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HOMOTOPY THEORY WITH MARKED ADDITIVE CATEGORIES

ULRICH BUNKE, ALEXANDER ENGEL, DANIEL KASPROWSKI, AND
CHRISTOPH WINGES

Abstract. We construct combinatorial model category structures on the categories of
(marked) categories and (marked) preadditive categories, and we characterize (marked)
additive categories as fibrant objects in a Bousfield localization of preadditive categories.
These model category structures are used to present the corresponding∞-categories ob-
tained by inverting equivalences. We apply these results to explicitly calculate limits and
colimits in these ∞-categories. The motivating application is a systematic construction
of the equivariant coarse algebraic K-homology with coefficients in an additive category
from its non-equivariant version.
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1. Introduction

If C is a category and W is a set of morphisms in C, then one can consider the localization
functor

`C : C → C∞ := C[W−1]

in ∞-categories [Lur, Def. 1.3.4.1] [Cis19, Def. 7.1.2], where we consider C as an ∞-
category given by its nerve (which we will omit in the notation). If the relative category
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(C,W ) extends to a simplicial model category in which all objects are cofibrant, then we
have an equivalence of ∞-categories

C∞ ' Ncoh(Ccf ) ,

where the right-hand side is the nerve of the simplicial category of cofibrant-fibrant objects
of C [Lur, Def. 1.3.4.15 & Thm. 1.3.4.20]. This explicit description of C∞ is sometimes
very helpful in order to calculate mapping spaces in C∞ or to identify limits or colimits
of diagrams in C∞.

In the present paper we consider the case where C belongs to the list

{Cat,Cat+,preAdd,preAdd+}

where Cat(+) is the category of small (marked) categories (Definition 2.1.3) and preAdd(+)

is the category of small (marked) preadditive categories (Definitions 2.1.4 and 2.1.6). We
consider them as relative categories with W the (marking preserving) morphisms (functors
or Ab-enrichment preserving functors, respectively) which admit inverses up to (marked)
isomorphisms (Definition 2.2.1).

To illustrate the role of markings, consider the category of Banach spaces over a
complete normed field and bounded linear maps between them. If G is a group, then
G-objects in this category are those Banach spaces with an action of G by continuous
automorphisms. But often one wants to require that G acts by isometries. This can
be ensured by considering the category of Banach spaces as a marked category, where
the marked morphisms are the isometric isomorphisms. Taking G-objects in the marked
category then yields the category of Banach spaces with an action of G by isometries. A
more detailed discussion of this example can be found in Example 3.4.9. Example 3.4.11
discusses a second example appearing in the context of coarse homology theories.

In order to fix set-theoretic issues we choose three Grothendieck universes

U ⊂ V ⊂ W . (1)

The objects of C are categories in V which are locally U -small, while C itself belongs to
W and is locally V-small. We will shortly say that the objects of C are small (as already
done above), and correspondingly, that C itself is large.

Our first main theorem is:

1.0.1. Theorem. The pair (C,W ) extends to a combinatorial, simplicial model category
structure.

We refer to Theorem 2.2.2 for a more precise formulation and recall that the adjective
combinatorial means cofibrantly generated as a model category, and locally presentable
as a category. In this model category structure all objects of C are cofibrant.

The assertion of Theorem 1.0.1 in the case of Cat and preAdd is well-known or
folklore. A discussion of the model structure on Cat can be found in [Rez]. The case
preAdd is also a consequence of [Lur09, Prop. A.3.2.4],[BM13, Thm. 1.9] or [Mur15,
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Thm. 1.1]; in each case, one considers the category of abelian groups as a monoidal model
category in which the isomorphisms are the weak equivalences, and all morphisms are
both fibrations and cofibrations. In the proof, which closely follows the standard line of
arguments, we therefore put the emphasis on checking that all arguments work in the
marked cases as well.

In order to describe the homotopy theory of (marked) additive categories, we show
the following.

1.0.2. Proposition. There exists a Bousfield localization LpreAdd(+) of preAdd(+)

whose fibrant objects are the marked (additive) categories.

We refer to Proposition 2.3.7 for a more precise statement. Let WAdd(+) denote the

weak equivalences in LpreAdd(+). Proposition 1.0.2 then implies that we have an equiv-
alence of ∞-categories

Add(+)
∞ := preAdd(+)[W−1

Add(+) ] ' Ncoh(Add(+)) , (2)

where Add(+) denotes the category of small (marked) additive categories (see Defini-
tions 2.3.1 and 2.3.3). For example, this allows us to calculate limits in Add+

∞, which is
one of the motivating applications of the present paper (see Example 3.4.11).

Since in general an ∞-category modeled by a combinatorial model category is pre-
sentable, we get the following (see Corollary 2.4.5).

1.0.3. Corollary. The ∞-categories in the list

{Cat∞,Cat+
∞,preAdd∞,preAdd+

∞,Add∞,Add+
∞}

are presentable.

Presentability is a very useful property if one wants to show the existence of adjoint
functors. For example the inclusion F⊕ : Add∞ → preAdd∞ preserves limits (by inspec-
tion) and therefore has a left adjoint, the additive completion functor

L⊕ : preAdd∞ → Add∞

(see Corollary 2.4.5).
We demonstrate the utility of the model category structures, whose existence is as-

serted in Theorem 1.0.1, in a variety of examples.

1. In Proposition 2.4.6, we use relation (2) in order to show an equivalence of ∞-
categories

Add∞ ' N2(Add(2,1)) ,

where the right-hand side is the 2-categorical nerve of the strict 2-category of small
additive categories. This is used in [BEKWb] to extend K-theory functors from
Add to N2(Add(2,1)).
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2. In Section 3.1 we verify that the localization functor `C : C → C∞ preserves arbitrary
products, where C belongs to the list

{Cat,Cat+,preAdd∞,preAdd+
∞,Add∞,Add+

∞} ,

see Proposition 3.1.1.

3. In Section 3.2 we consider additive categories of modules over rings. For example,
we show in Proposition 3.2.1 that

L⊕(`preAdd(R)) ' `Add(Modfg,free(R)) ,

i.e. that the additive completion of a ring (considered as an object `preAdd(R) in
preAdd∞) is equivalent to the additive category of its finitely generated and free
modules (considered in Add∞). We also discuss idempotent completion and its
relation with the additive category of finitely generated projective modules along
the same lines, see Proposition 3.2.7.

4. The main result in Section 3.3, see Theorem 3.3.1, is an explicit formula for the
object

colim
BG

`preAdd(+),BG(A)

in preAdd(+), where A is a (marked) preadditive category with trivial action of a
group G and `preAdd(+),BG is induced from `preAdd(+) .

5. In Section 3.4 we consider C in {preAdd∞,preAdd+
∞,Add∞,Add+

∞}. In Theo-
rem 3.4.3, we provide an explicit formula for the object

lim
BG

`C,BG(A) ,

where A is an object of C with an action of G.

In a parallel paper [Bun19] we consider model category structures on (marked) ∗-
categories and a similar application to coarse homology theories including equivariant
coarse topological K-homology. The arguments in [Bun19] concerning the model category
structures are quite similar to the arguments in the present paper. But while [Bun19] is
more concerned with the functional analytic subtleties arising from enrichments in Banach
spaces, the emphasis of the present paper is on algebraic aspects and additivity.
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2. Marked categories

2.1. Categories of marked categories and marked preadditive categories.
In this section we introduce categories of marked categories, marked preadditive categories
and additive categories. We further describe various relations between these categories
given by forgetful functors and their adjoints. We finally describe their enrichments in
groupoids and simplicial sets.

Let C be a category.

2.1.1. Definition. A marking on C is the choice of a wide subgroupoid C+ of the un-
derlying groupoid of C.

2.1.2. Example. In this example, we name the two extreme cases of markings. On the
one hand, we can consider the minimal marking C+

min given by the identity morphisms
of C. On the other hand, we have the maximal marking C+

max given by the underlying
groupoid of C.

2.1.3. Definition. A marked category is a pair (C,C+) of a category and a marking.
A morphism between marked categories (C,C+) → (D,D+) is a functor C → D which
sends C+ to D+.

We let Cat+ denote the category of marked small categories and morphisms between
marked categories. Note that Cat+ is not a marking on Cat. We will not consider
markings on Cat so that no confusion should arise.

We have two functors

F+ : Cat+ → Cat , (C,C+) 7→ C (3)

and
(−)+ : Cat+ → Groupoids , (C,C+) 7→ C+ .

The functor F+ (which forgets the markings) fits into adjunctions

mi : Cat � Cat+ : F+ , F+ : Cat+ � Cat : ma ,

where the functors mi (mark identities) and ma (mark all isomorphisms) are given (on
objects) by

mi(C) := (C,C+
min) , ma(C) := (C,C+

max) ,

and their definition on morphisms as well as the unit and counit of the adjunctions are
the obvious ones.
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2.1.4. Definition. A preadditive category is a category which is enriched over the cat-
egory of abelian groups. A morphism between preadditive categories is a functor which is
compatible with the enrichment.

We let preAdd denote the category of small preadditive categories and functors which
are compatible with the enrichment.

The forgetful functor (forgetting the enrichment) is the right adjoint of an adjunction

LinZ : Cat � preAdd : FZ (4)

whose left adjoint is called the linearization functor. For a preadditive category A we call
FZ(A) the underlying category.

2.1.5. Remark. Let A be a preadditive category. If A and B are two objects of A such
that the product A × B and the coproduct A t B exist, then the canonical morphism
A t B → A × B induced by the maps (idA, 0) : A → A × B and (0, idB) : B → A × B is
an isomorphism. In this case we call the product or coproduct also the sum of A and B
and use the notation A⊕B.

2.1.6. Definition. We define the category of marked preadditive categories preAdd+

as the pullback (in 1-categories)

preAdd+ //

��

Cat+

F+

��

preAdd
FZ // Cat

with the functors F+ and FZ from (3) and (4).

Thus a marked preadditive category is a pair (A,A+) of a preadditive category A
and a wide subgroupoid A+ of the underlying groupoid of A, and a morphism of marked
preadditive categories (A,A+)→ (B,B+) is a functor A→ B which is compatible with
the enrichment and sends A+ to B+.

We will denote the vertical arrow forgetting the markings, i.e., taking the underlying
preadditive category, also by F+. We have adjunctions

mi : preAdd � preAdd+ : F+ , F+ : preAdd+ � preAdd : ma , (5)

and
LinZ : Cat+ � preAdd+ : FZ .

The unit of adjunction (4) provides an inclusion of categories C→ FZ(LinZ(C)), and the
subcategory of marked isomorphisms in LinZ(C) is exactly the image of C+ under this
inclusion.
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2.1.7. Remark. Note that a sum of two addable marked isomorphisms in a marked
preadditive category need not be marked. So in general the subcategory of marked iso-
morphisms of a marked preadditive category is not preadditive.

From now one we will usually shorten the notation and denote marked categories just
by one symbol C instead of (C,C+).

We will now show that the categories Cat, Cat+ preAdd and preAdd+ are enriched
over themselves. For categories A and B we let FunCat(A,B) in Cat denote the category
of functors from A to B and natural transformations. Assume now that A and B are
marked. Then we can consider the functor category FunCat+(A,B) in Cat of functors
preserving the marked subcategories and natural transformations.

2.1.8. Definition. Define the marked functor category Fun+
Cat+

(A,B) in Cat+ by
marking those natural transformations (ua)a∈A of FunCat+(A,B) for which ua is a marked
isomorphism for every a in A.

Similarly, assume that A and B are preadditive categories. Then the category of
(enrichment preserving) functors FunpreAdd(A,B) and natural transformations is itself
naturally enriched in abelian groups, and hence is an object of preAdd. If A and B are
marked preadditive categories, then the same applies to the category FunpreAdd+(A,B)
of functors preserving the enrichment and the marked subcategories.

2.1.9. Definition. Define the marked functor category Fun+
preAdd+(A,B) in preAdd+

by marking those natural transformations (ua)a∈A of FunpreAdd+(A,B) for which ua is
marked for every a in A.

