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A PROBABILITY MONAD AS THE COLIMIT
OF SPACES OF FINITE SAMPLES

TOBIAS FRITZ AND PAOLO PERRONE

Abstract. Abstract We define and study a probability monad on the category of
complete metric spaces and short maps. It assigns to each space the space of Radon
probability measures on it with finite first moment, equipped with the Kantorovich–
Wasserstein distance. This monad is analogous to the Giry monad on the category of
Polish spaces, and it extends a construction due to van Breugel for compact and for
1-bounded complete metric spaces.

We prove that this Kantorovich monad arises from a colimit construction on finite power-
like constructions, which formalizes the intuition that probability measures are limits of
finite samples. The proof relies on a criterion for when an ordinary left Kan extension
of lax monoidal functors is a monoidal Kan extension. The colimit characterization
allows the development of integration theory and the treatment of measures on spaces
of measures, without measure theory.

We also show that the category of algebras of the Kantorovich monad is equivalent to the
category of closed convex subsets of Banach spaces with short affine maps as morphisms.
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1. Introduction

In existing categorical approaches to probability theory, one works with a suitable category
of measurable spaces and equips it with a monad, which associates to every space X the
space of probability measures on X [Law62]. This applies e.g. to the Giry monad [Gir82]
and to the Radon monad, discovered in [Sem73, Świ74] and named such in [FJ15]; see
also [Jac17] for a general overview of probability monads and [LW17] for a more general
setup. These monads constitute an additional piece of structure on the underlying cat-
egory. Here, we introduce another such monad—the Kantorovich monad—which lives
on the category of complete metric spaces and extends the analogous monads studied by
van Breugel [vB05] on the full subcategories of compact metric spaces and of 1-bounded
complete metric spaces. An extension to suitable non-bounded spaces is necessary for our
goal to redevelop basic probability theory categorically, because generic distributions of
random variables in probability theory may not have bounded support – the Gaussian is
a prominent example.

We prove that the monad structure of the Kantorovich monad naturally arises from
a colimit construction on the underlying category, which is motivated by the operational
interpretation of a probability measure as a formal limit of finite samples. This allows
to approach some elements of probability measure theory, such as integration, in terms
of simpler considerations based on finite sets. Among other benefits, we hope that this
may help to make probability theory more constructive, perhaps in a way that allows for
straightforward implementation in a functional programming language or proof assistant.

Besides this colimit characterization, another reason for using probability monads on
metric spaces is the following. Most results in probability theory are concerned with
approximations (in some sense or another), often in a quantitative manner. Therefore
we expect that working with metric spaces will allow us to find categorical formulations,
proofs, or perhaps even generalizations of such approximation results, such as the law of
large numbers, or the Glivenko-Cantelli theorem on the convergence of empirical distri-
butions.

In algebra, theoretical computer science, and other fields, monads often arise from
equational theories [PP02]. Categorically, this is formalized by presenting a monad in
terms of an associated Lawvere theory, operad, or generalized operad, via a suitable coend
or more general colimit. From this perspective, our colimit characterization formalizes
the idea that this probability monad models a kind of algebraic theory presented by the
operations of taking convex combinations with uniform weights. However, our way of
presenting the Kantorovich monad does not involve a Lawvere theory or an operad, but
rather a graded monad [FKM16].

This theme has also been pursued in the work of van Breugel on the Kantorovich
monad for 1-bounded complete metric spaces [vB05], in particular with the consideration
of metric mean-value algebras [vBHMW05, Definition 6]. A similar idea underlies recent
ongoing work of Mardare, Panangaden and Plotkin. In [MPP16, Theorem 10.9]1, they

1 However, in order for their Theorem 10.9 to be correct, their definition of the p-Wasserstein space
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consider the underlying functor of the Kantorovich monad on complete separable metric
spaces as the free algebras of an R+-enriched Lawvere theory, which is closely related to
our Theorem 5.4(d).

Summary. In Section 2 we introduce the main mathematical constructions that we use
in this work: the categories Met and CMet of (complete) metric spaces and short maps,
and the Radon measures on such spaces with finite first moment. We prove (Theorem
2.6) that such measures are equivalently linear, positive and τ -smooth functionals on the
space of Lipschitz functions. In Section 2.8 we introduce the Wasserstein metric, and
show the functoriality of the Wasserstein space construction (Lemma 2.13), resulting in
the Kantorovich functor P .

