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CLUSTER-TILTING SUBCATEGORIES IN EXTRIANGULATED
CATEGORIES

PANYUE ZHOU AND BIN ZHU

Abstract. Let (C ,E, s) be an extriangulated category. We show that certain quo-
tient categories of extriangulated categories are equivalent to module categories by some
restriction of functor E, and in some cases, they are abelian. This result can be re-
garded as a simultaneous generalization of Koenig-Zhu [KZ] and Demonet-Liu [DL].
In addition, we introduce the notion of maximal rigid subcategories in extriangulated
categories. Cluster tilting subcategories are obviously strongly functorially finite max-
imal rigid subcategories, we prove that the converse is true if the 2-Calabi-Yau extri-
angulated categories admit a cluster tilting subcategories, which generalizes a result of
Buan-Iyama-Reiten-Scott [BIRS] and Zhou-Zhu [ZZ].

1. Introduction

Cluster categories associated to finite dimensional hereditary algebras were introduced in
[BMRRT] (see [CCS] for type A). These 2-Calabi-Yau triangulated categories arise as
orbit categories of derived categories, and provide a categorification of the combinatorics
of the cluster algebras introduced in [FZ] by Fomin and Zelevinsky in the acyclic case.
They also provide a generalized framework for classical tilting theory, with the cluster
tilting objects and their endomorphism rings, the cluster tilted algebras.

Cluster-tilting theory gives a way to construct abelian categories from some triangu-
lated categories and exact categories. Let T be a cluster-tilting subcategory in a cluster
category C . Buan-Marsh-Reiten [BMR] proved that the quotient category C /T [1] is
equivalent to the category of finitely presented modules modT , where modT is abelian.
This was proved by Keller-Reiten [KR] in case C is a 2-Calabi-Yau category, and proved
in [KZ] for general case (see also [IY]). Let B be an exact category with enough projec-
tives and enough injectives, and T a cluster-tilting subcategory of B. Demonet-Liu [DL]
proved that the quotient category B/T is equivalent to the category of finitely presented
modules modT , where T is the stable category of T by projectives and modT is abelian.

Cluster-tilting objects (subcategories) are maximal rigid objects (subcategories), the
converse is not true in general. The first examples of 2-Calabi-Yau triangulated categories
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in which maximal rigid objects are not cluster-tilting were given in [BIKR, BMV] (see
also the example in Section 5 of [KZ]). In any 2-Calabi-Yau triangulated category (or
exact stably 2-Calabi-Yau category) with a cluster-tilting subcategory, any functorially
finite maximal rigid subcategory is cluster-tilting [ZZ] [BIRS].

Recently, Nakaoka and Palu [NP] introduced the notion of an extriangulated category
by extracting those properties of Ext1 on exact categories and on triangulated categories
that seem relevant from the point-of-view of cotorsion pairs. The class of extriangulated
categories not only contains exact categories and extension closed subcategories of trian-
gulated categories as examples, but it is also closed under taking some quotients. There
are many other examples for extriangulated categories which are neither exact categories
nor triangulated categories [NP, ZhZ].

In this paper, we give a common framework for constructing equivalences of categories
from the (sub)quotients of extriangulated categories by rigid subcategories to module cat-
egories. As an application, this result unifies the work of Koenig-Zhu [KZ] and the work
of Demonet-Liu [DL]. We define the notion of maximal rigid subcategories in extrian-
gulated categories. We show that if a 2-Calabi-Yau extriangulated category contains a
cluster-tilting subcategory, then any strongly functorially finite maximal rigid subcate-
gory is cluster-tilting. This result can be regarded as a simultaneous generalization of
Theorem II.1.8 in [BIRS] and Theorem 2.6 in [ZZ].

The paper is organized as follows. In Section 2, we review some elementary defini-
tions and facts that we need to use later on, including extriangulated category, quotient
category and module category. In Section 3, we prove that certain quotient categories
of extriangulated categories (C ,E, s) are equivalent to module categories under some re-
striction of the functor E(−,−), see Theorem 3.4 and Theorem 3.13 for more details. In
Section 4, we prove that any strongly functorially finite maximal rigid subcategory in a
2-Calabi-Yau extriangulated category is cluster-tilting, see Theorem 4.3.

2. Preliminaries

Throughout the paper, when we say that C is a category, we always assume that C is
an additive category. All subcategories of a category C are full subcategories and closed
under isomorphisms. For any object X ∈ C , we denote by addX the subcategory of C
whose objects are direct summands of finite direct sums of finite many copies of X. We
denote by C (A,B) or HomC (A,B) the set of morphisms from A to B in C , and denote
by [X ](A,B) the subgroup of HomC (A,B) consisting of morphisms which factor through
objects in a subcategory X of C . The quotient category C /[X ] of C by a subcategory
X is the category with the same objects as C and the space of morphisms from A to B
is the quotient of group of morphisms from A to B in C by the subgroup consisting of
morphisms factor through objects in X . We use Ab to denote the category of abelian
groups.

