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AUGMENTED VIRTUAL DOUBLE CATEGORIES

SEERP ROALD KOUDENBURG

Abstract. In this article the notion of virtual double category (also known as fc-mul-
ticategory) is extended as follows. While cells in a virtual double category classically
have a horizontal multi-source and single horizontal target, the notion of augmented
virtual double category introduced here extends the latter notion by including cells with
empty horizontal target as well.

Any augmented virtual double category comes with a built-in notion of “locally small
object” and we describe advantages of using augmented virtual double categories as a
setting for formal category rather than 2-categories, which are classically equipped with
a notion of “admissible object” by means of a Yoneda structure in the sense of Street
and Walters.

An object is locally small precisely if it admits a horizontal unit, and we show that
the notions of augmented virtual double category and virtual double category coincide
in the presence of all horizontal units. Without assuming the existence of horizontal
units we show that most of the basic theory for virtual double categories, such as that
of restriction and composition of horizontal morphisms, extends to augmented virtual
double categories. We introduce and study in augmented virtual double categories the
notion of “pointwise” composition of horizontal morphisms, which formalises the classical
composition of profunctors given by the coend formula.
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Introduction

Analogous to the generalisation of monoidal category to multicategory, Burroni in [Bur71]
generalised the notion of double category to that of virtual double category [CS10] (Bur-
roni used the term ‘multicatégorie’). A virtual double category consists of objects A,
B, C, . . . , two types of morphism f : A → C and J : A −7−→ B (which we will draw ver-
tically and horizontally respectively) and cells ϕ of the form as on the left below, each
with a single morphism K : C −7−→ D as horizontal target and a (potentially empty) path

J̄ = (A0
J1−7−→ A1 · · ·An−1

Jn−7−→ An) of morphisms as horizontal source.

A0 A1 An−1 An

C D

J1

f

Jn

g

K

ϕ

· · · A0 A1 An−1 An

C

J1

f

Jn

g
ψ

· · ·

The present article introduces the notion of ‘augmented virtual double category’, which
extends that of virtual double category by including cells ψ as on the right above, with
empty horizontal targets. The prototypical augmented virtual double category Prof has
as morphisms functors f : A→ C and profunctors J : Aop ×B → Set between categories
A, B, C, . . . that need not be locally small, i.e. need not have all hom-sets isomorphic to
objects in Set. As does any augmented virtual double category, Prof contains a virtual
double category U(Prof) consisting of cells of the form ϕ above only (see Example 1.4
below).

In contrast to the vertical morphisms, horizontal morphisms are not equipped with
composition in either notion of virtual double category. In both Prof and U(Prof) for
example the composite of two profunctors along a properly large category does not
exist in general. A fortuitous path J = (J1, . . . , Jn) of horizontal morphisms how-
ever may still admit a composite (J1 ⊙ · · · ⊙ Jn), defined as such by a universal cell
(J1, . . . , Jn)⇒ (J1 ⊙ · · · ⊙ Jn). Likewise an object A may admit a horizontal unit mor-
phism IA : A −7−→ A defined by a universal cell (A) ⇒ IA, whose horizontal source is the
empty path at A. E.g. A ∈ Prof admits a horizontal unit IA if and only if A is locally
small, in which case IA consists of its hom-sets.

A fundamental advantage of working with an augmented virtual double category K is
that its collection of vertical morphisms form a 2-category V (K), whose cells are those of
the form ψ above with empty horizontal source J̄ = (A0). In contrast vertical morphisms
in a virtual double category only form a category a priori. E.g. while Prof contains all
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natural transformations ψ : f ⇒ g between functors f and g : A0 → C, only those with C
locally small can be canonically identified with cells in the virtual double category U(Prof)
contained in Prof, namely the cells ϕ above with J = (A0) and K = IC ; for details see
Example 2.6 below.

One of the main results of this paper (Theorem 10.1 below) asserts that the notions of
virtual double category and augmented virtual double category are equivalent whenever
all horizontal units exist; such (augmented) virtual double categories we will call unital
virtual double categories. In any unital virtual double category cells ψ : f ⇒ g as above,
with J = (A0), correspond precisely to cells of the form

A0 A0

C C

IA0

f g

IC

(see Corollary 5.10 below).
A further advantage of using augmented virtual double categories is that they allow

for suppressing all ‘unit coherence cells’, such as λ in the composite on the left-hand side
below, which are often used in compositions of cells in unital virtual double categories. In-
deed using the language of augmented virtual double categories the cell ψ in the left-hand
side, with the horizontal unit IC as horizontal target, corresponds to the cell ψ′ in the
right-hand side, such that the two composites below coincide. Moreover the right-hand
side allows us to consider this composite even when the horizontal unit IC does not exist.
Thus proofs of results for unital virtual double categories can both be significantly short-
ened as well as be generalised to proofs that apply to (not necessarily unital) augmented
virtual double categories. Parts of Lemma 5.4, Corollary 5.7 and Lemma 8.1 below are
obtained in this way from analogous results in [CS10].

A0 An Bm

C C D

C D

J

f

H

g h

IC

idC

K

idD

K

ψ ϕ

λ

=

A0 An Bm

C D

J

f

H

g h

K

ψ′
ϕ

Our main purpose for augmented virtual double categories is to use them as a con-
venient “double dimensional” setting for the internalisation of the notion of Yoneda em-
bedding, thus giving an alternative to the classical 2-categorical approach of Street and
Walters’ Yoneda structures [SW78]. While such work will have to appear as a sequel to
the present paper (for a draft see Sections 4 and 5 of [Kou15]) we will, after having given
the outline of this paper below, close this introduction by broadly describing its ideas and
some of its benefits.
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This article is largely based on Sections 1, 2 and 3 of the draft [Kou15]. Since the
material presented here is significantly more streamlined as well as expanded in several
ways, the author encourages readers to consult the present article rather than the latter
sections. The first version of [Kou15] used the term “hypervirtual double category” for
what is the main notion of this article, where presently we use “augmented virtual double
category” instead, as suggested to the author by Robert Paré.

Outline.We start by introducing the notion of augmented virtual double category in Sec-
tion 1. Examples are given in Section 2, including the augmented virtual double category
V-Prof of V-enriched profunctors (Example 2.4); (V ,V ′)-Prof of V-enriched profunctors
between V ′-categories, where V ′ ⊃ V is a universe enlargement of V in the sense of Sec-
tion 3.11 of [Kel82] (Example 2.7); V-sProf of small V-enriched profunctors in the sense
of [DL07] (Example 2.8); Prof(E) of profunctors internal to a category E with pullbacks
(Example 2.9); Rel(E) of relations in a category E with pullbacks (Example 2.10) and
spFib(K) of split two-sided fibrations in a finitely complete 2-category K (Example 2.11).
In Section 3 the 2-category of augmented virtual double categories, the functors between
them and their transformations is introduced, and its equivalences are characterised as
functors that are full, faithful and essentially surjective in the appropriate sense.

In Section 4 the notion of restriction K(f, g) : A −7−→ B of a horizontal morphism
K : C −7−→ D along vertical morphisms f : A → C and g : B → D, that was introduced in
Section 7 of [CS10] for virtual double categories, is translated to augmented virtual double
categories as well as expanded to include that of ‘nullary restriction’ C(f, g) : A −7−→ B of
an object C along morphisms f : A → C and g : B → C. Both types of restriction are
defined by cells with a certain universal property; such cells are called ‘cartesian’, while
‘weakly cocartesian’ cells satisfy a vertical dual property. Full and faithful morphisms are
defined in terms of cartesian cells, and the horizontal unit IA : A −7−→ A of an object A is
defined to be the nullary restriction IA := A(idA, idA).

In Section 5 the ‘companion’ f∗ : A −7−→ C and ‘conjoint’ f ∗ : C −7−→ A of a vertical
morphism f : A → C are introduced as the nullary restrictions f∗ := C(f, idC) and
f ∗ := C(idC , f); they can be thought of as the horizontal morphisms that are respectively
“isomorphic” and “adjoint” to f . Unlike similar definitions for unital virtual double cat-
egories given in [CS10] we need not require that the horizontal unit IC exists. Analogous
to observations for double categories in Section 4 of [Shu08] we prove that the companion
f∗ can be equivalently defined in three ways: by a cartesian cell (f∗)⇒ (A), by a weakly
cocartesian cell (A) ⇒ (f∗), or by a pair of cells (f∗) ⇒ (A) and (A) ⇒ (f∗) satisfying
certain “companion identities”; a horizontal dual result holds for the conjoint f ∗. These
identities and their horizontal duals imply that companions, conjoints and horizontal units
are preserved by any functor of augmented virtual double categories. Horizontal units IA
can both be regarded as the companion and conjoint of the identity idA; we prove that
their defining cells (IA) ⇒ (A) and (A) ⇒ (IA) are both cartesian as well as weakly
cocartesian. We prove lemmas that relate the notions of nullary restriction, horizontal
unit and full and faithful morphism. We describe adjunctions and absolute left liftings in
the 2-category V (K) in terms of companions and conjoints in K.
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In Section 6 we consider horizontal morphisms J : A −7−→ B that are representable by a
vertical morphism f : A→ B, i.e. J ∼= f∗. Given an augmented virtual double category K
in Theorem 6.5 we describe its locally full sub-augmented virtual double category Rep(K)
of representable horizontal morphisms in terms of its vertical 2-category V (K).

In Section 7 we study composites (J1⊙· · ·⊙Jn) of paths J = (J1, . . . , Jn) of horizontal
morphisms. As described above, these are defined by universal cells J ⇒ (J1 ⊙ · · · ⊙
Jn). The main lemma of Section 8 proves that, for morphisms A

f−→ C
K−7−→ D

g←− B,
the restriction K(f, g) and the composite f ∗ ⊙ K ⊙ g∗ coincide. This translates and
extends Theorem 7.16 of [CS10] from unital virtual double categories to augmented virtual
double categories; here too we need not require the existence of any horizontal units.
Internalising the composition of profunctors given by the “coend formula”, in Section 9 we
introduce and study ‘pointwise’ horizontal composites. Informally, a horizontal composite
is pointwise whenever any of its restrictions are again horizontal composites. Finally
in Section 10 we prove the equivalence of the notions of virtual double category and
augmented virtual double category in the presence of all horizontal units.

Motivation: internalising Yoneda embeddings. Following Wood [Woo82] and
Grandis and Paré [GP08], who used ‘proarrow equipments’ and double categories respec-
tively to formalise parts of classical category theory, recently certain unital virtual double
categories have been used to study formal category theory in less well behaved settings, as
follows. Cruttwell and Shulman in [CS10] internalise the notion of fully faithful morphism
in the unital virtual double category Mod(X) of ‘modules’ in a virtual double category
X, while Riehl and Verity in [RV17] internalise the notions of fully faithful morphism,
‘exact square’ and (pointwise) Kan extension in the unital virtual double category ModK
of modules between ∞-categories in the homotopy 2-category of a ‘∞-cosmos’ K.

In line with the previous our goal for augmented virtual double categories is to use
them as a setting for internalising the notion of Yoneda embedding, as we will now sketch
roughly. We start by recalling the classical internalisation of Yoneda embeddings, in the
form of a Yoneda structure on a 2-category [SW78]. First let us recall some details of
the classical theory of Yoneda embeddings. Given a properly large, locally small cate-
gory A, recall from [FS95] that the category PA := SetA

op

of small set valued presheaves
Aop → Set is necessarily locally properly large. Thus the natural 2-dimensional environ-
ment for classical Yoneda embeddings yA : A → PA for such A, that map each x ∈ A
to the representable presheaf A(–, x), is the 2-category Cat of locally large categories,
functors and natural transformations. Using that any functor f : A → B, with small
hom-sets B(fx, y) for all x ∈ A and y ∈ B, induces a functor B(f, 1) : B → PA given by
B(f, 1)(y) = B(f–, y), Yoneda’s lemma can be rephrased internally to Cat as follows: the
canonical natural transformation

A B

PA

f

yA B(f, 1)
χf
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exhibits f as the ‘absolute left lifting’ (see e.g. [SW78]) of yA along B(f, 1).
A Yoneda structure on a 2-category C formalises the previous as follows. Firstly it

postulates a right ideal1 of ‘admissible morphisms’ f : A → C in C, which internalises
the smallness condition on the functors f above; an object A is then called admissible
whenever its identity morphism idA is so. Secondly it provides a morphism yA : A→ PA
for each admissible object A, internalising the Yoneda embedding, together with a cell χf

as above for each admissible f : A→ B. The cells χf are required to satisfy three axioms
[SW78]:

(1) χf exhibits B(f, 1) as the left Kan extension of f along yA (together with (3) below
this formalises yA being dense);

(2) χf exhibits f as the absolute left lifting of yA along B(f, 1) (as above);

(3) roughly, the assignment f 7→ χf is pseudofunctorial.

The stronger notion of ‘good Yoneda structure’ on a finitely complete 2-category C,
introduced by Weber [Web07], is defined as above except for replacing axioms (1) and (3)
with the following stronger axiom:

(4) if any cell ϕ in C, of the form as below and with f admissible, exhibits f as the ab-
solute left lifting of yA along g then it exhibits g as the pointwise left Kan extension
of yA along f (in the sense of [Str74]).

A B

PA

f

yA g
ϕ

While Yoneda embeddings for 2-categories, that is categories enriched in Cat, combine to
form a Yoneda structure, satisfying axioms (1)–(3) above, they do not satisfy axiom (4);
this is explained in Remark 9 of [Wal18].

The main idea of internalising the notion of Yoneda embedding in an augmented
virtual double category K is the following. Instead of postulating a notion of admissible
morphism in K we internalise that notion, simply by regarding all horizontal morphisms
of K to be admissible; consequently a vertical morphism f : A → C (respectively an
object A) is considered admissible whenever its companion f∗ : A −7−→ C (respectively its
horizontal unit IA : A −7−→ A) exists. Compare the prototypal example K = Prof, in which
all horizontal morphisms are small-set-valued profunctors. This allows for a simpler notion
of Yoneda embedding: we do not have to specify an ideal of admissible morphisms and,
instead of having to provide a full coherent family of Yoneda embeddings as in a Yoneda
structure, we may simply consider a single Yoneda embedding y : A→ Â in K, as follows.

1A right ideal of a category is a class I of morphisms closed under precomposition: if f and g are
composable then g ∈ I implies g ◦ f ∈ I.
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To exhibit y as a Yoneda embedding amounts to providing, for each horizontal morphism
J : A −7−→ B in K, a cell χ as below on the left, satisfying the following ‘Yoneda’ and
‘density’ axioms, analogous to (2) and (4) above:

(y) χ is a ‘cartesian cell’ (see Section 4 below), thus exhibiting J as the restriction of

the object Â along the morphisms y and Jλ;

(d) any cartesian cell ϕ in K, as on the right, defines g as a pointwise left Kan extension
of y along J (in the sense of Section 4.2 of [Kou15]).

A B

Â

J

y Jλχ

A B

Â

J

y gϕ

In K = Prof the Yoneda embedding y := yA for a locally small category A is defined
as before, with Â = SetA

op

, while the functors Jλ are defined by Jλy = J(–, y) for

y ∈ B. The components χx,y : J(x, y)→ Â(yx, Jλy) of χ, which axiom (y) requires to be
isomorphisms, are supplied by Yoneda’s lemma.

To conclude this motivation we list some benefits of using augmented virtual double
categories K to internalise the notion of Yoneda embedding y : A→ Â.

• If all nullary restrictions Â(y, g) exist in K, as they do in all well known examples
(e.g. K = Prof), then the assigment J 7→ Jλ induces an equivalence between mor-

phisms of the forms A −7−→ B and B → Â. In contrast the assignment f 7→ B(f, 1)
induced by a Yoneda structure is in general not essentially surjective onto morphisms
B → PA (e.g. take A = 1 = B the terminal category in C = Cat).

• Several types of Yoneda embedding satisfy the axioms (1)–(3) of a Yoneda structure
but their appropriate notion of admissible morphism does not form a right ideal,
so that the theory of Yoneda structures does not apply fully. For a well-known
example consider a closed symmetric monoidal, small complete category V . The
appropriate notion of admissible V-functor for the V-enriched Yoneda embeddings
y : A → Â

s
, where Â

s
denotes the V-category of ‘small V-presheaves on A’ in the

sense of [DL07], does not form a right ideal. In contrast, it is not hard to prove
that these y do form Yoneda embeddings in the augmented virtual double category
V-sProf (Example 2.8 below), so that the theory of [Kou15] applies fully. Likewise
Yoneda embeddings induced by a ‘KZ doctrine’, as studied by Walker in [Wal18], do
not satisfy the right ideal property; they too are likely to form Yoneda embeddings
in some appropriately chosen augmented virtual double category.

• As noted previously V-enriched Yoneda embeddings, in the classical sense of e.g. Sec-
tion 2.4 of [Kel82], form Yoneda structures that do not in general satisfy axiom (4).
On the other hand they do satisfy a stronger, i.e. V-enriched, version of axiom (1).
Thus neither notion of Yoneda structure captures the notion of V-enriched Yoneda
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embedding exactly. The augmented virtual double category (V ,V ′)-Prof, as de-
scribed in Example 2.7 below, is the right setting in this case: therein axioms (y)
and (d) capture correctly the V-enriched notion of Yoneda embedding. Roughly this
is because the pointwise notion of Kan extension in axiom (d) above, when consid-
ered in (V ,V ′)-Prof, coincides with the classical notion of V-enriched Kan extension
(see Section 4.4 of [Kou15]).

• Regarding all horizontal morphisms of augmented virtual double categories as ad-
missible allows us to prove results that assert admissibility of morphisms or objects.
For instance consider any full and faithful morphism h : C → E in an augmented
virtual double category that has all restrictions of the form K(f, g). Lemma 5.14
below proves that h ‘reflects admissibility’, that is C is admissible (i.e. the horizontal
unit IC exists) whenever E is. Even though inside a unital virtual double category,
i.e. with all horizontal units, our notion of full and faithful coincides with that of
[CS10], notice that in unital virtual double categories this result is meaningless.
For another example remember that (good) Yoneda structures provide a Yoneda
embedding for each admissible object. Inside augmented virtual double categories
a weak converse holds: given a Yoneda embedding y : A→ Â the horizontal unit of
A exists whenever all nullary restrictions of the form Â(y, g) exist; see Section 5.1
of [Kou15].

• For an example of a formalisation of a more involved result, similar to those of
the previous item, let f : A → C be a V-functor and f ♯ : Â

s → Ĉ
s
be given by

left Kan extending small V-presheaves on A along f . In our terms Proposition 3.3
of [DL07] can be rephrased as follows: f ♯ has a right adjoint if and only if f is
admissible (in other words its companion f∗ : A −7−→ C exists) in the augmented virtual
double category V-sProf (Example 2.8 below). This result partially formalises to
any f : A → C in a general augmented virtual double category K, assuming that
the Yoneda embeddings yA : A → Â and yC : C → Ĉ exist: the morphism f ♯ can
then be internalised as being the left Kan extension of yC ◦ f along yA and the
implications

f ♯ has a right adjoint ⇔ (yC ◦ f)∗ exists ⇒ f∗ exists

hold under mild conditions on K; see Section 5.2 of [Kou15].

• Axiom (y) above allows us to capture a monoidal variant of Yoneda’s lemma as
follows. Recall that a monoidal structure ⊗ on a category A induces a monoidal
structure ⊗̂ on its category of presheaves Â := SetA

op

that is given by Day convolu-
tion [Day70]

(p ⊗̂ q)(x) :=
∫ u,v∈A

A(x, u⊗ v)× pu× qv, where p, q ∈ Â. (1)

With respect to ⊗̂ the Yoneda embedding y : A→ Â forms a monoidal functor, i.e. it
admits a coherent family of isomorphisms ȳ : yx⊗̂yy ∼= y(x⊗y) where x, y ∈ A. Thus
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a monoidal functor (y, ȳ) : (A,⊗)→ (Â, ⊗̂) satisfies the following monoidal variant
of the Yoneda axiom (y) for profunctors: any lax monoidal profunctor J : A −7−→ B
(i.e. equipped with coherent maps J̄ : J(x1, y1)× J(x2, y2)→ J(x1 ⊗ x2, y1 ⊗ y2)) in-
duces a lax monoidal functor Jλ : B → Â such that Â(y–, Jλ–) ∼= J as lax monoidal
profunctors. In detail, we can take Jλ to be as defined before: Jλy := J(–, y), and
take the coherence morphisms J̄λ : Jλy1 ⊗̂ Jλy2 ⇒ Jλ(y1 ⊗ y2) to be induced by the
composites

A(x, u⊗ v)× J(u, y1)× J(v, y2)
id×J̄−−−→ A(x, u⊗ v)× J(u⊗ v, y1 ⊗ y2)→ J(x, y1 ⊗ y2),

where the unlabelled morphism is induced by the functoriality of J in A.

