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ORBIFOLDS OF RESHETIKHIN–TURAEV TQFTS

NILS CARQUEVILLE, INGO RUNKEL, GREGOR SCHAUMANN

Abstract. We construct three classes of generalised orbifolds of Reshetikhin–Turaev
theory for a modular tensor category C, using the language of defect TQFT from [CRS1]:
(i) spherical fusion categories give orbifolds for the “trivial” defect TQFT associated to
vect, (ii)G-crossed extensions of C give group orbifolds for any finite groupG, and (iii) we
construct orbifolds from commutative ∆-separable symmetric Frobenius algebras in C.
We also explain how the Turaev–Viro state sum construction fits into our framework by
proving that it is isomorphic to the orbifold of case (i). Moreover, we treat the cases (ii)
and (iii) in the more general setting of ribbon tensor categories. For case (ii) we show how
Morita equivalence leads to isomorphic orbifolds, and we discuss Tambara–Yamagami
categories as particular examples.

Contents

1 Introduction and summary 513
2 TQFTs with defects and orbifolds 515
3 Orbifold data for Reshetikhin–Turaev theory 522
4 Turaev–Viro theory 534
5 Group extensions of modular tensor categories 551

1. Introduction and summary

For any modular tensor category C, Reshetikhin and Turaev [RT, Tu1] constructed a 3-

dimensional topological quantum field theory ZRT,C : B̂ord3 −→ vect. This construction
is intimately related to the connection between the representation theory of quantum
groups and knot theory [Tu1], and rational conformal field theory [FRS2]. The symmetric
monoidal functor ZRT,C acts on diffeomorphism classes of bordisms with embedded ribbons
that are labelled with data from C, hence it assigns topological invariants to ribbon
embeddings into 3-manifolds. In [CRS2] we extended this by constructing a Reshetikhin–

Turaev defect TQFT ZC : B̂orddef
3 (DC) → vect that assigns invariants to equivalence

classes of stratified bordisms whose 3-, 2- and 1-strata are respectively labelled by C,
certain Frobenius algebras in C and their cyclic modules. The original functor ZRT,C is
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isomorphic to a restriction of ZC, as ribbons can be modelled by a combination of 1- and
2-strata, cf. [CRS2, Rem. 5.9]. For an n-dimensional defect TQFT Z with n ∈ {2, 3}, the
labelled strata (or “defects”, a term used in physics to refer to regions in spacetime with
certain properties that distinguish them from their surroundings) of codimension j are
known to correspond to j-cells in the n-category associated to Z [DKR, CMS]; this is also
expected for n > 4. Defects in Reshetikhin–Turaev theory had previously been studied
in [KS, FSV, CMS].

In the present paper we construct orbifolds of Reshetikhin–Turaev TQFTs. Inspired
by earlier work on rational conformal field theory [FFRS], a (generalised) orbifold theory
was developed for 2-dimensional TQFTs in [CR1], which we then further generalised to
arbitrary dimensions in [CRS1]: Given an n-dimensional defect TQFT Z (i. e. a symmetric
monoidal functor on decorated stratified n-dimensional bordisms, cf. Section 2.1) and an
“orbifold datum” A (consisting of special labels for j-strata for all j ∈ {0, 1, . . . , n}, cf.
Section 2.3), the generalised orbifold construction produces a closed TQFT ZA : Bordn →
vect roughly as follows. On any given bordism, ZA acts by choosing a triangulation,
decorating its dual stratification with the data A, evaluating with Z, and then applying
a certain projector. The defining properties of orbifold data A are such that ZA is
independent of the choice of triangulation.

In dimension n = 2, orbifold data turn out to be certain Frobenius algebras in the 2-
category associated to Z, and both state sum models [DKR] and ordinary group orbifolds
[CR1, BCP] are examples of orbifold TQFTs ZA. Here by “group orbifolds” we mean
TQFTs ZA, where A is obtained from an action of a finite symmetry group on Z. (This
is also the origin of our usage of the term “orbifold” TQFT: If ZX is a TQFT obtained
from a sigma model with target manifold X that comes with a certain action of a finite
group G, then there is an orbifold datum AG such that (ZX)AG

∼= ZX//G where ZX//G
is a TQFT associated to the orbifold (in the geometric sense) X//G.) There are also
interesting 2-dimensional orbifold TQFTs that go beyond these classes of examples, cf.
[CRCR, NRC, RW].

For general 3-dimensional defect TQFTs we worked out the defining conditions on
orbifold data in [CRS1]. In the present paper we focus on Reshetikhin–Turaev defect
TQFTs ZC and reformulate their orbifold conditions internally to the modular tensor
category C. This is achieved in Proposition 3.5 which is the key technical result in our
paper and is used to prove the two main theorems below.

Our first main result (stated as Proposition 4.4 and Theorem 4.8) concerns orbifolds
of the “trivial” Reshetikhin–Turaev defect TQFT Ztriv := Zvect, i. e. when the modular
tensor category is simply vect. Recall that (as we review in Section 4.1) from every
spherical fusion category S one can construct a 3-dimensional state sum TQFT called
Turaev–Viro theory ZTV,S [TViro, BW].

Theorem A. For every spherical fusion category S there is an orbifold datum AS for
Ztriv such that Ztriv

AS
∼= ZTV,S .

This result, appearing as Theorem 4.8 in the main text, vindicates the slogan “state
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sum models are orbifolds of the trivial theory” in three dimensions. This can in fact
be seen as a special case of the slogan “3-dimensional orbifold data are spherical fusion
categories internal to 3-categories with duals”, cf. Remark 4.5.

Our second main result concerns group extensions of tensor categories.1 Recall that
an extension of a tensor category C by a finite group G is a tensor category B which is
graded by G with neutral component B1 = C. To formulate our result we note that the
nondegeneracy condition on a modular tensor category C is not needed to define orbifold
data A for ZC, and hence one can speak of orbifold data in arbitrary ribbon categories B
(see Section 3.4 for details). In Section 5 we prove Theorem 5.1 (see e. g. [Tu2] for the
notion of “ribbon crossed G-category”), which we paraphrase as follows:

Theorem B. Let B be a ribbon fusion category and let G be a finite group. Every
ribbon crossed G-category B̂ =

⊕
g∈G Bg, such that the component B1 labelled by the

unit 1 ∈ G satisfies B1 = B, gives rise to an orbifold datum for B.

We will be particularly interested in the situation where B = B1 is additionally a
full ribbon subcategory of a modular tensor category C, in which case an extension B̂
provides orbifold data in C. A special case of this is B = C and where B̂ = C×G is a G-
crossed extension. An important source of examples for G = Z2 are Tambara–Yamagami
categories, which are Z2-extensions of H-graded vector spaces for a finite abelian group H.
This is explained in Section 5, where we also discuss orbifold data for the modular tensor
categories associated to the affine Lie algebras ŝl(2)k. Moreover, we prove a version of
Theorem B that holds for certain non-semisimple ribbon categories B, cf. Remark 5.6.

Taken together, Theorems A and B say that orbifolds unify state sum models and
group actions in three dimensions.2

The orbifold data in Theorem B depend on certain choices, which are however all
related by Morita equivalences that in turn lead to isomorphic orbifold TQFTs (when B
is a subcategory of a modular category C), as we explain in Section 3.8.

As a third source of orbifold data for the Reshetikhin–Turaev defect TQFT ZC we
identify commutative ∆-separable Frobenius algebras in C in Section 3.18.

For the whole paper we fix an algebraically closed field k of characteristic zero, and
we write the symmetric monoidal category of finite-dimensional k-vector spaces simply as
vect.

Acknowledgements. We would like to thank Ehud Meir, Daniel Scherl and Michael
Müger for helpful discussions. The work of N. C. is partially supported by a grant from the
Simons Foundation. N. C. and G. S. are partially supported by the stand-alone project
P 27513-N27 of the Austrian Science Fund. The authors acknowledge support by the
Research Training Group 1670 of the German Research Foundation.

1A more geometric approach to group orbifolds of Reshetikhin–Turaev TQFTs and more generally of
3-2-1-extended TQFTs has been given in [SW].

2The unification of state sum models and group orbifolds in two dimensions is a corollary of [DKR,
CR1, BCP].
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2. TQFTs with defects and orbifolds

In this section we briefly review the general notions of 3-dimensional defect TQFTs and
their orbifolds from [CMS, CRS1], and the extension of Reshetikhin–Turaev theory to a
defect TQFT with surface defects from [CRS2].

We start by recalling three types of tensor categories over k (see e. g. [Tu1, EGNO] for
details). A spherical fusion category S is a semisimple k-linear pivotal monoidal category
with finitely many isomorphism classes of simple objects i ∈ S, such that left and right
traces coincide and EndS(1) = k. Pivotality implies that S has coherently isomorphic
left and right duals, and sphericality implies that the associated left and right dimensions
are equal. The global dimension of S is the sum dimS =

∑
i dim(i)2 over a choice of

representatives i of the isomorphism classes of simple objects in S. Since char(k) = 0
by assumption, we have that dimS 6= 0 [ENO]. A ribbon fusion category is a braided
spherical fusion category. A modular tensor category is a ribbon fusion category with
nondegenerate braiding.

2.1. Reshetikhin–Turaev defect TQFTs. Let C be a modular tensor category
over k. There is an associated (typically anomalous) 3-dimensional TQFT:

ZRT,C : B̂ord3 −→ vect , (1)

called Reshitikhin-Turaev theory. Here B̂ord3 is a certain extension of the symmetric
monoidal category Bord3 of 3-dimensional bordisms, which is needed to deal with the
anomaly. For all details we refer to [RT, Tu1]; the constructions in the present paper do
not require dealing with the anomaly in an explicit way.

In [CRS2] we constructed surface and line defects for ZRT,C from ∆-separable sym-
metric Frobenius algebras and their (cyclic) modules. We briefly recall the notion of a
3-dimensional defect TQFT from [CMS, CRS1], and the extension ZC of (1) to a full
defect TQFT from [CRS2].

Conventions. We adopt the conventions from [CRS2], in particular we read string
diagrams for C from bottom to top. For instance the braiding cX,Y : X⊗Y → Y ⊗X and
its inverse are written as

cX,Y =

X Y

Y X

, c−1
X,Y =

Y X

X Y

, (2)

and we denote the twist isomorphism on an object U ∈ C by θU .
An algebra in C is an object A ∈ C together with morphisms µ : A ⊗ A → A and

η : 1 → A satisfying associativity and unit conditions. If (A1, µ1, η1) and (A2, µ2, η2) are
algebras in C then the tensor product A1 ⊗ A2 also carries an algebra structure; our
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convention is that A1 ⊗ A2 has the multiplication

µA1⊗A2 = (µ1 ⊗ µ2) ◦ (1A1 ⊗ cA2,A1 ⊗ 1A2) =

A1 A2 A1 A2

A1 A2

(3)

and unit ηA1⊗A2 = η1 ⊗ η2.
Let A,B be algebras in C, let M be a right A-module and N a right B-module. From

[CRS2, Expl. 2.13(ii)] we obtain that M⊗N is an (A⊗B)-module with component actions

M ⊗N A

1

:=

NM A

,

M ⊗N B

2

:=

NM B

. (4)

Analogously, M ⊗N becomes a (B ⊗ A)-module with the actions

NM A

,

NM B

. (5)

3-dimensional defect TQFT. We recall from [CMS, CRS1] that a 3-dimensional
defect TQFT is a symmetric monoidal functor

Z : Borddef
3 (D) −→ vect , (6)

where the source category consists of stratified and decorated bordisms with orientations.
For details we refer to [CRS1], but the main ingredients are as follows: A bordism N : Σ→
Σ′ between to stratified surfaces Σ,Σ′ has 3-, 2- and 1-strata in the interior, while on the
boundary also 0-strata are allowed. The possible decorations for the strata are specified
by a set of 3-dimensional defect data D which is a tuple

D =
(
D3, D2, D1; s, t, j

)
. (7)

Here Di, i ∈ {1, 2, 3}, are sets whose elements label the i-dimensional strata of bordisms;
the case i = 0 can naturally be added by a universal construction, see Remark 2.2. The
source, target and junction maps

s, t : D2 → D3 and j : D1 → (cyclic lists of elements of D2)
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specify the adjacency conditions for the decorated strata. This is best described in an
example:

	
	

�

A1

A3

A2

u

v

w

T . (8)

Here, u, v, w ∈ D3 decorate 3-strata, A1, A2, A3 ∈ D2 decorate oriented 2-strata such that
for example s(A1) = u and t(A1) = v. Drawing a 2-stratum with a stripy pattern indicates
that its orientation is opposite to that of the paper plane. To take also orientation reversal
into account we extend the source and target maps to maps s, t : D2 × {±} → D3 and
similarly for the junction map j, see [CRS2] for the full definition and more details. Finally
T ∈ D1 labels the 1-stratum, and the junction map applied to T is the cyclic set of the
decorations of incident 2-strata, j(T ) = ((A1,+), (A2,+), (A3,−))/∼.