2.1.10. Remark. This is a remark about notation. For C = Cat or C = preAdd and
A,B in C+ we can consider the functor category FunC+(A,B) in C. The +-sign indicates
that we only consider functors which preserve marked isomorphisms. In general we have
a full inclusion of categories FunC+(A,B) ⊆ FunC(F+(A),F+(B)). The upper index +
in Fun+

C+(A,B) indicates that we consider the functor category as a marked category,
i.e., as an object of C+. The symbol Fun+

C+(A,B)+ denotes the subcategory of marked
isomorphisms. In our longer pair notation for marked objects we thus have

Fun+
C+(A,B) = (FunC+(A,B),Fun+

C+(A,B)+) .

We now introduce enrichments of the categories over simplicial sets using the nerve
functor

N: Cat→ sSet .

2.1.11. Remark. The usual enrichment of Cat over simplicial sets is given by setting

Mapstandard
Cat (A,B) := N(FunCat(A,B)) .

In the present paper we will consider a different enrichment which only takes the invertible
natural transformations between functors into account.

For the rest of this section C serves as a placeholder for either Cat or preAdd.
We start with marked categories A and B in C+.
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2.1.12. Definition. We define

MapC+(A,B) := N(Fun+
C+(A,B)+) .

In other words, MapC+(A,B) is the nerve of the groupoid of marked isomorphisms in
Fun+

C+(A,B).
Let now A and B be categories in C.

2.1.13. Definition. We define

MapC(A,B) := N(Fun+
C+(ma(A),ma(B))+) .

In other words, MapC(A,B) is the nerve of the groupoid of isomorphisms in FunC(A,B).
The composition of functors and natural transformations naturally induces the com-

position law for these mapping spaces. In this way we have turned the categories Cat,
Cat+, preAdd and preAdd+ into simplicially enriched categories.

2.1.14. Remark. Since the mapping spaces are nerves of groupoids they are Kan com-
plexes. Therefore these simplicial categories are fibrant in Bergner’s model structure on
simplicial categories [Ber07].

2.2. The model categories preAdd+ and Cat+. In this section we describe the
model category structures on the categories Cat, Cat+, preAdd and preAdd+, see
Definition 2.2.1. The main result is Theorem 2.2.2.

As before, C serves as a placeholder for either Cat or preAdd. We first introduce the
data for the model category structure on C or C+.

2.2.1. Definition.

1. A morphism f : A → B in C (or C+) is a weak equivalence if it admits an inverse
g : B→ A up to isomorphisms (or marked isomorphisms).

2. A morphism in C (or C+) is called a cofibration if it is injective on objects.

3. A morphism in C (or C+) is called a fibration, if it has the right lifting property for
trivial cofibrations.

In the marked case, we call the weak equivalences also marked equivalences.
The following is the main theorem of the present section.

2.2.2. Theorem. The simplicial category C (or C+) with the weak equivalences, cofibra-
tions and fibrations as in Definition 2.2.1 is a simplicial and combinatorial model category.
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Proof. We refer to [Hov99, Def. 1.1.3 and Def. 1.1.4] or [Hir03, Def. 7.1.3] for the axioms
(M1)-(M5) for a model category and [Hir03, Def. 9.1.6] for the additional axioms (M6)
and (M7) for a simplicial model category. For the Definition of cofibrant generation
we refer to [Hov99, Def. 2.1.17] or [Hir03, Def. 11.1.2]. Finally, a model category is
called combinatorial if it is cofibrantly generated and locally presentable [Dug01], [Lur09,
Def. A.2.6.1].

1. In Proposition 2.2.4 we verify completeness and cocompleteness (M1).

2. Weak equivalences have the two-out-of-three property (M2) by Lemma 2.2.14.

3. Weak equivalences, cofibrations and fibrations are closed under retracts (M3) by
Proposition 2.2.15.

4. Lifting along trivial cofibrations holds by definition. Lifting along trivial fibrations
(M4) holds by Proposition 2.2.13.

5. Existence of factorizations (M5) follows from Lemma 2.2.26 and Lemma 2.2.28.

6. For (M6), the simplicial enrichment was already discussed. Tensors and cotensors
with simplicial sets are treated by Corollary 2.2.22. The pushout-product axiom
(M7) is verified in Proposition 2.2.24.

7. The category is cofibrantly generated by Corollary 2.2.34.

8. It is locally presentable by Proposition 2.2.35.

2.2.3. Remark. The case of Cat is well-known. In the following, in order to avoid case
distinctions, we will only consider the marked case in full detail. In fact, the functor
ma: C → C+ is the inclusion of a full simplicial subcategory and the model category
structure is inherited. We will indicate the necessary modifications (e.g, list the generating
(trivial) cofibrations or the generators of the category in the unmarked case) in remarks
at the appropriate places.

Completeness and cocompleteness in the following means admitting limits and colimits
with indexing categories in the universe U , see (1).

2.2.4. Proposition. The category C+ is complete and cocomplete.

Proof. We will deduce the marked case from the unmarked one and use as a known
fact that C is complete and cocomplete, see [Bor94a, Prop. 5.1.7] for cocompleteness for
C = Cat.

Let I be a category in U (see (1)) and X : I → C+ be a diagram. We form the object
colimI F+(X) of C. We have a canonical morphism F+(X) → colimI F+(X), where −
denotes the constant I-object. We define the marked subcategory of colimI F+(X) as
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the subcategory generated by the images of marked isomorphisms under the canonical
functors F+(X(i))→ colimI F+(X) for all i in I and denote the resulting object of C+ by
Y . We claim that the resulting morphism X → Y represents the colimit of the diagram
X. If Y → T is a morphism in C+, then the induced functor F+(X)→ F+(Y )→ F+(T )

preserves marked isomorphisms, i.e., refines to a morphism in (C+)I . Vice versa, if X → T
is a morphism in (C+)I , then we get an induced morphism F+(Y )→ F+(T ). It preserves

marked isomorphisms and therefore refines to a morphism in C+. This shows that C+ is
cocomplete.

Let X : I → C+ again be a diagram. We form the object limI F+(X) of C. We have
a canonical morphism limI F+(X) → F+(X). We mark all isomorphisms in limI F+(X)
whose evaluations at every i in I are marked isomorphisms in X(i). In this way we define
an object Y of C+. We claim that the resulting morphism Y → X represents the limit of
the diagram X.

If T → Y is a morphism in C+, then the induced F+(T ) → F+(Y ) → F+(X) refines

to a morphism in (C+)I . Vice versa, if T → X is a morphism in (C+)I , then we get an
induced morphism F+(T )→ F+(Y ) which again refines to a morphism in C+. This shows

that C+ is complete.

We let
FAll : C+ → Cat

denote the functor which takes the underlying category, i.e., which forgets markings and
enrichments (in the case of preAdd+). Recall further that we have the functor

(−)+ : C+ → Groupoids

taking the groupoid of marked isomorphisms.
Let f : A→ B be a morphism in C+.

2.2.5. Lemma. The following are equivalent.

1. f is a weak equivalence.

2. FAll(f) and f+ are equivalences in Cat and Groupoids, respectively.

Proof. If f is a weak equivalence, then by Definition 2.2.1 there exists an inverse g up
to marked isomorphism. Then FAll(g) and g+ are the required inverse equivalences of
FAll(f) and f+.

We now show the converse. We can choose an inverse equivalence g+ : B+ → A+ of

f+ and a natural isomorphism u : idB+

∼=−→ f+g+. We then define a functor g : B→ A as
follows.

1. On objects: For an object B of B we set g(B) := g+(B).
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2. On morphisms: On the set of morphisms HomB(B,B′), we define g as the compo-
sition

HomB(B,B′)
∼=−→ HomB(fg(B), fg(B′))

∼=←− HomA(g(B), g(B′)) .

Here the first isomorphism sends b to uB′bu
−1
B and the second isomorphism employs

the fact that FAll(f) is an equivalence. In the case C = preAdd it is clear from
this description that the isomorphism is compatible with abelian group structures
on the morphism sets. Since u is given by marked isomorphisms and f induces a
bijection on marked isomorphisms, this map also preserves marked isomorphisms.

Then g is the required inverse of f up to marked isomorphism. The natural transfor-
mations are u and v : idA → gf determined by f(vA) = uf(A). Note that both are by
marked isomorphisms since f is a bijection on marked isomorphisms.

Note that a weak equivalence not only preserves marked isomorphisms, but also detects
them.

Let C and D be two objects of C+ and a : C→ D be a morphism.

2.2.6. Definition. The morphism a is called a marked isofibration, if for every object
d of D, every object c of C and every marked isomorphism u : a(c)→ d in D there exists
a marked isomorphism v : c→ c′ in C such that a(v) = u.

Note that this is equivalent to a+ : C+ → D+ being an isofibration in the usual sense.

2.2.7. Example. The object classifier in Cat is the category ∆0
Cat with one object ∗

and one morphism id∗. The object classifier in Cat+ is given by ∆0
Cat+

:= mi(∆0
Cat).

Furthermore, the object classifiers in preAdd and preAdd+ are given by ∆0
preAdd :=

LinZ(∆0
Cat) and ∆0

preAdd+ := LinZ(∆0
Cat+

), respectively.

The morphism classifier in Cat is the category ∆1
Cat with two objects 0 and 1, and

one non-identity morphism 0→ 1. The morphism classifier in Cat+ is given by ∆1
Cat+

:=
mi(∆1

Cat). Furthermore, the morphism classifiers in preAdd and preAdd+ are given by
∆1

preAdd := LinZ(∆1
Cat) and ∆1

preAdd+ := LinZ(∆1
Cat+

), respectively.
The invertible morphism classifier in Cat is the category ICat with two objects 0 and

1, and non-identity morphisms 0 → 1 and its inverse 1 → 0. The invertible morphism
classifier in Cat+ is given by ICat+ := mi(ICat). Furthermore, the invertible morphism
classifiers in preAdd and preAdd+ are given by IpreAdd := LinZ(ICat) and IpreAdd+ :=
LinZ(ICat+), respectively.

Finally, the marked isomorphism classifier in Cat+ is given by I+
Cat+

:= ma(ICat), and

the one in preAdd+ is given by I+
preAdd+ := LinZ(I+

Cat+
).

We have the following statement about morphisms in C+.

2.2.8. Lemma.

1. Trivial fibrations are surjective on objects.
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2. Weak equivalences which are surjective on objects have the right lifting property with
respect to all cofibrations.

In particular, a weak equivalence is a trivial fibration if and only if it is surjective on
objects.

Proof. Let f : C → D be a trivial fibration and let D in D be an object. Since f is

a weak equivalence, there exists an object C in C and an isomorphism d : f(C)
∼=−→ D.

Consider the commutative diagram

∆0
C+

C //

��

C

f

��

IC+ d //D

Since ∆0
C+ → IC+ is a trivial cofibration, d admits a lift c to C whose codomain is a

preimage of D.
Let now f : C→ D be a weak equivalence which is surjective on objects. Consider a

commutative diagram

A α //

i
��

C

f
��

B
β
//D

in which i is a cofibration.
We first define the lift γ of β on objects. If B in B lies in the image of i, there exists

a unique object A in A with i(A) = B, and we set γ(B) = α(A). Otherwise, pick any C
in C such that f(C) = β(B) and set γ(B) = C. For a morphism b in B, define γ(b) as
the unique preimage of β(b) under f . Since the preimage γ(b) is unique (subject to the
choices made on objects), γ is a functor. Then f ◦γ = β holds by definition, and γ ◦ i = α
also follows easily from the fact that f is faithful.

2.2.9. Lemma. A morphism in C+ is a marked isofibration if and only if it has the right
lifting property with respect to the morphism

∆0
C+

0−→ I+
C+

classifying the object 0 of I+
C+.

Proof. In view of the universal properties of ∆0
C+ and I+

C+ this is just a reformulation of
Definition 2.2.6.

Since ∆0
C+

0−→ I+
C+ is a trivial cofibration we conclude that fibrations are marked isofi-

brations.