In fact, we may consider the augmented virtual double category MonProf of lax
monoidal functors and lax monoidal profunctors between (possibly large) monoidal
categories, and show that the monoidal Yoneda embedding (y, ȳ) satisfies both ax-
ioms (y) and (d) therein. As described in the first item above, together these axioms
imply an equivalence between lax monoidal profunctors A −7−→ B and lax monoidal
functors B → Â.1 We remark that the monoidal Yoneda embeddings (y, ȳ) do not
combine to form a Yoneda structure on the two 2-categories consisting of either lax
or colax monoidal functors between (possibly large) monoidal categories: this is be-
cause colax monoidal structures on a functor f : A→ B correspond to lax monoidal
structures on the corresponding functor B(f, 1) : B → Â and similarly lax monoidal
structures on f do in general not induce monoidal structures on B(f, 1).

• One of the main results of [Kou15] formalises Day convolution for monoidal struc-
tures to algebraic structures defined by monads T on augmented virtual double
categories K. More precisely, given a Yoneda embedding y : A → Â in K it gives
conditions under which a T -algebra structure a : TA → A on A induces such a
structure â on Â, in a way that makes y into a Yoneda embedding in the augmented
virtual double category T -Alg of T -algebras. Formalising a result of Im and Kelly
[IK86] one can then show, for instance, that y, as a T -morphism, defines (Â, â) as
the free cocompletion of (A, a) in T -Alg; see Section 5.4 of [Kou15].

1. Augmented virtual double categories

The definition of augmented virtual double category below uses the notion of directed
graph, by which we mean a parallel pair of functions

A =
(
A1 A0

s

t

)
1This observation is not new: it follows from Pisani’s study of exponentiable multicategories in Sec-

tion 2 of [Pis14].
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from a class A1 of edges to a class A0 of vertices. An edge e with (s, t)(e) = (x, y) is
denoted x

e−→ y; the vertices x and y are called its source and target. Any category C
has an underlying graph C1 ⇒ C0 with C1 and C0 the classes of morphisms and objects
of C respectively. Conversely, remember that any graph A generates a free category
fcA, with as objects the vertices of A and as morphisms x → y (possibly empty) paths
e = (x = x0

e1−→ x1
e2−→ · · · en−→ xn = y) of edges in A; we write |e| := n for their lengths.

Composition in fcA is given by concatenation

(e, f) 7→ e ⌢ f := (x0
e1−→ · · · en−→ xn = y0

f1−→ · · · fm−→ ym)

of paths, while the empty path (x) forms the identity at x ∈ A0.

1.1. Notation. For any integer n ≥ 1 we write n′ := n− 1.

1.2. Definition. An augmented virtual double category K consists of

- a class K0 of objects A, B, . . .

- a category Kv with Kv0 = K0, whose morphisms f : A → C, g : B → D, . . . are
called vertical morphisms;

- a directed graph Kh with Kh0 = K0, whose edges are called horizontal morphisms
and denoted by slashed arrows J : A −7−→ B, K : C −7−→ D, . . . ;

- a class of cells ϕ, ψ, . . . that are of the form

A0 An

C D

J

f g

K

ϕ (2)

where J and K are (possibly empty) paths in Kh with |K| ≤ 1;

- for any path of cells

A10 A1m1 A2m2 An′mn′ Anmn

C0 C1 C2 Cn′ Cn

J1

f0

J2

f1 f2

Jn

fn′ fn

K1 K2 Kn

ϕ1 ϕ2 ϕn· · · (3)

of length n ≥ 1 and a cell ψ as on the left below, a vertical composite as on the
right;

C0 Cn

E F

K1
⌢K2

⌢ · · · ⌢Kn

h k

L

ψ

A10 Anmn

E F

J1
⌢ J2

⌢ · · · ⌢ Jn

h ◦ f0 k ◦ fn

L

ψ ◦ (ϕ1, . . . , ϕn) (4)
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- horizontal identity cells as on the left below, one for each J : A −7−→ B;

A B

A B

(J)

idA idB

(J)

idJ

A A

C C

(A)

f f

(C)

idf

- vertical identity cells as on the right above, one for each f : A → C, with empty
horizontal source (A) and target (C), that are preserved by vertical composition:
idh ◦ (idf ) = idh◦f ; we write idA := ididA.

The vertical composition above is required to satisfy the associativity axiom

χ ◦
(
ψ1 ◦ (ϕ11, . . . , ϕ1m1), . . . , ψn ◦ (ϕn1, . . . , ϕnmn)

)
=

(
χ ◦ (ψ1, . . . , ψn)

)
◦ (ϕ11, . . . , ϕnmn), (5)

whenever the left-hand side makes sense, as well as the unit axioms

idC ◦ (ϕ) = ϕ, idK ◦ (ϕ) = ϕ, ϕ ◦ (idA) = ϕ, ϕ ◦ (idJ1 , . . . , idJn) = ϕ

and ψ ◦ (ϕ1, . . . , ϕi, idfi , ϕi+1, . . . , ϕn) = ψ ◦ (ϕ1, . . . , ϕi, ϕi+1, . . . , ϕn)

whenever these make sense and where, in the last axiom, 0 ≤ i ≤ n (in the cases i = 0
and i = n the identity cells idf0 and idfn are respectively the first and last cell in the path
that is composed with ψ).

For a cell ϕ as in (2) above we call the vertical morphisms f and g its vertical source
and target respectively, the path of horizontal morphisms J = (J1, . . . , Jn) its horizontal
source and K its horizontal target. We write |ϕ| := (|J |, |K|) for the arity of ϕ. An
(n, 1)-ary cell will be called unary, (n, 0)-ary cells nullary and (0, 0)-ary cells vertical.

When writing down paths (J1, . . . , Jn) of length n ≤ 1 we will often leave out paren-

theses and simply write J1 := (A0
J1−7−→ A1) or A0 := (A0). Likewise in the composition of

cells: ψ ◦ ϕ1 := ψ ◦ (ϕ1). We will often denote unary cells simply by ϕ : (J0, . . . , Jn)⇒ K
and nullary cells by ψ : (J0, . . . , Jn) ⇒ C, leaving out their vertical source and target.
When drawing compositions of cells it is often helpful to depict them in full detail and, in
the case of nullary cells, draw their empty horizontal target as a single object, as shown
below.

A0

C

f gψ

A0 A1 · · · An′ An

C

J1

f

Jn

g
ψ

A0

C D

f g

K

ϕ

A0 A1 An′ An

C D

J1

f

Jn

g

K

ϕ

· · ·

A cell with identities as vertical source and target is called horizontal. A horizontal
cell ϕ : J ⇒ K with unary horizontal source is called invertible if there exists a horizontal
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cell ψ : K ⇒ J such that ϕ ◦ ψ = idK and ψ ◦ ϕ = idJ ; in that case we write ϕ−1 := ψ.
When drawing diagrams we shall often depict identity morphisms by equal signs (=),
while in identity cells we will leave out the arrows (⇓ id), leaving them empty instead.
Because composition of cells is associative we will leave out bracketings when writing
down composites.

For convenience we use the ‘whisker’ notation from 2-category theory and define

h ◦ (ϕ1, . . . , ϕn) := idh ◦ (ϕ1, . . . , ϕn) and ψ ◦ f := ψ ◦ idf ,

whenever the right-hand side makes sense. Moreover, for any path

A0 A1 An′ An B1 Bm′ Bm

C D G

J1

f

Jn H1

g

Hm

h

K L

ϕ ψ

· · · · · ·

with |K|+ |L| ≤ 1 we define the horizontal composite ϕ⊙ ψ : J ⌢ H ⇒ K ⌢ L by

ϕ⊙ ψ := idK⌢L ◦ (ϕ, ψ),

where idK⌢L is to be interpreted as the identity idC : C → C in the case that K⌢L = (C).
The following lemma follows easily from the associativity and unit axioms for vertical
composition.

1.3. Lemma. Horizontal composition (ϕ, ψ) 7→ ϕ ⊙ ψ, as defined above, satisfies the
associativity and unit axioms

(ϕ⊙ ψ)⊙ χ = ϕ⊙ (ψ ⊙ χ), (idf ⊙ ϕ) = ϕ and (ϕ⊙ idg) = ϕ

whenever these make sense. Moreover, horizontal and vertical composition satisfy the
interchange axioms(

ψ ◦ (ϕ1, . . . , ϕn)
)
⊙

(
χ ◦ (ξ1, . . . , ξm)

)
= (ψ ⊙ χ) ◦ (ϕ1, . . . , ϕn, ξ1, . . . , ξm)

and ψ ◦
(
ϕ1, . . . , (ϕi′ ⊙ ϕi), . . . , ϕn

)
= ψ ◦ (ϕ1, . . . , ϕi′ , ϕi, . . . , ϕn)

whenever they make sense.

The following examples relate augmented virtual double categories to some classical
2-dimensional categorical notions. Further examples are given in the next section.

1.4. Example. By restricting to augmented virtual double categories in which all nullary
cells are vertical identities, that is idf for some vertical morphism f : A→ C, we recover
the classical notion of virtual double category, in the sense of [CS10] or Section 5.1 of
[Lei04] (where it is called fc-multicategory). Virtual double categories were originally
introduced by Burroni [Bur71] who called them ‘multicatégories’. It follows that every
augmented virtual double category K contains a virtual double category U(K) consisting
of its objects, vertical and horizontal morphisms, and unary cells.
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1.5. Example. Augmented virtual double categories with no horizontal morphisms, so
that all cells are vertical, correspond precisely to 2-categories, with the compositions ◦
and ⊙ corresponding to the vertical and horizontal composition in 2-categories respec-
tively. Thus every augmented virtual double category K contains a vertical 2-category
V (K), consisting of its objects, vertical morphisms and vertical cells. As remarked in the
Introduction virtual double categories do not canonically contain 2-categories of vertical
morphisms unless they have all horizontal units (see Proposition 6.1 of [CS10]). In The-
orem 10.1 below we will see that the notions of augmented virtual double category and
virtual double category coincide in the presence of horizontal units (see Definition 7.1).

1.6. Example. Restricting to augmented virtual double categories K with Kv = 1, the
terminal category1, and whose only nullary cell is the identity cell id∗ for the unique object
∗ ∈ K, recovers the notion of multicategory (see e.g. Section 2.1 of [Lei04]). Similarly
augmented virtual double categories K with Kv = 1 whose only vertical cell is id∗ can
be regarded as multicategories K equipped with a bimodule K −7−→ 1, in the sense of
Definition 2.3.6 of [Lei04], where 1 denotes the terminal multicategory.

1.7. Example. Let us recall the notion of a horizontal unit IA : A −7−→ A for an object A in
a virtual double category K from e.g. Section 8 of [Her00] or Section 5 of [CS10]; see also
Section 7 below. It is defined by an cocartesian cell ηA as on the left below, satisfying the
following universal property: any cell ϕ in K, with A an object in its horizontal source as
in the middle below, factors uniquely through ηA as a cell ϕ′ as shown, where the empty
cells denote paths of identity cells.

A

A A
IA

ηA

X0 A Ym

C D

J

f

H

g

K

ϕ =

X0 A Ym

X0 A A Ym

C D

J H

J

f

IA H

g

K

ηA

ϕ′

(6)

We call a virtual double category unital if each of its objects admits a horizontal unit.
Choosing a cocartesian cell ηA for each object A in a unital virtual double category K
allows K to be regarded as an augmented virtual double category N(K), as we shall now
explain. The augmented virtual double category N(K) has as objects, morphisms and
unary cells the objects, morphisms and cells of K while the nullary cells ξ of N(K), of the

1Corrected: necessary condition Kv = 1 added (November 2022).
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shape as on the left below, are the cells ξ of K that are of the shape as on the right.1

A0 A1 · · · An′ An

C

J1

f

Jn

g
ξ

A0 A1 An′ An

C C

J1

f

Jn

g

IC

ξ

· · ·

Composition ψ◦(ϕ1, . . . , ϕn) inN(K), with ϕi : J i ⇒ Ki as in (3) and ψ : K1
⌢· · ·⌢Kn ⇒ L

as in (4), is defined as the composite in K

ψ ◦ (ϕ1, . . . , ϕn) := ψ′ ◦ (ϕ1, . . . , ϕn)

where ψ′ is defined as follows. Writing ηϕ for the path of cocartesian cells (ηϕ1 , . . . , ηϕn),
where ηϕi := ηCi′

if ϕi is nullary with horizontal target Ci′ and ηϕi := idKi
if ϕi is unary

with horizontal target Ki : Ci′ −7−→ Ci, the cell ψ
′ is the unique factorisation in ψ = ψ′ ◦ ηϕ.

This factorisation ψ′ exists by the universal property of the ηCi′
, and it contains a unit ICi′

in its horizontal source for each nullary cell ϕi in ϕ. Finally the horizontal identity cells
idJ in N(K) are simply those of K, while the vertical identity cells idf in N(K), one for
each f : A→ C, are the composites idf := ηC ◦f in K. That the composition for N(K) as
defined above satisfies the associativity and unit axioms is a straightforward consequence
of those axioms in K, combined with the uniqueness of the factorisations ψ′.

In Theorem 10.1 below we will see that the assigment K 7→ N(K) is part of an equiv-
alence between unital virtual double categories and augmented virtual double categories
that have all horizontal units.

Every augmented virtual double category has a horizontal dual as follows.

1.8. Definition. Let K be an augmented virtual double category. The horizontal dual
of K is the augmented virtual double category Kco that has the same objects and vertical
morphisms, that has a horizontal morphism Jco : A −7−→ B for each J : B −7−→ A in K, and a
cell ϕco as on the left below for each cell ϕ in K as on the right.

A0 A1 An′ An

C D

Jco
1

f

Jco
n

g

Kco

ϕco

· · · An An′ A1 A0

D C

Jn

g

J1

f

K

ϕ

· · ·

Identities and compositions in Kco are induced by those of K:

idJco := (idJ)
co, idf := (idf )

co and ψco ◦ (ϕco
1 , . . . , ϕ

co
n ) :=

(
ψ ◦ (ϕn, . . . , ϕ1)

)co
.

We end this section with a remark on the associativity of composition of cells in
augmented virtual double categories.

1Notice that a cell ξ : (J1, . . . , Jn)⇒ IC in K as above appears as a cell in N(K) in two ways: once as
a unary cell ξ : (J1, . . . , Jn)⇒ IC and once as a nullary cell ξ : (J1, . . . , Jn)⇒ C.
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1.9. Remark. Consider a configuration of composable cells as in the scheme below,
where ϕ2 is a nullary cell and the other cells are unary. Notice that there are two ways
of vertically composing these cells if we compose the top rows first: in that case the cell
ϕ2 can be composed either with ψ1 or with ψ2. In contrast, if we start by first composing
the bottom two rows then there is only one way to form the composite.

This example shows why the associativity axiom (5) for vertical composition has to
be “read from left to right”: when read in the other direction, in general, there might
be multiple ways in which the cells (ϕ1, . . . , ϕm) of top row can be “distributed” over the
cells (ψ1, . . . , ψn) in the middle row.

ϕ1
ϕ2

ϕ3

ψ1 ψ2

χ

Formally the above observation is a manifestation of the fact that, when regarded
as monoids, augmented virtual double categories K (with a fixed directed graph Kh)

1

are monoids in a skew-monoidal category, in the sense of Szlachányi [Szl12], instead of
monoids in an ordinary monoidal category. This is made precise in [Kou19].

2. Examples

Our main source of augmented virtual double categories will be virtual double categories,
as will be explained in this section. Briefly, given a virtual double category K we will
consider ‘monoids’ and ‘bimodules’ in K, as recalled from Section 5.3 of [Lei04] (or Sec-
tion 2 of [CS10]) in the definition below, and these arrange into a virtual double category
Mod(K). The latter admits all horizontal units so that we can apply Example 1.7, thus
obtaining an augmented virtual double category (N ◦Mod)(K). Often we will then con-
sider a sub-augmented virtual double category of (N ◦Mod)(K) by “restricting the size of
bimodules”. For instance, while the canonical notion of bimodule between large categories
(i.e. categories internal to a category Set′ of ‘large sets’) is a profunctor J : A −7−→ B with
images J(a, b) that are possibly large, we take the viewpoint (see Example 2.6 below) that
it is preferable to consider profunctors with all images J(a, b) small.

2.1. Definition. [Leinster] Let K be a virtual double category.

- A monoid A in K is a quadruple A = (A,α, ᾱ, α̃) consisting of a horizontal morphism
α : A −7−→ A in K equipped with multiplication and unit cells

A A A

A A

α α

α

ᾱ and

A

A A,
α

α̃

1Corrected (November 2022).
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that satisfy the associativity axiom ᾱ ◦ (ᾱ, idα) = ᾱ ◦ (idα, ᾱ) and the unit axioms
ᾱ ◦ (α̃, idα) = idα = ᾱ ◦ (idα, α̃).

- A morphism A → C of monoids is a vertical morphism f : A → C in K that is
equipped with a cell

A A

C C

α

f f

γ

f̄

satisfying the associativity and unit axioms γ̄ ◦ (f̄ , f̄) = f̄ ◦ ᾱ and γ̃ ◦ f = f̄ ◦ α̃.

- A bimodule A −7−→ B between monoids is a horizontal morphism J : A −7−→ B in K that
is equipped with left and right action cells

A A B

A B

α J

J

λ and

A B B

A B,

J β

J

ρ

satisfying the usual associativity, unit and compatibility axioms for bimodules:

λ ◦ (ᾱ, idJ) = λ ◦ (idα, λ); ρ ◦ (idJ , β̄) = ρ ◦ (ρ, idβ);
λ ◦ (α̃, idJ) = idJ = ρ ◦ (idJ , β̃); ρ ◦ (λ, idβ) = λ ◦ (idα, ρ).

- A cell

A0 A1 An′ An

C D

J1

f

Jn

g

K

ϕ

· · ·

of bimodules, where n ≥ 1, is a cell ϕ in K between the underlying morphisms
satisfying the external equivariance axioms

ϕ ◦ (λJ1 , idJ2 , . . . , idJn) = λK ◦ (f̄ , ϕ)
ϕ ◦ (idJ1 , . . . , idJn′ , ρJn) = ρK ◦ (ϕ, ḡ)

and the internal equivariance axioms

ϕ ◦ (idJ1 , . . . , idJi′′ , ρJi′ , idJi , idJi+1
, . . . , idJn)

= ϕ ◦ (idJ1 , . . . , idJi′′ , idJi′ , λJi , idJi+1
, . . . , idJn)

for 2 ≤ i ≤ n.
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- A cell

A

C D

f g

K

ϕ

of bimodules is a cell ϕ in K between the underlying morphisms satisfying the ex-
ternal equivariance axiom λ ◦ (f̄ , ϕ) = ρ ◦ (ϕ, ḡ).

Monoids in K, their morphisms and bimodules, as well as the cells between them, form
a virtual double category Mod(K), whose composition and identities are simply those of
K. In fact the assignment K 7→ Mod(K) extends to an endo-2-functor on the 2-category
VirtDblCat of virtual double categories; see Proposition 3.9 of [CS10].

As is shown in Proposition 5.5 of [CS10] the virtual double category Mod(K) has all
horizontal units, in the sense of Example 1.7. Indeed the unit IA for a monoid A =
(A,α, ᾱ, α̃) in K is the bimodule IA := α : A −7−→ A, whose actions λ and ρ are both
given by multiplication ᾱ : (α, α) ⇒ α. The cocartesian cell ηA : A ⇒ α is the unit cell
ηA := α̃: the factorisation of a cell ϕ through ηA, that is of the form as in (6), is obtained
by composing ϕ with the right or left action of A on either bimodule Jn : Xn′ −7−→ A or
H1 : A −7−→ Y1 in its horizontal source.

2.2. Example. Let K be a virtual double category. Applying Example 1.7 to the unital
virtual double categoryMod(K) of bimodules in K we obtain the augmented virtual double
category (N ◦Mod)(K) whose objects, morphisms and unary cells are the same as those
of Mod(K), as in Definition 2.1, while the nullary cells ξ of (N ◦Mod)(K), of the shape as
on the left below, are cells of bimodules ξ of the shape as on the right, where γ : C −7−→ C
is the horizontal unit bimodule for the monoid C = (C, γ, γ̄, γ̃) as described above.

A0 A1 · · · An′ An

C

J1

f

Jn

g
ξ

A0 A1 An′ An

C C

J1

f

Jn

g

γ

ξ

· · ·

The remainder of this section consists of examples of (augmented) virtual double
categories. They can be split into two kinds: Examples 2.4—2.8 are examples of enriched
structures, while Examples 2.9—2.11 are examples of internal structures.