Recall that a subcategory X of an additive category C is said to be contravariantly
finite in C if for every object M of C , there exists some X in X and a morphism
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f : X →M such that for every X ′ in X the sequence

HomC (X ′, X)
f◦−→ HomC (X ′,M) −→ 0

is exact. In this case f is called a right X -approximation. Dually, we define covariantly
finite subcategories in C and left X -approximations. Furthermore, a subcategory of C is
said to be functorially finite in C if it is both contravariantly finite and covariantly finite
in C . For more details, we refer to [AR].

Let C be a category and g : B → C a morphism in C . A pseudokernel of g is a
morphism f : A→ B such that for any C ′ ∈ C the sequence of abelian groups

C (C ′, A)
f◦−→ C (C ′, B)

g◦−→ C (C ′, C)

is exact. Equivalently, f is a pseudokernel of g if gf = 0 and for each morphism h : C ′ → B
such that gh = 0 there exists a (not necessarily unique) morphism p : C ′ → A such that
h = fp. These properties are subsumed in the following commutative diagram

C ′

∀h
��

p

~~

0

  
A

f // B
g // C

Clearly, a pseudokernel f of g is a kernel of g if and only if f is a monomorphism. The
concept of a pseudocokernel is defined dually.

A C -module is a contravariant functor G : C → Ab. Then C -modules form an abelian
category ModC . By Yoneda’s lemma, representable functors are projective objects in
ModC . We call M ∈ ModC coherent [Au] if there exists an exact sequence

HomC (−, C1)
β◦−→ HomC (−, C0) −→M −→ 0

of C -modules with C1, C0 ∈ C . We denote by modC the full subcategory of ModC
consisting of coherent C -modules. It is easily checked that modC is closed under cokernels
and extensions in ModC . Moreover, modC is closed under kernels in ModC if and only
if C has pseudokernels. In this case, modC forms an abelian category (see [Au]).

We recall some basics on extriangulated categories from [NP].

Let C be an additive category. Suppose that C is equipped with a biadditive functor
E : C op×C → Ab. For any pair of objects A,C ∈ C , an element δ ∈ E(C,A) is called an
E-extension. Thus formally, an E-extension is a triplet (A, δ, C). For any A,C ∈ C , the
zero element 0 ∈ E(C,A) is called the spilt E-extension.

Let (A, δ, C) be an E-extension. Since E is a bifunctor, for any a ∈ C (A,A′) and
c ∈ C (C ′, C), we have E-extensions

E(C, a)(δ) ∈ E(C,A′) and E(c, A)(δ) ∈ E(C ′, A).

We abbreviate them by a∗δ and c∗δ.
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2.1. Definition. [NP, Definition 2.3] Let (A, δ, C), (A′, δ′, C ′) be any pair of E-extensions.
A morphism

(a, c) : (A, δ, C)→ (A′, δ′, C ′)

of E-extensions is a pair of morphisms a ∈ C (A,A′) and c ∈ C (C,C ′) in C , satisfying
the equality

a∗δ = c∗δ′.

Simply we denote it as (a, c) : δ → δ′.

Let A,C ∈ C be any pair of objects. Sequences of morphisms in C

A
x // B

y // C and A
x′ // B′

y′ // C

are said to be equivalent if there exists an isomorphism b ∈ C (B,B′) which makes the
following diagram commutative.

A
x // B

y //

' b
��

C

A
x′ // B′

y′ // C

We denote the equivalence class of A
x // B

y // C by [ A x // B
y // C ]. For any

A,C ∈ C , we denote as 0 = [A
(1
0)−−→ A⊕ C (0, 1)−−−→ C].

2.2. Definition. [NP, Definition 2.9] Let s be a correspondence which associates an

equivalence class s(δ) = [ A x // B
y // C ] to any E-extension δ ∈ E(C,A). This s is

called a realization of E, if it satisfies the following condition:

• Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions, with

s(δ) = [ A x // B
y // C ], s(δ′) = [ A′ x′ // B′

y′ // C ′ ].

Then, for any morphism (a, c) : δ → δ′, there exists b ∈ C (B,B′) which makes the
following diagram commutative.

A
x //

a
��

B
y //

b
��

C

c
��

A′ x′ // B′
y′ // C ′

(2.1)

In this case, we say that sequence A x // B
y // C realizes δ, whenever it satisfies s(δ) =

[ A x // B
y // C ]. We call such sequence a conflation, x inflation, y deflation. Remark

that this condition does not depend on the choices of the representatives of the equivalence
classes. In the above situation, we say that (2.1) (or the triplet (a, b, c)) realizes (a, c).
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2.3. Definition. [NP, Definition 2.10] A realization s of E is called additive if it satisfies
the following conditions.

• For any A,C ∈ C , the split E-extension 0 ∈ E(C,A) satisfies s(0) = 0.

• For any pair of E-extensions δ ∈ E(C,A) and δ′ ∈ E(C ′, A′), we have

s(δ ⊕ δ′) = s(δ)⊕ s(δ′).