2.2.10. Proposition. The marked isofibrations in C+ have the right lifting property with
respect to trivial cofibrations.
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Proof. We consider a diagram

A α //

i
��

C

f
��

B

`

>>

β
//D

in C+, where f is a marked isofibration and i is a trivial cofibration. In the usual con-
struction of an inverse j : B→ A to i, we can choose the preimages of the objects in the
essential image of A such that j ◦ i = idA since i is injective on objects. Moreover, we
can choose a marked isomorphism u : i ◦ j → idB which in addition satisfies u ◦ i = idi.

On objects we define ` as follows: For every objectB of B we get a marked isomorphism

β(uB) : f(α(j(B)) = β(i(j(B)))→ β(B) .

Using that f is a marked isofibration we choose a marked isomorphism vB : α(j(B))→ C
such that f(vB) = β(uB). If B is in the image of i, we can and will choose vB to be the
identity. We then set `(B) := C. This makes both triangles commute.

We now define the lift ` on a morphism φ : B → B′ by

`(φ) := vB′ ◦ α(j(φ)) ◦ v−1
B .

One can check that then both triangles commute and that this really defines a func-
tor. One further checks that ` is a morphism of marked categories (and preserves the
enrichment in the case of preadditive categories). Here we use that i detects marked
isomorphisms.

2.2.11. Corollary. The notions of marked isofibration and fibration in C+ coincide.

2.2.12. Remark. We note that all objects in C+ are fibrant and cofibrant. Consequently,
the model category C+ is proper by [Hir03, Cor. 13.1.3]

2.2.13. Proposition. The cofibrations in C+ have the left lifting property with respect
to trivial fibrations.

Proof. We consider a diagram

A α //

i
��

C

f
��

B

`

>>

β
//D

in C+, where f is a trivial fibration and i is a cofibration.
Since the map i is injective on objects and the morphism f is surjective on objects by

Lemma 2.2.8, we can find a lift ` on the level of objects. Let now B,B′ be objects in B.
Since f is fully faithful we have a bijection

HomC(`(B), `(B′))
f

∼=
// HomD(β(B), β(B′)) .
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We can therefore define ` on HomB(B,B′) by

HomB(B,B′)
β−→ HomD(β(B), β(B′)) ∼= HomC(`(B), `(B′)) .

Since f detects marked isomorphisms, ` preserves them. The lower triangle commutes by
construction. One can furthermore check that the upper triangle commutes. Finally one
checks that this really defines a functor.

2.2.14. Lemma. The weak equivalences in C+ satisfy the two-out-of-three axiom.

Proof. This follows from Lemma 2.2.5.

2.2.15. Proposition. The cofibrations, fibrations, and weak equivalences in C+ are
closed under retracts.

Proof. Since fibrations are characterized by a right lifting property they are closed un-
der retracts. Cofibrations are closed under retracts since a retract diagram of marked
categories induces a retract diagram on the level of sets of objects, and injectivity of
maps between sets is closed under retracts. It remains to consider weak equivalences. We
consider a diagram

A i //

f
��

A′
p
//

f ′

��

A

f
��

B
j
// B′

q
// B

in C+ with p◦i = idA and q◦j = idB, and where f ′ is a weak equivalence. Let g′ : B′ → A′

be an inverse of f ′ up to marked isomorphism. Then p ◦ g′ ◦ j : B→ A is an inverse of f
up to marked isomorphism.

We have finished the verification of the basic model category axioms except the ex-
istence of factorizations. This follows from considerations about the simplicial structure
which we do now.

We define a functor
Q : Groupoids→ C(+) (6)

as follows. Let i : Groupoids→ Cat be the inclusion.

1. In the case Cat, we define Q := i.

2. In the case Cat+, we define Q := ma ◦ i.

3. In the case preAdd, we define Q := LinZ ◦ i.

4. In the case preAdd+, we define Q := LinZ ◦ma ◦ i.

2.2.16. Lemma. We have an adjunction

Q(−) : Groupoids � C+ : (−)+

between groupoid-enriched categories.
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Proof. It is straightforward to check that the obvious isomorphism Q(G)+ ∼= G for G in
Groupoids and the morphism Q(A+)→ A of marked categories induced by the inclusion
A+ → A for A in C+ give rise to an isomorphism

Fun(G,A+) ∼= Fun+
C+(Q(G),A)+ .

For (marked) preadditive categories we need a further symmetric monoidal product
structure ⊗ (which differs from the cartesian structure) on preAdd(+) given as follows:

1. (objects) The objects of A⊗B are pairs (A,B) of objects A in A and B in B.

2. (morphisms) The abelian group of morphisms between (A,B) and (A′, B′) is given
by

HomA⊗B((A,B), (A′, B′)) := HomA(A,A′)⊗ HomB(B,B′) .

The composition is defined in the obvious way.

3. (marking) We mark tensor products of marked isomorphisms.

We refrain from writing out the remaining data (unit, unit- and associativity constraints)
explicitly.

In order to define a tensor structure of C(+) over simplicial sets, we start with a tensor
structure over groupoids.

2.2.17. Definition. In the case Cat(+) we define the functor

−]− : Cat(+) ×Groupoids→ Cat(+) , (A, G) 7→ A]G := A×Q(G).

In the case preAdd(+) we define the functor

−]− : preAdd(+) ×Groupoids→ preAdd(+) , (A, G) 7→ A]G := A⊗Q(G).

Let B be in C+. In the following lemma, we will write ⊗ for the product in Cat+, to
avoid distinguishing between Cat+ and preAdd+.

2.2.18. Lemma. We have an adjunction

−⊗B : C+ � C+ : Fun+
C+(B,−) ,

where we view C+ as enriched over C+.
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Proof. We provide an explicit description of the unit and the counit of the adjunction.
For A in C+ they are given by morphisms

ηA : A→ Fun+
C+(B,A⊗B) and εA : Fun+

C+(B,A)⊗B→ A

defined as follows:

1. The morphism ηA takes an object A in A to the functor sending an object B in B
to (A,B) and a morphism b in B to idA⊗b. A morphism a : A → A′ is sent by ηA
to the natural transformation {a⊗ idB : (A,B)→ (A′, B)}B∈B.

2. The morphism εA is induced by evaluation of functors.

One checks that η and ε are enriched natural transformations. One furthermore checks
the triangle identities by explicit calculations.

Recall that for A and B in C+ the category Fun+
C+(A,B)+ is a groupoid. Let G be a

groupoid. From Lemmas 2.2.16 and 2.2.18 we get natural isomorphisms

FunGroupoids(G,Fun
+
C+(A,B)+) ∼= Fun+

C+(A]G,B)+ ∼= Fun+
C+(A,Fun+

C+(Q(G),B))+

(7)
In order to define the tensor structure of C+ with simplicial sets we consider the

fundamental groupoid functor.

2.2.19. Definition. The fundamental groupoid functor Π is defined as the left adjoint
of the adjunction

Π: sSet � Groupoids : N ,

where N takes the nerve of a groupoid.

Explicitly, the fundamental groupoid Π(K) of a simplicial set K is the groupoid freely
generated by the path category P (K) of K. The category P (K) in turn is given as follows:

1. The objects of P (K) are the 0-simplices.

2. The morphisms of P (K) are generated by the 1-simplices of K subject to the relation
g ◦ f ∼ h if there exists a 2-simplex σ in K with d2σ = f , d0σ = g and d1σ = h.

2.2.20. Lemma. We have an adjunction

Π: sSet � Groupoids : N ,

of simplicially enriched categories.
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Proof. Since Π commutes with finite products, this is a consequence of the unenriched
adjunction:

MapsSet(K,N(G))n ∼= HomsSet(K ×∆n,N(G))
∼= HomGroupoids(Π(K ×∆n), G)
∼= HomGroupoids(Π(K)× Π(∆n), G)
∼= HomGroupoids(Π(∆n),Fun(Π(K), G))
∼= MapGroupoids(Π(K), G)n .

Using the tensor and cotensor structure with groupoids we define the corresponding
structures with simplicial sets by precomposition with the fundamental groupoid functor.
Recall the definition (6) of Q.

2.2.21. Definition. We define tensor and cotensor structures on C+ with simplicial sets
by

C+ × sSet→ C+ , (A, K) 7→ A]Π(K) .

sSetop × C+ → C+ , (K,B) 7→ Fun+
C+(Q(Π(K)),B) .

In order to simplify notation, we will usually write A]K instead of A]Π(K) and BK

instead of Fun+
C+(Q(Π(K)),B).

Recall Definition 2.1.12 of the simplicial mapping sets in C+. Applying the nerve
functor to (7) and using Lemma 2.2.20, we obtain the following corollary.

2.2.22. Corollary. For K in sSet and A, B in C+ we have natural isomorphisms of
simplicial sets

MapsSet(K,MapC+(A,B)) ∼= MapC+(A]K,B) ∼= MapC+(A,BK) .

We consider a commutative square

A i //

f
��

B

g
��

C
j
//D

(8)

in C+.

2.2.23. Lemma.

1. If (8) is a pushout and i is a trivial cofibration, then j is a trivial cofibration.

2. If (8) is a pullback and g is a trivial fibration, then f is a trivial fibration.
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Proof. We show Assertion 1. Because i is a trivial cofibration, there exists a morphism
i′ : B → A such that i′ ◦ i = idA and a marked isomorphism u : i ◦ i′ → idB satisfying
u ◦ i = idi. By the universal property of the pushout, the morphism f ◦ i′ : B → C
induces a morphism j′ : D → C such that j′ ◦ j = idC. In particular, j is a cofibration
and it remains to show that it is a weak equivalence. Moreover, g ◦ u provides a marked
isomorphism j ◦ f ◦ i′ = g ◦ i ◦ i′ → g.

The functor −]ICat : C+ → C+ (see Example 2.2.7 for ICat in Groupoids) is a left
adjoint by Lemma 2.2.18. Therefore it preserves pushouts. Using the first isomorphism in
(7) and the fact that ICat is the morphism classifier in Groupoids, we consider the natural
transformation g ◦ u as a functor B]ICat → D. Together with the functor C]ICat → D
corresponding to the identity natural transformation of j, by the universal property of the
pushout diagram (8)]ICat we obtain an induced functor D]ICat → D which provides, by
a converse application of the first isomorphism in (7), a marked isomorphism j ◦j′ → idD.
This proves that j is a weak equivalence.

The proof of Assertion 2 can be obtained by dualizing the proof above.

The following proposition verifies the pushout-product axiom (M7).

2.2.24. Proposition. Let a : A→ B be a cofibration in C+ and i : X → Y be a cofibra-
tion in sSet. Then

(A]Y ) tA]X (B]X)→ (B]Y ) (9)

is a cofibration. Moreover, if i or a is in addition a weak equivalence, then (9) is a weak
equivalence.

In the proof of this proposition we use the following lemma.

2.2.25. Lemma. Let A be in C+ and let K be a simplicial set. The functors

A]− : sSet→ C+

and
−]K : C+ → C+

preserve (trivial) cofibrations.

Proof. Observe that A ⊗ − preserves both cofibrations and marked equivalences. For
A = Q(Π(K)) this directly implies that −]K preserves (trivial) cofibrations. To see
that also A]− preserves (trivial) cofibrations, it suffices to show that Q ◦ Π preserves
cofibrations and sends weak equivalences to marked equivalences. For cofibrations, this is
clear since the set of objects of Q(Π(K)) is given by the vertices of K for every simplicial
set K. Moreover, Π sends weak equivalences to equivalences of groupoids. Since Q marks
all isomorphisms, any equivalence of groupoids induces a marked equivalence.
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Proof Proof of Proposition 2.2.24. Consider the diagram

A]X
A]i

//

a]X

��

A]Y

a]Y

��

b
vv

(A]Y ) tA]X (B]X)

?

((

B]X
B]i

//

66

B]Y

The set of objects of the pushout is equal to the pushout of the object sets. Hence it is
easy to check that ? is injective on objects and thus a cofibration.

Assume that a is a weak equivalence. By Lemma 2.2.25 the maps a]X and a]Y are
trivial cofibrations. Since b is a pushout of a trivial cofibration, it is a trivial cofibration
by Lemma 2.2.23. It follows from the two-out-of-three property, see Lemma 2.2.14, that
the morphism ? is a weak equivalence.