A set of 3-dimensional defect data D yields the category Borddef
3 (D) of decorated 3-

dimensional bordisms: The objects are stratified decorated surfaces, where each i-stratum,
i ∈ {0, 1, 2}, is decorated by an element from Di+1 such that applying the maps s, t or j
to the label of a given 1- or 0-stratum, respectively, gives the decorations for the incident
2- and 1-strata. A morphism N : Σ → Σ′ between objects Σ,Σ′ is a compact strati-
fied 3-manifold N , with a decoration that is compatible with s, t, j and an isomorphism
Σop t Σ′ → ∂N of decorated stratified 2-manifolds. Here, Σop is Σ with reversed orien-
tation for all strata (but with the same decorations). The bordisms are considered up to
isomorphism of stratified decorated manifolds relative to the boundary.

2.2. Remark. There are two completion procedures for a defect TQFTZ : Borddef
3 (D)→

vect that will be important for us. First, one can also allow point defects in the interior of
a bordism. The maximal set of possible decorations D0 for such 0-strata turns out to be
comprised of the elements in the vector space that Z assigns to a small sphere S around
the given defect point, subject to an invariance condition (that will however be irrelevant
for the present paper), see [CMS] and [CRS1, Sect. 2.4]. The resulting defect TQFT is
called D0-complete.

Second, one can allow for certain point insertions on strata (called “Euler defects” in
[CRS1]). Point insertions are constructed from elements ψ ∈ D0 that live on i-strata Ni

for i ∈ {2, 3} (which means that there are no 1-strata adjacent to the 0-stratum labelled ψ)
and which are invertible with respect to a natural multiplication on the associated vector
spaces Z(S). Evaluating Z on a bordism with point insertions is by definition given
by inserting ψχsym(Ni), where χsym(Ni) is the “symmetric” Euler characteristic 2χ(Mj) −
χ(∂Mj), with χ the usual Euler characteristic, see [CRS1, Sect. 2.5].

Reshetikhin–Turaev defect TQFT. In [CRS2] we constructed a defect extension ZC
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of the Reshetikhin–Turaev TQFT ZRT,C for every modular tensor category C. The asso-
ciated defect data DC ≡ (DC1 , D

C
2 , D

C
3 , s, t, j) are as follows. We have DC3 := {C}, meaning

that all 3-strata are labelled by C, and the label set for surface defects is

DC2 :=
{

∆-separable symmetric Frobenius algebras in C
}
. (9)

We recall that a ∆-separable symmetric Frobenius algebra A in C is a tuple (A, µ, η,∆, ε)
consisting of an associative unital algebra (A, µ, η) and a coassociative counital coalgebra
(A,∆, ε) such that

= , = , = = . (10)

(“∆-separable”) (“symmetric”) (“Frobenius”)

As decorations for the line defects we take

DC1 :=
⊔

n∈Z>0

Ln , (11)

where L0 =
{
X ∈ C

∣∣ θX = idX
}

, and, for n > 0,

Ln =
{(

(A1, ε1), (A2, ε2), . . . , (An, εn),M
) ∣∣ Ai ∈ DC2 , εi ∈ {±},

M is a cyclic multi-module for
(
(A1, ε1), (A2, ε2), . . . , (An, εn)

)}
.

A multi-module over ((A1, ε1), . . . , (An, εn)) is an (Aε11 ⊗· · ·⊗Aεnn )-module M , where A+
i =

Ai and A−i denotes the opposite algebra Aop
i . A multi-module is cyclic if it is equivariant

with respect to cyclic permutations which leave the list ((A1, ε1), . . . , (An, εn)) invariant,
see [CRS2, Def. 5.1] for the precise definition. The multi-modules that we consider in
the present paper all have only trivial cyclic symmetry, so they are all automatically
equivariant and there exists only one equivariant structure. Hence we will have no need
to pay attention to this equivariance.

We furthermore have s(A,±)
def
= C def

= t(A,±) for all A ∈ DC2 , and j(M)
def
= C for

M ∈ L0, while

j
(
((A1, ε1), . . . , (An, εn),M)

) def
=
(
(A1, ε1), . . . , (An, εn)

)
/∼ (12)

for M ∈ Ln with n > 0, where as before (· · · )/ ∼ denotes cyclic sets.
It is shown in [CRS2, Thm. 5.8 & Rem. 5.9], that the TQFT ZRT,C is naturally extended

to a 3-dimensional defect TQFT

ZC : B̂orddef
3 (DC) −→ vect (13)

that we call Reshetikhin–Turaev defect TQFT. The definition of the functor ZC is roughly
as follows. For a closed 3-bordism N pick an oriented triangulation of each 2-stratum
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relative to its boundary. The Poincaré dual of the triangulation gives a ribbon graph
in N that is decorated by the data of the corresponding Frobenius algebra. By definition,
evaluating ZC on N is evaluating ZRT,C on the bordism which is N augmented by the
ribbon graphs; this is independent of the choice of triangulation by the properties of ∆-
separable symmetric Frobenius algebras. On objects and general bordisms our functor ZC
is defined in terms of a standard limit construction which is detailed in [CRS2, Sect. 5].

2.3. Orbifolds of defect TQFTs. As recalled in the introduction, there is a general
notion of orbifolds of n-dimensional TQFTs for any n > 1. Already for n = 3, this pro-
duces a large list of axioms, and for practical purposes we define “special” 3-dimensional
orbifold data to reduce the number of axioms, as recalled next.

Fix a 3-dimensional defect TQFT Z : Borddef
3 (D)→ vect. A special orbifold datum A

for Z is a list of elements Aj ∈ Dj for j ∈ {1, 2, 3} as well as A+
0 ,A−0 ∈ D0 together with

point insertions ψ and φ for A2-labelled 2-strata and A3-labelled 3-strata, respectively
(the “Euler defects” as recalled above), subject to the constraints below. In anticipation
of our application to Reshetikhin–Turaev theory, we will use the notation

A3 = C , A2 = A , A1 = T , A+
0 = α , A−0 = ᾱ , (14)

where “A” is for “algebra” and “T” is for “tensor product”. The labels for 0-strata are
elements in the vector space that Z assigns to a sphere around a 0-stratum which is dual
to a 3-simplex (recall the D0-completion mentioned in Remark 2.2),

α ∈ Z

(
− −

++ )
, ᾱ ∈ Z

(
−

++

−

)
(15)

where all 2-, 1- and 0-strata of the defect spheres are labelled by C, A and T , respectively,
while the point insertions are

φ ∈ Z
(

C
)×
, ψ ∈ Z

(
C CA

)×
, (16)

and the neighbourhoods of defects labelled by the data (14) look as follows:

A C

C

,
AA

A

A

T

CC

C

,

A

T

α +

A
A

A
A
A

T
T

T

C
CC

C

,
TA

ᾱ −

A

A
A
A

A

T

T T

C
CC

C

. (17)



ORBIFOLDS OF RESHETIKHIN–TURAEV TQFTS 521

These data are subject to the axioms (which have to hold after applying the functor Z
to invisible 3-balls surrounding the diagrams)

α

α

=

α

ψ2

α

α (18)

ψ T
A

ᾱ

A

A
A
A

ψ

T

T

A

A

α

T
ψ2

= T

A

T

A

A
A
A

,

α

A

A
A
A

T

T
A

ᾱ

T

T

TT
A

A

ψ

ψ2

ψ

=

AA

A
A
A

T
T

, (19)

ψ TA

A

α

A

A
A
A

T

T

ψ
A

ᾱ

T
ψ2

= T

A

T

A

A
A
A

,

ᾱ

A

A
A
A

T

T
A

α

T

T

TT
A

A

ψ

ψ2

ψ

=

AA

A
A
A

T
T

, (20)
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A

ψ2

T

α

A
ψ

A
A
A

A
ψ

T

T

ᾱ

T = T

A

T

AA
A
A

,

T

AA

A

A

TA
A
A

T

T

α

ᾱ

T

T
ψ

ψ2

ψ

=
T

A A

T

A
A
A

,

(21)

T

AA

A
A ψ2φ2ψ2

=
T

AA

A
A ψ2φ2ψ2

=
T

AA

A
A ψ2φ2ψ2

=

A

ψ2

. (22)

In (22) in the first picture, all 2-strata have the same orientation as the paper plane, while
in the second and third picture the rear, respectively front, hemispheres have opposite
orientation. We note that in the published version of [CRS1] the identities corresponding
to (22) incorrectly feature insertions of φ and not the correct φ2.

We remark that any 3-dimensional defect TQFT Z naturally gives rise to a Gray
category with duals TZ as shown in [CMS]; in [CRS1] the definition of orbifold data is
generalised to a notion internal to any such 3-category.

Given an orbifold datum A for a defect TQFT Z : Borddef
3 (D)→ vect, the associated

A-orbifold theory is a closed TQFT

ZA : Bord3 −→ vect (23)

constructed in [CRS1, Sect. 3.2]. On an object Σ, ZA is evaluated by considering the
cylinder bordism Σ × [0, 1] and proceeding roughly as follows: For every triangulation τ
with total order of Σ, denote the Poincaré dual stratification by Στ . By decorating with
the orbifold datum A we obtain an object Στ,A ∈ Borddef

3 (D). For two such triangulations
τ, τ ′ of Σ, the cylinder CΣ = Σ × [0, 1], regarded as a bordism Σ → Σ in Bord3, has an
oriented triangulation t extending the triangulations τ and τ ′ on the ingoing and outgo-
ing boundaries, respectively. Again decorating the Poincaré dual Ct

Σ with the orbifold
datum A we obtain a morphism Ct,A

Σ : Στ,A −→ Στ ′,A. By triangulation independence we
get a projective system

Z(Ct,A
Σ ) : Z(Στ,A) −→ Z(Στ ′,A) (24)

whose limit is by definition ZA(Σ).
On a bordism N : Σ1 → Σ2, the functor ZA is evaluated by (i) choosing oriented

triangulations τ1, τ2 of Σ1,Σ2 and extending them to an oriented triangulation of N , (ii)
decorating the Poincaré dual stratification with the data A to obtain a morphism N t,A in
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Borddef
3 (D), (iii) evaluating Z on N t,A, to obtain a morphism of projective systems

Z(N t,A) : Z(Στ1,A
1 ) −→ Z(Στ2,A

2 ) , (25)

and (iv) taking the limit to make the construction independent of choices of triangulations.
Note that by the construction in [CRS1, Sect. 2.5], for a bordismN with triangulation t, on
each 2- and 3-stratum adjacent to the boundary of M t,A, there is one inserted point defect
ψ and φ, respectively, while 2- and 3-strata in the interior have ψ2- and φ2-insertions.

For more details we refer to [CRS1], but we note that in the case of a closed 3-manifold
N : ∅ → ∅ we have ZA(N) = Z(N t,A) for all triangulations: in this case step (iv) above
is unnecessary since by the defining property of the orbifold datum A the value of Z on
N t,A is invariant under change of triangulation.

3. Orbifold data for Reshetikhin–Turaev theory

We now specialise to the case of the defect TQFT ZC from Section 2.1. Since the defect
data for ZC are described internal to the given modular tensor category C, it is desirable
to describe also orbifold data and their constraints internal to C. This internal formulation
can be stated in any (not necessarily semisimple) ribbon category (Definition 3.6). We
will show that commutative ∆-separable symmetric Frobenius algebras provide examples
of orbifold data, and we describe relations (such as Morita equivalence) between orbifold
data that lead to isomorphic orbifold TQFTs.

3.1. State spaces for spheres. We will need to express the state spaces assigned to
spheres with two and four 0-strata, respectively, and a network of 1-strata, in terms of
Hom spaces in the modular tensor category C. For two 0-strata, the following result was
proven in [CRS2, Lem. 5.10].

3.2. Lemma. Let M,N be two cyclic multi-modules over a list (A1, . . . , An) of ∆-separable
symmetric Frobenius algebras Ai. The vector space ZC(SM,N) associated to the 2-sphere
SM,N with M,N on its South and North pole, respectively, is given by the space of maps
of multi-modules,

ZC(SM,N) = HomA1,...,An(M,N) . (26)

More complicated state spaces are obtained by invoking the tensor product over al-
gebras in C: Recall that for an algebra A ∈ C, a right A-module (MA, ρM) and a left
A-module (AN, ρN), the tensor product over A, denoted by M ⊗A N , is the coequaliser
of

M ⊗ A⊗N M ⊗N .
idM ⊗ ρN

ρM ⊗ idN

(27)

For a ∆-separable symmetric Frobenius algebra A, we can compute the tensor product
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M ⊗A N as the image of the projector

pM,N := (ρM ⊗ ρN) ◦
(
idM ⊗ (∆ ◦ η)⊗ idN

)
=

M N

A . (28)

It follows that for ∆-separable symmetric Frobenius algebras A,B and modules MA, AN ,
M ′

B, BN
′ we have

HomC(M ⊗A N,M ′ ⊗B N ′)
=
{
f ∈ HomC(M ⊗N,M ′ ⊗N ′)

∣∣ f ◦ pM,N = f = pM ′,N ′ ◦ f
}
. (29)

The proof of the next lemma is analogous to the proof of Lemma 3.2 in [CRS2, Lem. 5.10].
It basically amounts to the fact that in the definition of the defect TQFT ZC sketched in
Section 2.1, the dual of a triangulation of an A-labelled 2-stratum produces projectors to
tensor products over A.

