

O→ O

π0

U0 U

dom

cod∗(O•) O•

O→ O

π1

U1 U

cod

The context dom∗(O•) has three nodes, a terminal 1, primitive nodes X0 and X1, with
edges x0 : 1 → X0, θX : X0 → X1, and identities on the three nodes. cod∗(O•) is similar,
but with x1 : 1→ X1 instead of x0.

There is, in addition, the arrow context O→• which consists of all the nodes, edges, and
two commutativities θXx0 ∼ θx, x1θ1 ∼ θx (marked by bullet points) as presented in the
following diagram plus identity edges.

11
x1
•
// X1

10 x0

• //

θx
>>

θ1

OO

X0

θX

OO

There are context maps Γ0 and Γ1 which make the following diagram commute:

cod∗O• O→

O→• O• O

dom∗O• O→

π1

U1

cod
Γ1

Γ0

U

π0

Λ0

U0

dom

Γ0 is the dual to the sketch morphism dom∗O• → O→• that takes 1 to 10 and otherwise
preserves notation. Γ1 is similar.

More interestingly, Γ0 has a left adjoint Λ0 : dom∗(O•) → O→• . For this, X0, θX , X1

and x0 in O→• are interpreted in dom∗O• by the ingredients with the same name, and 10,
11 by 1 and θ1 by the identity on 1. For θx and x1 we need an equivalence extension of
dom∗O• got by adjoining the composite θXx0, and a commutativity for one of the unit
laws of composition.

It is now obvious that Γ0Λ0 = id: dom∗(O•) → dom∗(O•). Less obvious, but true in
this example, is that Λ0Γ0 is the identity on O→• . This follows from the rules for objective
equality, and is essentially because in any strict model 10 and 11 are both interpreted as
the canonical terminal object, and θ1 as the identity on that.

Now, let B be a bounded topos over a base topos S, and f : M → N a morphism in
B. The geometric morphism pU : S[O•]→ S[O] induced by the context extension map U
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is an op�bration and a local homeomorphism. Using Remark 7.10, we get the 1-cells and
2-cells in the left diagram below where the inverse image of the geometric morphism `f is
the base change f ∗ and the direct image is formed by the dependent product Πf along f .

B/N

B/M S[O•]

B

B S[O]

`f

pU

p̃fq

pNq

pMq

pfq

S ′[O•/n∗X]

S ′[O•/m∗X] S[O•/X]

S ′

S ′ S

`α

pU,X

α̃

n

m

α

The diagram on the right is one that arises out of Theorem 8.2, and the two have the
same formal shape. Note however some crucial di�erences. The left diagram works only
for bounded S-toposes B (i.e. the op�bration property of pU is limited to the 2-category
BTop/S), and the geometric transformations are restricted to being over S. In the right
diagram, S is a base only for the purposes of constructing S[O•/X]. The op�bration
property works for arbitrary elementary topos S ′, geometric morphisms m and n, and
geometric transformation α.

The classi�ers for this example are the local homeomorphisms. Their op�brational
character follows simply from our results, though note that it can also be deduced as a
special case of the torsor result, Example 9.2.

9.2. Example. Presheaf toposes are op�brations. Let T0 = [C : Cat] be the theory of
categories. It includes nodes C0 and C1, primitive nodes introduced for the objects of
objects and of morphisms; edges d0, d1 : C1 → C0 for domain and codomain and an edge
for identity morphisms; another node C2 for the object of composable pairs and introduced
as a pullback; an edge c : C2 → C1 for composition; and various commutativities for the
axioms of category theory. The technique is general and would apply to any �nite cartesian
theory � this should be clear from the account in [PV07].

Now let us de�ne the extension T1 = [C : Cat][T : Tor(C)], where Tor(C) denotes the
theory of torsors (�at presheaves) over C. The presheaf part is expressed by the usual
procedure for internal presheaves. We declare a node T0 with an edge p : T0 → C0, and let
T1 be the pullback along d1. Then the morphism part of the presheaf de�nes xu = F (u)(x)
if d1(u) = p(x), and this is expressed by an edge from T1 to T0 over d1 satisfying various
conditions which gives a right action by C on T . In fact this is another cartesian theory.

The �atness conditions are not cartesian, but are still expressible using contexts. First
we must say that T0 is non-empty: the unique morphism T0 → 1 is epi, in other words
the cokernel pair has equal injections. Second, if x, y ∈ T0 then there are u, v, z such that
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x = zu and y = zv. Third, if xu = xv then there are w, z such that x = zw and wu = wv.
Again, these can be expressed by saying that certain morphisms are epi.