The case that i is a weak equivalence is similar.

2.2.26. Lemma. Every morphism in C+ can be functorially factored into a cofibration
followed by a trivial fibration.

Proof. Let a : A → B be a morphism in C+. Denote by i1 : A ∼= A]∆0 → A]∂∆1 the
morphism induced by the map classifying the vertex 1, and let j : A]∂∆1 → A]∆1 be the
morphism induced by the inclusion ∂∆1 → ∆1. Consider the diagram

A
i1 //

a

��

A]∂∆1 j
//

idA ta
��

A]∆1

��

B
eB //A tB b // Z(a)

in which eB is the canonical morphism, and in which the right square is defined to be a
pushout. Since A]∂∆1 ∼= A tA, it is easy to see that the left square is also a pushout.
Hence, the outer square is also a pushout. By the universal property of the pushout, the
composed morphism

A]∆1 a]∆1

−−−→ B]∆1 prB−−→ B

and the identity on B induce a morphism q : Z(a)→ B such that q ◦ b◦ eB = idB. In par-
ticular, q is surjective on objects. Moreover, b◦eB is a trivial cofibration by Lemma 2.2.25
and Lemma 2.2.23.1. The two-out-of-three property (Lemma 2.2.14) implies that q is a
weak equivalence, and hence a trivial fibration by Lemma 2.2.8.

Since the structure morphism eA : A → A t B is a cofibration, the morphism b ◦
eA : A → Z(a) is also a cofibration. Considering the left-hand pushout square, it is
easy to see that q ◦ b = a + idB. Regarding Z(a) as the pushout of the right square, it
follows from the universal property that q ◦ (b ◦ eA) = a, and thus provides the required
factorization. Note that this construction is functorial in a.
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Let A be an object of C+. Recall the notation AK for a simplicial set K from Defini-
tion 2.2.21.

2.2.27. Lemma. The functor
A(−) : sSetop → C+

sends (trivial) cofibrations to (trivial) fibrations.

Proof. This follows from Lemma 2.2.18 and Lemma 2.2.25 by explicitly checking lifting
properties.

2.2.28. Lemma. Every morphism in C+ can be functorially factored into a trivial cofi-
bration followed by a fibration.

Proof. Let a : A→ B be a morphism in C+. Denote by (ev0, ev1) : B∆1 → B∂∆1 ∼= B×B
the morphism induced by the canonical inclusion ∂∆1 → ∆1. Let p1 : B∂∆1 ∼= B×B→ B
denote the projection on the second factor (which corresponds to the vertex 1), and let
pA : A×B→ A be the projection. Consider the diagram

P (a)
q

//

��

A×B
pA //

a×idB

��

A

a

��

B∆1 (ev0,ev1)
// B×B

p1
// B

in which the left square is defined to be a pullback. Since the right square is also a
pullback, the outer square is a pullback, too. By the universal property of the pullback,
the composed morphism

A
a−→ B

const−−−→ B∆1

and the identity on A induce a morphism i : A→ P (a) such that pA ◦ q ◦ i = idA. In par-
ticular, i is a cofibration. Since ev1 = p1 ◦ (ev0, ev1) is a trivial fibration by Lemma 2.2.27,
it follows from Lemma 2.2.23.2 that pA ◦ q is a trivial fibration. The two-out-of-three
property (Lemma 2.2.14) implies that i is a weak equivalence, and thus a trivial cofibra-
tion.

Note that q is a fibration since it is the pullback of a fibration (use again Lemma 2.2.27
and Lemma 2.2.23.2). Since the structure morphism pB : A ×B → B is a fibration, the
morphism pB ◦ q : P (a) → B is also a fibration. Regarding P (a) as the pullback of the
left square, it follows from the universal property that (pB ◦ q) ◦ i = a, and thus provides
the required factorization. Note that this construction is functorial in a.

We thus have finished the verification of the model category axioms (M1) to (M7).

2.2.29. Remark. By considering the full embedding ma: C → C+, we obtain a verifica-
tion of the axioms in the unmarked case.

We next describe the generating cofibrations and the generating trivial cofibrations.
Recall that by Lemma 2.2.9 and Corollary 2.2.11 we can take

J := {∆0
C+ → I+

C+}
as the generating trivial cofibrations for C+.



HOMOTOPY THEORY WITH MARKED ADDITIVE CATEGORIES 391

2.2.30. Remark. The set of generating trivial cofibrations for C is given by

J := {∆0
C → IC} .

We furthermore define
I := {U, V, V +,W,W+}

where U, V, V +,W,W+ are cofibrations defined as follows (see Example 2.2.7):

1. U : ∅ → ∆0
C+ .

2. We let V : ∆0
C+ t∆0

C+ → ∆1
C+ classify the pair of objects (0, 1) of ∆1

C+ .

3. We let V + : ∆0
C+ t∆0

C+ → I+
C+ classify the pair of objects (0, 1) of I+

C+ .

4. We define P as the pushout

∆0
C+ t∆0

C+
V //

V
��

∆1
C+

��

∆1
C+

// P

and let W : P → ∆1
C+ be the obvious map induced by id∆1

C+
.

5. We define P+ as the pushout

∆0
C+ t∆0

C+
V +
//

V +

��

I+
C+

��

I+
C+

// P+

and let W+ : P+ → I+
C+ be the obvious map induced by idI+

C+
.

2.2.31. Lemma. The trivial fibrations in C+ are exactly the morphisms which have the
right lifting property with respect to I.

Proof. A trivial fibration is a weak equivalence which is in addition surjective on objects
by Lemma 2.2.8.

We first observe that lifting with respect to U exactly corresponds to the surjectivity
on objects.

We now use the characterization of weak equivalences given in Lemma 2.2.5. Lifting
with respect to V and W corresponds to surjectivity and injectivity on morphisms, and
lifting with respect to V + and W+ corresponds to surjectivity and injectivity on marked
isomorphisms.
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2.2.32. Lemma. The objects ∅, ∆0
C+, ∆1

C+, I+
C , P and P+ are compact.

Proof. (Additive) functors out of these categories are determined by their values on
finitely many morphisms.

2.2.33. Remark. In the unmarked case, we can take the set of generating cofibrations

I := {U, V,W}

defined analogous to the marked case.
The objects ∅, ∆0

C, ∆1
C, IC and P involved in their definition are compact.

2.2.34. Corollary. The model category C+ is cofibrantly generated by finite sets of
generating cofibrations and trivial cofibrations between compact objects.

2.2.35. Proposition. The category C+ is locally presentable.

Proof. Since we have already shown that C+ is cocomplete, by [AR94, Thm 1.20] it
suffices to show that C+ has a strong generator consisting of compact objects. For this it
suffices to show that there exists a set of compact objects such that every other object of
C is isomorphic to a colimit of a diagram with values in this set, see [Bun19, Lem. 8.4].
We will call such a set strongly generating.

We will first show that Cat+ is strongly generated by a finite set of compact ob-
jects. We consider the category DirGraph+ of marked directed graphs. It consists of
directed graphs with distinguished subsets of edges called marked edges. Morphisms
in DirGraph+ must preserve marked edges. The category DirGraph+ is locally pre-
sentable by [AR94, Thm 1.20]. Indeed, it is cocomplete and strongly generated by the
objects in the list

{• , • → •, • +−→ •} .
We have a forgetful functor from Cat+ to marked directed graphs which fits into an
adjunction

FreeCat+ : DirGraph+ � Cat+ : F◦ .
The left adjoint takes the free category on the marked directed graph1 and localizes at
the marked morphisms. The marking is then extended to inverses of marked morphisms,
identities and compositions of those. The counit of the adjunction provides a canonical
morphism

vA : F(A) := FreeCat+(F◦(A))→ A

of marked categories.
Consider the pullback

F(A)×A F(A)
p1
//

p2
��

F(A)

vA

��

F(A)
vA //A

1Note that this includes freely adjoining identities for all the nodes in the graph. Even if the given
graph underlies a category, FreeCat+ adjoins new identity morphisms.
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We claim that the diagram

F(A)×A F(A) F(A) A
p1

p2

vA

is a coequalizer. We have vA◦p1 = vA◦p2 by definition. That every morphism f : F(A)→
B with f◦p1 = f◦p2 factors uniquely through vA follows from the fact that vA is surjective
on objects and full.

We know that F(A) is isomorphic to a colimit of a small diagram involving the list of
finite categories

{FreeCat+(•) ,FreeCat+(• → •),FreeCat+(• +−→ •)} .

The fiber product over A is not a colimit. But we have a surjection

v′A = vF(A)×AF(A) : F(F(A)×A F(A))→ F(A)×A F(A)

and therefore a coequalizer diagram

F(F(A)×A F(A)) F(A) A.
p1◦v′A

p2◦v′A

vA

The marked category F(F(A) ×A F(A)) is again a colimit of a diagram involving the
generators in the list above. Hence A itself is a colimit of a diagram built from this list.

A similar argument applies in the case preAdd+. In this case we must replace F◦ by
F◦ ◦ FZ and FreeCat+ by LinZ ◦ FreeCat+ . The list of generators is

{LinZ(FreeCat(•)) ,LinZ(FreeCat(• → •)) ,LinZ(FreeCat(•
+−→ •))} .

These categories are again compact since they have finitely many objects and their mor-
phism groups are finitely generated.

2.2.36. Remark. In order to show that Cat and preAdd are locally presentable one
argues similarly using the category of directed graphs DirGraph and the adjunctions

FreeCat : DirGraph � Cat : F◦ , LinZ ◦ FreeCat : DirGraph � preAdd : FZ ◦ F◦ .

2.3. (Marked) additive categories as fibrant objects. In Theorem 2.2.2 we
have shown that the simplicial categories preAdd and preAdd+ are locally presentable
and have a simplicial, cofibrantly generated model category structures. In the present
section we introduce Bousfield localizations of these categories whose categories of fibrant
objects are exactly the additive categories or marked additive categories.

Let A be a preadditive category.

2.3.1. Definition. We say that A is additive if A has a zero object and the sum, see
Remark 2.1.5, of any two objects of A exists.

We let Add denote the full subcategory of preAdd of additive categories.
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2.3.2. Remark. In contrast to being a preadditive category, being an additive category
is a property of a category. In the following we describe the conditions for an additive
category just in terms of category language. First of all we require the existence of a zero
object which by definition is an object which is both initial and final. Furthermore we
require the existence of finite products and coproducts, and that the natural transforma-
tion

− t− → −×−

of bifunctors (its definition uses the zero object) is an isomorphism. This leads naturally to
an enrichment over commutative monoids. Finally we require that the morphism monoids
are in fact abelian groups.

A morphism between additive categories can be characterized as a functor which pre-
serves finite products. It then automatically preserves finite sums, zero objects, and the
enrichment. Here one can also interchange the roles of sums and products.

Therefore Add can be considered as a (non-full) subcategory of Cat.

Let (A,A+) be a marked preadditive category.

2.3.3. Definition. (A,A+) is a marked additive category if the following conditions
are satisfied:

1. The underlying category A is additive.

2. A+ is closed under sums.

In detail, Condition 2 means that for every two morphisms a : A→ A′ and b : B → B′

in A+ the induced isomorphism a ⊕ b : A ⊕ B → A′ ⊕ B′ (for any choice of objects and
structure maps representing the sums) also belongs to A+.

We denote by Add+ the full subcategory of preAdd+ spanned by the marked additive
categories.

In Example 3.4.9 below we will discuss a natural example of a marked preadditive
category in which the Condition 2 is violated.

2.3.4. Example. A category C with cartesian products can be refined to a symmetric
monoidal category with the cartesian symmetric monoidal structure [Bor94b, Sec. 6.1],
[Lur, Sec. 2.4.1]. In particular we have a functor (uniquely defined up to unique isomor-
phism)

−×− : C×C→ C .

This applies to an additive category A where the cartesian product is denoted by ⊕. We
therefore have a sum functor

−⊕− : A×A→ A .