2.4. Definition. [NP, Definition 2.12] Let C be an additive category. We call the pair
(E, s) an external triangulation of C if it satisfies the following conditions:

(ET1) E : C op × C → Ab is a biadditive functor.

(ET2) s is an additive realization of E.

(ET3) Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions, realized as

s(δ) = [ A x // B
y // C ], s(δ′) = [ A′ x′ // B′

y′ // C ′ ].

For any commutative square

A x //

a
��

B
y //

b
��

C

A′
x′ // B′

y′ // C ′

in C , there exists a morphism (a, c) : δ → δ′ which is realized by (a, b, c).

(ET3)op Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions, realized by

A
x // B

y // C and A′
x′ // B′

y′ // C ′

respectively. For any commutative square

A
x // B

y //

b
��

C

c
��

A′
x′ // B′

y′ // C ′

in C , there exists a morphism (a, c) : δ → δ′ which is realized by (a, b, c).

(ET4) Let (A, δ,D) and (B, δ′, F ) be E-extensions realized by

A
f // B

f ′ // D and B
g // C

g′ // F
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respectively. Then there exist an object E ∈ C , a commutative diagram

A
f // B

f ′ //

g
��

D

d
��

A h // C

g′

��

h′ // E

e
��

F F

in C , and an E-extension δ
′′ ∈ E(E,A) realized by A

h // C
h′ // E , which satisfy

the following compatibilities.

(i) D
d // E

e // F realizes E(F, f ′)δ′,

(ii) E(d,A)δ′′ = δ,

(iii) E(E, f)δ′′ = E(e, B)δ′.

(ET4)op Let (D, δ,B) and (F, δ′, C) be E-extensions realized by

D
f ′ // A

f // B and F
g′ // B

g // C

respectively. Then there exist an object E ∈ C , a commutative diagram

D
d // E

e //

h′

��

F

g′

��
D

f ′ // A

h
��

f // B

g
��

C C

in C , and an E-extension δ
′′ ∈ E(C,E) realized by E h′ // A h // C , which satisfy

the following compatibilities.

(i) D
d // E

e // F realizes E(g′, D)δ,

(ii) δ′ = E(C, e)δ′′,

(iii) E(B, d)δ = E(g, E)δ′′.

In this case, we call s an E-triangulation of C , and call the triplet (C ,E, s) an externally
triangulated category, or for short, extriangulated category C .

For an extriangulated category C , we use the following notation:
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• If a conflation A x // B
y // C realizes δ ∈ E(C,A), we call the pair ( A x // B

y // C , δ)
an E-triangle, and write it in the following way.

A x // B
y // C δ //

• Let A x // B
y // C

δ // and A′
x′ // B′

y′ // C ′
δ′ // be any pair of E-triangles.

If a triplet (a, b, c) realizes (a, c) : δ → δ′, then we write it as

A
x //

a
��

B
y //

b
��

C
δ //

c
��

A′
x′ // B′

y′ // C ′
δ′ //

and call (a, b, c) a morphism of E-triangles.

We recall some concepts from [NP]. Let C be an extriangulated category.

• An object P ∈ C is called projective if for any E-triangle A
x // B

y // C
δ //

and any morphism c ∈ C (P,C), there exists b ∈ C (P,B) satisfying yb = c. We
denote the full subcategory of projective objects in C by P . Dually, the full sub-
category of injective objects in C is denoted by I.

• We say C has enough projectives, if for any object C ∈ C , there exists an E-triangle

A x // P
y // C δ //

satisfying P ∈ P . We can define the notion of having enough injectives dually.

• C is said to be Frobenius if C has enough projectives and enough injectives and if
moreover the projectives coincide with the injectives.

We now give some examples of extriangulated categories.

2.5. Example.

(1) An exact category B can be viewed as an extriangulated category in the usual
way. In fact, we take the biadditive functor E := Ext1B(−,−) and the realization
s is defined by associating equivalence classes of short exact sequences to itself. A
triangulated category C with shift functor [1] also can be viewed as an extriangulated
category. In fact, we put E := C (−,−[1]). For any δ ∈ E(C,A) = C (C,A[1]), take
a triangle

A x // B
y // C δ // A[1]

and define as s(δ) = [ A x // B
y // C ]. For more details, see [NP, Example 2.13]

and [NP, Proposition 3.22].
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(2) Let C be an extriangulated category, and J a subcategory of C . If J ⊆ P ∩ I,
then C /[J ] is an extriangulated category. This construction gives extriangulated
categories which are not exact nor triangulated in general. For more details, see
[NP, Proposition 3.30].

(3) Let C be a triangulated category with Auslander-Reiten translation τ , and X a
functorially finite subcategory of C , which satisfies τX = X . For any A,C ∈ C ,
define E′(C,A) ⊆ C (C,A[1]) to be the collection of all equivalence classes of trian-

gles of the form A
f // B

g // C
δ // A[1] where f is X -monic, and s′(δ) = [A

f−−→
B

g−−→ C], for any δ ∈ E′(C,A). Then (C ,E′, s′) is a Frobenius extriangulated
category whose projective objects are precisely X . This construction gives extrian-
gulated categories which are not exact nor triangulated in general. For more details,
see [ZhZ, Theorem 4.8] and [ZhZ, Corollary 4.10].