2.3. Notation. Throughout this article we assume given a category Set′ of large sets, as
well as a full subcategory Set ⫋ Set′ of small sets, such that the collection of morphisms
of Set forms an object in Set′. A large set A ∈ Set′ will be called properly large if it is not
isomorphic to any small set.
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2.4. Example. Let V = (V ,⊗, I) be a monoidal category. The virtual double category
V-Mat of V-matrices has large sets and functions as objects and vertical morphisms, while
a horizontal morphism J : A −7−→ B is a V-matrix, given by a family J(x, y) of V-objects
indexed by pairs (x, y) ∈ A×B. A cell

A0 A1 An′ An

C D

J1

f

Jn

g

K

ϕ

· · ·

in V-Mat is a family of V-maps

ϕ(x0,...,xn) : J1(x0, x1)⊗ · · · ⊗ Jn(xn′ , xn)→ K(fx0, gxn)

indexed by (n+1)-tuples (x0, . . . , xn) ∈ A0× · · · ×An, where the tensor product is taken
to be the monoidal unit I in the case that n = 0.

The augmented virtual double category V-Prof := (N ◦Mod)(V-Mat) of monoids and
bimodules in V-Mat is that of large V-enriched categories, V-functors, V-profunctors and
V-natural transformations. In some more detail: a V-profunctor J : A −7−→ B, between
V-categories A and B, consists of a family of V-objects J(x, y), indexed by pairs of objects
x ∈ A and y ∈ B, that is equipped with associative and unital actions

λ : A(x1, x2)⊗ J(x2, y)→ J(x1, y) and ρ : J(x, y1)⊗B(y1, y2)→ J(x, y2)

satisfying the usual compatibility axiom for bimodules; see e.g. Section 3 of [Law73]. If
V is closed symmetric monoidal, so that it can be considered as enriched over itself, then
V-profunctors J : A −7−→ B can be identified with V-functors of the form J : Aop ⊗B → V ,
where Aop denotes the dual of A (see e.g. Section 1.4 of [Kel82]). In Example 4.2 we will
see that V-Prof has all horizontal units so that by Theorem 10.1 it can equivalently be
regarded as a virtual double category.

A vertical cell ϕ : f ⇒ g in V-Prof, between V-functors f and g : A→ C, is a V-natural
transformation f ⇒ g in the usual sense; see for instance Section 1.2 of [Kel82]. We
conclude that the vertical 2-category V (V-Prof) contained in V-Prof (Example 1.5) equals
the 2-category V-Cat of V-categories, V-functors and V-natural transformations.

Taking V = Set in the above we obtain the augmented virtual double category Set-Prof
of locally small (i.e. Set-enriched) categories, functors, Set-profunctors J : Aop ×B → Set
and transformations. Likewise Set′-Prof is the augmented virtual double category of
categories (possibly with large hom-sets), functors, Set′-profunctors J : Aop ×B → Set′

and transformations. We will call a Set′-category A locally properly large if A(x1, x2) is
properly large for some x1, x2 ∈ A. Likewise a Set′-profunctor J : A −7−→ B is properly large
if J(x, y) is properly large for some x ∈ A and y ∈ B.

2.5. Example. A quantale V (see e.g. Section II.1.10 of [HST14]) is a complete lattice
equipped with a monoid structure ⊗ that preserves suprema on both sides. Equivalently,
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a quantale can be thought of as a thin category V that is complete (hence cocomplete)
and equipped with a closed monoidal structure.

The extended positive real line V = [0,∞] for example, equipped with the reversed
order ≥, forms a quantale whose monoid structure is given by addition (+, 0) while its
closed structure is truncated subtraction [x, y] := max(y − x, 0). Categories enriched in
[0,∞] form Lawvere’s paradigmatic example of enriched category theory [Law73]: they
can be regarded as generalised metric spaces, that is sets A equipped with a (not neces-
sarily symmetric) distance function A× A→ [0,∞] (which we again denote by A). Both
vertical morphisms f : A → C and horizontal morphisms J : A −7−→ B in [0,∞]-Prof are
required to be non-expanding, that is A(x1, x2) ≥ C(fx1, fx2) and

A(x1, x2) + J(x2, y) ≥ J(x1, y) and J(x, y1) +B(y1, y2) ≥ J(x, y2)

respectively, for all x1, x2, x ∈ A and y, y1, y2 ∈ B.
Notice that, because quantales V are thin categories, their induced augmented virtual

double categories V-Prof are locally thin: any cell in V-Prof is uniquely determined by
its (horizontal and vertical) sources and targets. Locally thin augmented virtual double
categories of the form V-Prof, where V is a quantale, form a natural setting for the study
of ‘monoidal topology’ [HST14], see for instance [Kou18].

The following example motivates our choice of augmented virtual double categories as
the optimal ‘double dimensional’ environment for classical category theory.

2.6. Example. Taking V = Set′ in Example 2.4, we write (Set, Set′)-Prof for the locally
full sub-augmented virtual double category of Set′-Prof that is generated by Set-profunc-
tors. In detail: (Set, Set′)-Prof consists of all Set′-categories and functors, only those
profunctors J : A −7−→ B with J(x, y) ∈ Set for all (x, y) ∈ A×B, and all cells between
such Set-profunctors (including the nullary and vertical cells).

Thus we have a chain of sub-augmented virtual double categories

Set-Prof ⫋ (Set, Set′)-Prof ⫋ Set′-Prof,

and we take the view that the classical theory of locally small categories is best considered
in (Set, Set′)-Prof, motivated as follows. Recall from [FS95] that, for a locally small
category A, the category SetA

op

of presheaves on A is locally small if and only if A is
essentially small. Thus, on one hand, presheaves on a locally small category A in general
do not form an object in Set-Prof, while they do form one in (Set, Set′)-Prof. On the
other hand, writing y : A→ SetA

op

for the Yoneda embedding, Yoneda’s lemma supplies,
for each horizontal morphism J : A −7−→ B in (Set, Set′)-Prof, a functor Jλ : B → SetA

op

equipped with a natural isomorphism of Set-profunctors J ∼= SetA
op

(y, Jλ)1; of course
such a Jλ does not exist for the properly large profunctors J contained in Set′-Prof. Thus
the objects in (Set, Set′)-Prof are “large enough” for it to contain all presheaf categories
SetA

op

with A locally small while its horizontal morphisms are “small enough” to allow

1Indeed, take Jλ(y) := J(–, y) for y ∈ B.
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for a simple universal property of the Yoneda embeddings y : A → SetA
op

, that is given
in terms of all horizontal morphisms of (Set, Set′)-Prof instead of a certain subclass of
“admissible” ones, the latter such as in the definition of Yoneda structure [SW78]; in
particular this universal property is straightforward to formalise.

For an example of an advantage of working in the augmented virtual double category
(Set, Set′)-Prof rather than in the virtual double category U ((Set, Set′)-Prof) that it con-
tains (Example 1.4) notice that, for any two functors f and g : A → C into a locally
properly large category C, the natural transformations ϕ : f ⇒ g are contained in the for-
mer but cannot be considered the latter. Indeed in (Set, Set′)-Prof they exist as vertical
cells ϕ : f ⇒ g, but these are removed when passing to U ((Set, Set′)-Prof). And while
such natural transformations correspond to cells in Set′-Prof of the form below, where
IC is the ‘unit profunctor’ given by the hom-sets IC(x, y) = C(x, y), the properly large
profunctor IC is not contained in (Set, Set′)-Prof (see Example 4.6) and thus neither in
U ((Set, Set′)-Prof).

A

C C

f g

IC

ϕ

Considering Set′-categories is one way of dealing with the size of the categories SetA
op

of presheaves on locally small categories A. Another way is to restrict to ‘small’ presheaves
on A instead, as recalled in Example 2.8 below. The next example generalises the con-
struction of (Set, Set′)-Prof above to the enriched setting.

2.7. Example. Analogous to the previous example we can consider sub-augmented vir-
tual double categories (Ab,Ab′)-Prof ⊂ Ab′-Prof, (Cat,Cat′)-Prof ⊂ Cat′-Prof, etc., where
Ab ⊂ Ab′, Cat ⊂ Cat′, etc., are embeddings obtained by considering abelian groups, cate-
gories, etc., in both categories of sets Set and Set′ respectively. Again we prefer to work
in e.g. (Ab,Ab′)-Prof instead of Ab-Prof or Ab′-Prof, for reasons similar to the ones given
in the previous example.

More generally we will follow Kelly’s approach in Section 3.11 of [Kel82], which is
based on [Day70], and enrich both in a monoidal category V as well as in a ‘universe
enlargement’ of V , as follows. A universe enlargement of a large (not necessarily closed)
monoidal category V is a monoidal full embedding V ⊂ V ′ of V into a closed1 monoidal
category V ′ that satisfies the following axioms:

(a) V ′ is locally large, that is V ′(x′, y′) ∈ Set′ for all x′, y′ ∈ V ′;

(b) V ′ is large complete and large cocomplete;

(c) V ⊂ V ′ preserves all limits.

1V ′ = (V ′,⊗′, I ′) is closed if, for every object x′ ∈ V ′, the endofunctor x′⊗ – has a right adjoint [x′, –];
see e.g. Section 1.5 of [Kel82].



AUGMENTED VIRTUAL DOUBLE CATEGORIES 281

One can show that the embeddings Set ⊂ Set′, Ab ⊂ Ab′ and Cat ⊂ Cat′ are uni-
verse enlargements in the above sense, as long as Set has infinite sets. More generally
Kelly shows that the Yoneda embedding y : V → Set′

Vop

defines the category Set′
Vop

of
Set′-presheaves on V as a universe enlargement of V , with the monoidal structure ⊗′ on
the category Set′

Vop

given by ‘Day convolution’ [Day70] (or see (1) above). If V is closed

monoidal then, besides (a)—(c) above, the Yoneda embedding y : V → Set′
Vop

also is a
closed monoidal embedding, that is y([x, y]) ∼= [yx, yy]′ coherently for all x, y ∈ V . In
that case, as is shown in Section 3.12 of [Kel82], the factorisation of y through the full
subcategory V ′ ⊂ Set′V

op

of Set′-presheaves that preserve all large limits in Vop is a uni-
verse enlargement V ⊂ V ′ that, besides preserving all limits, preserves large colimits as
well.

Returning to a universe enlargement V ⊂ V ′ with V not necessarily closed, consider
a V ′-profunctor J : A −7−→ B in V ′-Prof (see Example 2.4). We will call J a V-profunctor
whenever J(x, y) is a V-object for all pairs x ∈ A and y ∈ B. Analogous to the definition
of (Set, Set′)-Prof in the previous example we denote by (V ,V ′)-Prof the sub-augmented
virtual double category of V ′-Prof that consists of all V ′-categories and V ′-functors, as
well as V-profunctors and their transformations.

In the next example we recall the notion of ‘small V-profunctor’ and show that such
profunctors form a sub-augmented virtual double category of V-Prof (Example 2.4). In
doing so we use the classical coend formula that defines compositions of V-profunctors,
which we first recall briefly. Let J = (A0

J1−7−→ A1, . . . , An′
Jn−7−→ An) be a non-empty path of

V-profunctors and let x ∈ A0 and y ∈ An be objects. Inspired by Mac Lane’s construction
of ends as limits in Section IX.5 of [ML98] we consider the following diagram functor
J§(x, y) : JS → V . The objects of JS are of two kinds: they are either n′-tuples of pairs(
(v1, w1), (v2, w2), . . . , (vn′ , wn′)

)
, with each pair (vi, wi) objects in Ai, or they are n′-tuples

(u1, u2, . . . , un) of objects ui ∈ Ai. The non-identity morphisms of JS are the legs of spans
of the form

(v1, v2, . . . , vn′)←
(
(v1, w1), (v2, w2), . . . , (vn′ , wn′)

)
→ (w1, w2, . . . , wn′);

consequently in any composable pair of morphisms in JS either morphism necessarily is
an identity. Having defined JS we next denote by J§(x, y) the diagram JS → V that maps
each span above to the following span in V .

J1(x, v1)⊗A1(v1, w1)⊗ J2(w1, v2)⊗A2(v2, w2)⊗ · · · ⊗An(vn′ , wn′ )⊗ Jn(wn′ , y)

J1(x, v1)⊗ J2(v1, v2)⊗ · · · ⊗ Jn(vn′ , y) J1(x,w1)⊗ J2(w1, w2)⊗ · · · ⊗ Jn(wn′ , y)

id⊗ λ⊗ · · · ⊗ λ ρ⊗ · · · ⊗ ρ⊗ id

In the case J = (J1, J2) the colimits of (J1, J2)
§(x, y), if they exist for all x ∈ A0 and

y ∈ A2, combine to form the composite V-profunctor ‘J2 ◦ J1 : A0 −7−→ A2’ as defined in
Section 3 of [Law73]. For general J , if V is closed symmetric monoidal, so that each
Ji : Ai′ −7−→ Ai can be identified with a V-functor Ji : Aop

i′ ⊗ Ai → V , then the colimit of
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J§(x, y) is easily checked to coincide with the iterated coend on the left-hand side below;
for the definition of the dual notion ‘end’ see e.g. Section 2.1 of [Kel82]. We will use the
coend notation

u1∈A1∫
· · ·

un′∈An′∫
J1(x, u1)⊗ · · · ⊗ Jn(un′ , y) := colim J§(x, y)

for the colimit of J§(x, y) regardless of whether the monoidal category V is closed sym-
metric. If ⊗ preserves large colimits on both sides then the coends above, if they exist
for all x ∈ A0 and x ∈ An, combine into a V-profunctor A0 −7−→ An.

2.8. Example. Let V = (V ,⊗, I) be a monoidal category such that v⊗ – preserves large
colimits for each v ∈ V . A V-profunctor J : A −7−→ B in V-Prof (Example 2.4) is called
small if for each object y ∈ B there exists a small sub-V-category Ay ⊆ A such that the
coends below exists together with isomorphisms

J(x, y) ∼=
x′∈Ay∫

A(x, x′)⊗ J(x′, y)

that are equivariant in x ∈ A (Example 2.1)1. For example if V = Set and A is any large
set seen as a discrete category, then a Set-profunctor J : A −7−→ B, with B any category, is
small precisely if for each y ∈ B the set

{x ∈ A | J(x, y) ̸= ∅}

is small, which in that case we can take as Ay. In general notice that any V-profunctor
J : A −7−→ B is small whenever A is a small V-category.

We denote by V-sProf ⊆ V-Prof the sub-augmented virtual double category consisting
of all V-categories, all V-functors, only small V-profunctors, and all cells between them
(including the nullary and vertical ones). We will see in Example 4.7 that V-sProf has
horizontal units and, in Example 9.3, that, unlike V-Prof and (V ,V ′)-Prof, it has all hori-
zontal composites (see Section 7) whenever V is small cocomplete such that its monoidal
product ⊗ preserves large colimits on both sides. Thus in that case V-sProf is a pseudo
double category in the sense of [GP99] (or see Section 7 below).

To see that, when V is closed symmetric monoidal, the above notion agrees with the
usual notion of smallness for V-profunctors notice that, by equation (4.25) of [Kel82], for
each y ∈ B the isomorphisms above exhibit the V-presheaf J(–, y) : Aop → V as the left
Kan extension of J(–, y) along the inclusion Ay ⊆ A. Hence each J(–, y) is an ‘accessible’
V-presheaf in the sense of Proposition 4.83 of [Kel82]; more recently (e.g. [DL07]) such
V-presheaves have been termed small. Assuming that the V-category [B,V ] of V-functors
B → V exists (see Section 2 of [Kel82]), it follows that J : A −7−→ B is small in the above
sense precisely if the corresponding V-functor Aop → [B,V ] is ‘pointwise small’ in the
sense of [DL07].

1Equivariance of the isomorphisms made explicit (November 2022).
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2.9. Example. Let E be a category with pullbacks. The augmented virtual double
category Span(E) of spans in E has as objects and vertical morphisms the objects and
morphisms of E , while its horizontal morphisms J : A −7−→ B are spans A← J → B in E . A
unary cell ϕ in Span(E), as on the left below, is a morphism ϕ : J1 ×A1 · · · ×An′ Jn → K in
E lying over f and g, where the wide pullback is taken to be A0 if the horizontal source of
ϕ is empty. Nullary cells in Span(E) on the other hand are uniquely determined by their
boundary: a cell ψ as in the middle exists precisely if the square on the right commutes.

A0 An

C D

J

f g

K

ϕ

A0 An

C

J

f gψ

J1 ×A1 · · · ×An′ Jn

A0 An

C
f g

The virtual double category U(Span(E)) (Example 1.4) contained in Span(E) is the
same as that considered in Example 2.7 of [CS10]. The augmented virtual double category
Prof(E) := (N ◦Mod)(U(Span(E))) of monoids and bimodules in U(Span(E)) is that of in-
ternal categories, functors, profunctors and transformations in E . The vertical 2-category
V (Prof(E)) contained inside Prof(E) (Example 1.5) is the 2-category Cat(E) of internal
categories, functors and transformations in E ; the latter in the classical sense of [Str74].

We will see that Span(E) has all horizontal units (Example 4.3) and composites (Ex-
ample 7.3), so that it can be equivalently regarded as a pseudo double category (see
Section 7).

2.10. Example. As in the previous example let E be a category with pullbacks. A span

A
j0←− J

j1−→ B in E is called a relation (see e.g. [CKS84]) if any two horizontal cells
ϕ, ψ : H ⇒ J in Span(E) are equal, that is j0 and j1 are jointly monic. We denote by
Rel(E) ⊆ Span(E) the sub-augmented virtual double category generated by the relations
in E . Like Span(E), Rel(E) has all horizontal units (see Example 4.3), so that it can be
equivalently regarded as a virtual double category by Theorem 10.1. Notice that Rel(E)
is a locally thin augmented virtual double category in the sense of Example 2.5.

We remark that in order to be able to arrange relations in E into a bicategory or a
pseudo double category (see [GP99] or Section 7 below) one needs E to be regular (see
e.g. [CKS84]); in constrast, to form Rel(E) as an (augmented) virtual double category it
suffices that E has pullbacks.

2.11. Example. Let K be a finitely complete 2-category, that is K has all finite conical
limits as well as cotensors with the “walking arrow” category 2 := (0 → 1). ‘Split
bifibrations’ in K, introduced in [Str74] and recently called split two-sided fibrations, can
be regarded as profunctors internal to K0, the category underlying K, as follows. For
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A ∈ K the cotensor ΦA := [2, A] is defined by a cell

ΦA

A

d0 d1

whose universal property induces on the span A
d0←− ΦA

d1−→ A the structure of a category
internal to K0. In fact, Proposition 2 of [Str74] shows that choosing a cotensor ΦA for each
A ∈ K induces a functor Φ: K0 → Cat(K0) = V (Prof(K0)) (Example 2.9). Given objects
A, B ∈ K, an internal profunctor J : ΦA −7−→ ΦB in Prof(K0) is precisely a ‘split bifibration’
A← J → B in K in the sense of [Str74], which follows easily from Proposition 12 therein.
Likewise horizontal cells ϕ : J ⇒ K in Prof(K0), with K : ΦA −7−→ ΦB, are morphisms of
bifibrations in the sense of [Str74].

In light of the above we denote by spFib(K) the augmented virtual double category
whose objects and vertical morphisms are those of K0, and whose horizontal morphisms
J : A −7−→ B are profunctors J : ΦA −7−→ ΦB internal to K0. Cells in spFib(K), with ver-
tical source f : A0 → C and target g : An → D, are cells in Prof(K0) with vertical
source Φf : ΦA0 → ΦC and target Φg : ΦAn → ΦD; their compositions are defined
as in Prof(K0).

3. The 2-category of augmented virtual double categories

Having introduced the notion of augmented virtual double categories next we consider
the functors between them, as well as their transformations.

3.1. Definition. A functor F : K → L between augmented virtual double categories con-
sists of a functor F : Kv → Lv as well as assignments mapping the horizontal morphisms
and cells of K to those of L, as shown below, in a way that preserves vertical composition
and identity cells strictly.

J : A −7−→ B 7→ FJ : FA −7−→ FB

A0 A1 An′ An

C D

J1

f

Jn

g

K

ϕ

· · ·
7→

FA0 FA1 FAn′ FAn

FC FD

FJ1

Ff

FJn

Fg

FK

Fϕ

· · ·

A0 A1 · · · An′ An

C

J1

f

Jn

g
ϕ 7→

FA0 FA1 · · ·FAn′ FAn

FC

FJ1

Ff

FJn

Fg
Fϕ

Notice that F : K → L preserving vertical composition ◦ implies that F preserves
horizontal composition ⊙ (see Lemma 1.3).
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3.2. Definition. A transformation ξ : F ⇒ G of functors F , G : K → L of augmented
virtual double categories consists of a natural transformation ξ : Fv ⇒ Gv as well as a
family of (1, 1)-ary cells

FA FB

GA GB

FJ

ξA ξB

GJ

ξJ

in L, one for each J : A −7−→ B ∈ K, that satisfies the naturality axiom

Gϕ ◦ ξJ = ξK ◦ Fϕ

for all cells ϕ : J ⇒ K in K, where ξJ := (ξJ1 , . . . , ξJn) if J = (J1, . . . , Jn) and ξJ := ξA if
J = (A).