3.3. Lemma. Let A1, . . . , A6 be ∆-separable symmetric Frobenius algebras in C, and let

A4KA2⊗A5, A1LA4⊗A6, A3MA5⊗A6 and A1NA2⊗A3 be modules. The vector space ZC(Σ) asso-
ciated to the defect 2-sphere

Σ =

N
−

M
−

K+L+

A3

A1 A6 A5

A4

A2

(30)

is isomorphic to

HomA1,A2⊗A5⊗A6

(
A1NA2⊗A3 ⊗A3 A3MA5⊗A6 , A1LA4⊗A6 ⊗A4 A4KA2⊗A5

)
. (31)

3.4. Special orbifold data internal to ribbon fusion categories. In this sec-
tion we translate the orbifold data from Section 2.3 to data and axioms internal to a given
modular tensor category C. In fact we will find that this notion does not require the nonde-
generacy of C and thus makes sense in arbitrary ribbon fusion categories (Definition 3.6),
which will be relevant in our applications to G-extensions in Section 5.

Recall the notation introduced in (14). We will now describe the data C, A, T, α, ᾱ, ψ, φ,
and the conditions these need to satisfy, for special orbifold data in Reshetikhin–Turaev
TQFTs. We start with the first three elements C, A, T . According to the definition of DC

as recalled in Section 2.1, we have
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(i) C is a modular tensor category (from which the TQFT ZRT,C is constructed),

(ii) A is a ∆-separable symmetric Frobenius algebra in C,

(iii) T = ATAA is an (A,A⊗ A)-bimodule.

To keep track of the various A-actions, we sometimes denote the bimodule T as ATA1A2 ;
the corresponding 3-dimensional picture then is

A
A1

A2

T

CC

C

. (32)

Consistently with the 3-dimensional picture, the right (A⊗ A)-action is equivalently de-
scribed by two right A-actions on T , denoted with the corresponding number on the
A-strings. These A-actions commute in the following sense:

T A2A1

2

1

=

T A2A1

1

2

, (33)

see [CRS2, Lemma 2.1]; of course both actions commute with the left A-action.
Next we turn to the data α and ᾱ. They correspond to certain maps of tensor products

over A of multi-modules, and to keep track of the actions we enumerate the A-actions.
From Lemma 3.3 we obtain that

(iv) α is a map of multi-modules

α : A1

(
A1TA2A3 ⊗ A3TA5A6

)
A2A5A6

−→ A1

(
A1TA4A6 ⊗ A4TA2A5

)
A2A5A6

(34)

such that p1 ◦ α = α = α ◦ p2, where p1 is the projector with respect to the action
of A4 in the second term, see Equation (28), while p2 is the projector with respect
to the action of A3 in the first term.

(v) ᾱ is a map of multi-modules

ᾱ : A1

(
A1TA4A6 ⊗ A4TA2A5

)
A2A5A6

−→ A1

(
A1TA2A3 ⊗ A3TA5A6

)
A2A5A6

(35)

such that p2 ◦ ᾱ = ᾱ = ᾱ ◦ p1.
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Here we used the conventions as in (4)–(5) for the actions on the three-fold tensor product
A2⊗A5⊗A6. The conditions for α and ᾱ are more accessible when expressed graphically.
In the pictures it is unambiguous to work only with labels 1, 2 for the actions of ATA1A2 .
The condition on α : T ⊗ T → T ⊗ T to be a map of multi-modules reads

αα

2

11

= αα

2

1

2

(36)

while the conditions involving the projectors is

1

αα

= αα =

2

αα

, (37)

and analogously for ᾱ.
From Lemma 3.3 we furthermore obtain:

(vi) The point insertion ψ is an invertible morphism ψ ∈ EndAA(A).

(vii) The point insertion φ is an invertible morphism φ ∈ EndC(1).

To express the axioms for the orbifold datum A ≡ (C, A, T, α, ᾱ, ψ, φ) internal to C, it
is convenient to consider for an A-module AM the map

HomA,A(AAA, AAA) −→ HomA(AM, AM) , (38)

which sends ψ to ψ0 := ρM ◦ (idM ⊗ (ψ ◦ ηA)), or graphically

ψ0
:= ψ . (39)
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When MA1A2 is a module over A⊗A, we denote the images of ψ under the map analogous
to (38) with respect to the Ai-action by ψi for i ∈ {1, 2},

ψi
:= ψ

i

. (40)

The axioms for the data (i)–(vii) can now be formulated as follows:

3.5. Proposition. A special 3-dimensional orbifold datum A ≡ (C, A, T, α, ᾱ, ψ, φ) for ZC
consists of the data (i)–(vii) subject to the following conditions, expressed in terms of string
diagrams in C:

αα

αα

T T

TT T

T

=

αα

αα

αα

ψ2
0

T T

TT T

T

, (41)

ᾱα

αα

ψ2
0

T T

T T

=

ψ−2
0

1

T T

T T

,

αα

ᾱα

ψ2
0

T T

T T

=

ψ−2
0

2

T T

T T

, (42)

αα

ᾱα

ψ2
2

T T †

T T †

=

ψ−2
1

1

1

T T †

T T †

,

ᾱα

αα

ψ2
1

T T †

T T †

=

ψ−2
2

2

2

T T †

T T †

(43)
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αα

ᾱα

ψ2
2

T † T

T † T

=

ψ−2
0

TT †

TT †

,

ᾱα

αα

ψ2
0

T T †

T T †

=

ψ−2
2

2

1

T T †

T T †

, (44)

ψ2
1

ψ2
2

A

= ψ2
0

ψ2
1

2

A

= ψ2
0

ψ2
2

1

A

= φ−2 ·
ψ2

A

. (45)

Proof. As recalled in Section 2.1, to evaluate the defect TQFT ZC we need to pick
triangulations for all 2-strata and use the data of the Frobenius algebra A to label the
dual graphs. To verify the axioms, note that all 2-strata are discs, thus it is enough
to consider one attached A-line per 2-stratum neighbouring a given 1-stratum. This
translates the conditions (18)–(22) into those of (41)–(45).

The data and conditions on a special orbifold datum can be formulated for general
ribbon categories B, without assumptions such as k-linearity or semisimplicity. This is
useful, as such orbifold data can then be placed in a modular tensor category via a ribbon
functor. Let us describe this in more detail.

3.6. Definition. Let B be a ribbon category. A special orbifold datum in B is a tuple
(A, T, α, ᾱ, ψ, φ) as in (ii)–(vii) above (with C replaced by B), subject to the conditions
(41)–(45).

We can use ribbon functors to transport special orbifold data. The following result is
immediate and we omit its proof.

3.7. Proposition. Let F : B → B′ be a ribbon functor and A = (A, T, α, ᾱ, ψ, φ) a
special orbifold datum for B. Then F (A) := (F (A), F (T ), F (α), F (ᾱ), F (ψ), φ) is a special
orbifold datum for B′ (where we suppress the coherence isomorphism of F in the notation).

3.8. Morita equivalent orbifold data. In this section we investigate the interplay
between Morita equivalence and special orbifold data in ribbon fusion categories. We
explain how such orbifold data can be “transported along Morita equivalences”, and we
prove that the corresponding orbifold TQFTs are isomorphic.

Recall that two algebras A,B in a pivotal tensor category are Morita equivalent if
there exists an A-B-bimodule X together with bimodule isomorphisms

X∗ ⊗A X ∼= B , X ⊗B X∗ ∼= A . (46)

By a Morita equivalence between algebras A,B we mean a choice of such a bimodule X
(called Morita module) and isomorphisms as in (46).
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3.9. Notation. Let A be a ∆-separable symmetric Frobenius algebra, M a left A-
module and N a right A-module. We sometimes denote the projector pM,N of (28)
string-diagrammatically by colouring the region between the M - and N -lines:

pM,N =

M N

A ≡

M N

. (47)

Moreover, we sometimes identify the right-hand side of (47) with idM⊗AN or with M⊗AN
itself. For example, we employ this convention in (49) below. We stress that coloured
regions always represent projectors of relative tensor products over Frobenius algebras;
hence in the example of X∗ ⊗A T ⊗AA (X ⊗ X) in (49), the rightmost coloured region
represents a projector corresponding to the A-action on T and the right X-factor (and
not between the two modules X on the right, as their product is not relative over A).

3.10. Definition. Let A = (A, T, α, ᾱ, ψ, φ) be a special orbifold datum in a ribbon
fusion category B, and let B ∈ B be an algebra that is Morita equivalent to A with Morita
module X. The Morita transport of A along X is the tuple

X(A) :=
(
B, TX , αX , ᾱX , ψX , φ

)
(48)

where

TX := X∗ ⊗A T ⊗AA (X ⊗X) ≡ , (49)

αX := αα , ᾱX := ᾱ̄α (50)

and ψX ∈ EndBB(B) is a choice of square root of

(
ψX
)2

:= ψ2
0

X

B

B

. (51)

For algebras A,B as in Definition 3.10 we can choose a decomposition into simple
∆-separable symmetric Frobenius algebras Ai and Bi, respectively,

A ∼=
⊕
i

Ai , B ∼=
⊕
i

Bi , (52)
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such that Ai and Bi are Morita equivalent with bimodule isomorphisms

X∗i ⊗Ai
Xi
∼= Bi , Xi ⊗Bi

X∗i
∼= Ai , X ∼=

⊕
i

Xi . (53)

3.11. Proposition. Let B,A, B,X be as in Definition 3.10 such that dim(Ai) 6= 0 6=
dim(Bi) for all simple algebras in (52). Then X(A) is a special orbifold datum in B.

Proof. We have a decomposition T ∼=
⊕

i,j,k kTi,j of T into Ak-(Ai⊗Aj)-bimodules, and

up to the isomorphisms (52) the maps ψ, ψX are diagonal matrices with entries

ψAi
∈ EndAiAi

(Ai) ∼= k , ψBi
≡ (ψX)Bi

∈ EndBiBi
(Bi) ∼= k , (54)

respectively.
To prove that X(A) is a special orbifold datum we have to verify that the conditions

(41)–(45) are satisfied. Using the above decompositions and identities of the form

M

Ai

Ai

=
dim(M)

dim(Ai)
· idAi

(55)

for simple Ai and an Ai-module M , these checks mostly become tedious exercises in string
diagram manipulations. We provide the details for the first condition in (42) and for (45),
the remaining conditions are treated analogously.

We start by verifying condition (45). Abbreviating dU := dim(U) for all U ∈ B we
first note that (55) in particular implies

ψ2
Bi

ψ2
Ai

=
dXi

dBi

=
dAi

dXi

. (56)

Note that dAi
6= 0 6= dBi

together with (53) and (55) implies that dXi
6= 0 for all i. Thus

ψAi
6= 0 6= ψBi

for all i. Moreover,

∑
i,j,k

ψ2
Ai
ψ2
Aj

d
kTi,j

dAk

· εAk

(55)
=
∑
i,j,k

ψ2
Ai
ψ2
Aj

Ak

kTi,j

= ψ2
1

ψ2
2

A

T

(45)
= φ−2 · ψ2

A

=
∑
k

φ−2ψ2
Ak
· εAk

(57)
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and hence for all k: ∑
i,j

ψ2
Ai
ψ2
Aj

d
kTi,j

dAk

= φ−2ψ2
Ak
. (58)

Now we compute

(ψX
1 )2

(ψX
2 )2

B

TX

=
∑
i,j,k

ψ2
Bi
ψ2
Bj

kTi,j

Xj

Xi

Xk

Bk

(55)
=
∑
i,j,k

ψ2
Bi
ψ2
Bj

dXi

dAi

dXj

dAj

d
kTi,j

dAk

dXk

dBk

·
Bk

(56)
=
∑
k

(∑
i,j

ψ2
Ai
ψ2
Aj

d
kTi,j

dAk

)dXk

dBk

· εBk

(58)
=
∑
k

φ−2ψ2
Ak

dXk

dBk

· εBk

(56)
=
∑
k

φ−2ψ2
Bk
· εBk

= φ−2 · (ψX)2

B

. (59)

The other identities in (45) are checked analogously for X(A).
Next we check the first identity in (42) for X(A). Using (42) for A and (56), its

left-hand side is

∑
i,j,k,l,m,n,p

αα

ᾱ̄α

ψ2
Bm

pTn,i
nTk,j

pTl,i

pTk,m mTj,i

lTk,j

Xn

Xm

Xp XlXi XkXj

=
∑
i,j,k,l,p

ψ−2
Al
·

pTl,i lTk,j

Xl

Xp XlXi XkXj

. (60)

To see that this indeed equals the right-hand side of the first identity in (42) for X(A),
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i. e.