2.6. Remark.

(1) If (C ,E, s) is an exact category, then enough projectives and enough injectives agree
with the usual definitions.

(2) If (C ,E, s) is a triangulated category, then P and I consist of zero objects. Moreover
it is Frobenius as an extriangulated category.

Assume that (C ,E, s) is an extriangulated category. By Yoneda’s lemma, any E-
extension δ ∈ E(C,A) induces natural transformations

δ] : C (−, C)⇒ E(−, A) and δ] : C (A,−)⇒ E(C,−).

For any X ∈ C , these (δ])X and δ]X are given as follows:
(1) (δ])X : C (X,C)→ E(X,A); f 7→ f ∗δ.

(2) δ]X : C (A,X)→ E(C,X); g 7→ g∗δ.

2.7. Lemma. Let C be an extriangulated category,

A x // B
y // C δ //

an E-triangle. Then we have the following long exact sequence:

C (−, A)
C (−,x)−−−−→ C (−, B)

C (−,y)−−−−→ C (−, C)
δ]−−→ E(−, A)

E(−,x)−−−−→ E(−, B)
E(−,y)−−−−→ E(−, C),

C (C,−)
C (y,−)−−−−→ C (B,−)

C (x,−)−−−−→ C (A,−)
δ−]−→ E(C,−)

E(y,−)−−−−→ E(B,−)
E(x,−)−−−−→ E(A,−).

Proof. This follows from Proposition 3.3 and Proposition 3.11 in [NP].
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2.8. Definition. [ZhZ, Definition 3.21 ] Let C be an extriangulated category. A sub-
category X of C is called strongly contravariantly finite, if for any object C ∈ C , there
exists an E-triangle

K // X
g // C

δ // ,

where g is a right X -approximation of C.
Dually, a subcategory X of C is called strongly covariantly finite, if for any object

C ∈ C , there exists an E-triangle

C
f // X // L

δ′ // ,

where f is a left X -approximation of C.
A strongly contravariantly finite and strongly covariantly finite subcategory is called

strongly functorially finite.

2.9. Remark. Let C be an extriangulated category, X a subcategory of C .

• If C has enough projectives P , then X is strongly contravariantly finite in C if and
only if X is contravariantly finite in C containing P . The dual statement holds for
strongly covariantly finiteness.

• If C has enough projectives P and enough injectives I, then X is strongly func-
torially finite in C if and only if X is functorially finite in C containing P and
I.

• If C is a triangulated category, then X is strongly contravariantly (or convari-
antly, or functorially) finite in C if and only if X is contravariantly (covariantly,
functorially respectively) finite in C .

2.10. Definition. Let C be an extriangulated category, X a subcategory of C .

• X is called rigid if E(X ,X ) = 0, i.e., E(A,B) = 0, for any A,B ∈X .

• X is called cluster-tilting (see [CZZ]) if it satisfies the following conditions:

(1) X is a strongly functorially finite in C ;

(2) M ∈X if and only if E(M,X ) = 0;

(3) M ∈X if and only if E(X ,M) = 0.

• X is called maximal rigid if X is rigid and is maximal with respect to this property,
i.e., E(X ∪ addM,X ∪ addM) = 0, then M ∈X .

• An object X is called rigid, cluster tilting or maximal rigid if addX is rigid, cluster-
tilting or maximal rigid subcategory respectively.

By the definition of a cluster-tilting subcategory, we can immediately conclude:
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2.11. Remark. Let C be an extriangulated category.

• If X is a cluster-tilting subcategory of C , then P ⊆X and I ⊆X .

• X is a cluster-tilting subcategory of C if and only if

(1) X is rigid;

(2) For any C ∈ C , there exists an E-triangle C a // X1
b // X2

δ // , where X1, X2 ∈
X ;

(3) For any C ∈ C , there exists an E-triangle X3
c // X4

d // C
η // , where X3, X4 ∈

X .

• Any cluster-tilting subcategory is strongly functorially finite maximal rigid.

3. Quotients of extriangulated categories by rigid subcategories

Let C be an extriangulated category with enough projectives and enough injectives, and
X a subcategory of C . If P ⊆ X (resp. I ⊆ X ), the (co-)stable category X (resp.
X ) of X is the quotient category X /[P ] (resp. X /[I]), i.e. the category which has the
same objects as X and morphisms are defined as follows

HomX (A,B) := HomX (A,B)/[P ](A,B)

(resp. HomX (A,B) := HomX (X, Y )/[I](A,B)).

The following lemma was proved in [DL, Lemma 2.3], when C is an exact category.
However, it can be easily extended to our setting. For the convenience of the readers, we
give a simple proof in the following.