In Example 1.4 we saw that restricting to augmented virtual double categories with
only vertical identity cells as nullary cells recovers the notion of virtual double category.
Likewise, under this restriction the definitions above reduce to that of functor and trans-
formation for virtual double categories as given in Section 3 of [CS10]. The latter combine
into a 2-category of virtual double categories which we denote VirtDblCat. Remember that
every augmented virtual double category K contains a 2-category V (K) (Example 1.5)
and a virtual double category U(K) (Example 1.4). In the following proposition, which is
easily checked, 2-Cat denotes the 2-category of 2-categories, strict 2-functors and 2-natural
transformations.

3.3. Proposition. Augmented virtual double categories, the functors between them and
their transformations form a 2-category AugVirtDblCat. Both the assignments K 7→ V (K)
and K 7→ U(K) extend to strict 2-functors

V : AugVirtDblCat→ 2-Cat and U : AugVirtDblCat→ VirtDblCat.

3.4. Example. Every lax monoidal functor F : V → W between monoidal categories
induces a functor F -Mat : V-Mat→W-Mat between the virtual double categories of ma-
trices in V and W (Example 2.4) in the evident way. Likewise the components of any
monoidal transformation ξ : F ⇒ G form the cell-components of an induced transforma-
tion ξ-Mat : F -Mat ⇒ G-Mat. The assignments F 7→ F -Mat and ξ 7→ ξ-Mat combine
to form a strict 2-functor (–)-Mat : MonCatl → VirtDblCat, where MonCatl denotes the
2-category of monoidal categories, lax monoidal functors and monoidal transformations.

3.5. Example. Similarly any pullback-preserving functor F : D → E , between categories
with pullbacks, induces a functor Span(F ) : Span(D) → Span(E) between the augmented
virtual double categories of spans in D and E (see Example 2.9). This too extends to
a strict 2-functor Span(–) : Catpb → AugVirtDblCat, where Catpb denotes the 2-category
of categories with pullbacks, pullback-preserving functors and all natural transformations
between them.
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By an equivalence of augmented virtual double categories we, of course, mean an
internal equivalence in the 2-category AugVirtDblCat. The goal of the remainder of this
section is to prove that, like in classical category theory (see e.g. Section IV.4 of [ML98]),
giving an equivalence K ≃ L of augmented virtual double categories is the same as giving
a functor F : K → L that is ‘full, faithful and essentially surjective’. The following
definitions generalise analogous definitions for functors between double categories given
in Section 7 of [Shu08].

We start with the notions full and faithful. Let F : K → L be a functor between
augmented virtual double categories. Its restriction J 7→ FJ to horizontal morphisms
preserves sources and targets, so that it extends to an assignment

J = (J1, . . . , Jn) 7→ FJ := (FJ1, . . . , FJn)

on paths. Likewise, for any pair of morphisms f : A0 → C and g : An → D in K, together
with paths J : A0 −7−→ An and K : C −7−→ D where |K| ≤ 1, the functor F restricts to an
assignment below, between classes of cells with sources and targets as shown.

{ A0 An

C D

J

f g

K

ϕ

}
F−→

{ FA0 FAn

FC FD

FJ

Ff Fg

FK

ψ

}

3.6. Definition. A functor F : K → L between augmented virtual double categories is
called locally faithful (resp. locally full) if, for any f : A0 → C, g : An → D, J : A0 −7−→ An
and K : C −7−→ D with |K| ≤ 1 in K, the assignment above is injective (resp. surjective).
If moreover the restriction F : Kv → Lv, to the vertical categories, is faithful (resp. full),
then F is called faithful (resp. full).

The following is Definition 7.6 of [Shu08] applied verbatim to the setting of augmented
virtual double categories.

3.7. Definition. A functor F : K → L of augmented virtual double categories is called
essentially surjective if we can simultaneously make the following choices:

- for each object A ∈ L, an object A′ ∈ K and an isomorphism σA : FA
′ ∼= A;

- for each horizontal morphism J : A −7−→ B in L, a morphism J ′ : A′ −7−→ B′ in K and
an invertible cell

FA′ FB′

A B.

FJ ′

σA σB

J

σJ

3.8. Proposition. A functor F : K → L between augmented virtual double categories is
part of an equivalence K ≃ L if and only if it is full, faithful and essentially surjective.
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Proof (sketch). The ‘only if’-part is straightforward; we will sketch the ‘if’-part. First,
because F is essentially surjective, we can choose objects A′ ∈ K, for each A ∈ L, and
horizontal morphisms J ′ : A′ −7−→ B′ ∈ K, for each J : A −7−→ B ∈ L, as in the definition
above, together with isomorphisms σA : FA

′ ∼= A and σJ : FJ
′ ∼= J . Using the full and

faithfulness of F these choices can be extended to a functor (–)′ : L → K as follows: for
each vertical morphism f : A → C in L we define f ′ : A′ → C ′ to be the unique map in
K such that Ff = σ−1

C ◦ f ◦ σA, and for each cell ϕ : J ⇒ K in L we define ϕ′ : J ′ ⇒ K ′

to be the unique cell in K such that Fϕ′ = σ−1
K ◦ ϕ ◦ σJ , where the notation σJ is as in

Definition 3.2. Using that F is faithful it is easily checked that these assignments preserve
the composition and identities of L.

Finally the isomorphisms (σA)A∈L and (σJ)J∈L combine to form a transformation
σ : F ◦ (–)′ ∼= idL. Conversely, a transformation η : idK ∼= (–)′ ◦ F is obtained by defining
ηA, where A ∈ K, to be unique with FηA = σ−1

FA and defining ηJ , where J : A −7−→ B in K,
such that FηJ = σ−1

FJ .

4. Restriction of horizontal morphisms

In this section we consider the restriction of horizontal morphisms along vertical mor-
phisms, a construction that is often used in the study of formal category theory internal
to (generalised) double categories. Restrictions of horizontal morphisms are defined by
‘cartesian cells’ as in the following definition, which generalises the notions of (1, 1)-ary
cartesian cell considered in Section 7 of [CS10], for virtual double categories, and in Sec-
tion 4 of [Shu08], for double categories, to (n,m)-ary cartesian cells where n,m ≤ 1.

4.1. Definition. A cell ψ : J ⇒ K with |J | ≤ 1, as in the right-hand side below, is called
cartesian if any cell χ, as on the left-hand side, factors uniquely through ψ as a cell ϕ as
shown.

X0 X1 Xn′ Xn

A B

C D

H1

h

Hn

k

f g

K

. . .

χ =

X0 X1 Xn′ Xn

A B

C D

H1

h

Hn

k

J

f g

K

. . .

ϕ

ψ

Vertically dual, provided that |J | = 1 the cell ϕ is called weakly cocartesian1 if any cell χ
factors uniquely through ϕ as a cell ψ as shown.

If a (1, n)-ary cartesian cell ψ of the form above exists then its horizontal source
J : A −7−→ B is called the restriction ofK : C −7−→ D along f and g, and denotedK(f, g) := J .

If K = (C
K−7−→ D) then we call K(f, g) unary ; in the case that K = (C) we call C(f, g)

1The stronger notion of cocartesian cell will be defined in Definition 7.1.
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nullary. Restrictions of the form K(f, id) and K(id, g) are called restrictions on the left
and right. We will call the nullary restriction C(id, id) : C −7−→ C the (horizontal) unit of the
object C and denote it IC := C(id, id); if IC exists then we call C unital. In Section 7 below
we will see that the horizontal morphims IC form the units for composition of horizontal
morphisms. In Theorem 10.1 we will see that the notions of an augmented virtual double
category with all horizontal units is equivalent to that of a virtual double category with
all horizontal units; the latter in the sense of Section 5 of [CS10]. Consequently we
call an (augmented) virtual double category a unital virtual double category whenever it
has all horizontal units. Recall that, as motivated in the Introduction, an advantage of
taking augmented virtual double categories as a setting for the formalisation of Yoneda
embeddings, rather than 2-categories, is that the “built-in” notion of unital object can be
taken to replace the notion of ‘admissible’ object as defined by a Yoneda structure [SW78].

By their universal property any two cartesian cells defining the same restriction factor
through each other as invertible horizontal cells. We will often not name cartesian cells,
but simply depict them as on the left below.

A B

C D

J

f g

K

cart

X0 Xn

A B

H

h k

J

cocart

If the weakly cocartesian cell on the right above exists then we call its horizontal target
J the extension of H along h and k. Like restrictions, extensions are unique up to iso-
morphism. When considered in a virtual double category, by restricting the factorisations
of Definition 4.1 to unary cells χ, our notion of cocartesian cell coincides with that of
weakly cocartesian cell considered in Remark 5.8 of [CS10]. We shall see in Corollary 8.5
that the extension of H along h and k above coincides with the ‘horizontal composite’
(A(id, h) ⊙ H1 ⊙ · · · ⊙ Hn ⊙ B(k, id)) whenever it exists, where A(id, h) : A −7−→ X0 and
B(k, id) : Xn −7−→ B are nullary restrictions as defined above. Analogously, in Lemma 8.1
we will see that the restriction of K along f and g, defined by the cartesian cell on the
left above, coincides with the composite (C(f, id)⊙K ⊙D(id, g)).

The following examples describe restrictions and horizontal units in various augmented
double categories. At the end of this section weakly cocartesian cells of a certain shape are
characterised in V-Prof (Example 2.4), Span(E) (Example 2.9) and Rel(E) (Example 2.10).

4.2. Example. In the augmented virtual double category V-Prof of V-profunctors (Ex-
ample 2.4) unary restrictions K(f, g) are indeed obtained by restricting the profunctor
K: they consist of the family of V-objects K(fx, gy), for all x ∈ A, y ∈ B. Likewise the
nullary restriction C(f, g) of two V-functors f and g, with common target C, is given by
the hom-objects C(fx, gy); in particular IC(x, y) = C(x, y) defines the unit profunctor
IC . From this it easily follows that a cell ψ : J ⇒ K in V-Prof, as in Definition 4.1 above,
is cartesian if and only if all its components ψx,y : J(x, y)→ K(fx, gy) are invertible.
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4.3. Example. Let E be a category with pullbacks. One easily checks that in Span(E)
(Example 2.9) the restriction of a span K : C −7−→ D along morphisms f : A → C and

g : B → D is the “wide pullback” of the diagram A
f−→ C ← K → D

g←− B. Similarly

the nullary restriction C(f, g) is obtained by pulling back the cospan A
f−→ C

g←− B, while

horizontal units are unit spans IA = (A
id←− A

id−→ A). It is clear that the latter spans
form relations in E so that, by Lemma 4.5 below, they also form nullary restrictions
and horizontal units in Rel(E) ⊆ Span(E), the sub-augmented virtual double category of
relations in E (Example 2.10).

4.4. Example. For any isomorphism f : A→ C in an augmented virtual double category
the vertical identity cell idf is cartesian. Similarly invertible vertical cells of the form
s ∼= idA or idA ∼= s, where s : A → A, are cartesian: factorisations through s ∼= idA for
instance are obtained by composing on the left with its inverse idA ∼= s.

The following straightforward lemma is useful for constructing restrictions in locally
full sub-augmented virtual double categories. A vertically dual result holds for weakly
cocartesian cells, see Lemma 9.4 below.

4.5. Lemma. Any locally full and faithful functor F : K → L (Definition 3.6) reflects
cartesian cells, that is a cell ϕ ∈ K is cartesian whenever its image Fϕ is cartesian in L.

4.6. Example. For every universe enlargement V ⊂ V ′ (Example 2.7) the locally full
embedding (V ,V ′)-Prof ↪→ V ′-Prof reflects cartesian cells. Since K(f, g) is a V-profunctor
whenever K is, it follows that (V ,V ′)-Prof has all unary restrictions. Similarly the nullary
restriction C(f, g) : A −7−→ B exists in (V ,V ′)-Prof whenever the hom-objects C(fx, gy)
are isomorphic to V-objects for all x ∈ A and y ∈ B, and a V ′-category C is unital in
(V ,V ′)-Prof whenever all its hom-objects are isomorphic to V-objects. For example, in
(Set, Set′)-Prof (Example 2.6) all nullary restrictions C(f, g) exist as soon as the category
C is locally small. We will see in Example 5.6 below that for the aforementioned sufficient
condition for ‘one-sided’ nullary restrictions C(f, id) and C(id, g) in (V ,V ′)-Prof, as well
as that for unitality of V ′-categories, are necessary conditions as well.

In the next example we denote by I the unit V-category, consisting of a single object
∗ and hom-object I(∗, ∗) = I, the unit of V . We can identify V-functors I → A with
objects in A and V-profunctors I −7−→ I with V-objects; cells between such profunctors can
be identified with V-maps.

4.7. Example. The full embedding V-sProf ↪→ V-Prof (Example 2.8) reflects cartesian
cells by the previous lemma; we claim that it preserves cartesian cells as well. To see
this consider any cartesian cell ψ : J → K in V-sProf, which defines a small V-profunctor
J : A −7−→ B as the restriction K(f, g) say. By Example 4.2 it suffices to show that the
components ψ(x,y) : J(x, y) → K(fx, gy) are invertible for all x ∈ A and y ∈ B. Notice
that the cartesian cell ϕ : J(x, y) ⇒ J , which restricts J along x : I → A and y : I → B,
is reflected by the embedding. It follows from Lemma 4.15 below that the composite
ψ ◦ ϕ : J(x, y) ⇒ K, which consists of the single component ψ(x,y), is a cartesian cell
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in V-sProf that defines J(x, y) : I −7−→ I as the restriction of K along fx : I → C and
gy : I → D. But the latter restriction is reflected by the embedding too so that, by
Example 4.2 and the fact that restrictions are unique up to isomorphism, we may conclude
that ψ(x,y) is invertible.

It follows from the above that the restriction K(f, g) exists in V-sProf if and only if
K(f, g), when constructed in V-Prof asK(f, g)(x, y) = K(fx, gy), is a small V-profunctor;
in that case the two restrictions coincide. Clearly this is so for all unary restrictions
K(id, g) on the right. It is easy to show that all unit V-profunctors IC are small too so
that, using Corollary 4.16 below, we conclude that V-sProf has all nullary restrictions
C(id, g) on the right as well.

To see that V-sProf does not have restrictions K(f, id) on the left in general take
V = Set and consider the terminal endoprofunctor 1 : 1 −7−→ 1 on the terminal category
1 = {∗}, i.e. 1(∗, ∗) is the singleton set. It follows from the characterisation of small
Set-profunctors given in Example 2.8 that the restriction of 1 along a terminal functor
! : A→ 1, where A is any properly large set regarded as a discrete category, is not small.

4.8. Example.Unary restrictions in the augmented virtual double category (N◦Mod)(K)
of bimodules in a virtual double category K (Example 2.2) can be created in K. For a
bimodule (K,λ, ρ) : C −7−→ D and monoid morphisms (f, f̄) : A → C and (g, ḡ) : B → D
this means that the restriction K(f, g) in K, if it exists, admits a bimodule structure
that is unique in making its defining cartesian cell into a cartesian cell in (N ◦Mod)(K).
Proving this is straightforward; see Proposition 11.10 of [Shu08] for the analogous result
in the case of pseudo double categories.

Similarly the nullary restriction C(f, g) in (N ◦Mod)(K), of a monoid C = (C, γ, γ̄, γ̃)
and along monoid morphisms (f, f̄) : A → C and (g, ḡ) : B → C, can be created in K
from the restriction γ(f, g), if it exists. In particular every monoid A = (A,α, ᾱ, α̃) has a
horizontal unit given by IA = (α, ᾱ, ᾱ) in (N ◦Mod)(K); in other words (N ◦Mod)(K) is
a unital virtual double category.

4.9. Example. By the previous example unary restrictions of internal profunctors in
Prof(E) (Example 2.9) can be created as in Span(E), that is as wide pullbacks (Exam-
ple 4.3). Since the embedding spFib(K) ↪→ Prof(K0) (Example 2.11) is locally full and
faithful as well as surjective on horizontal morphisms, by Lemma 4.5 above the restric-
tions of split two-sided fibrations in K are given by wide pullbacks as well; this partially
recovers Corollary 13 of [Str74].

It is clear from e.g. [CS10], [Kou14], [Kou18] and [Shu08] that the notion of a (gener-
alised) double category that has all restrictions is a useful one. In [CS10] virtual double
categories are called ‘virtual equipments’ if they have all restrictions and all horizontal
units—a term derived from Wood’s ‘bicategories equipped with proarrows’ [Woo82]. As
we have seen in the examples above some important augmented virtual double categories
do not have all nullary restrictions (e.g. (V ,V ′)-Prof) or only have restrictions on the
right (e.g. V-sProf). This is why we consider the following generalisations of the notion
of ‘equipment’ as appropriate for augmented virtual double categories.
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Notion Example(s)

virtual double category
w/ restrictions

V-Mat

augmented virtual equipment (V ,V ′)-Prof

unital virtual double category
w/ restrictions on the right

V-sProf

unital virtual equipment

Rel(E)
Prof(E)
spFib(K)
V-Prof

pseudo double category
w/ restrictions on the right

V-sProf (V is small cocomplete and closed)

equipment

Span(E)
Rel(E) (E is regular)
Prof(E) (E has coequalisers pres. by pullback)
spFib(K) (K has coequalisers pres. by pullback)
V ′-Prof (V ′ large cocomplete and closed)

Table 4.1: Most examples of Section 2 grouped according to whether they have all unary
restrictions K(f, g) (‘equipment’) and/or all horizontal units IA (‘unital’). In the bottom
two rows a ‘pseudo double category’/‘equipment’ is a unital virtual double category/unital
virtual equipment that has all ‘horizontal composites’, see Section 7; in these examples
horizontal composites are in fact ‘pointwise’ in the sense of Section 9.

4.10. Definition.An augmented virtual double category K is said to have restrictions on
the left (resp. right) if it has all unary restrictions of the form K(f, id) (resp. K(id, g)).
An augmented virtual equipment is an augmented virtual double category that has all
unary restrictions K(f, g). A unital virtual equipment is a unital virtual double category
that has all restrictions K(f, g).

For a unital virtual double categoryK to be a unital virtual equipment it suffices thatK
has all unary restrictions, by Corollary 4.16 below. Under the equivalence of Theorem 10.1
our notion of unital virtual equipment coincides with that of ‘virtual equipment’ studied
in [CS10]. Table 4.1 lists most of the (generalised) equipments that are considered in this
paper.

The following example demonstrates the relation between cartesian vertical identity
cells and full and faithful vertical morphisms.

4.11. Example. In the augmented virtual double category (V ,V ′)-Prof (Example 2.7)
the identity cell idf of a V ′-functor f : A→ C is cartesian if f is full and faithful. Indeed
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if the actions f̄ : A(x, y)→ C(fx, fy) of f on hom-objects are invertible then the unique
factorsation of a cell χ : (H1, . . . , Hn)⇒ C through idf , as in Definition 4.1, is obtained
by composing the components of χ with the inverses of f̄ . The converse holds as soon as
the nullary restriction C(f, f) : A −7−→ A exists in (V ,V ′)-Prof: the inverses of f̄ can then be
recovered as the components of the factorisation of the cartesian cell that defines C(f, f)
through idf .

In view of the previous we make the following definition.

4.12. Definition.A vertical morphism f : A→ C is called full and faithful if its identity
cell idf is cartesian.

In Section 8 of [CS10] a notion of full and faithfulness is introduced for morphisms of
monoids, in terms of the unital virtual double category Mod(K) of bimodules in a virtual
double category K (Example 2.2). Under the equivalence of Theorem 10.1 this notion
coincides with ours, as follows from the discussion following Corollary 5.10.

4.13. Example. Isomorphisms are full and faithful by Example 4.4.

The converse to the following lemma holds as soon as K has ‘all weakly cocartesian
paths of (0, 1)-ary cells’, see Proposition 7.12 below.

4.14. Lemma. If f : A→ C is full and faithful in the augmented virtual double category
K then it is full and faithful in the 2-category V (K) (Example 1.5): for any X ∈ K the
functor V (K)(X, f) : V (K)(X,A)→ V (K)(X,C), given by postcomposition with f , is full
and faithful (see e.g. [Str74]).

Cartesian cells satisfy the following pasting lemma. As a consequence, taking re-
strictions is ‘pseudofunctorial’ in the sense that K(f, g)(h, k) ∼= K(f ◦ h, g ◦ k) and
K(id, id) ∼= K.