Note that A × A (the product is taken in preAdd) is naturally an additive category
again, and that the sum functor is a morphism of additive categories.
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If (A,A+) is now a marked additive category, then (A,A+) × (A,A+) (the product
is taken in preAdd+) is marked again, and Condition 2.3.3.2 implies that we also have a
functor

−⊕− : (A,A+)× (A,A+)→ (A,A+)

between marked additive categories.

We want to reformulate the characterization of (marked) additive categories from
Definition 2.3.1 and Definition 2.3.3 as a right lifting property. To this end we introduce
the preadditive categories SpreAdd and ∅preAdd in preAdd given as follows:

1. The preadditive category SpreAdd has three objects 1, 2, and S and the morphisms
are generated by the morphisms

{1 i1−→ S, 2
i2−→ S, S

p1−→ 1, S
p2−→ 2} .

subject to the following relations:

p1 ◦ i1 = id1 , p2 ◦ i2 = id2 , i1 ◦ p1 + i2 ◦ p2 = idS .

2. ∅preAdd has one object 0 and Hom∅preAdd
(0, 0) = {id0}. Note that id0 is the zero

morphism.

We further define the marked versions

SpreAdd+ := mi(SpreAdd) , ∅preAdd+ := mi(∅preAdd)

in preAdd+ by marking the identities.
In the following let C be a placeholder for preAdd or preAdd+.

2.3.5. Remark. We consider the object SC of C. Note that the relations p1 ◦ i2 = 0 and
p2 ◦ i1 = 0 are implied. The morphisms p1, p2 present S as the product of 1 and 2, and
the morphisms i1 and i2 present S as a coproduct of 1 and 2. Consequently, S is the sum
of the objects 1 and 2, see Remark 2.1.5.

If A belongs to C and f : SC → A is a morphism, then the morphisms f(p1), f(p2)
present f(S) as the product of f(1) and f(2), and the morphisms f(i1), f(i2) present
f(S) as a coproduct of f(1) and f(2). Hence again, f(S) is the sum of the objects f(1)
and f(2).

A functor SC → A is the same as the choice of two objects A, B in A together with
a representative of the sum A⊕B and the corresponding structure maps.

2.3.6. Remark. The object 0 of ∅C is a zero object. If A belongs to C and f : ∅C → A
is a morphism, then f(0) is an object satisfying idf(0) = 0. Since A is enriched over
abelian groups, every object in A admits a morphism to f(0) and a morphism from f(0),
both of which are necessarily unique. Hence f(0) is a zero object of A. In fact, ∅C is the
zero-object classifier in C.
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Recall the notation introduced in Example 2.2.7. We let

w : ∆0
C t∆0

C → SC (10)

be the morphism which classifies the two objects 1 and 2. We furthermore let

v : ∅ → ∅C (11)

be the canonical morphism from the initial object of C.
We now use that C is a left-proper (see Remark 2.2.12), combinatorial simplicial model

category (see Theorem 2.2.2). By [Lur09, Prop. A.3.7.3], for every set S of cofibrations
in C the left Bousfield localization LSC (see [Hir03, Def. 3.3.1] or [Lur09, Sec. A.3.7] for a
definition) exists and is again a combinatorial simplicial model category. We will consider
the set S := {v, w} consisting of the cofibrations (10) and (11).

2.3.7. Proposition. The fibrant objects in L{v,w}C are exactly the (marked) additive
categories.

Proof. The fibrant objects in L{v,w}C are the fibrant objects A in C which are local for
{v, w}, i.e., for which the maps of simplicial sets MapC(v,A) and MapC(w,A) are trivial
Kan fibrations, see [Lur09, Prop. A.3.7.3(3)].

Let A be in C and consider the lifting problem

∂∆n //

��

MapC(SC,A)

MapC(w,A)
��

∆n //

77

MapC(∆
0
C t∆0

C,A)

. (12)

Since the mapping spaces in C are nerves of groupoids they are 2-coskeletal. Hence the
lifting problem is uniquely solvable for all n ≥ 3 without any condition on A. It therefore
suffices to consider the cases n = 0, 1, 2.

n=0 The outer part of the diagram reflects the choice of two objects in A, and a lift
corresponds to a choice of a sum of these objects together with the corresponding
structure maps. Therefore the lifting problem is solvable if and only if A admits
sums of pairs of objects.

n=1 The outer part of the diagram reflects the choice of (marked) isomorphisms A →
A′ and B → B′ in A and choices of objects A ⊕ A′ and B ⊕ B′ together with
structure maps (inclusions and projections) representing the sums. The lift then
corresponds to the choice of a (marked) isomorphism A ⊕ A′ → B ⊕ B′ which is
compatible with the structure maps. In fact such an isomorphism exists (and is
actually uniquely determined). In the marked case the fact that the isomorphism
is marked is equivalent to the compatibility condition between the sums and the
marking required for a marked additive category.
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n=2 The outer part reflects the choice of data: six objects A,A′, A′′ and B,B′, B′′; objects
representing the sums A ⊕ B, A′ ⊕ B′ and A′′ ⊕ B′′ together with structure maps;
(marked) isomorphisms a : A → A′, a′ : A′ → A′′, a′′ : A → A′′, and b : B → B′,
b′ : B′ → B′′, b′′ : B → B′′; and (marked) isomorphisms a ⊕ b : A ⊕ B → A′ ⊕ B′,
a′ ⊕ b′ : A′ ⊕ B′ → A′′ ⊕ B′′, a′′ ⊕ b′′ : A ⊕ B → A′′ ⊕ B′′ which are compatible
with the structure maps and hence uniquely determined. Thereby we have the
relations a′′ = a′ ◦ a and b′′ = b′ ◦ b. A lift corresponds to a witness of the fact that
a′′ ⊕ b′′ = (a′ ⊕ b′) ◦ (a ⊕ b). Hence the lift exists and is unique by the universal
properties of the sums.

We have
MapC(v,A) : MapC(∅C,A)→ ∗ .

The domain of this map is the space of zero objects in A which is either empty or a
contractible Kan complex. Consequently, MapC(v,A) is a trivial Kan fibration exactly if
A admits a zero object.

2.4. ∞-categories of (marked) preadditive and additive categories. In the
present paper we use the language of ∞-categories as developed in [Joy], [Lur09] and
[Cis19]. Let C be a simplicial model category. By [Lur, Thm. 1.3.4.20], we have an
equivalence of ∞-categories

Ncoh(Ccf ) ' Cc[W−1] , (13)

where Ncoh(Ccf ) is the coherent nerve of the simplicial category of cofibrant-fibrant objects
in C, and Cc[W−1] is the ∞-category obtained from (the nerve of) Cc by inverting
the weak equivalences of the model category structure, where Cc denotes the ordinary
category of cofibrant objects of C. If C is in addition combinatorial, then Cc[W−1] is a
presentable ∞-category [Lur, Prop. 1.3.4.22].

For the following we assume that C is a combinatorial simplicial model category. Let
LSC be the Bousfield localization of the model category structure on C at a set S of
morphisms in Ccf and let Ncoh(Ccf ) → LSNcoh(Ccf ) be the localization at the same set
of morphisms in the sense of [Lur09, Def. 5.2.7.2]. Using [Lur, Rem. 1.3.4.27] we get an
adjunction

Ncoh(Ccf ) ' Cc[W−1] � (LSC)c[W−1] ' Ncoh((LSC)cf )

which presents Ncoh((LSC)cf ) as a Bousfield localization at S. Hence there is an equiva-
lence of ∞-categories

LSNcoh(Ccf ) ' Ncoh((LSC)cf ) .

We let WpreAdd(+) denote the weak equivalences in preAdd(+). Note that in preAdd(+)

all objects are cofibrant and fibrant.



398 U. BUNKE, A. ENGEL, D. KASPROWSKI, AND C. WINGES

2.4.1. Definition. We define the ∞-category of (marked) pre-additive categories by

preAdd(+)
∞ := preAdd(+)[W−1

preAdd(+) ] .

By a specialization of (13) we have an equivalence of ∞-categories

Ncoh(preAdd(+)) ' preAdd(+)
∞ . (14)

A weak equivalence between fibrant objects in a Bousfield localization is a weak equiv-
alence in the original model category. Consequently, a morphism between (marked) ad-
ditive categories is a weak equivalence in L{v,w}C if and only if it is a weak equivalence
in (marked) preadditive categories. We let WAdd(+) denote the weak equivalences in the

Bousfield localization L{v,w}preAdd(+).

2.4.2. Definition. We define the ∞-category of (marked) additive categories by

Add(+)
∞ := preAdd(+)[W−1

Add(+) ] .

By specialization of (13), we then have an equivalence of ∞-categories

Ncoh(Add(+)) ' Add(+)
∞ . (15)

2.4.3. Remark. The equivalences (14) and (15) can be shown directly using Prop. 1.3.4.7
in [Lur], since fibrant replacement in the marked model structure corresponds to localiza-
tion at the marked edges (apply [Lur09, Thm. 3.1.5.1 and Prop. 3.1.4.1] with S = ∆0).
Indeed, the categories preAdd(+) and Add(+) are enriched in groupoids and therefore
fibrant simplicial categories. The interval object of A is given by A]∆1. In the case of
(marked) additive categories we must observe that A]∆1 is again (marked) additive.

Recall that F+ is the functor which forgets the markings, and that its right-adjoint ma
is the functor which marks all equivalences. Since these functors preserve equivalences,
the adjunction descends to the ∞-categories.

2.4.4. Corollary. We have an adjunction

F+ : preAdd+
∞ � preAdd∞ : ma .

2.4.5. Corollary.

1. The ∞-categories preAdd(+)
∞ and Add(+)

∞ are presentable.

2. We have an adjunction

L⊕ : preAdd(+)
∞ � Add(+)

∞ : F⊕ , (16)

where F⊕ is the inclusion of a full subcategory.
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The functor L⊕ is the additive completion functor.
In the following C is a placeholder for Cat(+), Add(+) or preAdd(+).
The category C can be considered as a category enriched in groupoids and therefore

as a strict (2, 1)-category which will be denoted by C(2,1). A strict (2, 1)-category gives
rise to an ∞-category as follows. We first apply the usual nerve functor to the morphism
categories of C(2,1) and obtain a category enriched in Kan complexes. Then we apply
the coherent nerve functor and get a quasi-category which we will denote by N2(C(2,1)).
The obvious functor N(C(1,1)) → N2(C(2,1)) (where C(1,1) denotes the underlying ordinary
category of C) sends equivalences to equivalences and therefore descends to a functor

C∞ → N2(C(2,1)) . (17)

2.4.6. Proposition. The functor (17) is an equivalence.

Proof. Note that N2(C(2,1)) and Ncoh(C) are isomorphic by the definition of the simplicial
enrichment of C.

We consider the following commuting diagram of quasi-categories

N(C(1,1))
`C

{{ &&

!
��

C∞ '
!! // Ncoh(C) ∼=

// N2(C(2,1))

.

The left triangle commutes since the morphism marked by ! is an explicit model of
the localization morphism, where we use (14) (or (15), depending on the case) for the
equivalence marked by !!. The composition of the two horizontal arrows is an explicit
model of (17).

3. Applications

3.1. Localization preserves products. We show that the localizations

`C(+) : C(+) → C(+)
∞

for C in {Cat ,preAdd ,Add} preserve products. Here and in the following we view
categories as∞-categories using the nerve. However we will not write the nerve explicitly.

Let I be a set. Then we consider the functor

`I,C : CI → CI∞

defined by postcomposition with `C. For every category C with products we have a functor∏
I : CI → C. We apply this to C = C and C = C∞.