3.1. Proposition. For any contravariantly finite subcategory X of C which contains
P, modX is an abelian category.

Proof. It suffices to show that X has pseudokernels (see [Au, Section 2]). Consider a
morphism f ∈ HomC (X1, X0) where X0, X1 ∈X . Since C has enough projectives, there
exists an E-triangle

N
a // P0

b // X0
η // ,

where P0 is a projective object. By Corollary 3.16 in [NP], there exists an E-triangle

K
(gc) // X1 ⊕ P0

(f, b) // X0
θ // .

Let k : X2 → K be a right X -approximation of K. We claim that gk is a pseudokernel
of f . If fd = 0 for a morphism d ∈ HomC (X,X1) where X ∈ X , then there exists the
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following commutative diagram:

X

d
��

u // P

v
��

X1
f // X0,

where P is projective. Since P is projective, there exists a morphism e : P → P0 such
that v = be. Since (

d

−eu

)
∈ HomC (X,X1 ⊕ P0)

and

(f, b) ◦
(

d

−eu

)
= fh− beu = fd− vu = 0,

By Lemma 2.7, there exists a morphism h : X → K such that
(
d
−eu

)
=

(
g
c

)
h. In particular,

we have d = gh. Since k is a right X -approximation of K and X ∈ X , there exists
a morphism ` : X → X2 such that k` = h. It follows that (gk) ◦ ` = gh = d. Hence
(gk) ◦ ` = d.

3.2. Quotients of extriangulated categories (I). Let X be a rigid subcategory
of C which contains P . We denote by XL the subcategory of objects M of C which
admits an E-triangle

M a // X0
b // X1

δ // ,

where X0, X1 ∈ X . Now we consider the restriction of functor E(−,−) to XL, denoted
by H:

H : XL −→ ModX

M 7−→ E(−,M)|X .

We will consider the quotient category XL/[X ] and denote by [f ] the residue class in
XL/[X ] of a morphism f of XL.

Let π : XL → XL/[X ] be the projection functor. By the definition of a rigid sub-
category, H(M) = 0 if M ∈ X . Hence, by the universal property of π, there exists a
functor

F : XL/[X ]→ ModX

such that the following diagram commutes:

XL

H

''
π
��

XL/[X ] F //ModX
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3.3. Lemma. For any E-triangle

M x // X0
y // X1

δ // ,

where X0, X1 ∈X , there exists an exact sequence in ModX

HomX (−, X0)→ HomX (−, X1)→ H(M)→ 0.

Thus, F(M) = H(M) ∈ modX .

Proof. The proof is similar to the proof of Lemma 3.1 in [DL].

3.4. Theorem. The restriction of functor E(−,−) to XL induces an equivalence of cat-
egories F : XL/[X ] ' modX .

Proof. • We prove that F is dense:
For any object C ∈ modX , there exists an exact sequence in modX :

HomX (−, X1)
α−−−→ HomX (−, X0)→ C → 0,

where X0, X1 ∈X . Since

HommodX (HomX (−, X1), HomX (−, X0)) ' HomX (X1, X0)

by Yoneda’s Lemma, there exists a morphism f : X1 → X0 such that α = HomX (−, f).
Since C has enough projectives, there exists an E-triangle

N
a // P0

b // X0
η // ,

where P0 is projective object. By Corollary 3.16 in [NP], there exists an E-triangle

K c // X1 ⊕ P0
(f, b) // X0

θ // .

Therefore K ∈XL. By Lemma 3.3, there exists an exact sequence:

HomX (−, X1)
α−−−→ HomX (−, X0) −→ F(K)→ 0.

Since both F(K) and C are cokernels of α, we have C ' F(K).

• We prove that F is full:
Let M,N ∈ XL and β ∈ HommodX (F(M),F(N)). By the definition of XL, we have

the following two E-triangles:

M a // X0
b // X1

δ //

N
c // Y0

d // Y1
η // ,
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where X0, X1, Y0, Y1 ∈ X . By Lemma 3.3, and since HomX (−, X0) and HomX (−, X1)
are projective in modX , we obtain the following diagram with exact rows in modX :

HomX (−, X0)

µ0
��

HomX (−, b)// HomX (−, X1)

µ1
��

// F(M)

β
��

// 0

HomX (−, Y0)
HomX (−, d)// HomX (−, Y1) // F(N) // 0.

By Yoneda’s Lemma, there exist morphisms f0 ∈ HomX (X0, Y0) and f1 ∈ HomX (X1, Y1)
such that µ0 = HomX (−, f0), µ1 = HomX (−, f1) and df0 = f1b. Then there exists a
projective object P ∈X , s ∈ HomX (X0, P ) and t ∈ HomX (P, Y1) such that f1b− df0 =
ts. Since P is projective object, there exists a morphism k ∈ HomX (P, Y0) such that
t = dk. Put g0 = f0 + ks, then g0 = f0 and dg0 = df0 + ts = f1b. By (ET3), we obtain a
morphism of E-triangles

M
a //

f
��

X0
b //

g0
��

X1
δ //

f1
��

N c // Y0
d // Y1

η // .

Therefore, there exists a morphism f : M → N such that g0a = cf , and β = F([f ]).