4.15. Lemma. [Pasting lemma] If the cell ϕ in the composite below is cartesian then the
composite ϕ ◦ ψ is cartesian if and only if ψ is.

X Y

A B

C D

H

h k

J

f g

K

ψ

ϕ

Restricting to the case where the cartesian cell ϕ above defines a horizontal unit IC
we find that nullary restrictions can be obtained as unary restrictions of horizontal units,
as in the following corollary. Consequently in an augmented virtual equipment all nullary
restrictions C(f, g) exist whenever the object C is unital.
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4.16. Corollary. Let f : A → C and g : B → C be morphisms into a unital object C.
The nullary restriction C(f, g) exists if and only if the unary restriction IC(f, g) does,
and in that case they are isomorphic.

A B

C

J

f gϕ =

A B

C C

C

J

f g

IC

ϕ′

cart

In detail a nullary cell ϕ, as on the left-hand side above, is cartesian if and only if its
factorisation ϕ′ through IC is cartesian.

Horizontal composition with the (co)unit of an adjunction preserves nullary cartesian
cells as follows.

4.17. Lemma. In an augmented virtual double category K consider the composite below.
If η is the unit of an adjunction f ⊣ g (in V (K)) then ϕ is cartesian precisely if the
composite is so. A horizontally dual result holds for composition on the right with a
counit.

A B

C

E

C

J

h

k

f

g

ϕ

η

Proof. Consider the commutative diagram of assignments below, between collections of
cells in K that are of the shape as shown.

X Y

A

C

E

B

H

p
q

h

f
k

χ

X Y

A B

H

p q

J

ψ

X Y

B

E

C

A

H

p
q

k

g
h

ξ

{ }{ } { }ϕ ◦ –
(
(η ◦ h)⊙ (g ◦ ϕ)

)
◦ –

(η ◦ h ◦ p)⊙ (g ◦ –)
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Notice that the ϕ is cartesian precisely if the top left assignment is a bijection, and that
the composite (η◦h)⊙(g◦ϕ) is cartesian precisely if the top right assignment is a bijection.
The proof follows from the fact that the bottom assignment is a bijection: its inverse is
given by composing the cells ξ on the right with the counit of f ⊣ g.

Closing this section we characterise weakly cocartesian cells (of a certain shape) in the
virtual double categories V-Prof, Span(E) and Rel(E).

4.18. Example. Consider cells ϕ in V-Prof (Example 2.4) of the form below, where
I denotes the unit V-category as recalled before Example 4.7. Notice that such cells
correspond precisely to cocones H§(∗, ∗) ⇒ J , where J := J(∗, ∗) and H§(∗, ∗) is the

diagram defining the iterated coend
∫ u1∈X1· · ·

∫ un′∈Xn′ H1(∗, u1)⊗· · ·⊗Hn(un′ , ∗); see the
definition preceding Example 2.8. Indeed, the internal equivariance axioms satisfied by
such ϕ (Definition 2.1) correspond precisely to the naturality of such cocones. Weakly
cocartesian cells thus correspond to colimiting cocones, that is the cell ϕ below is weakly
cocartesian in V-Prof precisely if it defines the V-object J as the afore-mentioned coend.

I X1 Xn′ I

I I

H1 Hn

J

ϕ

· · ·

4.19. Example. In Span(E) (Example 2.9) a horizontal cell ϕ, of the form as below, is
weakly cocartesian if and only if its underlying morphism ϕ : H1 ×X1 · · · ×Xn′ Hn → J is
an isomorphism.

X0 X1 Xn′ Xn

X0 Xn

H1 Hn

J

ϕ

· · ·

4.20. Example. Consider a horizontal cell ϕ in the virtual double category Rel(E) (Ex-
ample 2.10) of the form as above. Recall that it is given by a morphism of spans
ϕ : H1 ×X1 · · · ×Xn′ Hn → J as in the bottom left commuting triangle in the diagram

below, where the relation X0
j0←− J

j1−→ Xn is drawn as the (jointly monic) pair of mor-
phisms (j0, j1) : J ↣ (X0, Xn); composition in this diagram is defined in the obvious way.

H1 ×X1 · · · ×Xn′ Hn K

J (X0, Xn) (C,D)

χ

ϕ (k0, k1)
ψ

(j0, j1) (f, g)

The cell ϕ is weakly cocartesian (Definition 4.1) if for any relation C
k0←− K

k1−→ D and any
morphism of spans χ : H1 ×X1 · · · ×Xn′ Hn → K, as in the commuting trapezium on the
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right in the diagram above, there exists a (necessarily unique) lift ψ making the diagram
commute. Such lifts exist in particular when ϕ is a strong epimorphism in the sense of
Section 3 of [CKS84]: in that case lifts ψ : J → K exist in any commuting square of the

form (k0, k1) ◦ χ = (p, q) ◦ ϕ where C
p←− J

q−→ D is any span.

5. Companions and conjoints

Here we study nullary restrictions of the forms C(f, id) and C(id, f) where f : A → C
is any vertical morphism. These have been called respectively ‘horizontal companions’
and ‘horizontal adjoints’ in the setting of double categories [GP04]; we follow Section 7 of
[CS10] and call them ‘companions’ and ‘conjoints’. We remark that the latter only defines
companions and conjoints in virtual double categories that have all horizontal units; in
contrast the definition for augmented virtual double categories below does not require
horizontal units. As foreshadowed in the discussion following Definition 4.1, companions
and conjoints can be regarded as building blocks for restrictions and extensions as will be
explained in Section 8.

5.1. Definition. Let f : A→ C be a vertical morphism in an augmented virtual double
category. The nullary restriction C(f, id) : A −7−→ C is called the companion of f and
denoted f∗. Likewise C(id, f) : C −7−→ A is called the conjoint of f and denoted f ∗.

Notice that the notions of companion and conjoint are interchanged when moving from
K to its horizontal dual Kco (Definition 1.8).

5.2. Example. It follows from Example 4.2 that the companion f∗ and conjoint f ∗ of a
V-functor f : A → C in V-Prof are the representable V-profunctors given by f∗(x, z) =
C(fx, z) and f ∗(z, x) = C(z, fx). Companions and conjoints in (V ,V ′)-Prof (Exam-
ple 2.7) are characterised in Example 5.6 below.

5.3. Example. From Example 4.3 it follows that in the augmented virtual double cate-
gories Span(E) (Example 2.9) and Rel(E) (Example 2.10) the companion and conjoint of

a morphism f : A→ C are the relations f∗ = (A
id←− A

f−→ C) and f ∗ = (C
f←− A

id−→ A) in
E .

While the companion and conjoint of a morphism f : A → C have been defined as
nullary restrictions along f , the following lemma and its horizontal dual show that they
can equivalently be defined as extensions. More precisely it gives, for a horizontal mor-
phism J : A −7−→ C, a bijective correspondence between cartesian cells ψ defining J as the
companion of f and weakly cocartesian cells ϕ defining J as the extension of (A) along
idA and f , in such a way that each corresponding pair (ψ, ϕ) satisfies the identities below;
these are called the companion identities. Horizontally dual identities are satisfied by
pairs of corresponding cartesian and weakly cocartesian cells defining a conjoint; these
are called the conjoint identities. In Corollary 8.3 below we will see that any weakly co-
cartesian cell defining a companion or conjoint satisfies the stronger notion of ‘cocartesian
cell’ in the sense of Section 7.
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5.4. Lemma. Consider the factorisation of a vertical identity cell on the left below. The
following conditions are equivalent: ψ is cartesian; the identity on the right below holds;
ϕ is weakly cocartesian.

A

C

f fidf =

A

A C

C

f

J

f

ϕ

ψ

A C

A C

J

f

J

ϕ
ψ =

A C

A C

J

J

idJ

Proof (sketch). Notice that both sides of the identity on the right coincide after com-
posing them with ψ below or with ϕ above. Hence the identity itself follows when ψ is
cartesian or ϕ is weakly cocartesian, by the uniqueness of factorisations through (weakly
co)cartesian cells.

Conversely if both identities hold then the unique factorisation of any nullary cell χ
through ψ, as in Definition 4.1 but with g = idC , is obtained by composing χ on the
left with ϕ; this shows that ψ is cartesian. Unique factorisations through ϕ are likewise
obtained by composing with ψ on the right, showing that ϕ is weakly cocartesian.

As an immediate consequence we find that, unlike functors between virtual double
categories, functors of augmented virtual double categories preserve companions, conjoints
and horizontal units.

5.5. Corollary. Any functor of augmented virtual double categories preserves the carte-
sian and weakly cocartesian cells that define companions, conjoints or horizontal units.

Proof.This follows immediately from the fact that functors preserve vertical composition
strictly, so that the companion and conjoint identities of (the horizontal dual of) the
previous lemma are preserved.

5.6. Example. In Example 4.6 we saw that a V ′-functor f : A→ C has a companion f∗
in (V ,V ′)-Prof as soon as all hom-objects C(fx, z) are isomorphic to V-objects. Using
the previous lemma we can prove the converse, as follows. If the companion f∗ exists in
(V ,V ′)-Prof, as a V-profunctor f∗ : A −7−→ C, then consider cells ψ : f∗ ⇒ C and ϕ : A⇒ f∗
as in the lemma. It is straightforward to check that the companion identities for ϕ and ψ
imply that the composites below are inverses for the components f∗(x, z) → C(fx, z) of
ψ, thus showing that C(fx, z) ∼= f∗(x, z), the latter of which are V-objects for all x ∈ A
and z ∈ C.

C(fx, y) ∼= I ⊗′ C(fx, y)
ϕx⊗′id−−−−→ J(x, fx)⊗′ C(fx, y)

ρ−→ J(x, y)

Horizontally dual, the conjoint f ∗ : C −7−→ A exists in (V ,V ′)-Prof if and only if the
hom-objects C(z, fx) are isomorphic to V-objects.
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The companion identities of the lemma above, together with the conjoint identities,
directly imply the following. The analogous result for unital virtual equipments was
proved as Theorem 7.20 of [CS10].

5.7. Corollary. Let f : A0 → C and g : An → D be morphisms such that the conjoint
f ∗ and the companion g∗ exist. Horizontally composing with the cartesian cells defining
f ∗ and g∗ gives a bijection between cells of the form

A0 An

C D

J

f g

K

ϕ and

C D

C D.

f∗ ⌢ J ⌢ g∗

K

ψ

5.8. Example. As was recalled in Example 2.10, a relation J internal to a category E
is a span J : A −7−→ B in E such that any two horizontal cells ϕ, ψ : H ⇒ J in Span(E)
coincide. Since Span(E) has all companions and conjoints (Example 5.3), by the corollary
the latter is equivalent to asking that any two cells ϕ, ψ : H ⇒ J , of the same shape but
not necessarily horizontal, coincide in Span(E).

Now consider a unary restriction K(f, g) of a relation K in Span(E) (Example 4.3).
By the universal property of K(f, g) and the preceding it follows that K(f, g) is again a
relation and thus, using Lemma 4.5, forms the restriction of K in Rel(E). Since Rel(E) has
all nullary restrictions as well (Example 4.3), we conclude that Rel(E) is a unital virtual
equipment.

Since horizontal units IC are a special kind of companions, i.e. IC := C(id, id) = (idC)∗
(see the discussion following Definition 4.1), they too are defined by pairs (ψ, ϕ) of cells
satisfying two ‘horizontal unit identities’, as the lemma below explains. It also shows that
the cells ψ and ϕ are both cartesian as well as weakly cocartesian; in Lemma 7.6 below
we will see that they are ‘cocartesian’ as well, in the sense of Section 7.

5.9. Lemma. Consider cells ψ and ϕ as in the identities below, and assume that either
identity holds. The following conditions are equivalent: (a) ψ is cartesian; (b) ψ is weakly
cocartesian; (c) both identities hold; (d) ϕ is cartesian; (e) ϕ is weakly cocartesian.

A

A

idA
(A)
=

A

A A

A

J

ϕ

ψ

A A

A A

J

J

idJ
(J)
=

A A

A

A A

J

J

ψ

ϕ

Consequently any cell of the form as ψ or ϕ above is cartesian if and only if it is weakly
cocartesian.
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Proof. We will show that under the assumption of the identity (A) the implications
(a) ⇔ (c) ⇔ (e) and (a) ⇒ (d) ⇒ (c) hold while, under the assumption of (J), either (a)
or (d) implies (A). Vertically dual, one similarly shows that (e) ⇒ (b) ⇒ (c) under the
assumption of (A), while (e) or (b) implies (J)⇒ (A). Together these complete the proof
of the main assertion.

Assuming (A) first notice that (a), (c) and (e) are equivalent by Lemma 5.4, using the
fact that ϕ ◦ ψ = ϕ ⊙ ψ by the interchange axioms (Lemma 1.3). Applying the pasting
lemma to (A) shows that (a) ⇒ (d).

Next we show that under the assumption of (d) the identities (A) and (J) are equivalent
so that, in particular, (d)⇒ (c) follows from (A). If (d) holds, that is ϕ is cartesian, then
there exists a unique cell ψ′ such that idJ = ϕ ◦ ψ′. Because ϕ ◦ ψ′ ◦ ϕ = ϕ and ϕ is
cartesian, ψ′ ◦ ϕ = idA follows. If (A) holds then ψ = ψ ◦ ϕ ◦ ψ′ = ψ′ follows, so that
idJ = ϕ ◦ ψ′ = ϕ ◦ ψ, which is (J). On the other hand if (J) then ψ = ψ′ ◦ ϕ ◦ ψ = ψ′, so
that idA = ψ′ ◦ ϕ = ψ ◦ ϕ, which is (A).

It remains to prove that (a) implies (J) ⇒ (A). If (a) holds then idA factors as
idA = ψ ◦ ϕ′; assuming (J) we then have ϕ = ϕ ◦ ψ ◦ ϕ′ = ϕ′ so that (A) follows. For the
final assertion notice that any (weakly co)cartesian cell of the form ϕ or ψ can be used
to obtain a factorisation of either form (A) or (J), so that the equivalence follows from
applying the main assertion.

The following is similar to Corollary 5.7.

5.10. Corollary. Let A and C be unital objects. Vertically composing with the cartesian
cells IA ⇒ A and C ⇒ IC that define the horizontal units IA and IC gives a bijection
between cells of the form

A

C

f gϕ and

A A

C C

IA

f g

IC

ψ

which preserves cartesian cells.

Restricting to vertical identity cells ϕ = idf in the above we find that choosing a
horizontal unit IA for each unital object A in an augmented virtual double category
extends uniquely to a functorial assignment

(f : A→ C) 7→
A A

C C,

IA

f f

IC

If

where f is full and faithful (Definition 4.12) if and only if If is cartesian.
The remainder of this section records some useful properties of companions, conjoints

and horizontal units. The first of these is an immediate consequence of the pasting lemma
for cartesian cells (Lemma 4.15).
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5.11. Lemma. Let f : A → C and h : C → E be morphisms and assume that the com-
panion h∗ : C −7−→ E exists. The companion (h ◦ f)∗ exists if and only if the restriction
h∗(f, id) does, and in that case they are isomorphic.

A E

C

E

J

f

h

χ

=

A E

C E

E

J

f

h∗

h

ψ

cart

In detail, the cell χ above is cartesian if and only if the cell ψ is.

5.12. Lemma. Let f : A → C, g : B → C and h : C → E be morphisms and as-
sume that h is full and faithful. The nullary restriction C(f, g) exists if and only if
E(h ◦ f, h ◦ g) : A −7−→ C does, and in that case they are isomorphic.

A B

C C

E

J

f

h

g

h

χ

=

A B

C

E

J

f g

h h

ψ

id

In detail, the cell χ above is cartesian if and only if the cell ψ is.

Proof. Because h is full and faithful its identity cell is cartesian by Definition 4.12.
The proof follows immediately from applying the pasting lemma (Lemma 4.15) to the
factorisation above.

Recall that any isomorphism h : C → E is full and faithful (Example 4.13), so that
taking g = h−1 in previous lemma gives the following.

5.13. Corollary. Let f : A→ C and h : C → E be morphisms and assume that h is an
isomorphism. The companion (h◦f)∗ exists if and only if the nullary restriction C(f, h−1)
does, and in that case they are isomorphic.

Together with Lemma 5.9, Lemma 5.12 implies the following.

5.14. Lemma. Consider the factorisation on the left below. Any two of the following
properties imply the third:

(a) the cell χ is cartesian (defining J as the nullary restriction E(h, h));

(b) the cell ψ is cartesian (defining J as the horizontal unit of C);
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(c) the morphism h is full and faithful.

Moreover if (a) holds then (b) is equivalent to

(b’) the factorisation id′, as on the right below, is cartesian.

C C

E

J

h h
χ =

C C

C

E

J

h h

ψ

id

C

E

h hid =

C

C C

E

J

h h

id′

χ

Consequently any full and faithful morphism h : C → E in an augmented virtual equipment
(Definition 4.10) ‘reflects unitality’: if the target E is unital then so is the source C.

Proof. We first prove the second assertion: if χ is cartesian then (b)⇔ (b’). Combining
both identities above gives χ ◦ id′ ◦ ψ = χ, so that id′ ◦ ψ = idJ by uniqueness of
factorisations through χ. But this is identity (J) in Lemma 5.9, which asserts that ψ
is cartesian precisely if id′ is, that is (b) ⇔ (b’).

The main assertion now follows easily. Taking f = idC = g in Lemma 5.12 we find
that (c) implies (a) ⇔ (b). Conversely assume (a) and (b): by the previous (b’) follows so
that both χ and id′ in the identity on the right above are cartesian. Applying the pasting
lemma (Lemma 4.15) we find that idh is cartesian, showing that h is full and faithful.

For the final assertion notice that E being unital in an augmented virtual equipment
implies that the nullary restriction E(h, h) exists, by Corollary 4.16. Applying the main
assertion we find that a cartesian cell defining the horizontal unit of C can be obtained
by factorising the cartesian cell that defines E(h, h) through idh.

5.15. Corollary. Let h : C → E be a full and faithful morphism in an augmented
virtual double category K and assume that the nullary restriction E(h, h) exists. A functor
F : K → L preserves the full and faithful morphism h if and only if it preserves the
cartesian cell defining E(h, h).

In Corollary 8.2 we will see that F preserves E(h, h) whenever the companion h∗ and
the conjoint h∗ exist in K.
Proof. Factorising the cartesian cell χ that defines E(h, h) through the vertical identity
cell of h we obtain χ = idh ◦ ψ as in the previous lemma, where ψ is the cartesian cell
defining E(h, h) as the horizontal unit of C. Applying F to both factorisations considered
in the previous lemma we obtain

Fχ = idFh ◦ Fψ and idFh = Fχ ◦ F id′
h,

where F preserves the cartesian cells ψ and id′
h by Corollary 5.5. Applying the pasting

lemma for cartesian cells (Lemma 4.15) to these identities we conclude that Fχ is cartesian
precisely if idFh is.
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Recall from Example 1.5 that the objects, vertical morphisms and vertical cells of
any augmented virtual double category K form a 2-category V (K). The next lemmas
reformulate the notions of adjunction and absolute left lifting (see Section 1 of [SW78] or
Section 2.4 of [Web07]) in V (K) in terms of companions in K.

5.16. Lemma. In an augmented virtual double category K let f : A → C be a vertical
morphism whose companion f∗ exists. Consider vertical cells η and ε below as well as
their factorisations through f∗, as shown.

A

C

A

f

g

η =

A

A C

A

f

f∗

gη′

cocart

C

A

C

g

f

ε =

C

A C

C

g

f∗

f

ε′

cart

The following are equivalent:

(a) (η, ε) defines an adjunction f ⊣ g in V (K);

(b) (η′, ε′) satisfies the conjoint identities (horizontally dual to the companion identities
of Lemma 5.4), thus defining f∗ as the conjoint of g in K.

Proof. We claim that the triangle identities for η and ε in V (K) are equivalent to the
conjoint identities η′ ◦ ε′ = idg and η

′ ⊙ ε′ = idf∗ in K. Indeed we have

(f ◦ η)⊙ (ε ◦ f) = idf ⇔ (f ◦ η′ ◦ cocart)⊙ (cart ◦ ε′ ◦ f) = idf

⇔ cart ◦ (η′ ⊙ ε′) ◦ cocart = idf ⇔ η′ ⊙ ε′ = idf∗ ,

where the second equivalence follows from the interchange axioms (Lemma 1.3), and the
third from the vertical companion identity cart ◦ idf∗ ◦ cocart = idf together with the
uniqueness of factorisations through (co)cartesian cells. Likewise

(η ◦ g)⊙ (g ◦ ε) = idg ⇔ (η′ ◦ cocart ◦ g)⊙ (g ◦ cart ◦ ε′) = idg

⇔ η′ ◦ (cocart⊙ cart) ◦ ε′ = idg ⇔ η′ ◦ ε′ = idg,

where we used the horizontal companion identity cocart⊙ cart = idf∗ .