(ψX
0 )−2

1

TX TX

TX TX

B

=

(ψX
0 )−2

1

TX TX

TX TX

B

=
∑
i,j,k,l,p

ψ−2
Bl
·

pTl,i lTk,j

Bl

Xp Xl XlXi XkXj

, (61)

we pre-compose both sides with

∑
i,j,k,l,p

pTl,i lTk,j

Xp

Xl

Xi XkXj

(62)

and use (56) again to see that they are equal.

3.12. Remark. We note that the expressions for TX , αX , ᾱX , (ψX)2 in Definition 3.10
have a simple origin: they are obtained by the rule to “draw an X-line parallel to the T -
lines on every 2-stratum in the neighbourhoods of T, α, ᾱ in (17).” This rule immediately
produces (49) and (50), while (51) is motivated by wrapping an X-line around a ψ2-
insertion on an interior 2-stratum.

3.13. Remark. The proof of Proposition 3.11 shows that the following more general
result holds: Let B,A, B,X be as above, except that B is not necessarily semisimple, but
still the algebras A,B decompose into simple summands Ai, Bi of non-zero dimension as
in (52), and the images of the projectors as in (47) for Ai, Bi exist in B. Then X(A) is a
special orbifold datum in the (possibly non-semisimple) ribbon category B.

3.14. Proposition. Let B = C be a modular tensor category, and let A, X be as above.
Then the orbifold TQFTs corresponding to A and X(A) are isomorphic:

(ZC)A ∼= (ZC)X(A) . (63)

Proof. We will construct a monoidal natural isomorphism ν : (ZC)A → (ZC)X(A). Recall
from [CRS1, Sect. 3.2] and Section 2.3 that for Σ ∈ Bord3, the vector space (ZC)A(Σ) is
defined as the limit of a projective system that is built from A-decorated dual triangula-
tions of cylinders over Σ. Let τ be an oriented triangulation of Σ and decorate the dual

stratification with the data A to obtain Στ,A ∈ B̂orddef
3 (DC). Extend τ to an oriented tri-

angulation t of the cylinder CΣ = Σ×[0, 1] and decorate the stratification dual to t with A
to obtain a morphism Ct,A

Σ : Στ,A → Στ,A in B̂orddef
3 (DC). Then (ZC)A(Σ) ∼= ImZC(Ct,A

Σ ).
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We will obtain the components νΣ by modifying Ct,A
Σ only near its outgoing boundary

Σ× {1}. The 2-strata in Ct,A
Σ have the topology of discs and are labelled by A. We will

only be concerned with 2-strata that intersect the outgoing boundary component Σ×{1}.
Let D be such a 2-stratum.

In D insert a semi-circular 1-stratum which starts and ends on Σ × {1}, which is
oriented clockwise with respect to the orientation of D, and which is labelled by X. This
splits D into two disc-shaped connected components Di and Do (“inner” and “outer”).
The disc Di is bounded by the X-labelled line and a single interval on the boundary
D ∩ (Σ× {1}), while Do is bounded by two disjoint intervals in D ∩ (Σ× {1}), as well as
by X- and T -labelled 1-strata and 0-strata labelled by α or ᾱ. The 2-stratum Do keeps
its label A while the label of Di is changed from A to B.

Note that by construction, each positively oriented T -labelled 0-stratum in the out-
going boundary Σ×{1} has one X∗- and two X-labelled 0-strata in its vicinity, and vice
versa for a negatively oriented 0-stratum.

Recall from Section 2.1 the construction of the ribbon graph corresponding to this
stratified bordism. This results in an A-network in Do and a B-network in Di. Fur-
thermore, Di gets an insertion of ψB, while Do does not get any ψA-insertion since the
corresponding Euler characteristic is zero.

We choose ε > 0 and enlarge the underlying cylinder CΣ to CΣ,ε = Σ× [0, 1 + ε] and

construct C̃t,A,X
Σ,ε as follows: it is identical to the bordism with embedded ribbon graph

constructed above along the interval [0, 1], and it is a cylinder along [1, 1 + ε] except that
we insert the projectors X∗⊗T ⊗X ⊗X � TX and embeddings TX ↪→ X∗⊗T ⊗X ⊗X
for all T -lines in Σ × [1, 1 + ε], depending on the direction of T , such that all ribbons
ending on Σ× {1 + ε} are labelled either TX or B.

In this way we obtain a bordism-with-ribbon-graph C̃t,A,X
Σ,ε in B̂ord3 which represents

a defect bordism Στ,A → Στ,X(A) in B̂orddef
3 (DC), and which (after applying ZRT,C and the

projection to the limit) defines the component νΣ of the natural transformation ν.
To verify that this is indeed a natural transformation, one writes out the naturality

square and notes that one can pass from one path to the other by replacing each ψ2
A

inserted on an interior 2-stratum by a small circular 1-stratum labelled X and a ψ2
B-

insertion in its interior, using the identity (56). Furthermore, it follows directly from the
construction that ν is monoidal (and hence an isomorphism, see e. g. [CR2, Lem. A.2]).

Later in Section 5 we will have need to combine Morita transports with the following
notion of isomorphisms of orbifold data:

3.15. Definition. Let A = (A, T, α, ᾱ, ψ, φ) and Ã = (A, T̃ , α̃, ˜̄α, ψ, φ) be special orb-

ifold data in a ribbon fusion category. A T-compatible isomorphism from A to Ã is an
isomorphism ρ : T → T̃ of multi-modules such that

(ρ⊗ ρ) ◦ α = α̃ ◦ (ρ⊗ ρ) . (64)

3.16. Lemma. A T -compatible isomorphism ρ from A to Ã induces an isomorphism
between the corresponding orbifold TQFTs: (ZC)A ∼= (ZC)Ã.
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Proof. The construction of a monoidal natural isomorphism κ : (ZC)A → (ZC)Ã is anal-
ogous to the construction in the proof of the previous proposition: Consider for Σ ∈ Bord3

a morphism Ct,A
Σ : Στ,A → Στ,A in B̂orddef

3 (DC) as above. Again we enlarge the cylinder

to CΣ,ε = Σ× [0, 1 + ε] and construct a morphism Ct,A,Ã
Σ,ε : Στ,A → Στ,Ã in B̂orddef

3 (DC) as

Ct,A
Σ along [0, 1] and as a cylinder along [1, 1 + ε], where we insert the isomorphism ρ on

each outwards oriented 1-stratum and the isomorphism (ρ−1)∗ on each inward oriented

1-stratum. Thus Ct,A,Ã
Σ,ε : Στ,A → Στ,Ã is a well-defined morphism in B̂orddef

3 (DC) and

we define κΣ to be the map from (ZC)A(Σ) to (ZC)Ã(Σ) that is induced by ZC(Ct,A,Ã
Σ,ε ).

It is monoidal by construction, and for a bordism M : Σ → Σ′ with triangulation and
A-decoration M t′,A we can replace each α by (ρ−1 ⊗ ρ−1) ◦ α̃ ◦ (ρ⊗ ρ) without changing
ZC(M t′,A). On each inner T -line we can then cancel the ρ with the ρ−1 decoration to

obtain a decoration by Ã in the interior composed with a cylinder Ct,A,Ã
Σ,ε as above and

its inverse on the boundaries. After evaluating with ZC this shows the naturality of κ.

3.17. Corollary. Let A, B, X be as in Definition 3.10. Let C be a modular tensor
category and F : B → C a ribbon functor. Then (ZC)F (A)

∼= (ZC)F (X(A)).

Proof. This follows from Lemma 3.16 and Propositions 3.7 and 3.14, together with the
observation that there is a T -compatible isomorphism F (X(A)) ∼= F (X)(F (A)).

3.18. Commutative Frobenius algebras give orbifold data. A simple example
of orbifold data can be obtained as follows. Let B be a ribbon category and let A be a
commutative ∆-separable symmetric Frobenius algebra in B. Commutativity and sym-
metry together imply that the twist on A is trivial, θA = idA. For the bimodule ATAA we
take T = A with all actions given by the multiplication on A. For the remaining data we
choose

α = ᾱ = ∆ ◦ µ , ψ = idA , φ = 1 . (65)

3.19. Proposition. The tuple (A, T, α, ᾱ, ψ, φ) described in (65) is a special orbifold
datum in B.

Proof. Note that the commutativity of A is needed for A to be a right (A⊗A)-module.
The fact that the conditions in Proposition 3.5 are all satisfied follows from commutativity
and the ∆-separable symmetric Frobenius algebra properties of A. We will check the first
identity in (42) and condition (43) as examples.

For the first condition (42), the left-hand side becomes ∆ ◦ µ ◦∆ ◦ µ = ∆ ◦ µ, using
∆-separability. The right-hand side can be rewritten as (id⊗µ)◦(∆⊗id), and the required
equality is then just the Frobenius property.

As for (43), using symmetry one can replace the duality maps on A by ε ◦ µ and
∆ ◦ η, thereby also replacing the A∗-labelled strand by its orientation-reversed version
(which is then labelled A). After this, the computation boils down to using symmetry
and commutativity a number of times, as well as ∆-separability.
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In the case B is a modular tensor category and A is in addition simple, the orbifold
theory for an orbifold datum as in Proposition 3.19 is equivalent to the Reshetikhin–
Turaev TQFT obtained from the category of local A-modules in B, which is again modular
[KO, Thm. 4.5]. Based on the work [MR] this result will be explained in [CMRSS].

4. Turaev–Viro theory

In this section we explain how “state sum models are orbifolds of the trivial theory”
in three dimensions: We start in Section 4.1 by reviewing Turaev–Viro theory (which
constructs a state sum TQFT ZTV,S for every spherical fusion category S over an alge-
braically closed field k), in the formulation of Turaev–Virelizier. Then, independently of
Section 4.1, in Section 4.3 we define the “trivial” 3-dimensional defect TQFT Ztriv, and
for every spherical fusion category S we construct a special orbifold datum AS for Ztriv.
In Section 4.6 we prove that ZTV,S ∼= (Ztriv)AS . Altogether, this establishes our first main
result (Theorem A from the introduction).

4.1. Turaev–Virelizier construction. Let S ≡ (S,⊗,1) be a spherical fusion cat-
egory. We choose a set I of representatives of the isomorphism classes of simple objects
in S such that 1 ∈ I, and we denote their quantum dimensions as

di := dim(i) ∈ EndS(1) = k for all i ∈ I . (66)

For all i, j, k ∈ I we say that two bases Λ of HomS(i ⊗ j, k) and Λ̂ of HomS(k, i ⊗ j)
are dual to each other if they are dual with respect to the trace pairing

HomS(i⊗ j, k)× HomS(k, i⊗ j) ⊃ Λ× Λ̂ 3 (λ, µ̂) 7−→
µ̂

λ

∈ k . (67)

By useful abuse of notation we then write

µ̂

λ

= δλ,µ for all λ ∈ Λ, µ̂ ∈ Λ̂ (68)

and we will always denote the dual basis element of λ by λ̂. Note that the simple objects
i, j, k are suppressed in the notation for the basis elements λ, µ̂, and we will infer the
former from the context.

4.2. Lemma.

(i) For all i, j, j′, k, k′ ∈ I we have

µ̂

λ
k′

k

i j =
1

dk
δλ,µδk,k′ ·

k

,
µ̂

λ

j′

j

k

i

=
1

dj
δλ,µδj,j′ ·

j

. (69)
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(ii) For all i, j, a, b ∈ I we have

∑
k,λ

dk ·
λ̂

λ

j

j

i

i

k =

i j

,
∑
l,µ

dl ·
µ

µ̂

b∗

b∗a

a

l =

a b∗

(70)

where the first sum is over all k ∈ I and (for fixed k) all elements λ of a chosen
basis of HomS(i⊗ j, k), and similarly for the second sum.

(iii) For all i, j, k ∈ I, Γ ∈ HomS(1, k∗ ⊗ i⊗ j) and Γ′ ∈ HomS(k∗ ⊗ i⊗ j,1) we have

∑
λ

λ̂

Γ′Γ′

λ

ΓΓ

k∗ i j

k∗ i j

=

Γ′Γ′

ΓΓ

k∗ i j

. (71)

In parts (i)–(iii), the vertically reflected versions of the identities hold as well.

Proof. All these identities follow from simple manipulations with bases: for part (i) take
quantum traces on both sides; in part (ii) post-compose both sides with the same basis
vector and use part (i); part (iii) follows from inserting the first identity in (ii) applied to
i ⊗ j on the right-hand side and then using the second identity in (ii) together with the
observation that HomS(1, l) = {0} unless l = 1, and that the l = 1 summand in (ii) can
be written as 1

da
δa,b coeva ◦ẽva.