• We prove that F is faithful:
Let f : M → N be a morphism in XL such that F([f ]) = 0. Then H(f) = 0. Since C

has enough injectives, there exists an E-triangle

M
a // I

b // L
η // ,

where I is an injective object. By Corollary 3.16 in [NP], there exists an E-triangle

M
(fa) // N ⊕ I c // K δ // .

Applying HomC (X ,−) to the above E-triangle, we get a long exact sequence

HomC (X , N ⊕ I) −→ HomC (X , K)
δ]−−−→ E(X ,M)

E(X , (fa))=0
−−−−−−−−→ E(X , N ⊕ I).

In particular, we have that HomC (X , K)
δ]−−−→ E(X ,M) is an epimorphism. Since

M ∈XL, there exists an E-triangle

M
d // X0

e // X1
θ // ,

where X0, X1 ∈ X . Since δ] is an epimorphism and s is an additive realization of E, we
obtain a morphism of E-triangles

M
d // X0

e //

u
��

X1
θ //

v
��

M
(fa) // N ⊕ I c // K

δ // .

It follows that
(
f
a

)
= ud, thus [f ] = 0 in XL/[X ].
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This theorem immediately yields the following.

3.5. Corollary. Let C be an extriangulated category with enough projectives and enough

injectives, and X a cluster-tilting subcategory of C . Then C /[X ]
E(X ,−)
' modX .

3.6. Corollary. [BMR, KR, KZ, IY] Let C be a triangulated category and X a cluster-

tilting subcategory of C . Then C /[X ]
E(X ,−)
' modX .

3.7. Corollary. [DL] Let B be an exact category with enough projectives and enough

injectives, and X a cluster-tilting subcategory of B. Then B/[X ]
E(X ,−)
' modX .

3.8. Corollary. Let C be an extriangulated category with enough projectives and enough
injectives, and X a contravariantly finite rigid subcategory of C . Then XL/[X ] is
abelian.

Proof. This follows from Theorem 3.4 and Proposition 3.1.

Motivated by the definition of 2-Calabi-Yau triangulated categories and exact stably
2-Calabi-Yau categories, Chang-Zhou-Zhu [CZZ] introduced the following definition.

3.9. Definition. [CZZ, Definition 1.10] Let C be an extriangulated category, which is a
Hom-finite Krull-Schmidt k-linear category, where k is a field. C is called 2-Calabi-Yau
if there exists a bifunctorial isomorphism

E(A,B) ' DE(B,A),

for any A,B ∈ C , where D = Homk(−, k) is the usual k-duality.

3.10. Example. Let C be a 2-Calabi-Yau extriangulated category with a cluster-tilting
object, and (X ,Y ) a cotorsion pair with core M = X ∩ Y in C . Suppose that there
is a cluster tilting subcategory T contains M as a subcategory. By Proposition 4.6 in
[CZZ], T can be written uniquely as T = TX ⊕M⊕TY such that TX ⊕M is X -cluster
tilting and TY ⊕M is Y -cluster tilting, where TX ∈ X and TY ∈ Y . By Theorem 3.4,
we have

C /[TX ⊕M⊕ TY ] ' mod(TX ⊕M⊕ TY ),

X /[TX ⊕M] ' mod(TX ⊕M),

Y /[TY ⊕M] ' mod(TY ⊕M).
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3.11. Quotients of extriangulated categories (II). In this subsection, we as-
sume that X is a rigid subcategory of C which contains I. We denote by XR the
subcategory of objects M of C which admits an E-triangle

X1
a // X0

b //M
δ // ,

where X0, X1 ∈ X and Ω−1X the subcategory of objects L of C such that there exists
an E-triangle

X // I // L // ,

where X ∈X , I ∈ I. Now we consider the functor

K : XR −→ ModX

M 7−→ HomC (−,M)|X .

We will consider the quotient category XR/[Ω
−1X ] and denote by [f ] the residue class

in XR/[Ω
−1X ] of any morphism f of XR. Let π′ : XR →XR/[Ω

−1X ] be the projection
functor. By the universal property of π′, there exists a functor

G : XR/[Ω
−1X ]→ ModX

such that the following diagram commutes:

XR

K

((
π′

��
XR/[Ω

−1X ] G //ModX

3.12. Lemma. For any M ∈XR, we have G(M) = K(M) ∈ modX . That is to say, for
any E-triangle

X1
x // X0

y //M δ // ,

where Y0, Y1 ∈X , there exists an exact sequence in modX

K(X1)
K(x)−−→ K(X0)

K(y)−−→ K(M)→ 0.

Proof. It is similar to the proof of Lemma 3.4 in [DL].

3.13. Theorem. The functor G : XR/[Ω
−1X ]→ modX is an equivalence of categories.

Proof. • Let us prove that G is dense:
For any object C ∈ modX , there exists an exact sequence in modX :

K(X1)
K(α)−−−−→ K(X0)→ C → 0,
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where X0, X1 ∈X . Since C has enough injectives, there exists an E-triangle

X1
i // I1 // N // ,

where I1 is injective object. By Corollary 3.16 in [NP], there exists an E-triangle

X1

( iα) // I1 ⊕X0
// L // .