In Section 3 we prove (Theorem 3.21 and Corollary 3.22) that the Wasserstein spaces
and the Kantorovich functor can be obtained as the colimit of the power functors, defined
in 3.1, and that the universal arrow is given by the empirical distribution map, which we
define in 3.9.

In Section 4 we prove that P has a monad structure (Theorem 4.13), which arises
naturally from the colimit characterization, given the particular monoidal structure of
the power functors (Theorems 4.2 and 4.5). This can be interpreted as a Kan extension
in the 2-category MonCat of monoidal categories and lax monoidal functors (Theorem
4.6).

In Section 5 we study the algebras of P . We show (Theorem 5.4) that the algebras
are convex metric spaces whose convex structure is compatible with the metric. This
implies in turn that the algebras are equivalently closed convex subsets of Banach spaces
(Theorem 5.6).

In Appendix A we study colimits in the category of metric spaces, and prove (Propo-
sition A.4) that the tensor product preserves colimits. This is used in Section 4 to define
the monad structure of P .

In Appendix B we give the 2-categorical details (Theorem B.1) of why the Kan exten-
sions used in this paper are Kan extensions in MonCat, or algebraic Kan extensions.

In Appendix C we define the operad of convex spaces, and show that Met is a pseu-
doalgebra for this operad, giving further motivation for the power functor construction.
We also show that, in agreement with the microcosm principle, P -algebras in the form of
convex spaces with metric compatibility are particular internal algebras in Met, i.e. they
form a full subcategory.

∆[M ] needs to be restricted to the measures of finite p-th moment, as we do in Section 2.3 for p = 1. The
reason is that a probability measure of infinite p-th moment has infinite p-Wasserstein distance from any
finitely supported probability measure, e.g. because it has infinite distance from any Dirac measure. The
error in the proof (as pointed out to us by Prakash Panangaden) is in the claim that the p-Wasserstein
distance metrizes weak convergence, which is true only for finite p-th moment.



A PROBABILITY MONAD AS THE COLIMIT OF SPACES OF FINITE SAMPLES 173

2. Wasserstein spaces

2.1. Categorical setting. Two categories are of primary interest to us. The first one
is the monoidal category Met, where:

• Objects are metric spaces, with the classical notion of metric as a distance function
d : X ×X → [0,∞) satisfying identity of indiscernibles, symmetry, and the triangle
inequality;

• Morphisms are short maps (also called 1-Lipschitz maps), i.e. functions f : X → Y
such that for all x, x′ ∈ X:

dY (f(x), f(x′)) ≤ dX(x, x′) ; (2.1)

• As monoidal structure, we define X ⊗ Y to be the set X × Y , equipped with the
`1-product metric:

dX⊗Y
(
(x, y), (x′, y′)

)
:= dX(x, x′) + dY (y, y′). (2.2)

The second one is its full subcategory CMet whose objects are complete metric spaces.
It is useful to think of metric spaces and short maps as enriched categories and enriched

functors [Law73,Law86], although in that context one typically works with a more relaxed
notion of metric space, such as allowing infinite distances (or even Lawvere metric spaces),
in order to guarantee cocompleteness. For Met and CMet, we investigate the existence of
particular colimits and their preservation by the monoidal product in Appendix A.

In our considerations, the concept of isometric embedding will often come up. It is
worth noting that together with the bijective short maps, the isometric embeddings in
Met form an orthogonal factorization system, which is, in many respects, analogous to the
(bo,ff) factorization system on Cat. Isometric embeddings are very close to being charac-
terized 1-categorically as the extremal monomorphisms: every extremal monomorphism
in Met is an isometric embedding, but only the isometric embeddings of closed subspaces
are extremal monomorphisms, since the isometric embedding of a subspace into its closure
is an epimorphism. Since a subspace of a complete metric space is complete if and only if
it is closed, it follows that in CMet the class of extremal monomorphisms coincides with
the isometric embeddings.

2.2. Analytic setting. The following definitions of an analytic nature will only be
needed in this section and in Section 3, where we prove our colimit characterization; all
subsequent developments will use the latter and therefore do not require any measure
theory.

Every metric space is a topological space, and so also a measurable space with the its
σ-algebra. We will always suppose probability measures to be Borel, and Radon, i.e. inner
regular with respect to compacts.