We define the F-matrix elements F λλ′

µµ′ in terms of the chosen bases as follows:

λ
µ

a b j

c
k

=
∑
d,λ′,µ′

F λλ′

µµ′ · λ′

µ′

a b j

k
d

, (72)

λ′

µ′

a b j

d
k

=
∑
c,λ′′,µ′′

(F−1)λ
′λ′′

µ′µ′′ · λ′′
µ′′

a b j

k
c

. (73)

Using Lemma 4.2(i), these can be expressed in terms of closed string diagrams as

F λλ′

µµ′ = dd ·

λ̂′
µ̂′

λ

µ

d

, (F−1)λ
′λ′′

µ′µ′′ = dc ·

λ̂′′
µ̂′′

λ′

µ′

c

. (74)
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The pentagon identity satisfied by the associator translates into an identity for F -matrix
elements as follows. One computes the change-of-basis matrix Mλµν,λ′µ′ν′ in

a b c d

e

x

y

ν

µ

λ

=
∑

x′,y′,λ′,µ′,ν′

Mλµν,λ′µ′ν′ ·

a b c d

e

x′

y′

ν′
µ′

λ′

(75)

in two ways. The resulting two expressions for Mλµν,λ′µ′ν′ must be equal, giving the
identity ∑

δ

F λδ
µν′F

δλ′

νµ′ =
∑
z,ε,φ,κ

F µε
νφF

λλ′

εκ F
κµ′

φν′ , (76)

where the indices take values as prescribed by (75), and z labels the edge between the
vertices with labels φ and ε.

In the remainder of Section 4.1 we review the Turaev–Virelizier construction [TVire]
of the Turaev–Viro TQFT

ZTV,S : Bord3 −→ vect (77)

for a spherical fusion category S. We only provide the details we need for the proof of
Theorem 4.8 in Section 4.6.

Let Σ ∈ Bord3 and let M be a 3-bordism. Recall from [TVire, Ch. 11] the notions of
an oriented graph Γ in Σ, and of an oriented stratified 2-polyhedron P in M . We will
exclusively consider the special cases where Γ is the Poincaré dual of a triangulation of Σ
with chosen orientations for the 1-strata of Γ (called edges), and where P is dual to a
triangulation of M with chosen orientations for the 2-strata of P (called regions). We will
denote the sets of j-strata of Γ and P by Γj and Pj, respectively.

For an oriented graph Γ in Σ as above, let c be an S-colouring of Γ, i. e. a map
c : Γ1 → I. For a vertex v ∈ Γ0 consider the cyclic set of edges (e1, . . . , en) incident on v
as determined by the opposite orientation of Σ. Set ε(ei) = + if ei is oriented towards v,
and ε(ei) = − otherwise, and then

Hei = HomS
(
1, c(ei)

ε(ei) ⊗ · · · ⊗ c(en)ε(en) ⊗ c(e1)ε(e1) ⊗ · · · ⊗ c(ei−1)ε(ei−1)
)

(78)

where we use the notation u+ = u and u− = u∗ for all u ∈ S.
The duality morphisms of S induce isomorphisms {f} between the Hei which form

a projective system, and in [TVire] the vector space H(Ev
c ) assigned to the data Ev

c =
((e1, . . . , en), c, ε) is defined to be the projective limit. One can also use the duality mor-
phisms of S to obtain isomorphisms {g} that move tensor factors between the arguments
of HomS(−,−), for example

HomS
(
1, c(ek)

+ ⊗ c(ej)− ⊗ c(ei)−
) ∼= HomS

(
c(ei)⊗ c(ej), c(ek)

)
. (79)



538 NILS CARQUEVILLE, INGO RUNKEL, GREGOR SCHAUMANN

The projective limit of the system {f, g} is uniquely isomorphic to the limit of {f}, hence
we can and will work with the former as H(Ev

c ). In terms of these we set

H(Γ, c; Σ) =
⊗
v∈Γ0

H(Ev
c ) (80)

for Σ,Γ, c as above, and we note that there is a canonical isomorphism H(Γop, c; Σop)∗ ∼=
H(Γ, c; Σ), where (−)op signifies opposite orientation. For example in (78) for i = 1 one
pairs HomS(1, c(e1)ε(e1)⊗· · ·⊗c(en)ε(en)) with HomS(1, c(en)−ε(en)⊗· · ·⊗c(e1)−ε(e1)) using
the duality morphisms.

Let now Σ = S2 be endowed with an oriented graph Γ with an S-colouring c. Using
the cone isomorphisms {f} and sphericality one can associate to these data a functional
(see [TVire, Sect. 12.2])

FS(Γ, c) ∈ H(Γ, c; Σ)∗ . (81)

The idea is that locally around every vertex of Γ one can interpret it as a slot into which
one can insert elements of the tensor factors in (80). This tensor product is then evaluated
to the corresponding string diagram in S. We will have need for only two types of graph Γ,
to which we turn next; the associated functionals will be defined in (84) below.

Consider a 3-bordism M with an oriented stratified 2-polyhedron P that comes from a
triangulation of M as discussed above. All vertices in P correspond to oriented tetrahedra,
hence locally they look like

x+
or

x−
(82)

where only the 2-dimensional regions are oriented (all inducing the counter-clockwise
orientation in the paper plane). On the boundary ∂Bx

∼= S2 of a small ball Bx around
such vertices, oriented as induced from M \ Bx according to the construction of [TVire],
the above stratifications induce the oriented graphs

Γx+ = and Γx− = , (83)

respectively. For every S-colouring c of the edges in the graphs Γx± , we obtain functionals
FS(Γx± , c) ∈ H(Γx± , c;S

2)∗. Denoting the values of the colouring by i, j, k, l,m, n ∈ I we
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may employ the cone isomorphisms of the projective system defining H(Γx± , c;S
2) to ob-

tain the explicit functionals (where here and below we suppress the choice of i, j, k, l,m, n
in the notation)

FS(Γx+) = n

m

l

k

j

i
−−

−−

−−

−−

, FS(Γx−) =
n

m

l

k

j

i
−−

−−

−−

−−

(84)

which are respectively elements of(
HomS(j ⊗ i, k)⊗k HomS(n⊗ l, i)⊗k HomS(m, j ⊗ n)⊗k HomS(k,m⊗ l)

)∗
,(

HomS(i⊗ j, k)⊗k HomS(l ⊗ n, i)⊗k HomS(m,n⊗ j)⊗k HomS(k, l ⊗m)
)∗
. (85)

The final ingredient for the Turaev–Viro invariant in the construction of [TVire] are
the contraction maps ∗e. We describe them for the case of interest to us: Let M,P be as
before. Choose an S-colouring c : P2 → I and decorate each region r ∈ P2 with the object
c(r). Hence every internal edge e of P looks like

k
i

j

	
	

	e
(86)

for some i, j, k ∈ I. Recall that regions of P are oriented, but edges are not. The region
coloured by k in (86) induces an orientation on the edge e (upwards in the diagram in
our convention), and we denote the corresponding oriented edge by e+. The oppositely
oriented edge is denoted e−. To these the construction of [TVire] associates vector spaces

Hc(e
+) ∼= HomS(i⊗ j, k) , Hc(e

−) ∼= HomS(k, i⊗ j) . (87)

Since the pairing Hc(e
+) ⊗k Hc(e

−) → k of (67) is nondegenerate, there is a unique

dual copairing γ : k → Hc(e
−) ⊗k Hc(e

+) given by γ(1) =
∑

λ λ̂ ⊗ λ. The contraction
map ∗e : Hc(e

+)∗ ⊗k Hc(e
−)∗ → k is defined to be the dual map γ∗ composed with the

canonical isomorphisms k ∼= k∗ and (V ⊗k W )∗ ∼= W ∗ ⊗k V
∗ for all V,W ∈ vectk. Thus

we have (for basis elements λ, µ ∈ HomS(i⊗ j, k))

∗e : Hc(e
+)∗ ⊗k Hc(e

−)∗ −→ k , λ∗ ⊗ µ̂∗ 7−→ δλ,µ , (88)
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where we use

λ∗ :=
λ̂

−−
, µ̂∗ :=

µ

−−
. (89)

We can now describe the Turaev–Viro invariants ZTV
C (M) ∈ k for closed 3-manifoldsM

[TVire]:

ZTV,S(M) =
(
dim(S)

)−|P3|
∑

c : P2→I

( ∏
r∈P2

d
χ(r)
c(r)

)(⊗
e∈P1

∗e
)(⊗

x∈P0

FS(Γx)
)

(90)

for any oriented stratified 2-polyhedron P of M , where P3 denotes the set of connected
components in M \ P and χ(r) denotes the Euler characteristic of the 2-stratum r. Note
that for every edge e ∈ P1 its two oriented versions e+, e− correspond to precisely two
tensor factors in

⊗
x∈P0

FS(Γx), since every edge has two endpoints in P0, and for every
x ∈ P0 its incident edges are all treated as outgoing in the definition of FS(Γx),

On objects and arbitrary morphisms the functor ZTV,S is defined along the same lines.
For a surface Σ with an embedded oriented graph Γ as above, we set∣∣Γ; Σ

∣∣0 =
⊕

c : Γ1→I

H(Γ, c; Σ) (91)

with H(Γ, c; Σ) as in (80). For a bordism M : ∅ → Σ we choose an extension of the graph Γ
to an oriented stratified 2-polyhedron P of M . Let Col(P, c) be the set of S-colourings
c̃ : P2 → I with c̃(re) = c(e) for the region re with e ⊂ re ∩ ∂M and all edges e in Γ. We
write P int

1 for the set of edges in P without endpoints in ∂M , and P ∂
1 for the set of edges

in P with precisely one endpoint in ∂M . Such endpoints correspond to vertices v ∈ Γ0

and we have ⊗
e∈P∂

1

Hc̃(e
out)∗ ∼= H(Γop, c; Σop) (92)

where eout denotes the edge e with orientation towards ∂M . Thus by contracting along
interior edges e ∈ P int

1 we obtain a vector∣∣M ; Γ, c
∣∣0 =

(
dim(S)

)−|P3|
∑

c̃∈Col(P,c)

( ∏
r∈P2

d
χ(r)
c̃(r)

)( ⊗
e∈P int

1

∗e
)(⊗

x∈P0

FS(Γx)
)

(93)

in H(Γop, c; Σop)∗ ∼= H(Γ, c; Σ), generalising (90).
If (Σ,Γ) = (Σ′op,Γ′op) t (Σ′′,Γ′′) we can view M as a bordism Σ′ → Σ′′. Writing

Υ: H(Γ′, c; Σ′)∗ ⊗k H(Γ′′op, c; Σ′′op)∗
∼=−→ Homk

(
H(Γ′, c; Σ′), H(Γ′′, c; Σ′′)

)
(94)
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for the canonical isomorphism, we obtain a linear map

∣∣M ; Σ′,Γ′,Σ′′,Γ′′, c
∣∣0 =

(
dim(S)

)|Σ′′\Γ′′|∏
e∈Γ′′1

dc(e)
·Υ
(∣∣M ; Γ, c

∣∣0) , (95)

where |Σ′′ \ Γ′′| denotes the number of components of Σ′′ \ Γ′′. Restricting to Σ′ = Σ′′

and the cylinder M = Σ′ × [0, 1], by summing over all S-colourings c : (Γ′ t Γ′′)1 → I, we
obtain a projective system

p(Γ′,Γ′′) :
∣∣Γ′,Σ′∣∣0 −→ ∣∣Γ′′,Σ′∣∣0 . (96)

Then by definition
ZTV,S(Σ′) = lim←− p(Γ′,Γ′′) (97)

and ZTV,S acts on arbitrary bordism classes as the induced linear maps.