Now we have a context extension map U : T1 → T0, which forgets the torsor.
Contexts T0 and T1, like all contexts, are �nite. In section 5 we saw how for an

in�nite category C we can still access the in�nite theory Tor(C) (in�nitely many sorts
and axioms, in�nitary disjunctions) as T1/C, the ��bre of U over C�.

We now demonstrate that U is indeed an op�bration. Consider a functor F : C → D.
If T is a torsor over C, we must de�ne a torsor T ′ = Tor(F )(T ) over D. Analogously let
us write D as a C-D-bimodule, with a right action by D by composition, and a left action
by C by composition after applying F . We de�ne Tor(F )(T ), a D-torsor, as the tensor
T ⊗C D. Its elements are pairs (x, f) with x ∈ T , f ∈ D1 and p(x) = d1(f), modulo
the equivalence relation generated by (x, uf) ∼ (xu, f). This can be de�ned using AU
structure. Let us analyse an equation (x, f) = (x′, f ′) in more detail. It can be expressed
as a chain of equations

(yu, k) ∼−1 (y, uk) = (y, u′k′) ∼ (yu′, k′),

each for a quintuple (k, u, y, u′, k′) with uk = u′k′. Hence the overall equation (x, f) =
(x′, f ′) derives from sequences (ki) (0 ≤ i ≤ n) and (ui), (yi), (u

′
i) (0 ≤ i < n) such that

uiki = u′iki+1, yiu
′
i = yi+1ui+1, f = k0, x = y0u0, f

′ = kn and x′ = yn−1u
′
n−1. (We are

thinking of k′i as ki+1.) By �atness of T we can replace the yis by elements yvi with
viu
′
i = vi+1ui+1, x = yv0u0 and x′ = yvn−1u

′
n−1.

We outline why Tor(F )(T ) is �at (over D). First, it is non-empty, because T is. If
x ∈ T then (x, idF (p(x))) ∈ Tor(F )(T ). Next, suppose (x, f), (x′, f ′) ∈ Tor(F )(T ). We can
�nd y, u, u′ with x = yu and x′ = yu′, and then (x, f) = (yu, f) = (y, uf) = (y, id)uf and
(x′, f ′) = (id, y)u′f ′.

Finally, suppose (x, g)f = (x, g)f ′. We must �nd h, g′, y such that hf = hf ′ and
(x, g) = (y, g′)h. Composing g′ and h, we can instead look for (y, h) = (x, g) such that
hf = hf ′. In fact, we can reduce to the case where g = id. Suppose, then that we have
(x, f) = (x, f ′). By the analysis above, we get y and sequences (ki), (ui), (vi), (u

′
i) such

that uiki = u′iki+1, viu
′
i = vi+1ui+1, f = k0, x = yv0u0, f

′ = kn and x = yvn−1u
′
n−1.

Using �atness of T again, we can assume v0u0 = vn−1u
′
n−1. Now put h := v0u0, so

(y, h) = (y, v0u0) = (yv0u0, id) = (x, id). Then, as required,

hf = v0u0k0 = v0u
′
0k1 = v1u1k1 = · · · = vn−1u

′
n−1kn = hf ′.

Although this reasoning is informal, its ingredients � and in particular the reasoning with
�nite sequences � are all present in AU structure.

Once we have Tor(F )(T ) it is straightforward to de�ne to de�ne the function T →
Tor(F )(T ), x 7→ (x, id) that makes a homomorphism of T1-models. Note in particular
that the action is preserved: xu 7→ (xu, id) = (x, u) = (x, id)u. This gives us our Λ0,
and Γ0Λ0 = id. For the counit of the adjunction, let (F, θ) : (C, T ) → (D,T ′) be a T1-
homomorphism. Then θ factors via Tor(F )(T ) using (x, f) 7→ θ(x)f . This respects the
equivalence, as θ(xu)f = θ(x)F (u)f is a condition of T1-homomorphisms.
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Note that the context extension map of Example 9.1 can be got from U above as a
pullback. This is because there is a context map O → [C : Cat] taking a set X to the
discrete category over it. A torsor over the discrete category is equivalent to an element
of X.

The classi�er for T1/C is, by Diaconescu's theorem, the bounded geometric morphism
[C,S] → S for C an internal category in S, and hence is a typical presheaf topos. We
now know that they are op�brations in ETop. This is already known, of course, and
appears in [Joh02, B4.4.9]. Note, however, that our calculation to prove the op�bration
property in Con is elementary in nature. The proof of [Joh02] veri�es that the class of all
such geometric morphisms satis�es the �covariant tensor condition�, and such a technique
cannot work for AUs as it uses the direct image parts of geometric morphisms.