For X ∈ Met, we write Lip(X) for the space of Lipschitz functions X → R, where
R carries its usual Euclidean metric. Every Lipschitz function is a scalar multiple of an



174 TOBIAS FRITZ AND PAOLO PERRONE

element of Met(X,R), i.e. of a short map X → R. We expect that working with the latter
space, or even just with Met(X,R+), would be useful for achieving further abstraction.
However, currently we prefer to work with Lip(X), which has the added benefit of being
a vector space.

2.3. Finite first moments and a representation theorem. In order to define
Wasserstein spaces, we first have to define probability measures of finite first moment,
which are those for which every Lipschitz function has an expectation value.

2.4. Definition. Let X ∈ Met and p be a probability measure on X. We say that p has
finite first moment if the expected distance between two random points is finite, i.e. if∫

d(x, y) dp(x) dp(y) < +∞.

We have borrowed this elegant formulation from Goubault-Larrecq [GL17, Section 1],
who attributes it to Fernique.

2.5. Lemma. The following statements are equivalent for a probability measure p on X ∈
CMet:

(a) p has finite first moment.

(b) There is y ∈ X such that the expected distance from y is finite,∫
d(y, x) dp(x) < +∞.

(c) For all z ∈ X, the expected distance from z is finite,∫
d(z, x) dp(x) < +∞.

(d) Every f ∈ Lip(X) has finite expectation value,∫
f(x) dp(x) < +∞.

Proof. Since p is a probability measure, we know that X is nonempty and thus we can
always choose a point whenever we need one.

• (a)⇒(b): if the integral of a nonnegative function is finite, then the integrand is
finite at (at least) one point.
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• (b)⇒(c): For all z ∈ X, and for y as in (b), we have:∫
d(z, x) dp(x) ≤

∫ (
d(z, y) + d(y, x)

)
dp(x)

= d(z, y) +

∫
d(y, x) dp(x),

where the first term is finite for every z, and the second term is finite by hypothesis.

• (c)⇒(d): Since f is integrable if and only if |f | is, it is enough to consider the case
f ≥ 0. Then for an arbitrary z ∈ X,∫

f(x) dp(x) =

∫
(f(x)− f(z) + f(z)) dp(x)

≤ f(z) +

∫
|f(x)− f(z)| dp(x)

≤ f(z) + Lf

∫
d(x, z) dp(x) < +∞,

where Lf is the Lipschitz constant of f , which is a finite number.

• (d)⇒(a): Since the distance is short in each argument, the function

x 7→
∫
X

d(x, y) dp(y)

is finite by assumption and automatically short. Therefore its expectation is again
finite by hypothesis, which implies the finite first moment condition.

From now on, we write PX for the set of probability measures on X with finite first
moment. Later, we will equip this set with a metric. As we discuss in more detail
below, pushing forward measures along a short map f : X → Y defines a function
Pf : PX → PY which makes P into a functor.

Often measures are specified by how they act on functions by integration, such as in
the definition of the Daniell integral or in the Riesz representation theorem. We will now
state an analogous result for PX. Concretely, every p ∈ PX defines a linear functional
Ep : Lip(X)→ R given by mapping every function to its expectation value,

f 7−→ Ep(f) :=

∫
f(x) dp(x). (2.3)

We can thus consider E as a map E : PX → Lip(X)∗ into the algebraic dual. Each
functional Ep has a number of characteristic properties: it is linear, positive, and satisfies
a certain continuity property. To define the latter, we consider Lip(X) as a partially



176 TOBIAS FRITZ AND PAOLO PERRONE

ordered vector space with respect to the pointwise ordering. A monotone net of functions
is a family (fα)α∈I in Lip(X) indexed by a directed set I, such that fα ≤ fβ if α ≤ β.
If the supremum supα fα exists in Lip(X), we say that this supremum is pointwise if
(supα fα)(x) = supα fα(x) for every x ∈ X. For example on X = [0, 1], the sequence of
functions

fn(x) := min(nx, 1) (2.4)

with Lipschitz constant n ∈ N is a monotone sequence in Lip([0, 1]) whose supremum is
the constant function 1, but this supremum is not pointwise, since (supn fn)(0) = 1, while
supn fn(0) = 0.

The following representation theorem is similar to [Edg98, Theorem 2.4.12] and essen-
tially a special case of [Fre06, Theorem 436H].