4.3. Orbifold data for the trivial Reshetikhin–Turaev theory. By the (3-
dimensional) trivial defect TQFT Ztriv : Bord3(Dtriv) → vect we mean the Reshetikhin–
Turaev defect TQFT constructed (in Section 2.1) from the “trivial” modular tensor cat-
egory vect:

Ztriv := Zvect . (98)

Hence Ztriv(Σ) = k for every unstratified surface Σ ∈ Bord3(Dtriv), while 2- and 1-strata
of bordisms in Bord3(Dtriv) are labelled by ∆-separable symmetric Frobenius k-algebras
and their cyclic modules in vect, respectively. In this section we will construct orbifold
data for Ztriv:

4.4. Proposition. Given a spherical fusion category S, the following is an orbifold da-
tum for Ztriv, denoted AS :

C := vect , (99)

A :=
⊕
i∈I

k (direct sum of trivial Frobenius algebras k) , (100)

T :=
⊕
i,j,k∈I

HomS(i⊗ j, k) , (101)

α : λ⊗ µ 7−→
∑
d,λ′,µ′

d−1
d F λλ′

µµ′ · λ′ ⊗ µ′ , (102)

ᾱ : λ′ ⊗ µ′ 7−→
∑
c,λ′′,µ′′

d−1
c (F−1)λ

′λ′′

µ′µ′′ · λ′′ ⊗ µ′′ , (103)

ψ2 := diag(d1, d2, . . . , d|I|) (ψ is a choice of square root) , (104)

φ2 :=
(∑

i∈I

d2
i

)−1

= (dim S)−1 (φ is a choice of square root) , (105)
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where the basis elements and sums in (102) and (103) are as in (72) and (73) while α(λ⊗
µ)

def
= 0

def
= ᾱ(λ′⊗µ′) if λ, µ and λ′, µ′ are not compatible as in (72) and (73), respectively,

and the action of A on HomS(i ⊗ j, k) in T is such that only the k-th summand kk acts
non-trivially from the left, and only ki ⊗ kj acts non-trivially from the right. Different
choices of square root in (104) give equivalent orbifold data in the sense of Definition 3.10.

As preparation for the proof of Proposition 4.4 we spell out composition and adjunc-
tions for 2-morphisms in TZtriv . Using the isomorphism

HomS(k, i⊗ j)
∼=−→ HomS(i⊗ j, k)∗ , λ̂ 7−→

λ̂

−−
(106)

we exhibit the (A⊗ A)-A-bimodule

T † :=
⊕
i,j,k∈I

HomS(k, i⊗ j) (107)

as the adjoint of T via the maps

evT : T † ⊗A T =
⊕
a,b,i,j,k

HomS(k, a⊗ b)⊗k HomS(i⊗ j, k) −→ A⊗k A

HomS(k, a⊗ b)⊗k HomS(i⊗ j, k) 3 µ̂⊗ λ 7−→ δa,i δb,j δλ,µ · 1i ⊗ 1j

and

coevT : A −→ T ⊗A⊗kA T
† =

⊕
i,j,k

HomS(i⊗ j, k)⊗k HomS(k, i⊗ j) (108)

1k 7−→
∑
i,j,λ

λ⊗ λ̂ (109)

where 1k denotes 1 ∈ k in the k-th copy of k in A. Note how tensor products over the
direct sum algebra A turn into tensor products over k of matching summands. Similarly,
we have adjunction maps

ẽvT : T ⊗A⊗kA T
† −→ A , c̃oevT : A⊗k A −→ T † ⊗A T . (110)

Proof Proof of Proposition 4.4. We will show that the data (vect, A, T, α, ᾱ, ψ, φ)
satisfy the constraints in Proposition 3.5.
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The constraints (41) and (42) reduce to the pentagon axiom for S (expressed in terms
of F -symbols) and to the fact that up to dimension factors, α is the inverse of ᾱ. For
example, writing c for the symmetric braiding of vect, the left-hand side of (41) becomes

T ⊗ T ⊗ T
∑

x′,y′,λ′,µ′,ν′

d−1
x′ d

−1
y′

∑
δ

F λδ
µν′F

δλ′

νµ′ · λ′ ⊗ µ′ ⊗ ν ′

T ⊗ T ⊗ T
∑
x′,ν′,δ

d−1
x′ F

λδ
µν′ · δ ⊗ ν ⊗ ν ′

T ⊗ T ⊗ T
∑
x′,ν′,δ

d−1
x′ F

λδ
µν′ · δ ⊗ ν ′ ⊗ ν

T ⊗ T ⊗ T λ⊗ µ⊗ ν

α⊗ id

idT ⊗ c−1
T,T

α⊗ id

(111)

which is the left-hand side of (76), up to the dimension factors which cancel against
corresponding factors on the right-hand side of (41) together with the factors coming
from ψ2.

We now turn to the first condition of (43), which is an identity of linear maps on

T ⊗A T † =
⊕

i,j,k,l,m

HomS(m⊗ k, l)⊗k HomS(i,m⊗ j)

=
⊕

i,j,k,l,m

lTm,k ⊗k (iTm,j)
† . (112)

Here and below we use the abbreviations

kTi,j := HomS(i⊗ j, k) , (kTi,j)
† := HomS(k, i⊗ j) . (113)

Hence it is sufficient to show that for all fixed i, j, k, l,m ∈ I and for all basis elements

λ ∈ HomS(m ⊗ k, l), ̂̃λ ∈ HomS(i,m ⊗ j) the left-hand side of (43) acts as the identity

times d−1
m on λ ⊗ ̂̃λ. This action on λ ⊗ ̂̃λ is computed in Figure 1, where the Roman

summation indices a, b, x, y, z′ range over I while Greek indices range over chosen bases
elements:

µ ∈HomS(j ⊗ x, k) ,

λ′ ∈HomS(y ⊗ x, l) ,
µ′ ∈HomS(m⊗ j, y) ,
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αα

ᾱα

ψ2
2

lTa,k (iTa,b)†

z′Tb,x

kTj,x

(kTj,x)†

yTm,j

lTm,k (iTm,j)†

lTy,x

∑
x,µ,λ′

∑
a,ν,λ′′

dxd
−1
i d−1

k F λλ′

µλ̃
(F−1)λ

′λ′′

νµ · λ′′ ⊗ ν̂

∑
x,µ,λ′

∑
a,b,ν

∑
z′,λ′′,ν′

dxd
−1
i d−1

z′ F
λλ′

µλ̃
(F−1)λ

′λ′′

νν′ · λ′′ ⊗ ν ′ ⊗ µ̂⊗ ν̂

∑
x,µ,λ′

∑
a,b,ν

dxd
−1
i F λλ′

µλ̃
· λ′ ⊗ ν ⊗ µ̂⊗ ν̂

∑
x,µ,λ′

dxd
−1
i F λλ′

µλ̃
· λ′ ⊗ µ̂

∑
x,µ

∑
y,λ′,µ′

d−1
y F λλ′

µµ′ · λ′ ⊗ µ′ ⊗ µ̂⊗
̂̃
λ

∑
x,µ

λ⊗ µ⊗ µ̂⊗ ̂̃λ

λ⊗ ̂̃λ

Figure 1: Computing the left-hand side of condition (43) for AS . Note that this is a string
diagram in vect, so there is no need to distinguish between over- and under-crossings, but
we prefer to keep the notation from Proposition 3.5.
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ν ∈HomS(a⊗ b, i) ,
λ′′ ∈HomS(a⊗ z′, l) ,
ν ′ ∈HomS(b⊗ x, z′) . (114)

The outcome ∑
x,µ,λ′

∑
a,ν,λ′′

dx
(
d−1
i F λλ′

µλ̃

)
·
(
d−1
k (F−1)λ

′λ′′

νµ

)
· λ′′ ⊗ ν̂ (115)

of the computation in Figure 1 can be further simplified:

(115)
(74)
=

∑
a,x,ν,λ′,λ′′,µ

dx ·

λ̂′

̂̃
λ

λ

µj

i

x

l

m

k

λ̂′′

µ̂

λ′

ν
j

k

a

l

x

i

· λ′′ ⊗ ν̂

(71)
=

∑
a,x,ν,λ′′,µ

dx ·

̂̃
λ

ν

µ̂

λ

λ̂′′

µ
j

ja

k

i x

l

m

k

· λ′′ ⊗ ν̂ (70)
=

∑
a,ν,λ′′

̂̃
λ

ν

λ

λ̂′′

j

a

i k

l

m

· λ′′ ⊗ ν̂

(69)
=

∑
a,ν,λ′′

δa,m
dm

δν,λ̃ ·
λ̂′′

λ

m k

l

· λ′′ ⊗ ν̂ (69)
=
∑
λ′′

δλ,λ′′

dm
· λ′′ ⊗ ̂̃λ =

1

dm
· λ⊗ ̂̃λ .

Hence we have shown that the first identity in (43) holds. The other identity is checked
similarly.

Next we turn to the first constraint in (44). Verifying that it holds for our orbifold
data is similar to the case of (43): We have to show that the left-hand side of (44) acts as

the identity times d−1
k on

̂̃
λ⊗λ for all elements λ ∈ HomS(i⊗j, k) and

̂̃
λ ∈ HomS(k, a⊗b)

of chosen bases for all a, b, i, j, k ∈ I. This action is computed in Figure 2 to produce∑
c,z,ν,ν′,µ,µ′

dc
(
d−1
a F λλ̃

µµ′

)
·
(
d−1
j (F−1)νν

′′

µ′µ

)
· ν̂ ⊗ ν ′′ . (116)
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αα

ᾱα

ψ2
2

zTi,j(zTa,b)†

z′′Tc,b

jTc,d

y′Ti,ckTy′,d

kTi,j(kTa,b)†

∑
c,µ,µ′

∑
z,ν

∑
ν′′

dcd
−1
a d−1

j F λλ̃
µµ′(F

−1)νν
′′

µ′µ · ν̂ ⊗ ν ′′

∑
c,µ,µ′

∑
z,ν

∑
z′′,ν′′,µ′′

dcd
−1
a d−1

z′′ F
λλ̃
µµ′(F

−1)νν
′′

µ′µ′′

·ν̂ ⊗ ν ′′ ⊗ µ′′ ⊗ µ̂

∑
c,µ,µ′

∑
z,ν

dcd
−1
a F λλ̃

µµ′ · ν̂ ⊗ ν ⊗ µ′ ⊗ µ̂

∑
c,µ,µ′

dcd
−1
a F λλ̃

µµ′ · µ′ ⊗ µ̂

∑
c,d,µ

∑
y′,λ′,µ′

d−1
y′ F

λλ′

µµ′ ·
̂̃
λ⊗ λ′ ⊗ µ′ ⊗ µ̂

∑
c,d,µ

̂̃
λ⊗ λ⊗ µ⊗ µ̂

̂̃
λ⊗ λ

Figure 2: Computing the left-hand side of condition (44) for AS .
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This can be simplified to

(116) =
∑

c,z,ν,ν′′,µ,µ′

dc ·

̂̃
λ

µ̂′

λ

µc

a

b

k

i

j

ν̂′′

µ̂

ν

µ′

c

j
i

z

b

a

· ν̂ ⊗ ν ′′

(∗)
=

∑
c,z,ν,ν′′,µ′

dc ·
µ′
ν

ν̂′′

µ̂′ ̂̃
λ

λ

c b

j

j

z

k

a

a

i

i

· ν̂ ⊗ ν ′′ =
∑
z,ν,ν′′

ν

ν̂′′

̂̃
λ

λ

a bj

z

k

i

· ν̂ ⊗ ν ′′

=
∑
z,ν,ν′′

1

dk
δν,λ̃ δk,z ·

ν̂′′

λ

j zi · ν̂ ⊗ ν ′′ = 1

dk

∑
ν ν̂′′

λ

i j

z

· ̂̃λ⊗ ν ′′

=
1

dk
· ̂̃λ⊗ λ ,

where in (∗) first the basis element λ in the left diagram and the element ν̂ ′′ in the right
diagram are “taken around” by using the cyclicity of the trace, and then (71) is used.
The second identity in (44) follows analogously.

It remains to verify the constraints in (45). Writing again 1k for the unit in the k-th
copy of k in A =

⊕
k∈I k, the left-hand side of the first identity in (45) is

A T ⊗A⊗kA T
† A

1k
∑
i,j,λ

didj · λ⊗ λ̂
∑
i,j

didjN
k
ij · idAk

ψ2
1ψ

2
2coevT c̃oevT

(117)

where Nk
ij := dimk HomS(i⊗ j, k). We further compute∑

i,j

didjN
k
ij =

∑
i,j

didj∗N
j∗

ik∗ =
∑
i

dididk = φ−2 · (ηA ◦ ψ2)
∣∣
Ak
, (118)

where in the first step we used that Nk
ij = N j∗

ik∗ and that dj = dj∗ . The second step is
dim(i⊗ k∗) =

∑
lN

l
ik∗ dim(l).
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4.5. Remark. The orbifold datum AS of Definition 4.4 constructed from a spherical
fusion category S is expressed internally to the modular tensor category vect, in line
with the general setup of Section 3.4. Equivalently, AS can be described internal to
the 3-category with duals Bimodk of spherical fusion categories, bimodule categories with
module traces, bimodule functors and their natural transformations (studied in [Sc]), along
the general lines of [CRS1, Sect. 4.2]. In this formulation, 3-, 2-, 1- and 0-strata are labelled
by vect, the vect-vect-bimodule S, the functor ⊗ : S�S → S and natural transformations
constructed from the associator, respectively. Similarly, the φ- and ψ-insertions are also
natural transformations; for example, one can compute the right quantum dimension
dimr(⊗) to be dimS times the identity, which fixes φ2 to be (dimS)−1 · idIdvect .