3.1.1. Proposition. We have an equivalence of functors

`C ◦
∏
I

'−→
∏
I

`I,C : CI → C∞ .
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Proof. We start with the case C = preAdd(+) or C = Cat(+). We use that C has a
combinatorial model category structure in which all objects are cofibrant and fibrant. It
is a general fact, that in this case the localization ` : C → C∞ preserves products. Here
is the (probably much too complicated) argument. We can consider the injective model
category structure on the diagram category CI . Since I is discrete one easily observes
that all objects in this diagram category are fibrant again. So we can take the identity as
a fibrant replacement functor for CI . This gives the equivalence

`C ◦
∏
I

'−→
∏
I

`I,C ,

(e.g. by specializing [Bun19, Prop. 13.6]).
In order to deduce the assertion for additive categories we consider the inclusion func-

tor F⊕,1 : Add(+) → preAdd(+). This functor preserves weak equivalences and therefore
descends essentially uniquely to the functor F⊕ in (16) such that

F⊕ ◦ `Add(+) ' `preAdd(+) ◦ F⊕,1 .
The functor F⊕ is a right adjoint which preserves and detects limits. We do not claim
that F⊕,1 is a right adjoint, but it clearly preserves products by inspection. We let FI,⊕,1
and FI,⊕ be the factorwise application of F⊕,1 and F⊕. With this notation we have an
equivalence

F⊕,1 ◦
∏
I

∼=
∏
I

◦FI,⊕,1 .

The assertion in the case C = Add(+) now follows from the chain of equivalences

F⊕ ◦ `Add(+) ◦
∏
I

' `preAdd(+) ◦ F⊕,1 ◦
∏
I

' `preAdd(+) ◦
∏
I

◦FI,⊕,1

'
∏
I

◦`I,preAdd(+) ◦ FI,⊕,1

'
∏
I

◦FI,⊕ ◦ `I,Add(+)

' F⊕ ◦
∏
I

◦`I,Add(+)

by removing F⊕.

3.2. Rings and Modules. A unital ring R can be considered as a preadditive category
R with one object ∗ and ring of endomorphisms HomR(∗, ∗) := R. The category of finitely
generated free R-modules Modfg,free(R) is an additive category. We have a canonical
functor R → Modfg,free(R) sending ∗ to R which presents Modfg,free(R) as the additive
completion of R. This fact is well-known, see e.g. [DL98, Sec. 2]. In the following we
provide a precise formulation using the language of ∞-categories.

Recall the sum-completion functor L⊕ from Corollary 2.4.5.
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3.2.1. Proposition. The morphism of preadditive categories R→Modfg,free(R) induces
an equivalence

L⊕(`preAdd(R)) ' `Add(Modfg,free(R)) .

Proof. We must show that

MappreAdd∞
(`preAdd(Modfg,free(R)), `preAdd(B))→ MappreAdd∞

(`preAdd(R), `preAdd(B))

is an equivalence for every additive category B. In view of (14), this is equivalent to the
fact that

MappreAdd(Modfg,free(R),B)→ MappreAdd(R,B)

is a trivial Kan fibration. Here we use that by (14) the mapping spaces in preAdd∞ are
represented by the simplicial mapping spaces in preAdd, see [Lur09, Sec. 2.2.2]. The
proof is very similar to the proof of Proposition 2.3.7. We must check the lifting property
against the inclusions ∂∆n → ∆n. Again we must only consider the case n ≤ 2.

n=0 A functor R→ B (sending ∗ to an R-module B) determines a functor

Modfg,free(R)→ B

which sends Rk to B⊕k.

n=1 An isomorphism of functors R→ B is an isomorphism of objects f : B → B′ which
is compatible with the R-module structures. It induces an isomorphism of induced
functors Modfg,free(R)→ B which on Rk is given by ⊕kf : B⊕k → B′,⊕k.

n=2 The existence of the lift expresses the naturality of the isomorphisms obtained in
the case n = 1.

To understand the category of finitely generated projective modules Modfg,proj(R)
and the morphism R→Modfg,proj(R) in a similar manner we must consider idempotent
complete additive categories. Recall that a projection in an additive category A is an
endomorphism e : A→ A such that e2 = e.

Let A be an additive category.

3.2.2. Definition. The category A is idempotent complete if for every object A in A
and projection e in EndA(A) there exists an isomorphism A ∼= e(A) ⊕ e(A)⊥ such that
e(A) and e(A)⊥ are images of e and idA−e.

The last part of this definition more precisely means that there exist morphisms
e(A)→ A and e(A)⊥ → A such that the diagrams

A

e

��

e(A)⊕ e(A)⊥
∼=oo

pre(A)

��

e(A)⊕ e(A)⊥

pr
e(A)⊥

��

∼= // A

idA−e
��

A e(A)⊕ e(A)⊥
∼=oo e(A)⊕ e(A)⊥

∼= // A

commute.
Let A be a marked additive category.
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3.2.3. Definition. The marked additive category A is idempotent complete if the under-
lying additive category F+(A) is idempotent complete (Definition 3.2.2), and if in addition
for every A in A, every projection e on A, and every marked isomorphism f : A→ A′ the
induced isomorphism e(A)→ e′(A′) is marked, where e′ := f ◦ e ◦ f−1.

We let Add(+),idem be the full subcategory of Add(+) of idempotent complete small
(marked) additive categories.

We can characterize idempotent completeness of a marked additive category as a lifting
property. To this end we consider the following preadditive category EpreAdd:

1. EpreAdd has the object ∗.

2. The morphisms of EpreAdd are generated by id∗ and e subject to the relation e2 = e.

We then consider the functor

u : EpreAdd → SpreAdd (18)

(see Section 2.3 for SpreAdd) which sends ∗ to S and e to i1 ◦ p1. In the marked case we
consider

u : EpreAdd+ → SpreAdd+

obtained from (18) by applying the functor mi marking the identities. Then one checks:

3.2.4. Lemma. A (marked) additive category A is idempotent complete if and only if it
is local with respect to the map u.

Proof. The proof is similar to the proof of Proposition 2.3.7. The extra condition in
Definition 3.2.3 in the marked case arises from the lifting problem for n = 1.

3.2.5. Corollary. The fibrant objects in the Bousfield localization L{u,v,w}preAdd(+)

are exactly the idempotent complete small (marked) additive categories.

Consider the equivalences WAdd(+),idem in the Bousfield localization L{u,v,w}preAdd(+)

and the ∞-category

Add(+),idem
∞ := preAdd(+)[W−1

Add(+),idem ] .

Using (13), we have an equivalence

Ncoh(Add(+),idem) ' Add(+),idem
∞ . (19)

We obtain the analog of Corollary 2.4.5.
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3.2.6. Corollary.

1. The ∞-category Add(+),idem
∞ is presentable.

2. We have an adjunction

Lidem : Add(+)
∞ � Add(+),idem

∞ : Fidem

where Fidem is the inclusion and Lidem is the idempotent completion functor.

3. We have an adjunction

L⊕,idem : preAdd(+)
∞ � Add(+),idem

∞ : F⊕,idem

where F⊕,idem ' F⊕ ◦ Fidem and L⊕,idem ' Lidem ◦ L⊕.

3.2.7. Proposition. The morphism of preadditive categories R → Modfg,proj(R) in-
duces an equivalence L⊕,idem(`preAdd(R)) ' `Addidem(Modfg,proj(R)).

Proof. The proof is similar to Proposition 3.2.1.

The following is a precise version of the assertion that Modfg,proj(R) is the idempotent
completion of Modfg,free(R).

3.2.8. Corollary. The morphism of additive categories Modfg,free(R)→Modfg,proj(R)
induces an equivalence

`Addidem(Modfg,proj(R)) ' Lidem(`Add(Modfg,free(R))) .

3.3. G-coinvariants. Let G be a group. In this subsection we want to calculate explic-
itly the homotopy G-orbits of preadditive categories with trivial G-action. The precise
formulation of the result is Theorem 3.3.1. We then discuss applications to group rings.

By BG we denote the groupoid with one object ∗ and group of automorphisms G.
The functor category Fun(BG,C) is the category of objects in C with G-action and
equivariant morphisms. The underlying object or morphism of an object or morphism in
Fun(BG,C) is the evaluation of the functor or morphism at ∗.

If I is a category and F : C→ D is a functor, then we will use the notation

FI : Fun(I,C)→ Fun(I,D) (20)

for the functor defined by postcomposition with F .
We consider a (marked) preadditive category A. It gives rise to a constant functor A in

Fun(BG,preAdd(+)) and hence to an object `preAdd(+),BG(A) in Fun(BG,preAdd(+)
∞ ).

Since the ∞-category preAdd(+)
∞ is presentable, it is cocomplete and the colimit in

the following theorem exists. Recall the functor −]− from Definition 2.2.17.

3.3.1. Theorem. We have a natural equivalence

colim
BG

`preAdd(+),BG(A) ' `preAdd(+)(A]BG) .
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3.3.2. Remark. Note that the order of taking the colimit and the localization is relevant.
Indeed, we have colimBGA ∼= A and therefore `preAdd(+)(colimBGA) ' `preAdd(+)(A).

3.3.3. Remark. Note that the unmarked version of Theorem 3.3.1 can be deduced from
the marked version using the functor ma introduced in (5) using Corollary 2.4.4.

In order to avoid case distinctions, we will formulate the details of the proof in the
marked case. The unmarked case can be shown similarly, or alternatively deduced formally
from the marked case as noted in Remark 3.3.3.

Since preAdd+ has a cofibrantly generated model category structure, the projective
model category structure on Fun(BG,preAdd+) exists [Hir03, Thm. 11.6.1]. For every
cofibrant replacement functor l : L→ idFun(BG,preAdd+) for this projective model category
structure we have an equivalence

`preAdd+ ◦ colim
BG
◦L ' colim

BG
◦`preAdd+,BG (21)

of functors from Fun(BG,preAdd+) to preAdd+
∞, see e.g. [Bun19, Prop. 14.3] for an

argument.
We derive the formula asserted in Theorem 3.3.1 by considering a particular choice of

a cofibrant replacement functor.

3.3.4. Definition. Let G̃ in Fun(BG,Groupoids) be the groupoid with G-action given
as follows:

1. The objects of G̃ are the elements of G.

2. For every pair of objects g, g′ there is a unique morphism g → g′.

3. The group G acts on G̃ by left-multiplication.

The G-groupoid G̃ is often called the transport groupoid of G.

We now define the functor

L := −]G̃ : Fun(BG,preAdd+)→ Fun(BG,preAdd+)

(more precisely L(D) is the G-object obtained from the G×G-object D]G̃ in preAdd+ by
restriction of the action along the diagonal G→ G×G). We have a natural transformation

L→ id induced by the morphism of G-groupoids G̃→ ∆0
Cat, where we use the canonical

isomorphism D]∆0
Cat
∼= D.

3.3.5. Lemma. The functor L together with the transformation L → id is a cofibrant
replacement functor for the projective model category structure on Fun(BG,preAdd+).
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Proof. Since ResG{1}(G̃) → ∆0
Cat is an (non-equivariant) equivalence of groupoids and

for every object A in preAdd+ the functor A]− : Groupoids → preAdd+ preserves
equivalences (see the proof of Lemma 2.2.25), the morphism D]G̃→ D is a weak equiv-
alence in the projective model category structure on Fun(BG,preAdd+) for every D in
Fun(BG,preAdd+).

We must show that L(D) is cofibrant. To this end we consider the lifting problem

∅ //

��

A

f

��

D]G̃ u //

c

==

B

where f is a trivial fibration in Fun(BG,preAdd+). By Lemma 2.2.8, f is a marked
equivalence and surjective on objects. Pick for each object B in B a preimage s(B). Then
define c on objects by setting c(D, g) := gs(u(g−1D, 1)). Note that f(c(D, g)) = u(D, g)

since both f and u are G-equivariant. For (D, g), (E, h) in D]G̃, define c on morphisms
as

HomD]G̃((D, g), (E, h))
u−→ HomB(u(D, g), u(E, h))

∼=−→ HomA(c(D, g), c(E, h)) ,

where the second map is the inverse of the map induced by f . Since both u and f are
G-equivariant functors, this defines a G-equivariant functor c : D]G̃ → A. The equality
fc = u also holds by definition.

Proof Proof of Theorem 3.3.1. According to (21) and Lemma 3.3.5, we must cal-
culate the object

colim
BG

L(A) ∼= colim
BG

(A]G̃)

for an object A of preAdd+. To this end, we note that for a fixed marked preadditive
category D, we have by (7) an adjunction

D]− : Groupoids � preAdd+ : Fun+
preAdd+(D,−) .