2.6. Theorem. Let X ∈ Met. Mapping every probability measure to its expectation value
functional, p 7→ Ep, establishes a bijective correspondence between probability measures on
X with finite first moment, and linear functionals φ : Lip(X) → R with the following
properties:

• Positivity: f ≥ 0 implies φ(f) ≥ 0;

• τ -smoothness: if (fα)α∈I is a monotone net in Lip(X) with pointwise supremum
supα fα ∈ Lip(X), then

φ

(
sup
α
fα

)
= sup

α
φ(fα). (2.5)

• Normalization: φ(1) = 1.

The concept of τ -smoothness is similar to Scott continuity in the context of domain
theory and to normality in the context of von Neumann algebras, but the important
difference is that the preservation of suprema only applies to pointwise suprema: the
pointwiseness expresses exactly the condition that integration against delta measures must
preserve the supremum. For example, integrating (2.4) against δ0 does not preserve the
supremum.

Proof. The fact that the map p 7→ Ep is surjective onto functionals satisfying the above
conditions is an instance of [Fre06, Theorem 436H]. It remains to be shown that the
representing measure p is unique. If Ep = Eq, then by [Fre06, Proposition 416E], it is
enough to show that p(U) = q(U) for every open U ⊆ X. But now the sequence (fn) of
Lipschitz functions

fn(x) := min(1, n · d(x,X \ U))

monotonically converges pointwise to the indicator function of U . Together with Lebesgue’s
monotone convergence theorem, the equality Ep = Eq therefore implies p(U) = q(U), as
was to be shown.
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We collect another property for future use, which relies crucially on the non-negativity
of a measure:

2.7. Lemma. Let p ∈ PX and f : X → Y continuous such that the pushforward measure
f∗p is supported on some subset Y ′ ⊆ Y . Then p is supported on f−1(Y ′).

Proof. For x ∈ X \ f−1(Y ′), by assumption there is a neighborhood U 3 f(x) to
which f∗p assigns zero measure. Therefore (f∗p)(U) = p(f−1(U)) = 0, and f−1(U) is a
neighborhood of x.

2.8. Construction of the Wasserstein space.

2.9. Definition. Let X ∈ Met. The Wasserstein space PX is the set of probability
measures on X with finite first moment, with metric given by the Wasserstein distance,
or Kantorovich-Rubinstein distance, or earth mover’s distance2:

dPX(p, q) := inf
r∈Γ(p,q)

∫
X×X

dX(x, y) dr(x, y) (2.6)

where Γ(p, q) is the set of probability measures on X ×X with marginals p and q, respec-
tively.

In terms of duality, one can also characterize the Wasserstein metric as

dPX(p, q) = sup
f :X→R

∣∣∣∣∫ f(x) d(p− q)(x)

∣∣∣∣ = sup
f :X→R

(Ep[f ]− Eq[f ]), (2.7)

where the sup is taken over all short maps [Vil09, AGS05], which we think of as well-
behaved random variables. This duality formula provides one way to see that dPX is in
fact a metric.

A simple special case of the Wasserstein distance is:

2.10. Lemma. Let δ(x0) be the Dirac measure at some x0 ∈ X.3 Then

d(δ(x0), p) =

∫
d(x0, x) dp(x). (2.8)

Proof. The only joint that has δ(x0) as its first marginal and p as its second marginal
is the product measure δ(x0)⊗ p. Therefore,

d(δ(x0), p) =

∫
X×X

d(y, x) d(δ(x0)⊗ p)(x, y)

=

∫
X×X

d(y, x) d(δ(x0))(y) dp(x)

=

∫
X

d(x0, x) dp(x).

2For the different names, see the bibliographical notes at the end of Chapter 6 in [Vil09].
3The notation δ(x0) suggests a map δ : X → PX. This is indeed the case, as we will see in 4.7.
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2.11. Theorem. [Bas15, Theorem 1.8] Let X ∈ CMet. Then PX is also a complete
metric space.

Moreover, if X is separable (resp. compact), then PX is also separable (resp. compact),
as proven for example in [Vil09, Theorem 6.18].

2.12. Lemma. If f : X → Y is an isometric embedding, then so is Pf : PX → PY .

Proof. This follows from the duality formula (2.7) and the fact that, for X ⊆ Y , every
1-Lipschitz function g : X → R can be extended to Y , for example via

y 7−→ sup
x∈X

(g(x)− d(x, y)).