9.3. Example. Spectra of distributive lattices are �brations. Let T0 = [L : DL] be the
�nite algebraic theory of distributive lattices, a context. Now let T1 = [L : DL][F : Filt(L)]
be the theory of distributive lattices L equipped with prime �lters F , and let U : T1 → T0

be the corresponding extension map. T1 is built over T0 by adjoining a node F with a
monic edge F → L, and conditions to say that it is a �lter (contains top and is closed under
meet) and prime (inaccessible by bottom and join). For example, to say that bottom is
not in F , we say that the pullback of F along bottom as edge 1→ L is isomorphic to the
initial object.

Given a model L of T0, the �bre of U over L is its spectrum Spec(L).
To show that U is a �bration, consider a distributive lattice homomorphism f : L0 →

L1. The map Spec(f) : Spec(L1) → Spec(L0) can be expressed using contexts. It takes
a prime �lter F1 of L1 to its inverse image F0 under f which is a prime �lter of L0.
f restricts (uniquely) to a function from F1 to F0, and so we get a T1-homomorphism
f ′ : (L1, F1)→ (L0, F0). The construction so far can all be expressed using AU-structure,
and so gives our Λ1 : cod∗(T1)→ T→1 .

(L0, F0 = f−1(F1)) (L1, F1)

L0 L1

f ′

U U

f

Aided by the fact that Γ1 : T→1 → cod∗(T1) is given by a sketch homomorphism (no
equivalence extension of T→1 needed), we �nd that Γ1Λ1 is the identity on cod−1(T1).
The unit η : id ⇒ Λ1Γ1 of the adjunction is given as follows. In T→1 we have a generic
f : (L0, F0)→ (L1, F1), and clearly f restricted to F0 factors via f

−1(F1). Taking this with
the identity on L1 gives a T→1 -homomorphism from (L0, F0)→ (L1, F1) to (L0, f

−1(F1)→
(L1, F1), and hence our η. The diagonal equations for the adjunction hold.

It follows that the classi�er for T1/L, which is the spectrum of L, is a �bration. Since
the spectra of distributive lattices correspond to propositional coherent theories, this
�brational nature is already known from [Joh02, B4.4.11], which says that any coherent
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topos is a �bration. It will be interesting to see how far our methods can cover this general
result.

We conjecture that further examples can be found as follows, from the basic idea that,
given a style of presentation of spaces, homomorphisms between presentations can yield
maps between the spaces.
• (Op�bration) Let T0 be the theory of sets equipped with an idempotent relation,
and T1 extend it with a rounded ideal [Vic93]. Classically at least, the classi�ers
are the continuous dcpos with Scott topology.
• (Op�bration) Let T0 be the theory of generalized metric spaces, and T1 extend it
with a Cauchy �lter (point of the localic completion) [Vic05].
• (Fibration) Let T0 be the theory of normal distributive lattices, and T1 extend it
with a rounded prime �lter. This would be analogous to Example 9.3, and the
classi�ers are the compact regular spaces.
[SVW12] discusses the consequences of the (op)�brational characters on two topos
approaches to quantum foundations. One uses point-set ideas, leading to local home-
omorphisms, op�brations. The other uses Gelfand duality, hence compact regular
spaces, �brations. That simple distinction leads to opposite ways of constructing
their toposes, one with presheaves and the other with covariant functors.
• (Bi�bration) Let T0 be the theory of strongly algebraic information systems, and
let T1 extend it with an ideal [Vic99]. This is a special case of Example 9.2 � when
the category C is a poset, then a torsor is just an ideal � and hence would be an
op�bration. However, �strongly algebraic� includes extra geometric structure that
restricts the homomorphisms so that they correspond to adjunctions between the
corresponding domains. This would lead to an additional �brational nature.

10. Concluding thoughts

What we have shown in this paper is that an important and extensive class of
�brations/op�brations in the 2-category ETop of toposes arises from strict �bra-
tions/op�brations in the 2-category Con of contexts. There are several advantages: �rst,
the structure of strict �brations/op�brations in Con is much easier to study because of
explicit and combinatorial description of Con and in particular due to existence of comma
objects in there. Second, proofs concerning properties of based-toposes arising from Con
are very economical since one only needs to work with strict models of contexts. Not only
does this approach help us to avoid taking the pain of working with limits and colim-
its in ETop/S and bookkeeping of coherence issues arising in this way, but it also gives
us insights in inner working of 2-categorical aspects of toposes via more concrete and
constructive approach of contexts and context extensions.

There is also an advantage from foundational point of view; for any S-topos E , there are
logical properties internal to E which are determined by internal logic of S. A consequence
of this work is that we can reason in 2-category of contexts to get uniform results about
toposes independent of their base S.
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We hope that in the future work we can investigate the question that how much
of 2-categorical structure of ETop can be presented by contexts, and more importantly
whether we can �nd simpler proofs in Con that can be transported to toposes.
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