Since D]− is a left adjoint, it commutes with colimits. Consequently, we get

colim
BG

(A]G̃) ' A] colim
BG

G̃ . (22)

The assertion of Theorem 3.3.1 now follows from a combination of the relations (22) and

(21) together with colimBG G̃ ∼= BG.

3.3.6. Remark. Theorem 3.3.1 admits a generalization to preadditive categories with
arbitrary G-action. Let us consider the unmarked case for simplicity.

For A in Fun(BG,preAdd), Bartels and Reich have defined a preadditive category
A∗GG/G whose objects are precisely the objects of A and whose morphisms are given by
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families (φγ : A → γB)γ∈G such that φγ = 0 for all but finitely many γ in G (see [BR07,
Def. 2.1]). Consider the functor

S : A]G̃→ A ∗G G/G

which sends an object (A, g) to g−1A and a morphism (f, g → h) : (A, g)→ (B, h) to the
family S(f) given by

S(f)γ :=

{
g−1f γ = g−1h,

0 γ 6= g−1h.

Then one can check directly that S exhibits A∗GG/G as the colimit of A]G̃. So A∗GG/G
always models the homotopy G-orbits of A.

We apply Theorem 3.3.1 to identify module categories over a group ring as homotopy
orbits of the category of modules over the base ring. This allows us to describe functors
on the orbit category of a discrete group G analogous to the ones defined by Davis and
Lück in [DL98, Sec. 2] in terms of universal constructions.

Let R be a unital ring. By R[G] we denote the group ring of G with coefficients in R.
Recall from Section 3.2 that we can consider unital rings as preadditive categories which
will be denoted by the corresponding bold-face letters.

3.3.7. Lemma. We have an equivalence

colim
BG

`preAdd,BG(R) ' `preAdd(R[G]) .

Proof. By Theorem 3.3.1, we have an equivalence

colim
BG

`preAdd,BG(R) ' `preAdd(R]BG) .

Unfolding the definitions (see e.g. Definition 2.2.17) we observe that R]BG has one object,
and its ring of endomorphisms is given by R⊗Z Z[G] ∼= R[G].

3.3.8. Proposition. We have equivalences

colim
BG

`preAdd,BG(Modfg,free(R)) ' `preAdd(Modfg,free(R[G]))

and
colim
BG

`preAdd,BG(Modfg,proj(R)) ' `preAdd(Modfg,proj(R[G]))

Proof. By Proposition 3.2.1, we have an equivalence

colim
BG

`Add,BG(Modfg,free(R)) ' colim
BG

L⊕,BG(`preAdd,BG(R)) .

Since L⊕ is a left adjoint, it commutes with colimits. Therefore,

colim
BG

L⊕,BG(`preAdd,BG(R)) ' L⊕(colim
BG

`preAdd,BG(R)) .
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By Lemma 3.3.7, we have the equivalence

L⊕(colim
BG

`preAdd,BG(R)) ' L⊕(`preAdd(R[G])) .

Finally, by Proposition 3.2.1 again

L⊕(`preAdd(R[G])) ' `preAdd(Modfg,free(R[G])) .

The second equivalence is shown similarly, using Proposition 3.2.7 and L⊕,idem instead of
Proposition 3.2.1 and L⊕.

3.3.9. Example. A unital ring R gives rise to two canonical marked preadditive cate-
gories mi(R) (only the identity is marked) and ma(R) (all units are marked). Then

colim
BG

`preAdd+,BG(mi(R)) ' `preAdd+(R[G]canG) ,

where the marked isomorphisms in R[G]canG are the elements of G (canonically considered
as elements in R[G]). In contrast,

colim
BG

`preAdd+,BG(ma(R)) = `preAdd+(R[G]can) ,

where the marked isomorphisms in R[G]can are the canonical units in R[G], i.e., the
elements of the form ug for a unit u of R and an element g of G.

Let us now use the general machine in order to construct interesting functors on the
orbit category GOrb of G. Recall that GOrb is the category of transitive G-sets and
equivariant maps. The group G with the left action is an object of GOrb. Since the right
action of G on itself implements an isomorphism EndGOrb(G) ∼= G, we get a fully faithful
functor

i : BG→ GOrb . (23)

If C is a presentable ∞-category, then we have an adjunction

i! : Fun(BG,C) � Fun(GOrb,C) : i∗ . (24)

The functor i! is the left Kan extension functor along i. We now consider the composition

preAdd
(−)
−−−→ Fun(BG,preAdd)

`preAdd,BG−−−→ Fun(BG,preAdd∞)
i!−−−→ Fun(GOrb,preAdd∞) (25)

which we denote by JG.
We are interested in the calculation of the value JG(A)(G/H) for a subgroup H.
Let A be a preadditive category.
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3.3.10. Proposition. We have an equivalence

JG(A)(G/H) ' `preAdd(A]BH) .

Proof. The functor S 7→ (G×HS → G/H) induces an equivalence of categoriesHOrb
'−→

GOrb/(G/H) which restricts to an equivalence

BH ' i/(G/H) , (26)

where i/(G/H) denotes the slice of i : BG → GOrb over G/H. Using the pointwise
formula [Lur09, Def. 4.3.2.2] for the left Kan extension functor i! at the equivalence
marked by ! we get

JG(A)(G/H) ' i!(`preAdd,BG(A))(G/H)
!' colim

(i(∗)→G/H)∈i/(G/H)
`preAdd,BG(A)(∗)

!!' colim
BH

`preAdd,BH(A)

Theorem 3.3.1' `preAdd(A]BH) ,

where at !! we use (26) and that the argument of the colimit is a constant functor.

Applying Proposition 3.3.10 in the case A := R for a ring R leads to a functor

JG(R) : GOrb→ preAdd∞

whose value at G/H is given by JG(R)(G/H) ' `preAdd(R[H]). If we postcompose by
L⊕ and use Proposition 3.2.1, then we get a functor

L⊕,GOrb ◦ JG(R) : GOrb→ Add∞

with values L⊕,GOrb ◦ JG(R)(G/H) ' `Add(Modfg,freeR[H]). The composition

K ◦ L⊕,GOrb ◦ JG(R) : GOrb→ Sp

therefore has the same values as the functor representing the equivariant K-homology
with R-coefficients constructed by Davis and Lück [DL98, Sec. 2 and 4]. In∞-categorical
language, equivariant K-homology is given by the left Kan extension of this functor along
the Yoneda embedding GOrb→ PSh(GOrb).

3.4. G-invariants. Let G be a group. In this section we calculate the homotopy G-
invariants of marked preadditive categories with G-action. The precise formulation is
Theorem 3.4.3. Ignoring enrichments, these categories have previously been considered
by Merling [Mer17].

Let A be an object of Fun(BG,preAdd(+)), i.e. a (marked) preadditive category with
G-action.
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3.4.1. Definition. We define a (marked) preadditive category ÂG as follows:

1. The objects of ÂG are pairs (A, ρ) of an object A of A and a collection ρ :=
(ρ(g))g∈G, where ρ(g) : A→ g(A) is a (marked) isomorphism in A and the equality

g(ρ(h)) ◦ ρ(g) = ρ(hg)

holds true for all pairs g, h in G.

2. The morphisms (A, ρ) → (A′, ρ′) in ÂG are morphisms a : A → A′ in A such that
the equality g(a) ◦ ρ(g) = ρ′(g) ◦ a holds true for all g in G.

3. The enrichment of ÂG over abelian groups is inherited from the enrichment of A.

4. (in the marked case) The marked isomorphisms in ÂG are those morphisms which
are marked isomorphisms in A.

3.4.2. Example. If A is an object of preAdd(+), then we will shorten the notation and

write ÂG for Â
G

, where A is A with the trivial G-action.
In this case ÂG is the category of objects of A with an action of G by (marked)

isomorphisms, and equivariant morphisms. In the marked case, the marked isomorphisms
in ÂG are those which are marked in A.

Recall Notation (20). We will identify ÂG with limBGR(A) for a fibrant replacement
R(A) of A to obtain the following statement.

3.4.3. Theorem. We have an equivalence

lim
BG

`preAdd(+),BG(A) ' `preAdd(+)(ÂG) .

3.4.4. Remark. The forgetful functor F+ : preAdd+ → preAdd descends to a functor
F+ : preAdd+

∞ → preAdd∞, see Corollary 2.4.4. If A is a preadditive category with
G-action, then the unmarked version of Theorem 3.4.3 can be obtained from the marked
versions by

lim
BG

`preAdd(+),BG(A) ' F+(ma(lim
BG

`preAdd(+),BGA)))

' F+(lim
BG

`preAdd(+),BG(maBG(A)))

' `preAdd(+)(F+( ̂maBG(A)
G

))

using that ma (as a right adjoint, see (5)) preserves limits. Note that

F+( ̂maBG(A)
G

) = ÂG ,

where on the left-hand side we use Definition 3.4.1 in the marked case, and on the right-
hand side we use it in the unmarked case.
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3.4.5. Remark. The order of taking the limit limBG and the localization `... matters.
For example, consider the additive category Mod(Z) with the trivial G-action. Then

lim
BG

Mod(Z) ∼= Mod(Z) .

On the other hand, M̂od(Z)
G

is the category of representations of G on Z-modules. If G
is non-trivial, then it is not equivalent to Mod(Z).

For simplicity (and in view of Remark 3.4.4), we formulate the proof in the marked
case, only. Since the category preAdd+ has a combinatorial model category structure the
injective model category structure in Fun(BG,preAdd+) exists. The proof of this fact
involves Smith’s theorem, see e.g. [Bek00, Thm. 1.7], [Lur09, Sec. A.2.6 ]. A textbook
reference of the fact stated precisely in the form we need is [Lur09, Prop. A.2.8.2].

For every fibrant replacement functor r : id → R in the injective model category
structure on Fun(BG,preAdd+) we have an equivalence

`preAdd+ ◦ lim
BG
◦R ' lim

BG
◦`preAdd+,BG (27)

of functors from Fun(BG,preAdd+) to preAdd+
∞ (see e.g. [Bun19, Prop. 13.6] for an

argument). In the following we use the notation introduced in Definition 2.1.9 and before

Lemma 2.2.18. Furthermore, we consider the G-groupoid G̃ defined in Definition 3.3.4.
We define the functor

R := Fun+
preAdd+(Q(G̃),−) : Fun(BG,preAdd+)→ Fun(BG,preAdd+) (28)

together with the natural transformation r : id → R induced by G̃ → ∆0
Cat using the

canonical isomorphism Fun+
preAdd+(Q(∆0

Cat),−) ∼= id.

3.4.6. Lemma. The functor (28) together with the natural transformation r is a fibrant
replacement functor.

Proof. The morphism G̃ → ∆0
Cat is a non-equivariant equivalence of groupoids. An

inverse equivalence is given by any map ∆0
Cat → G̃ classifying some object of G̃. Since

this functor is injective on objects, we conclude as in Lemma 2.2.27 that the induced (non-
equivariant) morphism p : R(A)→ A is a weak equivalence. Since p ◦ r = id we conclude
that r : A → R(A) is a (non-equivariant) weak equivalence, too. Hence r : A → R(A),
now considered as a morphism in Fun(BG,preAdd+), is an equivalence in the injective
model category structure.

In order to finish the proof we must show that R(A) is fibrant. To this end we consider
the following square in Fun(BG,preAdd+), where c : C → D is a trivial cofibration in
Fun(BG,preAdd+):

C //

c

��

R(A)

��

D //

<<

∗
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We must show the existence of the diagonal lift.
We use the identification Fun+

preAdd+(Q(G̃), ∗) ' ∗ and the adjunction of Lemma 2.2.18
in order to rewrite the lifting problem as follows.