In this way the orbifold datum AS is a spherical fusion category internal to the 3-
category with duals TZtriv ⊂ Bimodk constructed from Ztriv as in [CMS]. A related
idea to use (spherical fusion categories viewed as) “2-algebras” to construct Turaev–Viro
theory was outlined in [BL].

In general, we can think of orbifold data for a 3-dimensional defect TQFT Z as
spherical fusion categories internal to TZ .

4.6. Turaev–Viro theory is an orbifold. In this section we prove that for every
spherical fusion category S, Turaev–Viro theory ZTV,S and the orbifold theory Ztriv

AS are
isomorphic as TQFTs.

We first show that ZTV,S and Ztriv
AS assign identical invariants to closed 3-manifolds.

Let M be such a closed manifold, and let t be an oriented triangulation of M . As recalled
from [CRS1] in Section 2.3, by decorating the Poincaré dual stratification with the orbifold
datum AS from Definition 4.4, we obtain a morphism M t,AS : ∅ → ∅ in Borddef

3 (Dtriv). By
definition,

Ztriv
AS (M) = Ztriv

(
M t,AS) . (119)

To compute the right-hand side of (119), we will denote the set of j-strata of M t,AS

by Mj for j ∈ {1, 2, 3}, while the sets of positively and negatively oriented 0-strata are

denoted M+
0 and M−

0 , respectively. By construction, the invariant Ztriv(M t,AS ) is a single
string diagram D in vect. Using the decompositions A =

⊕
i k and T =

⊕
i,j,k HomS(i⊗

j, k), the diagram D can be written as a sum of string diagrams whose strings are labelled
by simple objects in I. The morphisms in these diagrams are either point insertions ψ2, φ2,
or duality maps

HomS(l, a⊗ b)⊗k HomS(i⊗ j, k) 3 λ̂′ ⊗ λ 7−→ δa,iδb,jδk,lδλ,λ′ , (120)

1k 7−→
∑
λ

λ⊗ λ̂ ∈ HomS(i⊗ j, k)⊗k HomS(k, i⊗ j) , (121)

or their tilded versions

HomS(i⊗ j, k)⊗k HomS(l, a⊗ b) 3 λ⊗ λ̂′ 7−→ δa,iδb,jδk,lδλ,λ′ , (122)

1k 7−→
∑
λ

λ̂⊗ λ ∈ HomS(k, i⊗ j)⊗k HomS(i⊗ j, k) (123)
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as in Section 4.1, or the component maps

α : λ⊗ µ 7−→
∑
d,λ′,µ′

d−1
d F λλ′

µµ′ · λ′ ⊗ µ′ , (124)

ᾱ : λ′ ⊗ µ′ 7−→
∑
c,λ′′,µ′′

d−1
c (F−1)λ

′λ′′

µ′µ′′ · λ′′ ⊗ µ′′ (125)

of Definition 4.4, corresponding to 0-strata in M±
0 .

As we will explain in the following, Ztriv(M t,AS ) is equal to

φ2|M3| ·
∑

I=(i1,...,i|M2|)∈I
|M2|

di1 . . . di|M2|

∑
λIe

( ∏
x∈M0

FC(Γx)
(⊗
e∈Ex

λIe

))
. (126)

To arrive at this expression, first note that each 3-stratum in M t,AS carries a φ2-insertion,
leading to the global factor φ2|M3|. Secondly, each A-labelled 2-stratum carries an inser-
tion of ψ2 = diag(d1, . . . , d|I|), leading to

∑
I di1 . . . di|M2|

when decomposing A =
⊕

i k.

Thirdly, for fixed I ∈ I |M2| and e ∈ M1, λIe ranges over a basis of HomS(i ⊗ j, k) if a
neighbourhood of e looks like3

k

	

i

	

j

	e
. (127)

Fourthly, for x ∈ M0 we write Ex for the list of edges incident on x. Then, if for a fixed
colouring I the neighbourhood of x ∈M+

0 looks like

m

e2

x

k
i

l
n

j

e3
e4

e1

(128)

we have Ex = (e1, e2, e3, e4), and for fixed λIe1 , λ
I
e2
, λIe3 , λ

I
e4

we have

FC(Γx)
(⊗
e∈Ex

λIe

)
=

λ̂Ie1

λ̂Ie2

λIe3

λIe4n

m
l

k

j

i

. (129)

3When we say that a 2-stratum is labelled with i ∈ I, here and below we mean that we consider the
contribution of the i-th copy of k in A.
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Similarly, for y ∈M−
0 we have that FC(Γy)(

⊗
e∈Ey

λIe ) is given by an appropriate evalua-

tion of a functional as in (84), i. e. a diagram of the form

. (130)

In summary, the invariant Ztriv
AS (M) has the form

(
dim(S)

)−|M3|
∑
M2

di1 . . . di|M2|

∑
M1

∑
{λ}

(∏
M+

0

)(∏
M−0

)
. (131)

4.7. Proposition. We have Z triv
AS (M) = ZTV,S(M) for all closed 3-manifolds M .

Proof. Recall from (90) that ZTV,S(M) is given by

ZTV,S(M) =
(
dim(S)

)−|P3|
∑

c : P2→I

( ∏
r∈P2

d
χ(r)
c(r)

)(⊗
e∈P1

∗e
)(⊗

x∈P0

FS(Γx)
)
, (132)

where we choose the oriented stratified 2-polyhedron P associated to M t,AS . In this case
we have χ(r) = 1 for all r ∈ P2 = M2, so what remains to be verified is that for fixed
c : P → I (and I ∈ I |M2|) the number(⊗

e∈P1

∗e
)(⊗

x∈P0

FS(Γx)
)

(133)

is indeed the sum over all decorations of the string diagrams as in (129) and (130) corre-
sponding to all vertices of P .

We first note that for a vertex x ∈ M+
0 and a fixed colouring of the edges of Γx, we

have

FS(Γx) =
∑

λ,λ′,µ,µ′

λ̂′
µ̂′

λ

µ
· λ∗ ⊗ µ∗ ⊗ µ̂′

∗
⊗ λ̂′

∗
, (134)

with λ∗, µ̂′
∗

defined in (89). If y ∈ M−
0 is a negatively oriented vertex, there is an

analogous expression for FS(Γy). Each basis element λ, λ′, µ, µ′ above corresponds to one
of the edges incident on x. For example, if λ corresponds to an edge e which has x as
one endpoint and some vertex z ∈ P0 as the other endpoint, and if the basis element
corresponding to e at z is κ̂, then the contraction map ∗e of (88) acts as λ ⊗ κ̂ 7→ δλ,κ.
Hence for a given S-colouring c, (

⊗
e∈P1
∗e)(

⊗
x∈P0

FS(Γx)) is the sum, over all elements
of a basis which can be inserted at the vertices of all Γx, of the product of the respective
evaluations of all FS(Γx). Thus we see that indeed Ztriv

AS (M) = ZTV,S(M).
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Let now M be an arbitrary 3-bordism. By comparing Ztriv
AS (M) and ZTV,S(M) analo-

gously to the above discussion, one finds that the two constructions are identical, except
for how they treat 2- and 3-strata of M t,AS (or the corresponding 2-polyhedron P ) which
intersect with the boundary ∂M : while the orbifold construction Ztriv

AS treats incoming

and outgoing boundaries on an equal footing (leading to factors of d
1/2
i and (dimS)−1/2

for 2- and 3-strata, respectively), the construction ZTV,S of [TVire] involves contributions
only from the incoming boundary (leading to factors of di and (dimS)−1).

This mismatch can be formalised in terms of Euler defect TQFTs, see [Qu, CRS1].
Indeed, in the language of [CRS1, Ex. 2.14] the choices for ZTV,S favouring the incoming
boundary correspond to the choice λ = 1 for the Euler TQFT, while the choice for Ztriv

AS
corresponds to λ = 1

2
. Since both Euler TQFTs are isomorphic [Qu], Lemma 2.30 and

Remark 3.14 of [CRS1] imply that this isomorphism lifts directly to ZTV,S and Ztriv
AS .

To describe the isomorphism in detail, let M : Σ′ → Σ′′ be as in (95) with embedded
graphs Γ′,Γ′′ on Σ′,Σ′′. Let t be an oriented triangulation of M extending the duals of
the graphs on Σ′ and Σ′′, and for any surface Σ with embedded graph Γ set f(Σ,Γ) :=

(dim(S))|Σ\Γ|/2
∏

e∈Γ1
d
−1/2
c(e) . Then by construction

Z(M t,A) =
f(Σ′,Γ′)

f(Σ′′,Γ′′)
p(Γ′,Γ′′) , (135)

so the factors f(Σ,Γ) form an isomorphism between the projective system (96) for ZTV,S

and the corresponding projective system (25) for Ztriv
AS . Thus we obtain an isomorphism

between the corresponding limits, which by (135) is the Σ-component of a natural isomor-
phism Ztriv

AS → Z
TV,S . Since the map f is multiplicative under disjoint union by definition,

the natural isomorphism is also monoidal. We have thus shown:

4.8. Theorem. For any spherical fusion category S, there is a monoidal natural iso-
morphism between the Turaev–Viro TQFT ZTV,S and the AS-orbifold of the trivial 3-
dimensional defect TQFT:

Z triv
AS
∼= ZTV,S . (136)

5. Group extensions of modular tensor categories

In this section we show that for every suitable G-extension of a ribbon fusion category B
there is a corresponding orbifold datum for B in the sense of Definition 3.6. One type
of such extensions are G-extensions of modular tensor categories C. Another interesting
situation is when we have a ribbon functor F : B → C and a G-crossed extension of B, as
this gives orbifold data in C (by Proposition 3.7). We consider examples of this where F
is the embedding of a subcategory of C.

In fact our second main result, Theorem 5.1 (which is Theorem B in the introduction),
also holds for certain non-fusion (e. g. non-semisimple) ribbon categories, see Remark 5.6.

We fix a finite group G, a ribbon fusion category B, and a ribbon crossed G-category
B̂ =

⊕
g∈G Bg such that B = B1 and Bg 6= 0 for all g ∈ G. Roughly, this means that
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the tensor product of B̂ is compatible with the G-grading, there is a monoidal functor
ϕ : G → Aut⊗(B̂) (where G is G viewed as a discrete monoidal category), and the twist

and braiding of B̂ are “twisted” by the G-action ϕ. For details we refer to [Tu2, Sect. VI.2]
from which we deviate in that for us G acts from the right, i. e.

ϕ(g)(Bh) ⊂ Bg−1hg for all g, h ∈ G , (137)

and the G-twisted braiding has components

cX,Y ≡

X Y

Y ϕ(h)(X)

: X ⊗ Y
∼=−→ Y ⊗ ϕ(h)(X) if Y ∈ Bh ,

c̃Y,X ≡

Y X

ϕ(h−1)(X) Y

: Y ⊗X
∼=−→ ϕ(h−1)(X)⊗ Y if Y ∈ Bh . (138)

Here we wrote c̃ for the braiding describing the opposite crossing. Up to coherence
isomorphism from the group action, the inverse c−1

X,Y of the braiding is given by c̃Y,ϕ(h)(X).
For every g ∈ G, we now choose a simple object mg ∈ Bg such that m1 = 1, and we

set
dmg := dim(mg) ∈ k× for all g ∈ G . (139)

We furthermore pick a square root d
1/2
mg . It is straightforward to verify that

Ag := m∗g ⊗mg ,

m∗gmg mgm∗g

mgm∗g

,
m∗g mg

,
1

dmg

·

mg m∗gm∗g mg

m∗gmg

, dmg ·
mgm∗g

(140)

is a ∆-separable symmetric Frobenius algebra in B for all g ∈ G. Moreover we have
Agh-(Ag ⊗ Ah)-bimodules Tg,h ∈ B given by

Tg,h := m∗gh ⊗mg ⊗mh with actions

Tg,hAgh

def
=

m∗ghmgh mg mhm∗gh

,

Tg,h Ah

2 def
=

mhm∗hmgm∗gh mh

,
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Tg,h Ag

1 def
=

mgm∗gmgm∗gh mh

. (141)

Above we use string diagram notation for morphisms in the G-crossed category B̂. By
(138), the object label attached to a string changes at crossings. For example, the first
crossing in the action of Ag is the inverse braiding mg ⊗ mh → ϕ(g−1)(mh) ⊗ mg, and
the second crossing is the braiding ϕ(g−1)(mh) ⊗ mg → mg ⊗ mh (composed with a
coherence isomorphism for ϕ). Thus the string labelled mh at the bottom is labelled by
ϕ(g−1)(mh) ∈ Bghg−1 between the crossings and again by mh at the top.

One checks that indeed (cf. (33))

Tg,h Ag Ah

=

Tg,h Ag Ah

. (142)

Setting A :=
⊕

g∈G
Ag, it follows that T :=

⊕
g,h∈G Tg,h is an A-(A⊗ A)-bimodule.