We would like the construction X 7→ PX to be functorial in X, and this indeed turns
out to be the case. For f : X → Y , we define Pf : PX → PY to be the map which takes
every measure to its pushforward f∗p ∈ PY . In the dual picture, in terms of functionals,
f∗p is characterized by the substitution formula: for every g : Y → R,

Ef∗p(g) =

∫
Y

g(y) d(f∗p)(y) =

∫
X

g(f(x)) dp(x) = Ep(g ◦ f). (2.9)

While preservation of composition and identities are clear, there are still two small things
to check in order to establish functoriality:

2.13. Lemma. Let f : X → Y be short, and p ∈ PX. Then,

(a) f∗p has finite first moment as well;

(b) f∗ : PX → PY is short.

Proof.

(a) Let g : Y → R be a Lipschitz map, we have Ef∗p(g) = Ep(g ◦ f) < ∞ by (2.9) and
by the assumption that p has finite first moment.

(b)

dPY
(
f∗p, f∗q

)
= sup

g:Y→R
(Ef∗p(g)− Ef∗q(g)) = sup

g:Y→R
(Ep(g ◦ f)− Eq(g ◦ f))

≤ sup
h:X→R

(Ep(h)− Eq(h)) = dPX
(
p, q
)
.
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Thus we have a functor P : Met → Met. By Theorem 2.11, P restricts to an endo-
functor of CMet, which we also denote by P . This is the functor we study in this paper.
We call it the Kantorovich functor, in accordance with [vB05].

3. The Wasserstein space as a colimit

Thanks to the metric structure, it turns out that for X ∈ CMet, the Wasserstein space PX
also arises as the colimit of a diagram involving certain powers of X. The intuition behind
this colimit is very operational and formalizes the idea that a probability measure is an
idealized version of a finite ensemble of elements of X, sampled randomly via repeated
trials. In the next section, we will exploit this colimit characterization in order to equip
P with a monad structure.

3.1. Power functors. For X ∈ Met and n ∈ N, let Xn be the metric space whose
underlying set is the cartesian power, as in the case of X⊗n, but whose distances are
renormalized,

dXn

(
(x1, . . . , xn), (y1, . . . , yn)

)
:=

dX(x1, y1) + . . .+ dX(xn, yn)

n
. (3.1)

One way to motivate this renormalization is that the diagonal map X → X⊗n is not
short4, while the diagonal map X → Xn is an isometric embedding which we call the
n-copy embedding. Another motivation is given in Appendix C.1, where we show that
Met is a pseudoalgebra of the simplex operad in such a way that the power Xn is the
uniform n-ary “convex combination” of X with itself.

LetXn be the quotient ofXn under the equivalence relation (x1, .., xn) ∼ (xσ(1), .., xσ(n))
for any permutation σ ∈ Sn. The elements of Xn are therefore multisets {x1, . . . , xn}.
The quotient metric is explicitly given by

dXn
(
{x1 . . . xn}, {y1 . . . yn}

)
:= min

σ∈Sn

1

n

n∑
i=1

dX(xi, yσ(i)), (3.2)

since this is exactly the minimal distance between the two relevant fibers of the quotient
map qn : Xn → Xn, and these distances already satisfy the triangle inequality. Due to this
formula, the composite X → Xn → Xn is also an isometric embedding, which we call the
symmetrized n-copy embedding δn : X → Xn. It is clear that the assignments X 7→ Xn

and X 7→ Xn are functorial in X ∈ Met, so that we have functors (−)n : Met→ Met and
(−)n : Met→ Met. The quotient map is a natural transformation qn : (−)n ⇒ (−)n.

There is a simple alternative way to write the metric (3.2) that connects to the Wasser-
stein distance (2.6):

4This is related to the fact that the symmetric monoidal category (Met,⊗) is semicartesian, but not
cartesian.
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3.2. Lemma.

dXn({xi}, {yi}) = min
A

1

n

∑
i,j

Aij d(xi, yj), (3.3)

where A ranges over all bistochastic matrices5.

Proof. The right-hand side of (3.2) is upper bounded by (3.2) since every permutation
matrix is bistochastic. Conversely, every bistochastic matrix is a convex combination of
permutation matrices: according to the Birkhoff-von Neumann theorem, the bistochastic
matrices of fixed dimension form a polytope whose vertices are precisely the permutation
matrices. Therefore the linear optimization of (3.3) attains the minimum on a permutation
matrix.