The converse of the following holds whenever K has ‘all weakly cocartesian paths of
(0, 1)-ary cells’, see Proposition 7.12 below.
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5.17. Lemma. In an augmented virtual double category K consider the factorisation be-
low. The vertical cell ψ defines j as the absolute left lifting of f along g in V (K) whenever
its factorisation ψ′ is cartesian in K.

A

B

C

j

f

g

ψ =

A

A B

C

j

j∗

f gψ′

cocart

Proof. Consider the diagram of assignments between collections of cells in K below,
where cart denotes the cartesian cell that defines j∗. That it commutes follows from the
identity above and the horizontal companion identity (Lemma 5.4).

X

A

B

h

k

j

ξ

X

A B

h k

j∗

ϕ

X

A B

C

kh

f g

χ{ }{ } { }cart ◦ – ψ′ ◦ –

(ψ ◦ h)⊙ (g ◦ –)

By definition the vertical cell ψ defines j as the absolute left lifting of f along g in V (K)
when the bottom assignment is a bijection, so that the proof follows from the fact that
both top assignments are bijections whenever ψ′ is cartesian.

6. Representable horizontal morphisms

In this section we study horizontal morphisms J : A −7−→ B that are ‘represented’ by ver-
tical morphisms f : A → B in the sense that J ∼= f∗; see the definition below. Given
an augmented virtual double category K, the main result (Theorem 6.5) of this section
characterises the sub-augmented virtual double category of K generated by representable
horizontal morphisms, in terms of the strict double category (Q ◦ V )(K) of ‘quintets’ in
the vertical 2-category V (K) (Example 1.5); see Example 6.3 below.

Generalising the fact that lax monoidal profunctors (as described in the Introduction)
that are representable can be identified with colax monoidal functors, Theorem 6.5 can
be used to obtain a correspondence between representable ‘horizontal T -morphisms’ and
‘colax T -morphisms’, where T is any ‘monad’ on an augmented virtual double category;
this is done in Section 6.4 of [Kou15].
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6.1. Definition. A vertical morphism j : A → B is said to represent the horizontal
morphism J : A −7−→ B if there exists a cartesian cell as on the left below, that is J forms
the companion of j; in this case we say that J is representable. Horizontally dual, J is
called oprepresentable whenever there exists a cartesian cell as on the right.

A B

B

J

j cart

A B

A

J

gcart

For an augmented virtual double category K we write Rep(K) ⊆ K for the sub-aug-
mented virtual double category that consists of all objects, all vertical morphisms, only
those horizontal morphisms that are representable, and all cells between them. The
subcategory opRep(K) generated by the oprepresentable horizontal morphisms is defined
analogously; notice that opRep(K) = (Rep(Kco))co where Kco denotes the horizontal dual
of K (Definition 1.8). Because functors of augmented virtual double categories preserve
companions and conjoints (Corollary 5.5), they preserve (op)representable horizontal mor-
phisms as well; whence the following.

6.2. Proposition. The assignments K 7→ Rep(K) and K 7→ opRep(K) extend to strict
2-endofunctors Rep and opRep on AugVirtDblCat.

In [Ehr63] Ehresmann defined for any 2-category C a strict double category Q(C) of
‘quintets’ in C. The following example describes Q(C) as an augmented virtual double
category.

6.3. Example. Let C be a 2-category. The augmented virtual double category Q(C) of
quintets in C has as objects those of C while both its vertical and horizontal morphisms
are morphisms in C. A unary cell ϕ in Q(C), as in the middle below, is a cell ϕ in C as
on the left, while the nullary cells of Q(C) are cells in C as on the left but with k = idC .
Composition in Q(C) is induced by that of C in the evident way.

A0

C A1

An′

An

D

f j1

k

jn

g

ϕ

· · ·

An An′ A1 A0

D C

jcon

g

jco1

f

kco

ψco

· · ·

A0 A1 An′ An

C D

j1

f

jn

g

k

ϕ

· · ·
A0

A1 C

An′

An

D

fj1

k

jn

g

ψ

· ·
·
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We abbreviate Qco(C) := (Q(Cco))co, where Cco denotes the 2-category obtained by
reversing the direction of the cells in C. Thus, to each morphism j : A → B in C there
is a horizontal morphism jco : B −7−→ A in Qco(C), and to each cell ϕ as on the left below
there is a unary cell ϕco in Qco(C) as on the right.

6.4. Proposition. The assignments C 7→ Q(C) and C 7→ Qco(C) above extend to strict
2-functors Q : 2-Cat→ AugVirtDblCat and Qco : 2-Cat→ AugVirtDblCat.

Proof. The image QF : QC → QD of a strict 2-functor F : C → D is simply given by
letting F act on objects, morphisms and cells. The image Qξ : QF ⇒ QG of a 2-natural
transformation ξ : F ⇒ G is given by (Qξ)A := ξA on objects, while the naturality cell
(Qξ)j : Fj ⇒ Gj in Q(D), for j : A −7−→ B in Q(C), is the quintet given by the naturality
square Gj ◦ ξA = ξB ◦ Fj. Finally C 7→ Qco(C) is extended by the composite of strict
2-functors Qco := (–)co ◦Q ◦ (–)co.

Remember that any augmented virtual double category K contains a 2-category V (K)
of vertical morphisms and cells; see Example 1.5. We denote by (Q ◦ V )∗(K) ⊆ (Q ◦ V )(K)
the sub-augmented virtual double category generated by all vertical morphisms, those hor-
izontal morphisms j : A −7−→ B that correspond to morphisms j : A → B that admit com-
panions in K, and all quintets between them. Because functors between augmented virtual
double categories preserve cartesian cells that define companions (Corollary 5.5), this
gives a sub-2-endofunctor (Q ◦ V )∗ ⊆ Q ◦ V on AugVirtDblCat. The sub-2-endofunctor
(Qco ◦ V )∗ is defined likewise, by mapping each K to the sub-augmented virtual dou-
ble category (Qco ◦ V )∗(K) ⊆ (Qco ◦ V )(K) that is generated by horizontal morphisms
jco : B −7−→ A corresponding to vertical morphism j : A→ B that admit conjoints in K.

6.5. Theorem. Let K be an augmented virtual double category. Choosing for each
j : A −7−→ B in (Q ◦ V )∗(K), corresponding to j : A→ B in K, a cartesian cell

A B

B

j∗

j
εj

in K that defines the companion of j induces and equivalence (–)∗ : (Q◦V )∗(K)
≃−→ Rep(K)

of augmented virtual double categories as follows. Restricting to the identity on objects
and vertical morphisms, (–)∗ maps each horizontal morphism j : A −7−→ B in (Q ◦ V )∗(K)
to its chosen companion j∗, while a cell ϕ of (Q◦V )∗(K), as in the left-hand side below, is
mapped to the unique factorisation ϕ∗ as shown; here εk := εk if ϕ is unary and εk := idC
otherwise.

Letting K vary in the above, the functors (–)∗ combine to form a pseudonatural trans-
formation (–)∗ : (Q ◦ V )∗ ⇒ Rep of strict 2-endofunctors on AugVirtDblCat.

Analogously, choosing cartesian cells in K that define conjoints induces an equivalence
(Qco◦V )∗(K) ≃ opRep(K). Their underlying functors too combine to form a pseudonatural



AUGMENTED VIRTUAL DOUBLE CATEGORIES 305

transformation (–)∗ : (Qco ◦ V )∗ ⇒ opRep.

A0 A1 An′ An

C A1

An′ An

An

D

j1∗

f j1

jn∗

k

jn∗

jn

g

ϕ

εj1

εjn

· · ·

· · ·

=

A0 A1 An′ An

C D

D

j1∗

f

jn∗

g

k

k∗

ϕ∗

εk

· · ·

(7)

Proof. We will construct the functors (–)∗ : (Q ◦ V )∗(K) → Rep(K); show that they
are full, faithful and essentially surjective, so that they are part of equivalences by
Proposition 3.8; and prove that they are pseudonatural in K. Horizontally dual, the
functors (–)∗ : (Qco ◦ V )∗(K)→ opRep(K) can then be defined as the composites (–)∗ :=
(–)co ◦ (–)∗ ◦ (–)co, where we use that companions in Kco correspond to conjoints in K, so
that ((Q ◦ V )∗(Kco))co = (Qco ◦ V )∗(K) and (Rep(Kco))co = opRep(K).

It is clear that ϕ 7→ ϕ∗ preserves identities. To see that it preserves composites
ψ ◦ (ϕ1, . . . , ϕn) too consider the following equation where, as in (7) above, each cell
denoted ε is either an identity or one of the chosen cartesian cells ε = εk. The identities
follow from (7) above and the definition of composition in (Q ◦ V )(K). We conclude that
ψ∗◦(ϕ1∗, . . . , ϕn∗) and

(
ψ◦(ϕ1, . . . , ϕn)

)
∗ coincide after composition with the cell ε used in

the definition of ψ∗. By uniqueness of factorisations through cartesian cells we conclude
that these composites themselves coincide, showing that the composite ψ ◦ (ϕ1, . . . , ϕn) is
preserved by (–)∗.

ϕ1∗ ϕn∗

ψ∗

ε

· · · · · ·
· · ·

=

ϕ1∗ ϕn∗

ε

ε
ψ

· · · · · ·
· · ·

· · ·

=

ε

ε

ε

ε

ϕ1

ϕnψ

· · ·

· · ·
· · ·

· · ·

(
ψ ◦ (ϕ1, . . . , ϕn)

)
∗

ε

· · · · · ·· · ·

=
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To prove that (–)∗ is part of an equivalence it suffices by Proposition 3.8 to show that
it is full, faithfull and essentially surjective. That it is essentially surjective and full and
faithful on vertical morphisms is clear; we have to show that it is locally full and faithful,
that is full and faithful on cells. To see this we denote, for each j : A −7−→ B in (Q◦V )∗(K),
by ηj the weakly cocartesian cell that corresponds to εj as in Lemma 5.4, so that the
pair (εj, ηj) satisfies the companion identities. To show faithfulness, consider cells ψ and
χ : j ⇒ k in (Q ◦ V )∗(K) such that ψ∗ = χ∗. It follows that the left-hand sides of (7)
coincide for ϕ = ψ and ϕ = χ so that, by precomposing both with the cells ηj1 , . . . , ηjn ,
ψ = χ follows from the vertical companion identities. To show fullness on unary cells,
consider ψ : (j1∗, . . . , jn∗)⇒ k∗ in (Q ◦ V )∗(K). We claim that the composite

ϕ := εk ◦ ψ ◦ (η′j1 , . . . , η
′
jn),

where η′ji := ηji ◦ji′ ◦· · ·◦j1 for each i = 1, . . . , n, is mapped to ψ by (–)∗. Indeed, plugging
ϕ into the left-hand side of (7) we find εk ◦ψ = εk ◦ϕ∗ by using the horizontal companion
identities, so that ψ = ϕ∗ follows. The case of a nullary cell ψ : (j1∗, . . . , jn∗) ⇒ C is
similar: simply take ϕ := ψ ◦ (η′j1 , . . . , η

′
jn) instead.

We now turn to proving that the functors (–)∗ combine to form a pseudonatural trans-
formation (Q◦V )∗ ⇒ Rep of strict 2-endofunctors on AugVirtDblCat. We have to supply an
invertible transformation νF as on the left below, for each functor F : K → L of augmented
virtual double categories. We take νF to consist of identities (νF )A = idFA on objects
and, for each j : A −7−→ B in (Q ◦V )∗(K), the unique factorisation (νF )j : F (j∗)⇒ (Fj)∗ as
on the right below. The latter is invertible since Fεj, on the left-hand side, is cartesian
by Corollary 5.5.

(Q ◦ V )∗(K) Rep(K)

(Q ◦ V )∗(L) Rep(L)

(–)∗

(Q ◦ V )∗(F ) Rep(F )

(–)∗

νF

FA FB

FB

F (j∗)

Fj Fεj =

FA FB

FA FB

FB

F (j∗)

(Fj)∗

Fj

(νF )j

εFj

We have to show that the components of νF are natural with respect to the cells of
(Q ◦ V )∗(K), in the sense of Definition 3.2. We will do so in the case of a unary cell
ϕ : (j1, . . . , jn) ⇒ k; the case of nullary cells is similar. Consider the following equation,
where ε′Fji := Fg◦Fjn◦· · ·◦Fji+1◦εFji and ε′ji = g◦jn◦· · ·◦ji+1◦εji for each i = 1, . . . , n,
as in the left-hand side of (7). The identities follow from (7) for Fϕ, the identity above,
F preserves composition, the F -image of (7) for ϕ and the identity above again. Since
factorisations through εFk in the left and right-hand side below are unique the naturality
of the components of νF with respect to ϕ follows. This completes the definition of the
transformation νF .

εFk ◦ (Fϕ)∗ ◦
(
(νF )j1 , . . . , (νF )jn

)
= (Fϕ⊙ ε′Fj1 ⊙ · · · ⊙ ε

′
Fjn) ◦

(
(νF )j1 , . . . , (νF )jn

)
= Fϕ⊙ Fε′j1 · · · ⊙ Fε

′
jn = F (ϕ⊙ ε′j1 ⊙ · · · ⊙ ε

′
jn) = F (εk ◦ ϕ∗) = εFk ◦ (νF )k ◦ F (ϕ∗)
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Finally we have to show that the transformations νF are natural with respect to
the transformations ξ : F ⇒ G in AugVirtDblCat, and that they are compatible with
compositions and identities, that is νid = id and νGF ◦GνF = νG◦F . The latter is a direct
consequence of the uniqueness of the components of ν. To prove the former we have to
show that (νG)j ◦ξ(j∗) = (ξj)∗◦(νF )j, for each j : A −7−→ B in (Q◦V )∗(K). To do so consider
the equation

εGj ◦ (νG)j ◦ ξ(j∗) = Gεj ◦ ξ(j∗) = ξB ◦ Fεj = ξB ◦ εFj ◦ (νF )j = εGj ◦ (ξj)∗ ◦ (νF )j,

where we have used the defining identities for (νG)j and (νF )j, the naturality of ξ, iden-
tity (7) for ξj, and the fact that the latter is simply the quintet given by the naturality
square Gj ◦ ξA = ξB ◦ Fj; see the proof of Proposition 6.4. Using the cartesianess of εGj
we conclude that (νG)j ◦ξ(j∗) = (ξj)∗ ◦ (νF )j, proving the naturality of the transformations
νF . This concludes the proof.

7. Composition of horizontal morphisms

We now turn to compositions of horizontal morphisms in augmented virtual double cat-
egories. Analogous to the case of virtual double categories (see Section 2 of [DPP06] or
Section 5 of [CS10]) such composites are defined by horizontal ‘cocartesian cells’, whose
universal property strengthens that of horizontal weakly cocartesian cell (Definition 4.1),
as in the following definition. Generalising the latter notions in the obvious way, it also
defines (weakly) cocartesian paths of cells that are not necessarily horizontal.

7.1. Definition. A path of cells ϕ = (ϕ1, . . . , ϕn), as in the right-hand side below, is
called weakly cocartesian if any cell χ, as on the left-hand side, factors uniquely through
ϕ as shown.

X10 X11 X1m′
1

X1m1 Xn0 Xn1 Xnm′
n

Xnmn

C D

H11

h ◦ f0

H1m1 Hn1 Hnmn

k ◦ fn

K

χ

· · · · · ·· · ·

=

X10 X11 X1m′
1

X1m1 Xn0 Xn1 Xnm′
n

Xnmn

A0 A1 An′ An

C D

H11

f0

H1m1

f1

Hn1

fn′

Hnmn

fn

J1

h

Jn

k

K

ϕ1 ϕn

χ′

· · · · · ·
· · ·

A weakly cocartesian path ϕ = (ϕ1, . . . , ϕn) is called cocartesian if any path of the form
below, where p, q ≥ 0, is weakly cocartesian.1 (If p = 0 then ϕ1 is the first cell in the path

1Fixed typo and clarified the p, q = 0 cases (November 2022).
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below; similarly if q = 0 then ϕn is the last cell.)

X ′
0 X ′

1 X ′
p′′ X ′

p′ X10 X11 X1m′
1

X1m1

X ′
0 X ′

1 X ′
p′′ X ′

p′ A0 A1

H′
1

H′
p′ H′

p(id, f0) H11

f0

H1m1

f1

H′
1 H′

p′ H′
p J1

ϕ1

· · ·
· · · cart

Xn0 Xn1 Xnm′
n

Xnmn X ′′
1 X ′′

2 X ′′
q′ X ′′

q

An′ An X ′′
1 X ′′

2 X ′′
q′ X ′′

q

Hn1

fn′

Hnmn H′′
1 (fn, id)

fn

H′′
2

H′′
q

Jn H′′
1 H′′

2 H′′
q

ϕn· · ·
· · ·

· · ·cart

Notice that cocartesianness of the path ϕ depends on the existence of restrictions along
f0 and fn. If no restrictions along f0 and fn exist then ϕ is cocartesian precisely if it is
weakly cocartesian.

Given a cocartesian horizontal cell of the form

X0 X1 Xn′ Xn

X0 Xn

H1 Hn

J

ϕ

· · ·
(8)

we call, in the case that n ≥ 1, J the (horizontal) composite of (H1, . . . , Hn) and write
(H1 ⊙ · · · ⊙ Hn) := J . If n = 0 then, by Lemma 5.9, ϕ : X0 ⇒ J corresponds to a
horizontal cartesian cell ψ : J ⇒ X0 that defines J as the (horizontal) unit IX0 = J of X0,
in the sense of Section 4. Conversely, in Lemma 7.6 below we will see that any horizontal
cartesian cell J ⇒ X0 corresponds to a horizontal cocartesian cell X0 ⇒ J .

By their universal property any two cocartesian horizontal cells defining the same
composite or unit factor through each other as invertible horizontal cells. The same
property also ensures that composites of composites and units are associative and unital
up to isomorphisms, as we will see after Lemma 7.7 below. Like weakly cocartesian cells,
in diagrams we denote single cocartesian cells simply by “cocart”.

Recall from the discussion following Definition 4.1 that, when restricting its universal
property to unary cells, the notion of weakly cocartesian cell in augmented virtual double
categories coincides with the corresponding notion for virtual double categories. From this
it follows that the notions of horizontal composite and horizontal unit likewise restrict to
the corresponding notions for virtual double categories considered in Section 2 of [DPP06]
or Section 5 of [CS10].

Notice that the concatenation ϕ ⌢ ψ of two cocartesian paths ϕ = (ϕ1, . . . , ϕn) and
ψ = (ψ1, . . . , ψm) is again cocartesian whenever the common vertical target of ϕn and
vertical source of ψ1 is an identity morphism. That this is not true in general is shown in
Example 8.4 below.
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7.2. Example. In Example 4.18 we characterised weakly cocartesian cells ϕ in V-Prof
(Example 2.4) as in (8), but with X0 = I = Xn the unit V-category, as those defining

J as the coend
∫ u1∈X1· · ·

∫ un′∈Xn′ H1(∗, u1)⊗ · · · ⊗Hn(un′ , ∗). Such a weakly cocartesian
cell ϕ is cocartesian if and only if its coend is preserved by all functors x⊗ – and – ⊗ x,
for all x ∈ V .

7.3. Example. In Span(E) (Example 2.9) all weakly cocartesian cells, as characterised
in Example 4.19, are cocartesian. Thus Span(E) has all horizontal composites, besides
having all horizontal units (see Example 4.3).

7.4. Example. In Example 4.20 we saw that for a cell ϕ as in (8) to be weakly cocartesian
in Rel(E) it suffices that its underlying morphism ϕ : H1 ×X1 · · · ×Xn′ Hn → J is a strong
epimorphism. In that case ϕ is cocartesian as soon as all pullbacks of ϕ are again strong
epimorphisms. In particular Rel(E) has all horizontal composites and units whenever E is
regular, in the sense of Section 3 of [CKS84].

7.5. Example. If E has reflexive coequalisers preserved by pullback then the augmented
virtual double category Prof(E) of profunctors internal to E (Example 2.9) has all hori-
zontal composites. The composite of internal profunctors is an “internal coend”. That
Prof(E) has all horizontal units follows from Example 4.8.

Next let K be a finitely complete 2-category that has reflexive coequalisers preserved
by pullback. Since the embedding spFib(K) ↪→ Prof(K0) (Example 2.11) is surjective on
horizontal morphisms as well as locally full and faithful, it follows from Lemma 9.4 below
that spFib(K) too has all units and composites.

The following lemma shows that in conditions (b) and (e) of Lemma 5.9 ‘weakly
cocartesian’ can be replaced by ‘cocartesian’.