Now we define component maps

αg,h,k : Tg,hk ⊗ Th,k −→ Tgh,k ⊗ Tg,h , ᾱg,h,k : Tgh,k ⊗ Tg,h −→ Tg,hk ⊗ Th,k (143)

by

αg,h,k
def
= gghk k

h

hk

gh
, ᾱg,h,k

def
= ghk

g

hk

k h

gh

. (144)

Here and below we use the following shorthand notation in labelling string diagrams. A
label g on a string indicates that its source and target object is mg (or m∗g, depending
on orientation). We stress that this is independent of the position of the label g along
the string. For example, passing along the string labelled k in the diagram for ᾱg,h,k, the
components of the string in the complement of the crossings should be labelled by the
objects mk, ϕ(h−1g−1)(mk), ϕ(h−1)(mk) and mk, in this order.

The components αg,h,k and ᾱg,h,k assemble into module maps α :=
∑

g,h,k∈G αg,h,k and
ᾱ :=

∑
g,h,k∈G ᾱg,h,k, as can be checked by verifying identities as in (36)–(37).

Finally we define ψ ∈ EndAA(A) and φ ∈ End(1) = k by

ψ
∣∣
Ag

def
= d−1/2

mg
· idAg , φ2 :=

1

|G|
. (145)

5.1. Theorem. Let B = B1 be the neutral component of a ribbon crossed G-category B̂
as above. Then for every choice of simple objects {mg ∈ Bg}g∈G the tuple Am :=
(A, T, α, ᾱ, ψ, φ) defined in (140)–(145) is a special orbifold datum for B.
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Proof. We have to show that Am satisfies the conditions (41)–(45). Once the latter are
written out in terms of the algebra actions (141), the component maps (144) and the
definition (145) of ψ and φ, the verification becomes a straightforward exercise in the
graphical calculus for ribbon crossed G-categories. Here we provide details for only two
conditions; the remainder is checked analogously.

One of the more involved conditions is the second identity of (43). In components, its
right-hand side is

ψ−2
2

2

2Ak

Tgh,k T ∗h,k

=
ghk

gh

k

k

h

hk =
ghk

gh

k

k
h

hk , (146)

while for the left-hand side we compute:

αg,h,kᾱg,h,k

αg,h,kαg,h,k

ψ2
1

Tgh,k T ∗h,k

=
1

dmg

·
ghk

gh

k

kg

h

hk

=
ghk gh hk

k

k

h

(147)

By the ribbon property, this expression is indeed equal to (146).
We also show that the left- and right-hand side of (45) agree:

ψ2
1

ψ2
2

A

T

=
∑
g,h∈G

ψ2
1

ψ2
2

Agh

Tg,h
=

∑
g,h∈G

d−1
mg
d−1
mh
·

gh gh

g h

=
∑
g∈G

(∑
h∈G

h

)
= |G|

∑
h∈G

d−1
mh
·
Ah

= φ−2 · ψ2

A

. (148)
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5.2. Remark. Note that in B̂, all the Ag, g ∈ G, are Morita equivalent to the algebra 1.
In B1 typically only A1 is Morita equivalent to 1, but the bimodules Tg,h still exhibit Agh
as Morita equivalent to Ag⊗Ah in B1. Thus Ag⊗Ag−1 is Morita equivalent to 1 in B1, that
is, all Ag are necessarily Azumaya algebras in B1, see [VOZ] and e. g. [FRS1, Sect. 10].
Commutative separable algebras in braided tensor categories are Azumaya iff they are
isomorphic to the tensor unit [VOZ, Thm. 4.9], and so in this sense the construction in
Section 3.18 is complementary to the one described here.

It is natural to ask to what extent Theorem 5.1 depends on the choice of simple objects
mg ∈ Bg. To answer this question, let {m̃g ∈ Bg}g∈G be another choice of simple objects.
Hence by setting

Ãg := m̃∗g ⊗ m̃g , Ã :=
⊕
g∈G

Ãg (149)

and similarly defining T̃ , α̃, ˜̄α, ψ̃ in terms of {m̃g} along the lines of (141)–(145), we have
a second special orbifold datum

Am̃ :=
(
Ã, T̃ , α̃, ˜̄α, ψ̃, φ ) (150)

for B.
To relate Am̃ to Am, first note that Ãg and Ag are Morita equivalent (in B = B1) for

all g ∈ G: for Xg := m̃∗g ⊗mg we have X∗g ⊗Ãg
Xg
∼= Ag and Xg ⊗Ag X

∗
g
∼= Ãg. Hence

X :=
⊕
g∈G

Xg (151)

is an Ã-A-bimodule exhibiting a Morita equivalence between A and Ã, and Definition 3.10
and Proposition 3.11 give us another special orbifold datum for B, the Morita transport
of Am along X:

X(Am) =
(
Ã, TX , αX , ᾱX , ψX , φ

)
. (152)

5.3. Lemma. There is a T -compatible isomorphism from X(Am) to Am̃.

Proof. The T -compatible isomorphism ρ : TX → T̃ can be assembled from component
maps ρg,h : (TX)g,h = X∗gh ⊗Agh

Tg,h ⊗Ag⊗Ah
(Xg ⊗Xh) → T̃g,h obtained via the universal

property from the map X∗gh ⊗ Tg,h ⊗Xg ⊗Xh → T̃g,h given by

1√
dmgh

dmgdmh

· idm̃gh
⊗ evmgh

⊗ evmg ⊗idm̃g ⊗ evmh
⊗idm̃h

(153)

for all g, h ∈ G. Checking the defining condition (64) of T -compatibility for (the compo-
nents of) ρ is a straightforward string-diagram manipulation of the same type as in the
proof of Theorem 5.1.
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As one would expect, if one maps B into a modular tensor category via a ribbon
functor, all the above orbifold data lead to isomorphic orbifold TQFTs, and in this sense
the construction does not depend on the choice of simple objects:

5.4. Corollary. Let B, C be ribbon fusion categories, and let C be modular. Let F : B →
C be a ribbon functor and let {mg ∈ Bg}g∈G and {m̃g ∈ Bg}g∈G be two choices of simple
objects as above. Then

(ZC)F (Am)
∼= (ZC)F (X(Am))

∼= (ZC)F (Am̃) . (154)

Proof. The first isomorphism in (154) is Corollary 3.17. The second isomorphism fol-
lows from Lemma 3.16 and Lemma 5.3, and from the fact that F maps T -compatible
isomorphisms to T -compatible isomorphisms.

5.5. Remark. Recall the notions of G-crossed extension and G-equivariantisation, e. g.
from [ENOM, Tu2]. By Theorem 5.1 every G-crossed extension C×G of a modular tensor
category C gives rise to an orbifold datum for ZC. We expect that the associated orbifold
TQFT is isomorphic to the Reshetikhin–Turaev theory ZRT,(C×G)G corresponding to the
G-equivariantisation (C×G)G of C×G; this is in line with previous work on gauging global
symmetry groups [BBCW, CGPW] and on geometric group orbifolds of 3-2-1-extended
TQFTs [SW].

5.6. Remark. There is a generalisation of Theorem 5.1 which does not need the strong
assumptions of semisimplicity and finiteness inherent to fusion categories: Suppose that B̂
is a k-linear ribbon crossed G-category such that in every graded component Bg there
exists a simple object mg with invertible quantum dimension dmg ∈ End(1) which in
turn has a square root. Then the proof of Theorem 5.1 still goes through to show that
Am = (A, T, α, ᾱ, ψ, φ) defined as in (140)–(145) is a special orbifold datum for B = B1.

5.7. Example. As a class of concrete examples of G-crossed extensions and their as-
sociated orbifold data, we consider Tambara–Yamagami categories T YH,χ,τ . Recall that
Tambara and Yamagami [TY] classified Z2-extensions of pointed categories, i. e. of fusion
categories where all objects are invertible. Such extensions are constructed from tuples
(H,χ, τ), where H is a finite abelian group, χ : H × H → k× is a nondegenerate sym-
metric bicharacter, and τ ∈ k is a square root of |H|−1. Writing Z2 = {±1}, the graded
components of T YH,χ,τ are the category of H-graded vector spaces and vector spaces,
respectively: (T YH,χ,τ )+1 = vectH and (T YH,χ,τ )−1 = vect. The fusion rules for the +1-
component are as in vectH , the single simple object in the −1-component is noninvertible
(unless |H| = 1), and the category T YH,χ,τ has a canonical spherical structure such that
the quantum dimensions of all objects are positive, see e. g. [GNN] for details.

(i) Consider the case of a Tambara–Yamagami category where the bicharacter χ comes

from a quadratic form q : H → k×, i. e. it satisfies χ(a, b) = q(a·b)
q(a)q(b)

for all a, b ∈ H.
Then the category T YH,χ,τ is a Z2-crossed extension of vectH,χ with the braiding
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on simple objects a, b ∈ H given by (where we use a⊗ b = ab = ba = b⊗a in vectH)

ca,b = χ(a, b) · ida·b : a⊗ b −→ b⊗ a , (155)

see [GNN, Prop. 5.1]. From Theorem 5.1 we obtain orbifold dataAτ in (T YH,χ,τ )+1 =
vectH,χ for each choice of square root τ of |H|−1. Following the construction in
the proof, we see that the algebra in the orbifold datum is A = 1 ⊕ AH , where
AH :=

⊕
h∈H h corresponds to the nontrivial element −1 ∈ Z2. By inspecting the

fusion rules of T YH,χ,τ , one finds that the bimodules Tg,h are given by T1,1 = 1 for
1 ∈ Z2 and Tg,h = AH in all other cases.

(ii) For H = Z2 the corresponding Tambara–Yamagami categories reduce to the familiar
Ising categories [EGNO]. Consider, for example, the quadratic form q such that
q(+1) = 1 and q(−1) = i, and τ = ± 1√

2
. Then T YZ2,χ,τ are Z2-extensions of

vectZ2,χ with a symmetric braiding coming from χ: The simple object in degree −1
has a self-braiding which is −1 times the identity. As in the general case in part (i)
above we obtain orbifold data Aτ in the ribbon category vectZ2,χ for both choices
of τ .

We end with an example which relates the orbifold data of Example 5.7(ii) to our
constructions in Section 3:

5.8. Example. Let Ck be the modular tensor category associated to the affine Lie al-
gebra ŝl(2)k at a positive integer level k. The category Ck has k + 1 simple objects
U0, U1, . . . , Uk, all of which are self-dual. The object Uk is invertible and has ribbon-twist
θUk

= ik · idUk
. The simple ∆-separable symmetric Frobenius algebras in Ck are known up

to Morita equivalence from the classification of Ck-module categories [Os] and follow an
ADE pattern. Depending on the level k, there are one, two or three such Morita classes:

� all k (case A): For every value of k one has the Morita class [AA] of the simple ∆-
separable symmetric Frobenius algebra AA := 1. For k = 1 mod 2 this is furthermore
the only such Morita class, so these values of k do not provide interesting examples
of the constructions in Section 3.18 or in this section.

� k = 0 mod 4 (case Deven): There is an up-to-isomorphism unique structure of a ∆-
separable symmetric Frobenius algebra on AD := U0 ⊕ Uk. Its Morita class [AD] is
different from [AA]. The algebra AD is commutative and one can thus apply the
construction in Section 3.18. The algebra AD is not Azumaya (and hence no algebra
in [AD] is), and so it cannot appear as part of a G-extension as discussed in this
section.

� k = 2 mod 4 (case Dodd): As above, AD := U0 ⊕ Uk is a ∆-separable symmetric
Frobenius algebra in an up-to-isomorphism unique way, and its Morita class [AD]
is distinct from [AA]. But this time, AD is noncommutative and in fact Azumaya.
The full subcategory spanned by U0 and Uk is ribbon-equivalent to vectZ2,χ with the
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symmetric braiding from χ as in (ii) above. Put differently, there is a fully faithful
ribbon functor F : vectZ2,χ → Ck. The two orbifold data Aτ for τ = ± 1√

2
in vectZ2,χ

give by Proposition 3.7 orbifold data F (Aτ ) in Ck.

� k ∈ {10, 28} (cases E6, E8): There are commutative simple ∆-separable symmetric
Frobenius algebras AE6 , AE8 , which provide a third Morita class [AE6 ], resp. [AE8 ],
in addition to [AA] and [AD] at these levels. The corresponding categories of lo-
cal modules are equivalent to the modular tensor categories obtained from ŝp(4)1

and ĝ(2)1, respectively, see [Os]. The construction in Section 3.18 applies, and as
mentioned there, we expect the orbifolds corresponding to AE6 and AE8 to be equiv-
alent to the Reshetikhin–Turaev TQFTs obtained from these two modular tensor
categories.

� k = 16 (case E7): There is a simple ∆-separable symmetric Frobenius algebra AE7

which generates a third Morita class in addition to [AA] and [AD] at this level. The
Morita class [AE7 ] does not contain a commutative representative, and the algebra
AE7 is not Azumaya. We do not know if AE7 can form part of an orbifold datum.
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