Therefore L ∈XR. By Lemma 3.12, we get an exact sequence

K(X1)
K(α)−−→ K(X0) −→ K(L)→ 0.

Since both K(L) and C are cokernels of K(α), we have C ' K(L) ' G(L).
• Let us prove that K (and therefore G) is full:
Let M,N ∈ XR and β ∈ HommodX (K(M),K(N)). We have the following two E-

triangles:

X1
a // X0

b //M δ //

Y1
c // Y0

d // N
η // ,

where X0, X1, Y0, Y1 ∈ X . It follows that there exists a commutative diagram with
morphisms f0 : X0 → Y0 and f1 : X1 → Y1 such that µ0 = K(f0) and µ1 = K(f1):

K(X1)

µ1
��

K(a) // K(X0)

µ0
��

K(b) // K(M)

β

��

// 0

K(Y1)
K(c) // K(Y0)

K(d) // K(N) // 0.

Hence f0a = cf1. There exists an injective object I0 ∈ X , s ∈ HomX (X1, I0) and
t ∈ HomX (I0, Y0) such that f0a − cf1 = ts. Since I0 is an injective object, there exists
a morphism k ∈ HomX (X0, I0) such that s = ka. Put g0 = f0 − tk, then g0 = f0 and
g0a = f0a− tka = cf1. By (ET3), we obtain a morphism of E-triangles

X1
a //

f1
��

X0
b //

g0
��

M
δ //

h
��

Y1
c // Y0

d // N
η // .

Therefore, there exists a morphism h : M → N such that hb = dg0, and β = K([h]).
• Let us prove that G is faithful:
Let f : M → N be a morphism in XR such that G([f ]) = 0. For M ∈ XR, we have

two E-triangles:

X1
a // X0

b //M
δ //
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where X0, X1 ∈X , and

X0
u // I2

v // Q
η // ,

where I2 is injective object. By (ET4), we have commutative diagram

X1
a // X0

b //

u

��

M
δ //

c

��
X1

// I2
k //

v

��

L //

d
��

Q

η

��

Q

��

of E-triangles. From G([f ]) = 0, we have K(f) = 0. It follows that fb factors through an
injective object I3: i.e. we have a commutative diagram

X0
b //

g′

��

X0

f
��

I3
g // N.

Therefore there exists a morphism h : I2 → I3 such that g′ = hu. Hence we have a
commutative diagram

X0
b //

u

��

X0

f
��

I2
gh // N.

By Lemma 3.13 in [NP], there exists a morphism φ : L → N which makes the following
diagram commutative

X0

u

��

b //M

c

�� f

��

I2
k //

gh ++

L
φ

  
N

In particular, we have f = φc. From the E-triangle:

X1
// I2

k // L // ,

we have L ∈ Ω−1X . This shows that [f ] = 0 in XR/[Ω
−1X ].
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3.14. Corollary. Ω−1X = X
⊥

, where X
⊥

= {M ∈XR | HomC (X ,M) = 0}.

Proof. For any M ∈ Ω−1X , there exists an E-triangle

X // I //M // ,

where X ∈ X , I ∈ I. Applying the functor HomC (X ,−) to the above E-triangle, we
have the following exact sequence:

HomC (X , I) −→ HomC (X ,M) −→ E(X , X) = 0.

It follows that M ∈ X
⊥
. Conversely, if M ∈ X

⊥
, then G(M) = K(M) = 0. Since G is

faithful, we have M ∈ Ω−1X .

3.15. Remark. Let C be a Hom-finite Krull-Schmidt k-linear extriangulated category
with Auslander-Reiten translation τ and τ−1, and k a field. Let X be a cluster-tilting
subcategory of C . Assume that there is a functorial isomorphism

E(A,B) ' DHomC (B, τA) ' DHomC (τ−1B,A),

for any A,B ∈ C , where D = Homk(−, k) denotes duality over k. Using similar arguments
as in the proof of Proposition 3.11 and Proposition 3.13 in [DL], the Auslander-Reiten
translation τ induces an equivalence from X to X , and then an equivalence from modX
to modX .

4. Relations between cluster tilting and maximal rigid

In this section, all categories are assumed Hom-finite Krull-Schmidt k-linear for a field
k. Let C be an extriangulated category. Any cluster-tilting subcategory in C is strongly
functorially finite maximal rigid, but the converse is not true in general, even when C is
2-Calabi-Yau. For example, we take an extension closed subcategory X in a cluster tube
C [BMV], X is a 2-Calabi-Yau extriangulated category, and has strongly maximal rigid
objects, which are not cluster tilting. We will prove that any strongly functorially finite
maximal rigid subcategory is cluster tilting in 2-Calabi-Yau extriangulated categories with
a cluster tilting subcategory.

The following lemma plays an important role in this section.

4.1. Lemma. Let C be a 2-Calabi-Yau extriangulated category, and X a maximal rigid
subcategory of C . Given an E-triangle

A
f // X

g // B
δ // . (4.1)

(1) If g is a right X -approximation of B and E(B,B) = 0, then A ∈X .