7.6. Lemma. Let (ψ, ϕ)be a pair of cells that satisfies identities (A) and (J) of Lemma 5.9.
Then, both ψ and ϕ are cocartesian.

Proof (sketch). Identities (A) and (J) imply that the unique factorisation of a cell
χ through a path of the form (idH′

1
, . . . , idH′

p
, ϕ, idH′′

1
, . . . , idH′′

q
), as in Definition 7.1,

is given by χ′ = χ ◦ (idH′
1
, . . . , idH′

p
, ψ, idH′′

1
, . . . , idH′′

q
). Likewise factorisations through

(idH′
1
, . . . , idH′

p
, ψ, idH′′

1
, . . . , idH′′

q
) are given by composing with ϕ.

(Weakly) cocartesian paths, like cartesian cells, satisfy a pasting lemma as follows. In
proving the assertions (a) and (b) use the pasting lemma for cartesian cells (Lemma 4.15).

7.7. Lemma. [Pasting lemma] In the configuration of cells below denote by ϕj the path
ϕj := (ϕj1, . . . , ϕjnj

), for each 1 ≤ j ≤ n, and assume that the path (ϕ11, . . . , ϕnmn) is
weakly cocartesian. Then the path ψ := (ψ1, . . . , ψn) is weakly cocartesian if and only if

the path of composites
(
ψ1 ◦ ϕ1, . . . , ψn ◦ ϕn

)
is so.

· · · · · · · · · · · · · · · · · ·

ϕ11 ϕ1m1 ϕ21 ϕ2m2 ϕn1 ϕnmn

ψ1 ψ2 ψn

· · · · · · · · ·
· · ·
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Next denote the vertical sources of ϕ11 and ψ1 by f10 : X110 → A10 and h0 : A10 → C0,
and the vertical targets of ϕnmn and ψn by fnmn : Xnmnkmn

→ Anmn and hn : Anmn → Cn.
If the path (ϕ11, . . . , ϕnmn) is cocartesian then the following hold:1

(a) if ψ is cocartesian then so is
(
ψ1 ◦ ϕ1, . . . , ψn ◦ ϕn

)
provided that for any horizontal

morphisms K ′ : C ′ −7−→ C0 and K ′′ : Cn −7−→ C ′′ the following holds: if the restrictions
K ′(id, h0 ◦ f10) and K ′′(hn ◦ fnmn , id) exist then so do K ′(id, h0) and K

′′(hn, id);

(b) if
(
ψ1 ◦ ϕ1, . . . , ψn ◦ ϕn

)
is cocartesian then so is ψ provided that for any horizontal

morphisms K ′ : C ′ −7−→ C0 and K ′′ : Cn −7−→ C ′′ the following holds: if the restrictions
K ′(id, h0) and K

′′(hn, id) exist then so do K ′(id, h0 ◦ f10) and K ′′(hn ◦ fnmn , id).

Applying the pasting lemma to compositions ψ ◦ (ϕ1, . . . , ϕn) of horizontal cells shows
that the collection of horizontal composites and units in an augmented virtual double
category is coherent as follows. Let (J1, . . . , Jn) be a path of paths J i = (Ji1, . . . , Jimi

) of
horizontal morphisms. If all composites (J11 ⊙ · · · ⊙ J1m1), . . . , (Jn1 ⊙ · · · ⊙ Jnmn) exist
then the composite (J11 ⊙ · · · ⊙ Jnmn) of the concatenation J11

⌢ · · · ⌢ Jnmn exists if and
only if (

(J11 ⊙ · · · ⊙ J1m1)⊙ · · · ⊙ (Jn1 ⊙ · · · ⊙ Jnmn)
)

does, in which case they are canonically isomorphic. Notice that this also includes iso-
morphisms of the form (IA ⊙ J) ∼= J ∼= (J ⊙ IB), for any J : A −7−→ B, and similar.

Remember that any functor between unital augmented virtual double categories pre-
serves horizontal units by Corollary 5.5. We follow [CS10] in calling a functor F : K → L
strong if it preserves horizontal composites too, that is its image of any horizontal co-
cartesian cell in K is cocartesian in L.

To complete the picture we now briefly describe the classical notion of ‘pseudo double
category’ as introduced by Grandis and Paré in the Appendix to [GP99]; see also Section 2
of [Shu08]. In our terms, a pseudo double category is a virtual double category that
contains (1, 1)-ary cells only and which is equipped with a horizontal composition

A
J−7−→ B

H−7−→ E 7→ A
J⊙H− 7−→ E;

A B E

C D F

J

f

H

g h

K L

ϕ ψ 7→
A E

C F,

J ⊙H

f h

K ⊙ L

ϕ⊙ ψ

as well as horizontal units IA : A −7−→ A; If : IA ⇒ IC . These come with horizontal coherence
cells of the forms (J ⊙H)⊙M ∼= J ⊙ (H ⊙M), IA⊙ J ∼= J and J ⊙ IB ∼= J which satisfy
the usual coherence axioms, analogous to those for a monoidal category or bicategory; see
e.g. Section VII.1 of [ML98]. A pseudo double category with identity cells as coherence
cells is called a strict double category.

1Assertion on the pasting of cocartesian paths corrected (November 2022).
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Any pseudo double category gives rise to a virtual double category with the same ob-
jects and morphisms, whose cells (J1, . . . , Jn)⇒ K correspond to cells J1 ⊙ · · · ⊙ Jn ⇒ K
in the double category. The following result, which is Proposition 2.8 of [DPP06] and The-
orem 5.2 of [CS10], characterises the virtual double categories obtained in this way.

7.8. Proposition. [MacG. Dawson, Paré and Pronk] A virtual double category is in-
duced by a pseudo double category if and only if it has all horizontal composites and units.

In Theorem 10.1 below we will see that in the presence of horizontal units the notions
of augmented virtual double category and virtual double category coincide. In view of
this and the proposition above, by a pseudo double category we shall mean either an
(augmented) virtual double category that has all horizontal composites and units or,
equivalently, a pseudo double category in the classical sense. Following [CS10], by an
equipment we shall mean a pseudo double category that has all restrictions. Table 4.1
includes most of the double categories and equipments considered in this paper.

7.9. Example. The augmented virtual double category Q(C) of quintets in a 2-category
C (Example 6.3) clearly is a strict double category: the composite (j⊙k) of two horizontal
morphisms in Q(C) is simply given by their composite k ◦ j in C.

In closing this section we consider augmented virtual double categories K that have all
weakly cocartesian paths of (0, 1)-ary cells as in the definition below. In such K general
cells (J1, . . . , Jn) ⇒ K can be identified with cells into K with empty horizontal source.
This can be used to show that certain notions in K are equivalent to the corresponding
notions in the vertical 2-category V (K). The proposition below asserts such equivalences
for the notions of full and faithful morphism and absolute left lifting; for the case of
pointwise Kan extension see Section 5.5 of [Kou14] and Section 4.6 of [Kou15].

7.10. Definition. An augmented virtual double category is said to have all weakly co-
cartesian paths of (0, 1)-ary cells if, for every path J = (J1, . . . , Jn) : A0 −7−→ An of horizontal
morphisms, there exists a weakly cocartesian path ϕ = (ϕ1, . . . , ϕn) of (0, 1)-ary cells

X

Ai′ Ai.

fi′ fi

Ji

ϕi

7.11. Example. The graph ⟨J⟩ of a path of Set′-profunctors J : A0 −7−→ An in Set′-Prof
(Example 2.4) is the category whose objects are tuples u = (x0, u1, x1, . . . , un, xn) of, al-
ternatingly, objects xi ∈ Ai and elements ui ∈ Ji(xi′ , xi), while its morphisms u→ u′ are
tuples (s1, . . . , sn) of morphisms si : xi → x′i in Ai such that λ(si′ , u

′
i) = ρ(ui, si).

⟨J⟩

Ai′ Ai

pi′ pi

Ji

πi
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Writing pi : ⟨J⟩ → Ai for the projections, consider the (0, 1)-ary cells πi above, which
map u = (x0, u1, x1, . . . , un, xn) to ui ∈ Ji(xi′ , xi). It is straightforward to check that
the path (π1, . . . , πn) is cocartesian. Cocartesian paths of (0, 1)-ary cells in Set-Prof and
(Set, Set′)-Prof (Example 2.6) can be obtained analogously.

Restricting to the case n = 1 the single cell π1 : ⟨J1⟩ ⇒ J1 above is universal with
respect to all (0, 1)-ary cells ϕ : X ⇒ J1, exhibiting ⟨J1⟩ as the ‘tabulation’ of J1; see e.g.
Section 4.5 of [Kou15]. There it is also shown that, in general, ‘cocartesian tabulations’
can be combined to obtain cocartesian paths (π1, . . . , πn), similar to the construction
above.

7.12. Proposition. In an augmented virtual double category K that has all weakly co-
cartesian paths of (0, 1)-ary cells the converses of Lemma 4.14 and Lemma 5.17 hold.

Proof (sketch). For any path J : A0 −7−→ An in K consider a weakly cocartesian path
ϕ = (ϕ1, . . . , ϕn) of (0, 1)-ary cells, as in the definition above. Composing with ϕ gives
a bijection between nullary cells ψ with horizontal source J and vertical cells χ with
source X and, in the case of both lemmas, the universal property for the cells ψ under
consideration (defining a notion in K) is equivalent to that for the vertical cells χ (defining
the corresponding notion in V (K)) under this bijection.

8. Restrictions and extensions in terms of companions and conjoints

Here we make precise the fact that restrictions and extensions of a horizontal morphism
can be obtained by composing it with companions and conjoints, as anticipated in the
discussion following Definition 4.1.

We start with restrictions. In the setting of unital virtual equipments the ‘only if’-part
of the first assertion of the following lemma was proved as Theorem 7.16 of [CS10]; notice
that here we do not have to assume the existence of horizontal units. In Lemma 9.7 below
we will see that the composite of f∗

⌢K ⌢ g∗ considered below is in fact ‘pointwise’.

8.1. Lemma. In an augmented virtual double category K assume that the companion
f∗ : A −7−→ C and the conjoint g∗ : D −7−→ B exist. For each path K : C −7−→ D of length ≤ 1
the restriction K(f, g) exists if and only if the horizontal composite of the path f∗

⌢K⌢g∗

does, and in that case they are isomorphic.

A C D B

C D

f∗

f

K g∗

g

K

cart cart =

A B

A B

C D

f∗
⌢K ⌢ g∗

J

f g

K

ϕ

ψ
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In detail, for a factorisation as above (where the empty cell is the vertical identity cell idC
if K is empty) the following are equivalent: ψ is cartesian; ϕ is cocartesian; the identity
below holds. Moreover in this case the path (cocart, ψ, cocart), making up the top row of
the left-hand side below, is cocartesian.

A B

A C D B

A B

J

f g

f∗ K g∗

J

ψ

ϕ

cocart cocart

=

A C

A C

J

J

idJ

Analogous assertions hold for one-sided restrictions. In particular K(f, id) exists pre-
cisely if f∗ ⊙K does, while K(id, g) exists if and only if K ⊙ g∗ does.

Proof. Assuming that the top identity above holds, it follows from the companion and
conjoint identities (see Lemma 5.4 and its horizontal dual) that vertically precomposing
the composite on the left-hand side of the bottom equation with ϕ again results in ϕ, while
postcomposing it with ψ gives back ψ. Using the uniqueness of factorisations through
(co)cartesian cells we conclude that either ψ or ϕ being (co)cartesian implies the bottom
identity.

Conversely, assume that both identities above hold; we will prove that ψ is cartesian
and that ϕ and (cocart, ψ, cocart) are cocartesian. For the first it suffices to show that
the following assignment of cells is a bijection. Indeed the identities imply that its inverse
can be given by χ 7→ ϕ ◦ (cocart ◦ h, χ, cocart ◦ k), where the weakly cocartesian cells
define f∗ and g∗ respectively.

X0 X1 Xn′ Xn

A B

H1

h

Hn

k

J

. . .

χ′

X0 X1 Xn′ Xn

C D

H1

f ◦ h

Hn

g ◦ k

K

. . .

χ{ } { }ψ ◦ –

Similarly that ϕ and (cocart, ψ, cocart) are cocartesian follows from the fact that, for any
paths J ′ : A′

0 −7−→ A′
p = A and J ′′ : B = B′

0 −7−→ B′
q, the assignments of cells

{ξ′ : J ′ ⌢ J ⌢ J ′′ → L} {ξ : J ′ ⌢ f∗
⌢K ⌢ g∗ ⌢ J ′′ → L}

– ◦ (id, ϕ, id)

– ◦ (id, cocart, ψ, cocart, id)

are inverses whenever both identities hold.
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The remainder of this section consists of corollaries of the lemma above. The first of
these shows that functors of augmented virtual double categories behave well with respect
to restrictions along morphisms that admit companions/conjoints. This is a variation on
the corresponding result for functors between double categories; see Proposition 6.8 of
[Shu08].

8.2. Corollary. Let F : K → L be a functor between augmented virtual double cate-
gories. Consider morphisms f : A→ C and g : B → D in K and let K : C −7−→ D be a path
of length ≤ 1. If the companion f∗ : A −7−→ C and the conjoint g∗ : D −7−→ B exist then F
preserves both the cartesian cell defining the restriction K(f, g) as well as the cocartesian
cell defining the horizontal composite of the path f∗

⌢K ⌢ g∗.
Under the same conditions the cartesian cells defining the restrictions of the form

K(f, id) and K(id, g), as well as the cocartesian ones defining the horizontal composites
of the form (f∗ ⊙K) and (K ⊙ g∗), are preserved by F .

Proof. This follows from the fact that F preserves the identities of the previous lemma
as well as the (weakly co)cartesian cells that define f∗ and g

∗; the latter by Corollary 5.5.

8.3. Corollary.Weakly cocartesian cells that define companions or conjoints, as in the
discussion preceding Lemma 5.4, are cocartesian.

Proof. Let f : A→ C be a vertical morphism. We will prove that any weakly cocartesian
cell defining the companion f∗, as in the composite below, is cocartesian; the proof for
the conjoint f ∗ is horizontally dual. By Definition 7.1 it suffices to prove that for any
K : C −7−→ D the path

A D

A C D,

K(f, id)

f

f∗ K

ψ
cocart

where ψ is the cartesian cell defining K(f, id), is cocartesian. But this follows directly
from the second assertion of Lemma 8.1 for K(f, id).

8.4. Example. To show that a path of cocartesian cells need not be cocartesian itself
in general consider a morphism f : A → C such that f∗, f

∗ and C(f, f) exist. We claim
that the path

A

A C A

f

f∗ f∗

co
ca
rt

cocart

is weakly cocartesian only if f is full and faithful (Definition 4.12). To see this let
the cocartesian cell ϕ : (f∗, f

∗) ⇒ C(f, f) and the cartesian cell ψ : C(f, f) ⇒ C be
as in Lemma 8.1. If the path above is weakly cocartesian then so is the composite
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ϕ ◦ (cocart, cocart) by the pasting lemma for cocartesian paths (Lemma 7.7); that is
cartesian too then follows from Lemma 5.9. Using the pasting lemma for cartesian cells
(Lemma 4.15) it follows that ψ◦ϕ◦(cocart, cocart) is cartesian which, by the first identity
of Lemma 8.1 and the vertical companion and conjoint identities (Lemma 5.4), equals idf .
We conclude that f is full and faithful.

Together with the pasting lemma for cocartesian paths (Lemma 7.7) Corollary 8.3
allows us to describe extensions along vertical morphisms in terms of compositions with
their companions and conjoints as follows; this is a variation on the corresponding result
for unital virtual equipments Theorem 7.20 of [CS10].

8.5. Corollary. Any composite of the form below is cocartesian, so that it defines J
as the extension of (H1, . . . , Hn) along h. Cocartesian cells that define extensions on the
right or that define two-sided extensions can be constructed analogously.

X0 X1 Xn′ Xn

A X0 X1 Xn′ Xn

A Xn

H1

h

Hn

h∗

H1 Hn

J

· · ·
cocart

cocart

9. Pointwise horizontal composites

Consider a path (H1, . . . , Hn) : X0 −7−→ Xn in the augmented virtual double category V-Prof
of V-profunctors (Example 2.4). In Example 7.2 we have seen that, in the special case
where X0 = I = Xn is the unit V-category, the horizontal composite (H1 ⊙ · · · ⊙ Hn)

is given by the coend
∫ u1∈X1· · ·

∫ un′∈Xn′ H1(∗, u1) ⊗ · · · ⊗ Hn(un′ , ∗), provided that it is
preserved by the monoidal product ⊗ of V on both sides. Recall that in the general case,
where X0 and Xn are any V-categories, the composite (H1 ⊙ · · · ⊙ Hn) can be built up
“pointwise” from such coends, by taking

(H1 ⊙ · · · ⊙Hn)(x, y) =

∫ u1∈X1

· · ·
∫ un′∈Xn′

H1(x, u1)⊗ · · · ⊗Hn(un′ , y)

for each pair x ∈ X0 and y ∈ Xn. The definition of ‘pointwise horizontal composite’ below
formalises the pointwise character of this composite inside an augmented virtual double
category; informally it captures that “any restriction of a pointwise horizontal composite
(H1 ⊙ · · · ⊙ Hn) is again a horizontal composite”. Pointwise horizontal composites are
important in the study of “pointwise Kan extensions” in augmented virtual double cate-
gories; see Section 4 of [Kou15]. While the definition below is stated in terms of a path
(ϕ1, . . . , ϕn) of unary cells we will mostly apply it to single horizontal cocartesian cells
ϕ1 : (H1, . . . , Hn)⇒ (H1 ⊙ · · · ⊙Hn).
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9.1. Definition. Consider a path ϕ = (ϕ1, . . . , ϕn) of unary cells whose last cell ϕn has
non-empty horizontal source and trivial vertical target, as in the composite on the left-hand
side below. Let f : Y → Xnmn be any morphism such that both restrictions Hnmn(id, f)
and Jn(id, f) exist.

We call ϕ right pointwise cocartesian with respect to f if the path (ϕ1, . . . , ϕ
′
n) is

cocartesian, where ϕ′
n is the unique factorisation as below. We call ϕ right pointwise

cocartesian if it is right pointwise cocartesian with respect to all such morphisms f .

Xn0 Xn1 Xn(mn)′ Y

Xn0 Xn1 Xn(mn)′ Xnmn

An′ Xnmn

Hn1 Hnmn (id, f)

f

Hn1

fn′

Hnmn

Jn

ϕn

cart· · ·
=

Xn0 Xn1 Xn(mn)′ Y

An′ Y

An′ Xnmn

Hn1

fn′

Hnmn (id, f)

Jn(id, f)

f

Jn

ϕ′n

cart

· · ·

(9)

The notion of left pointwise cocartesian path is horizontally dual. A path that is both
left and right pointwise cocartesian is called pointwise cocartesian.

Notice that any right (or left) pointwise cocartesian path is cocartesian, by taking
f = idXnmn

in the above. Conversely, in Lemma 9.8 below we will see that any cocartesian
path is pointwise with respect to morphisms f that admit conjoints. A single horizontal
cocartesian cell ϕ : (H1, . . . , Hn)⇒ J is called pointwise cocartesian whenever the single-
ton path (ϕ) is pointwise cocartesian; in that case we call J the pointwise composite of
(H1, . . . , Hn).

9.2. Example. Let (H1, . . . , Hn) : X0 −7−→ Xn be a path of V-profunctors. As anticipated
in the introduction to this section, a horizontal cell ϕ : (H1, . . . , Hn) ⇒ J is pointwise
cocartesian in V-Prof (Example 2.4) if and only if, for all pairs x ∈ X0 and y ∈ Xn, the
components ϕ : H1(x, u1)⊗ · · ·Hn(un′ , y)→ J(x, y) define J(x, y) as the coend

J(x, y) =

u1∈X1∫
· · ·

un′∈Xn′∫
H1(x, u1)⊗ · · · ⊗Hn(un′ , y)

which is preserved by the monoidal product ⊗ of V on both sides. The ‘only if’-part
follows from applying Example 7.2 to the restrictions of ϕ along V-functors of the form
x : I → X0 and y : I → Xn. The ‘if’-part follows from the “functoriality of coends”, dual
to that of ends as described in Section 2.1 of [Kel82]. We conclude that V-Prof is a pseudo
double category whenever V has large colimits that are preserved by ⊗ on both sides.