C]G̃
φ
//

��

A

��

D]G̃ //

d̃

88 >>

∗

Since, after forgetting the G-action, the morphism of c : C→ D is a trivial cofibration it
is injective on objects. We can therefore choose an inverse equivalence d : D → C (not
necessarily G-equivariant) up to marked isomorphism with d ◦ c = idC. We can extend
the composition

D
d−→ C→ C× {1} → C]G̃

uniquely to a G-equivariant morphism

d̃ : D]G̃→ C]G̃

by setting

d̃(D, g) := (gd(g−1D), g) , d̃(f : D → D′, g → h) := gd(g−1f)](g → h) .

The desired lift can now be obtained as the composition φ ◦ d̃.

Proof Proof of Theorem 3.4.3. By (27) and Lemma 3.4.6, we have an equivalence

lim
BG

`preAdd+,BG(A) ' `preAdd+(lim
BG

R(A)) .

In order to finish the proof of Theorem 3.4.3, it remains to show that

lim
BG

R(A) ∼= ÂG .

We define a functor

Ψ: lim
BG

R(A) = lim
BG

Fun+
preAdd+(Q(G̃),A)→ ÂG

as follows.

1. on objects:
Ψ(φ) := (φ(1), (φ(1→ g))g∈G) .

Note that φ(g) = gφ(1) by G-equivariance of φ. Functoriality of φ guarantees that
Definition 3.4.1.1 is fulfilled.
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2. on morphisms:
Ψ((ah)h∈G̃ : φ→ ψ) := a1 : φ(1)→ ψ(1) .

One easily checks Definition 3.4.1.2 using that φ and ψ are G-equivariant and that
(ah)h∈G̃ is a natural transformation.

3. We observe that Ψ preserves marked isomorphisms.

Finally we check that the functor Ψ is an isomorphism of categories. This finishes the
proof of Theorem 3.4.3.

Theorem 3.4.3 implies an analogous statement for additive categories.
Let A be in Fun(BG,preAdd(+)).

3.4.7. Lemma. If A belongs to the subcategory Fun(BG,Add(+)), then ÂG is a (marked)
additive category.

Proof. We must show that ÂG admits finite coproducts. If (M,ρ) and (M ′, ρ′) are
two objects, then (M ⊕M ′, ρ⊕ ρ′) together with the canonical inclusions represents the
coproduct of (M,ρ) and (M ′, ρ′). In the marked case, one furthermore checks by inspection

condition 2 from Definition 2.3.3 for A implies this condition for ÂG. This condition also
implies that ρ⊕ ρ′ acts by marked isomorphisms as required in the marked case.

Let A be in Fun(BG,Add(+)).

3.4.8. Corollary. We have an equivalence

lim
BG

`Add(+),BG(A) ' `Add(+)(ÂG) .

Proof. The functor F⊕ : Add(+)
∞ → preAdd(+)

∞ is a right adjoint and hence preserves
limits. Using Theorem 3.4.3, we obtain equivalences

F⊕(lim
BG

(`Add(+),BG(A))) ' lim
BG

`preAdd(+),BG(F⊕,BG(A))

' `preAdd(+)( ̂F⊕,BG(A)
G

)

' F⊕(`Add(+)(ÂG))

Since ÂG is additive by Lemma 3.4.7, this implies the assertion by omitting F⊕ on both
sides.

3.4.9. Example. Let k be a complete normed field and let Ban denote the category of
Banach spaces over k and bounded linear maps. This category is additive. Note that only
the equivalence class of the norm on an object of Ban is an invariant of the isomorphism
class of the object. We use the norms in order to define a marked preadditive category
Ban+ by marking isometries.

It is first interesting to observe that Ban+ is not a marked additive category. In fact,
the Condition 2.3.3.2 is violated since only the equivalence class of the norm on a direct
sum is fixed by the norms on the summands.
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We can now calculate the G-invariants: By Corollary 3.4.8,

lim
BG

`Add,BG(Ban) ' `Add(B̂an
G

) .

By Example 3.4.2, B̂an
G

is the category of Banach-spaces over k with an action by G
and equivariant bounded linear maps. On the other hand, by Theorem 3.4.3

lim
BG

`preAdd+,BG(Ban+) ' `preAdd+(B̂an+
G

) .

By Example 3.4.2, B̂an+
G

is the category of Banach-spaces over k with an isometric
action by G and equivariant bounded linear maps which are marked if they are isometric.

Hence F+(B̂an+
G

) is contained properly in B̂an
G

.
This shows that even if we forget the marking at the end, the marking matters when

we form limits.

3.4.10. Example. Let R be a unital ring. We consider the additive categories Mod?(R)
and Mod?(R), where the decoration ? is a condition like free, projective, finitely generated
or some combination of these. By Corollary 3.4.8 and Example 3.4.2, we get

lim
BG

`Add,BG(Mod?(R)) ' `Add(Fun(BG,Mod?(R))) .

Note the difference between limits and colimits: By Proposition 3.3.8 we have an
equivalence

colim
BG

`Add,BG(Mod?(R)) ' `Add(Mod?(R[G]))

for ? = (fg, proj), (fg, free). If G is infinite, then the interpretation of ? on the right-hand
side leads to different categories (e.g. finitely generated free R[G]-modules are in general
not finitely generated free R-modules with a G-action).

3.4.11. Example. For the following example we assume familiarity with equivariant
coarse homology theories and the example of equivariant coarse algebraic K-homology,
see for example [BEKWa, Sec. 2, 3 and 8]. In particular, recall the definition of the functor
VA : BornCoarse → Add of X-controlled A-objects for a bornological coarse space X
and an additive category A from [BEKWa, Sec. 8.2]. We define the functor

V+
A : BornCoarse→ Add+

by considering VA and marking the diag(X)-controlled isomorphisms.
Let X be a G-bornological coarse space and let A be an additive category with a

G-action. By functoriality the marked additive category V+
A(X) then has an action of

G × G. We consider V+
A(X) as a marked additive category with G-action by restricting

the G × G action along the diagonal. As in Definition 3.4.1 we can form the category

V̂+
A

G

.
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We define the functor

VG
A := F+ ◦ V̂+

A

G

: GBornCoarse→ Add .

One checks that this definition agrees with the definition of VG
A from [BEKWa, Sec. 8.2].

By definition, equivariant coarse algebraic K-homology is the functor KAXG := K ◦VG
A.

The functor F+ : Add+ → Add descends to a functor F+ : Add+
∞ → Add∞. Using

Corollary 3.4.8, we now obtain

KAXG = K ◦VG
A = K ◦ F+ ◦ V̂+

A

G

' K∞ ◦ `Add ◦ F+ ◦ V̂+
A

G

' K∞ ◦ F+ ◦ `Add+ ◦ V̂+
A

G

' K∞ ◦ F+ ◦ lim
BG
◦`Add+,BG ◦V+

A .

This shows that equivariant coarse algebraic K-homology can be computed from the
non-equivariant version by taking G-invariants in marked additive categories.

In addition to the adjunction (24), for a presentable ∞-category C we also have an
adjunction

iop,∗ : Fun(GOrbop,C) � Fun(BGop,C) : iop∗ . (29)

In analogy to (25) we consider the functor CG defined as the composition

Fun(BGop,preAdd(+))
`
preAdd(+),BG−−−−−−−−→ Fun(BGop,preAdd(+)

∞ )
iop∗−→ Fun(GOrbop,preAdd(+)

∞ )

For a (marked) preadditive category with G-action A we are interested in the values
CG(A)(G/H) for subgroups H of G.

3.4.12. Lemma. We have an equivalence

CG(A)(G/H) ' `preAdd(+)( ̂ResGH(A)
H

) .

Proof. The argument is very similar to the proof of Proposition 3.3.10. We use that the
induction S 7→ G×H S induces an equivalence

BHop ' (G/H)/iop ,

where (G/H)/iop denotes the slice of iop : BGop → GOrbop under G/H. Further em-
ploying the pointwise formula for the right Kan extension functor iop∗ and the equivalence
BH ' BHop given by inversion, we get

CG(A)(G/H) ' iop∗ (`preAdd(+),BGop(A))(G/H)

' lim
(G/H→iop(∗))∈(G/H)/iop

`preAdd(+),BGop(A)(∗)

' lim
BHop

`preAdd(+),BHop(ResGH(A))

' `preAdd(+)( ̂ResGH(A)
H

)
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[AR94] J. Adámek and J. Rosicky, Locally presentable and accessible categories, London
Math. Soc. Lecture Notes Series 189, 1994.

[Bek00] T. Beke, Sheafifiable homotopy model categories, Math. Proc. Cambridge Phil.
Soc. 129 (2000), no. 3, 447–475.

[BEKWa] U. Bunke, A. Engel, D. Kasprowski, and C. Winges, Equivariant coarse homo-
topy theory and coarse algebraic K-homology, arXiv:1710.04935.

[BEKWb] , Transfers in coarse homology, To appear in Münster J. Math.
arXiv:1809.08300.

[Ber07] J. E. Bergner, A model category structure on the category of simplicial sets,
Trans. of the AMS 359 (2007), no. 5, 2043–2058.

[BM13] C. Berger and I. Moerdijk, On the homotopy theory of enriched categories, Q.
J. Math 64 (2013), no. 3, 805–846.

[Bor94a] F. Borceux, Handbook of categorical algebra. 1: Basic category theory, Encyclo-
pedia of Mathematics and its Applications, vol. 50, Cambridge University Press,
Cambridge, 1994.

[Bor94b] F. Borceux, Handbook of categorical algebra. 2: Categories and structures., En-
cyclopedia of Mathematics and its Applications, vol. 51, Cambridge University
Press, Cambridge, 1994.

[BR07] A. Bartels and H. Reich, Coefficients for the Farrell–Jones conjecture, Adv.
Math. 209 (2007), no. 1, 337–362.

[Bun19] U. Bunke, Homotopy theory with ∗-categories, Theory Appl. Categ. 34 (2019),
no. 27, 781–853.

[Cis19] D.-C. Cisinski, Higher Categories and Homotopical Algebra, Cambridge studies
in advanced mathematics, vol. 180, Cambridge University Press, 2019.

[DL98] J. F. Davis and W. Lück, Spaces over a Category and Assembly Maps in Iso-
morphism Conjectures in K- and L-Theory, K-Theory 15 (1998), 201–252.

[Dug01] D. Dugger, Combinatorial model categories have presentations, Adv. Math. 164
(2001), no. 1, 177–201.

[Hir03] P. S. Hirschhorn, Model categories and their localizations, Mathematical Surveys
and Monographs, vol. 99, American Mathematical Society, 2003.

[Hov99] M. Hovey, Model Categories, Mathematical Surveys and Monographs vol. 63,
Amer. Math. Soc., 1999.

https://arxiv.org/abs/1710.04935
https://arxiv.org/abs/1809.08300


416 U. BUNKE, A. ENGEL, D. KASPROWSKI, AND C. WINGES

[Joy] A. Joyal, The theory of quasi-categories and its applications, available at
mat.uab.cat/ kock/crm/hocat/advanced-course/Quadern45-2.pdf.

[Lur] J. Lurie, Higher algebra, available at www.math.ias.edu/˜lurie/papers/HA.pdf.

[Lur09] , Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton
University Press, 2009.

[Mer17] M. Merling, Equivariant algebraic K-theory of G-rings, Math. Z. 285 (2017),
no. 3-4, 1205–1248.

[Mur15] F. Muro, Dwyer–Kan homotopy theory of enriched categories, J. Topol. 8 (2015),
no. 2, 377–413.

[Rez] C. Rezk, A model category for categories, available at
https://faculty.math.illinois.edu/˜rezk/cat-ho.dvi.

U.B. and A.E.: Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg,
Germany

D.K. and C.W.: Rheinische Friedrich-Wilhelms-Universität Bonn, Mathematisches In-
stitut, Endenicher Allee 60,
53115 Bonn, Germany
Email:
ulrich.bunke@mathematik.uni-regensburg.de

alexander.engel@mathematik.uni-regensburg.de

kasprowski@uni-bonn.de

winges@math.uni-bonn.de

This article may be accessed at http://www.tac.mta.ca/tac/

http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf
http://www.math.ias.edu/~lurie/papers/HA.pdf
https://faculty.math.illinois.edu/~rezk/cat-ho.dvi


THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Michael Barr, McGill University: michael.barr@mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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