(2) If f is a left X -approximation of A and E(A,A) = 0, then B ∈X .
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Proof. (1). Applying the functor HomC (X ,−) to the E-triangle (4.1), we have the
following exact sequence

HomC (X , X)
HomC (X ,g)−−−−−−−−→ HomC (X , B) −→ E(X , A) −→ E(X , X) = 0.

Since g is a right X -approximation of B, we have that HomC (X , g) is an epimorphism.
It follows that E(X , addA) = 0 and, by the 2-Calabi-Yau property, E(addA,X ) = 0.

Applying the functor HomC (−, B) to the E-triangle (4.1), we have the following exact
sequence

HomC (X,B)
HomC (f, B)−−−−−−−−→ HomC (A,B) −→ E(B,B) = 0.

Applying the functor HomC (A,−) to the E-triangle (4.1), we have the following exact
sequence

HomC (A,X)
HomC (A, g)−−−−−−−−→ HomC (A,B) −→ E(A,A) −→ E(A,X) = 0.

We claim that HomC (A, g) is an epimorphism. Indeed, for any morphism a : A→ B,
there exists a morphism b : X → B such that bf = a. Since g is a right X -approximation
of B and X ∈ X , there exists a morphism c : X → X such that gc = b and then
a = g(cf). This shows that HomC (A, g) is an epimorphism. Thus we have E(A,A) = 0.
Since X is a maximal rigid subcategory, we have A ∈X .

(2). The proof is dual.

4.2. Corollary. Let C be a 2-Calabi-Yau extriangulated category, and X a strongly
functorially finite maximal rigid subcategory of C . If E(A,A) = 0, then there exist two
E-triangles

X1
// X0

g // A δ // ,

where X1, X0 ∈X and g is a right X -approximation of A;

A
f // X2

// X3
δ′ // ,

where X2, X3 ∈X and f is a left X -approximation of A.

4.3. Theorem. Let C be a 2-Calabi-Yau extriangulated category with a cluster-tilting
subcategory T . Then every strongly functorially finite maximal rigid subcategory is cluster-
tilting.

Proof. Assume that X is a strongly functorially finite maximal rigid subcategory in
C . Given an object M ∈ X satisfying E(M,X ) = 0. By definition of cluster tilting
subcategory, there exists an E-triangle

T1
f // T0

g //M δ // , (4.2)
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where T0, T1 ∈ T . Since E(T0, T0) = 0, by Corollary 4.2, there exists an E-triangle

T0
u // X1

v // X2
δ′ // ,

where X1, X2 ∈X and u is a left X -approximation of T0. By (ET4), we have a commu-
tative diagram

T1
f // T0

g //

u

��

M δ //

a

��
T1

x=uf // X1
y //

v

��

N //

b
��

X2

δ′

��

X2

��

of E-triangles. We claim that x is a left X -approximation of T1. Indeed, let α : T1 → X
be any morphism, where X ∈X . By applying the functor HomC (−, X) to the E-triangle
(4.2), we have the following exact sequence

HomC (T0, X)
HomC (f, X)−−−−−−−−→ HomC (T1, X) −→ E(M,X) = 0.

So there exists a morphism β : T0 → X such that α = βf . Since u is a left X -
approximation of T0 and X ∈X , there exists a morphism γ : X1 → X such that β = γu
and then α = γ(uf) = γx. This shows that x is a left X -approximation of T1.

Since E(T1, T1) = 0, by Lemma 4.1, we have N ∈ X . Since E(M,X ) = 0 and
X2 ∈ X , by the 2-Calabi-Yau property, we have E(X2,M) = 0. This shows that the
E-triangle

M a // N b // X2
//

splits. By [NP, Corollary 3.5], we have that a is section. This shows that M is a direct
summand of N and then M ∈X . This completes the proof.

4.4. Corollary. [ZZ, Theorem 2.6] Let C be a 2-Calabi-Yau triangulated category with
a cluster tilting subcategory T . Then every functorially finite maximal rigid subcategory
is cluster tilting.

Proof. This follows from Theorem 4.3 and Remark 2.9.

Recall that an exact category B is stably 2-Calabi-Yau if it is Frobenius, that is, B has
enough projectives and enough injectives, which coincide, and the stable category B, which
is triangulated [Ha], is 2-Calabi-Yau. Examples of exact stably 2-Calabi-Yau categories are
categories of maximal Cohen-Macaulay modules CM(R) for a three-dimensional complete
local commutative isolated Gorenstein singularity [BIKR] and modΛ for Λ being the
preprojective algebra of a Dynkin quiver [GLS].
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4.5. Corollary. [BIRS, Theorem II.1.8(a)] Let B be an exact stably 2-Calabi-Yau cat-
egory with a cluster tilting subcategory T . Then every functorially finite maximal rigid
subcategory is cluster tilting.

Proof. It is easy to see that Ext1B(A,B) ' Ext1B(A,B). This follows from Theorem 4.3.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: ross.street@mq.edu.au
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