Now let V ⊂ V ′ be a universe enlargement as in Example 2.7. Here V ′ is large
cocomplete and closed, so that V ′-Prof is a pseudo double category by the above. Since
the embedding (V ,V ′)-Prof ↪→ V ′-Prof preserves cartesian cells, Lemma 9.4 below implies
that the pointwise composite (H1 ⊙ · · · ⊙Hn) exists in (V ,V ′)-Prof whenever the coends
above, which exist in V ′, are isomorphic to V-objects.
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9.3. Example. Let J : A −7−→ B and H : B −7−→ E be small V-profunctors between (possibly
large) V-categories; see Example 2.8. If the monoidal product ⊗ of V preserves colimits
(large ones, if B is large) on both sides then, as we will show, the composite J ⊙H can
be computed as the family of small colimits

(J ⊙H)(x, z) =

y′∈Bz∫
J(x, y′)⊗H(y′, z)

where Bz ⊆ B are the small sub-V-categories that exhibit H as small (see Example 2.8).
Moreover these colimits, if they exist, form a small V-profunctor which forms the pointwise
composite of J and H in V-sProf. We conclude that V-sProf, which has horizontal units
by Example 4.7, is a pseudo double category whenever V is small cocomplete and ⊗
preserves large colimits on both sides.

To see the above choose any universe enlargement V ⊂ V ′ (Example 2.7). By the
previous example the pointwise composite (J ⊙ H) exists in V ′-Prof: it is defined by
the coends on the left below. The cascade of isomorphisms below shows that (J ⊙ H)
can be computed as above. Here we have used the smallness of H, the assumption that
⊗ preserves large colimits on both sides, the “interchange of coends” theorem (see e.g.
Formula 2.9 of [Kel82]), while the last isomorphism follows from the enriched Yoneda’s
lemma, see e.g. Formula 3.71 of [Kel82].

(J ⊙H)(x, z) =

y∈B∫
J(x, y)⊗H(y, z) ∼=

y∈B∫
J(x, y)⊗

( y′∈Bz∫
B(y, y′)⊗H(y′, z)

)
∼=

y′∈Bz∫ ( y∈B∫
J(x, y)⊗B(y, y′)

)
⊗H(y′, z) ∼=

y′∈Bz∫
J(x, y′)⊗H(y′, z)

Now assume that the small colimit above (and thus all colimits above) exists in V . To
see that, in this case, (J ⊙H) is again a small V-profunctor take, for each z ∈ E, Az ⊆ A
to be the smallest full sub-V-category containing all Ay, where y ranges over the objects
of Bz. Then Az is small and we have

x′∈Az∫
A(x, x′)⊗ (J ⊙H)(x′, z) =

x′∈Az∫
A(x, x′)⊗

( y∈B∫
J(x′, y)⊗H(y, z)

)
∼=

y∈B∫ (x′∈Az∫
A(x, x′)⊗ J(x′, y)

)
⊗H(y, z′) ∼=

y∈B∫
J(x, y)⊗H(y, z) = (J ⊙H)(x, z),

which shows that (J ⊙H) is small. For the second isomorphism here recall from Exam-
ple 2.8 that each J(–, y) is a left Kan extension along Ay ⊆ A: the isomorphism follows
from the fact that the latter factors as a Kan extension along Az ⊆ A as a consequence of
the “pasting lemma” for Kan extensions, see e.g. Theorem 4.47 of [Kel82]. We can now
conclude that (J ⊙ H), as defined above, exists in V-sProf; that it forms the pointwise
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composite of J and H there follows from applying the lemma below to the locally full
embedding V-sProf ↪→ V ′-Prof which, as follows from Example 4.7, preserves cartesian
cells.

Besides reflecting restrictions (Lemma 4.5), locally full and faithful functors reflect
horizontal composites.

9.4. Lemma. Any locally full and faithful functor F : K → L (Definition 3.6) reflects
weakly cocartesian paths, that is a path (ϕ1, . . . , ϕn) ∈ K is weakly cocartesian whenever
its image (Fϕ1, . . . , Fϕn) is weakly cocartesian in L. Likewise F reflects horizontal co-
cartesian cells, i.e. horizontal composites.

If moreover F preserves unary cartesian cells then it reflects (right/left) (pointwise)
cocartesian paths as well.1

Pointwise cocartesian paths are coherent in the following sense.

9.5. Lemma. If the path ϕ = (ϕ1, . . . , ϕn) is right pointwise cocartesian then any path
of the form (ϕ1, . . . , ϕ

′
n), as in Definition 9.1, is again right pointwise cocartesian. An

analogous result holds for (left) pointwise cocartesian paths.

Proof. Let f : Y → Xnmn be as in Definition 9.1; that is Hnmn(id, f) and Jn(id, f)
exist. Let g : Z → Y be any morphism such that Hnmn(id, f)(id, g)

∼= Hnmn(id, f ◦ g)
and Jn(id, f)(id, g) ∼= Jn(id, f ◦ g) exist, where the isomorphisms follow from the past-
ing lemma for cartesian cells (Lemma 4.15). Consider the unique factorisation ϕ′′

n in
ϕ′
n ◦ (id, . . . , id, cart) = cart ◦ ϕ′′

n, as in Definition 9.1 but for ϕ′, where the cartesian
cells define Hnmn(id, f)(id, h) and Jn(id, f)(id, h) respectively; we have to show that
(ϕ1, . . . , ϕ

′′
n) is cocartesian. To see this consider the following equation where, in each

composite, the bottom cartesian cell (denoted ‘c’) defines a restriction along f and the
top cartesian cell (also denoted ‘c’) defines a restriction along g, and where the identities
follow from the definitions of ϕ′′

n and ϕ′
n respectively.

· · ·
ϕ′′n

c

c

=

· · · c

ϕ′n

c

=

· · · c

· · ·

ϕn

c

The composites of cartesian cells in the left-hand and right-hand sides above are again
cartesian by the pasting lemma, so that (ϕ1, . . . , ϕ

′′
n) is cocartesian because (ϕ1, . . . , ϕn) is

right pointwise cocartesian. This concludes the proof.

The pasting lemma for cocartesian paths (Lemma 7.7) induces one for pointwise co-
cartesian paths as follows.

1Assertion on the reflection of cocartesian paths corrected (November 2022).
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9.6. Lemma. [Pasting lemma] Consider the configuration of cells of Lemma 7.7. Assume
that all its cells ψi and ϕjk are unary and that the vertical targets of the last cells ψn
and ϕnmn are both the identity morphism on the object Cn. The assertions (a) and (b)
of Lemma 7.7 also hold after replacing ‘cocartesian’ by ‘right pointwise cocartesian with
respect to f ’, where f : Y → Cn is any morphism. Similarly these assertions also apply
to (left) pointwise cocartesian paths.1

Proof. We prove that assertion Lemma 7.7(a) holds for the ‘right pointwise cocartesian
with respect to f : Y → Cn’ case; the proofs for the other assertions are analogous. Assume
that the paths ψ and (ϕ11, . . . , ϕnmn) are right pointwise cocartesian with respect to f so
that, by Definition 9.1, the following restrictions along f exist: those of the horizontal
targets of ψn and ϕnmn as well as that of the last morphism in the horizontal source of
ϕnmn . Using these restrictions we obtain factorisations ψ′

n and ϕ′
nmn

, as in Definition 9.1,
such that the following equation holds, where ‘c’ denotes any cartesian cell defining one
of the restrictions along f .

· · ·

ϕn1

· · ·

ψn

· · ·

ϕnmn

c

=

· · ·
ϕn1 · · ·

· · ·
ψn

· · ·
ϕ′nmn

c =

· · ·
ϕn1 · · ·

ψ′
n

· · ·
ϕ′nmn

c

The above equation implies that the unique factorisation [ψn ◦ (ϕ1, . . . , ϕn)]
′ correspond-

ing to ψn ◦ (ϕn1, . . . , ϕnmn), as in Definition 9.1 and with respect to f , coincides with
ψ′
n ◦ (ϕn1, . . . , ϕ′

nmn
). By assumption (ψ1, . . . , ψ

′
n) and (ϕ11, . . . , ϕ

′
nmn

) are cocartesian so
that

(
ψ1 ◦ (ϕ11, . . . , ϕ1m1), . . . , [ψn ◦ (ϕ1, . . . , ϕn)]

′) is cocartesian too by Lemma 7.7(a).

Pointwise cocartesian cells can be obtained from the following lemmas.

9.7. Lemma. Let (ψ, ϕ) be a pair of cells that satisfies both identities of Lemma 8.1. The
cocartesian cell ϕ is pointwise cocartesian.

Proof. We will show that ϕ is right pointwise cocartesian; a horizontally dual argument
shows that ϕ is left pointwise cocartesian too. Let p : Y → B be any morphism such that
g∗(id, p) ∼= (g◦p)∗ (see Lemma 5.11) and J(id, p) exist. Let ϕ′ : f∗

⌢K⌢(g◦p)∗ ⇒ J(id, p)
be the unique factorisation in ϕ ◦ (id, id, cart) = cart ◦ ϕ′, as in Definition 9.1, where the
cartesian cells define the restrictions along p. We have to show that ϕ′ is cocartesian. To
see this compose the first identity of Lemma 8.1 with the cartesian cell defining g∗(id, p),
giving the first identity in the equation below. The second identity follows from the
definition of ϕ′.

c c

c

=

ψ

ϕ

c

=

ψ

c

ϕ′

1Revised to reflect the correction to Lemma 7.7 (November 2022).
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Since the composite of cartesian cells in the left-hand side defines the companion of g ◦ p,
the equation above is of the same form as the first identity of Lemma 8.1. Moreover by
the pasting lemma (Lemma 4.15) the composite of the bottom two cells in the right-hand
side is cartesian, so that ϕ′ is cocartesian by Lemma 8.1.

9.8. Lemma. Consider the path ϕ = (ϕ1, . . . , ϕn) and the morphism f : Y → Xnmn of
Definition 9.1. If the conjoint f ∗ exists and ϕ is cocartesian then ϕ is right pointwise co-
cartesian with respect to f . An analogous result holds for (left) pointwise cocartesianness.

Consequently in an augmented virtual equipment (Definition 4.10) the horizontal com-
posite of a path (H1, . . . , Hn) : X0 −7−→ Xn is pointwise whenever X0 and Xn are unital.

Proof.As in Definition 9.1 we assume thatHnmn(id, f) and J(id, f) exist. By Lemma 8.1
we have Hnmn(id, f)

∼= Hnmn ⊙ f ∗ and J(id, f) ∼= J ⊙ f ∗ such that each pair of cartesian
and cocartesian cells, defining the restriction and the composite, satisfy the identities
of that lemma. Let ϕ′

n be the factorisation as in Definition 9.1; we have to show that
(ϕ1, . . . , ϕ

′
n) is cocartesian. To see this consider the following equation of composites,

where the cartesian cells defining Hnmn(id, f), J(id, f) and f ∗ are denoted ‘c’ and the
cocartesian cells defining Hnmn ⊙ f ∗ and J ⊙ f ∗ are denoted ‘cc’. The identities follow
from the definition of ϕ′

n and the first identity of Lemma 8.1.

c

ϕ′n

· · · cc

=

ϕn

· · · c

· · · cc

= ϕn

· · ·
c =

c

cc

ϕn

· · ·

We conclude that ϕ′
n◦(id, . . . , id, cocart) = cocart◦(ϕn, id), by the uniqueness of factorisa-

tions through cartesian cells. It then follows from the pasting lemma (Lemma 7.7) that ϕ

being cocartesian implies that
(
ϕ1, . . . , cocart◦(ϕn, id)

)
=

(
ϕ1, . . . , ϕ

′
n◦(id, . . . , id, cocart)

)
is cocartesian which in turn means that (ϕ1, . . . , ϕ

′
n) is cocartesian. This proves the first as-

sertion. The final assertion follows by recalling from Corollary 4.16 that, in an augmented
virtual equipment, all morphisms into unital objects X0 and Xn admit companions and
conjoints.

10. The equivalence of unital augmented virtual double categories and uni-
tal virtual double categories

In this last section we will show that the notions of augmented virtual double category
and virtual double category are equivalent when all horizontal units exist. We denote
by VirtDblCatu the locally full sub-2-category of VirtDblCat consisting of virtual double
categories that have all horizontal units, normal functors—that preserve the cocarte-
sian cells defining horizontal units—, and all transformations between them. Likewise
AugVirtDblCatu ⊂ AugVirtDblCat denotes the full sub-2-category generated by the aug-
mented virtual double categories that have all horizontal units. Remember that any
functor of augmented virtual double categories preserves horizontal units (Corollary 5.5).
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Recall the strict 2-functor U : AugVirtDblCat→ VirtDblCat (Proposition 3.3) that maps
any augmented virtual double category K to the underlying virtual double category U(K)
consisting of the unary cells of K. Clearly unary cocartesian cells in K are again cocarte-
sian in U(K) so that U restricts to a strict 2-functor U : AugVirtDblCatu → VirtDblCatu.
The theorem of this section proves that the latter 2-functor, together with the assignment
K 7→ N(K) of Example 1.7, extends to a 2-equivalence AugVirtDblCatu ≃ VirtDblCatu.

In order to make the distinction between cells of N(K) and those of K clear, in this
section only we will place a bar over those of N(K). Thus N(K) has the same objects
and morphisms as K while each unary cell ϕ̄ of N(K) corresponds to a cell ϕ in K and
each nullary cell ψ̄ of N(K), of the shape on the left below, corresponds to a unary cell ψ
in K as on the right, where IC is the chosen horizontal unit for C.

A0 A1 · · · An′ An

C

J1

f

Jn

g
ψ̄

A0 A1 An′ An

C C

J1

f

Jn

g

IC

ψ

· · ·

Recall that for each object C ∈ K we denote by ηC : C ⇒ IC the cocartesian cell in K
that defines the chosen horizontal unit IC : C −7−→ C. Using the bar notation, composition
in N(K) is defined as

χ̄ ◦ (ξ̄1, . . . , ξ̄n) := χ′ ◦ (ξ1, . . . , ξn) (10)

where χ′ is the unique factorisation of χ through the cocartesian path of cells (ηξ̄1 , . . . , ηξ̄n)
in K, where ηξ̄i := ηCi′

if ξ̄i is nullary with horizontal target Ci′ and ηξ̄i := idKi
if ξ̄i is

unary with horizontal target Ki : Ci′ −7−→ Ci. The identity cells in N(K), for morphisms
J : A −7−→ B and f : A→ C, are given by

idJ := idJ and idf := ηC ◦ f.

10.1. Theorem. The strict 2-functor U : AugVirtDblCatu → VirtDblCatu together with
the assignment K 7→ N(K) (Example 1.7), both as recalled above, extend to a strict
2-equivalence AugVirtDblCatu ≃ VirtDblCatu.

Proof. That the composition for N(K) as defined above satisfies the associativity and
unit axioms is a straightforward consequence of those axioms in K, combined with the
uniqueness of the factorisations χ′ in (10).

To show that N(K) has all horizontal units let A be any object in N(K); we claim
that η̄A : A⇒ IA defines IA as the horizontal unit of A in N(K). To see this, consider the
identity of IA as a nullary cell idIA : IA ⇒ A in N(K); we will show that η̄A and idIA satisfy

the horizontal unit identities of Lemma 5.9. Indeed, we have idIA ◦ η̄A = (idIA ◦ ηA) =
η̄A = idA (the identity cell of A in N(K)). On the other hand we have

η̄A ◦ idIA = η′A ◦ idIA = idIA ◦ idIA = idIA = idIA ,
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where the right-hand side is the identity cell of IA in N(K) and where η′A = idIA is the
unique factorisation of ηA through ηidIA

= ηA.

We conclude that N(K) forms a well-defined augmented virtual double category that
has all horizontal units. Next we extend the assignment K 7→ N(K) to a strict 2-functor
N : VirtDblCatu → AugVirtDblCatu. For the action of N on morphisms consider a normal
functor F : K → L between unital virtual double categories. Since F preserves the co-
cartesian cells ηA of K we can obtain, for each object A ∈ K, an invertible horizontal cell
(FI)A : FIA ⇒ IFA in L that is the unique factorisation in

FA

FA FA
IFA

ηFA
=

FA

FA FA

FA FA

FIA

IFA

FηA

(FI)A

. (11)

We define NF : N(K) → N(L) as follows. On objects and morphisms it simply acts as
F does. To define its action on cells we first define, for each ξ̄ in N(K), the cell δξ̄ in L
by δξ̄ := (FI)C if ξ̄ is nullary with horizontal target C, and δξ̄ := idFK if ξ̄ is unary with

horizontal target K : C −7−→ D; we then set (NF )(ξ̄) := (δξ̄ ◦ Fξ). That this assignment
preserves identity cells is easily checked; that it preserves any composition χ̄ ◦ (ξ̄1, . . . , ξ̄n)
in N(K), as in (10), is shown by

(NF )(χ̄) ◦
(
(NF )(ξ̄1), . . . , (NF )(ξ̄n)

)
= δχ̄ ◦ Fχ ◦

(
δξ̄1 ◦ Fξi, . . . , δξ̄n ◦ Fξn

)
= δχ̄ ◦ (Fχ)′ ◦ (δξ̄1 ◦ Fξ1, . . . , δξ̄n ◦ Fξn)

= δχ̄ ◦ F (χ′) ◦ (Fξ1, . . . , F ξn) = δχ̄ ◦ F
(
χ′ ◦ (ξ1, . . . , ξn)

)
= (NF )

(
χ′ ◦ (ξ1, . . . , ξn)

)
= (NF )

(
χ̄ ◦ (ξ̄1, . . . , ξ̄n)

)
,

where the third identity is shown as follows. The cells (Fχ)′ and χ′, on either side, are
the factorisations in Fχ = (Fχ)′ ◦ (η(NF )(ξ̄1), . . . , η(NF )(ξ̄n)) and χ = χ′ ◦ (ηξ̄1 , . . . , ηξ̄n)
respectively. The identity follows from the fact that

(Fχ)′ ◦ (δξ̄1 , . . . , δξ̄n) ◦ (Fηξ̄1 , . . . , Fηξ̄n) = (Fχ)′ ◦
(
η(NF )(ξ̄1), . . . , η(NF )(ξ̄n)

)
= Fχ = F (χ′) ◦ (Fηξ̄1 , . . . , Fηξ̄n)

together with the uniqueness of factorisations through the path (Fηξ̄1 , . . . , Fηξ̄n), which
is cocartesian because F is normal. This concludes the definition of N on morphisms.

Next consider a transformation ζ : F ⇒ G between normal functors F and G : K → L
of unital virtual double categories. We claim that the components of ζ again form a
transformation NF ⇒ NG, which we take to be the image Nζ. For instance, that
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the components of ζ are natural with respect to a nullary cell ψ̄ : J ⇒ C in N(K),
with non-empty horizontal source J , is shown below, where (ηGC ◦ ζC)′ is the unique
factorisation of ηGC ◦ ζC through η(NF )(ψ̄) = ηFC .

(NG)(ψ̄) ◦ (ζ̄J1 , . . . , ζ̄Jn) = (GI)C ◦Gψ ◦ (ζ̄J1 , . . . , ζ̄Jn)
= (GI)C ◦Gψ ◦ (ζJ1 , . . . , ζJn) = (GI)C ◦ ζIC ◦ Fψ
= (ηGC ◦ ζC)′ ◦ (FI)C ◦ Fψ = ζC ◦ (NF )(ψ̄)

Here the last identity follows from the definition of idζC in N(L) while the penultimate
identity follows from

(GI)C ◦ ζIC ◦ FηC = (GI)C ◦GηC ◦ ζC = ηGC ◦ ζC
= (ηGC ◦ ζC)′ ◦ ηFC = (ηGC ◦ ζC)′ ◦ (FI)C ◦ FηC ,

by using that FηC is cocartesian. Naturality of the components of ζ with respect to cells
in N(K) of other shapes can be shown similarly.

That the assignments K 7→ N(K), F 7→ NF and ζ 7→ Nζ combine into a strict
2-functor N : VirtDblCatu → AugVirtDblCatu follows easily from the uniqueness of the
factorisations (11). It is also clear that the obvious isomorphism (U ◦N)(K) ∼= K of
virtual double categories extends to an isomorphism U ◦ N ∼= id of strict 2-endofunc-
tors on VirtDblCat. Thus it remains to construct an invertible 2-natural transformation
τ : id

∼=−→ N ◦ U . Given a unital augmented virtual double category K we define the functor
τK : K → (N ◦U)(K) as follows. It is the identity on objects and morphisms, it is given by
ϕ 7→ ϕ̄ on unary cells and by ψ 7→ ηC ◦ ψ on nullary cells ψ : J ⇒ C. That these assign-
ments preserve composites and identity cells is easily checked; that the family τ = (τK)K
is 2-natural is clear. Finally, the inverse functor τ−1 : (N ◦ U)(K) → K can be given as
the identity on objects and morphisms, as ϕ̄ 7→ ϕ on unary cells and as ψ̄ 7→ εC ◦ ψ on
nullary cells ψ̄ : J ⇒ C, where εC : IC ⇒ C is the nullary cartesian cell that corresponds
to ηC : C ⇒ IC as in Lemma 5.9. This completes the proof.
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