It is not hard to see that if X is complete, then so is every XS. Since every Xn is a
coequalizer of Xn via (3.2) by the action of a finite group, it follows that Xn is complete as
well: if (xk)k∈N is a Cauchy sequence in Xn, then we can assume without loss of generality
that d(xk, xk+1) ≤ 2−k after passing to a subsequence. Then we can lift every xk ∈ Xn to
x̂k ∈ Xn, in such a way that d(x̂k, x̂k+1) ≤ 2−k as well, which implies that (x̂k)k∈N is also
Cauchy and therefore convergent. It follows that limk→∞ xk = q(limk→∞ x̂k), so that Xn

is complete.

3.3. Lemma. If f : X → Y is an isometric embedding, then so are fn : Xn → Y n and
fn : Xn → Yn.

Categorically, it is more natural to consider the powers XS for nonempty finite sets S,
where XS is the metric space whose elements are functions x(−) : S → X equipped with
the rescaled `1-metric,

dXS

(
x(−), y(−)

)
:=

1

|S|
∑
s∈S

dX(xs, ys).

The idea is that the points of XS are finite samples indexed by a set of observations S,
and a function x(−) : S → X assigns to every observation s its outcome xs. Then it
is natural to define the distance between two finite sets of observations as the average
distance between the outcomes.

It is clear that XS is functorial in X, but how about functoriality in S? Without
the rescaling, we would have functoriality XT → XS for arbitrary injective S → T ,
corresponding to semicartesianness of (Met,⊗). But due to the rescaling by 1

|S| , the
functoriality now is quite different:

3.4. Lemma. Whenever φ : S → T has fibers of uniform cardinality, i.e. when the
cardinality of φ−1(t) does not depend on t ∈ T , we have an isometric embedding − ◦ φ :
XT → XS.

We also denote this map − ◦ φ by Xφ.

5We recall that a bistochastic matrix is a square matrix with non-negative entries, whose row and
columns all sum to one.
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Proof. Let x(−), y(−) ∈ XT . Then:

dXS

(
Xφ(x(−)), X

φ(y(−))
)

= dXS

(
(xφ(−)), (yφ(−))

)
=

1

|S|
∑
s∈S

dX(xφ(s), yφ(s))

=
1

|S|
∑
t∈T

|φ−1(t)| dX(xt, yt)

=
1

|S|
|S|
|T |
∑
t∈T

dX(xt, yt)

= dXT

(
x(−), y(−)

)
.

3.5. Definition. Let FinUnif be the monoidal category where:

• Objects are nonempty finite sets;

• Morphisms are functions φ : S → T with fibers of uniform cardinality,

|φ−1(t)| = |S|/|T | ∀t ∈ T. (3.4)

• The monoidal structure is given by the cartesian product6.

In particular, FinUnif contains all bijections between nonempty finite sets, and all its
morphisms are surjective maps. If we think of every finite set as carrying the uniform
probability measure, then FinUnif is precisely the subcategory of FinSet which contains
the measure-preserving maps.

In the following, we either use the powers XS for finite sets S ∈ FinUnif, or equivalently
the Xn. In the latter case, we take the n to be the objects of a skeleton of FinUnif indexed
by positive natural numbers n. By equivalence of categories, the choice between the two
approaches is only a matter of notation.

We write X(−) : FinUnifop → CMet for the power functor corresponding to Lemma 3.4.

3.6. Definition. Let N be the monoidal poset of positive natural numbers N\{0} ordered
by reverse divisibility, so that a unique morphism n → m exists if and only if m|n, and
monoidal structure given by multiplication.

N is the posetification of FinUnif, in the sense that the canonical functor |−| : FinUnif →
N which maps every S to its cardinality is the initial functor from FinUnif to a poset. Since
|S × T | = |S| · |T |, this functor is strict monoidal.

In analogy with the power functor X(−) : FinUnifop → CMet, we can also consider the
symmetrized power functor X(−) : Nop → CMet which takes n ∈ N to Xn, and the unique

6This is not the categorical product. In fact, FinUnif does not have any nontrivial products, but it is
semicartesian monoidal.
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morphism m → mn, or m|mn, is mapped to the embedding Xm|mn : Xm → Xmn given
by n-fold repetition on multisets,

{x1, . . . , xm} 7−→ {x1, . . . xm, . . . , x1, . . . , xm}. (3.5)

which is clearly natural in X. One can also consider this map as the bottom arrow of a
diagram of the form

XT XS

X|T | X|S|

Xφ

X|T | | |S|

(3.6)

The bottom arrow is determined uniquely by the universal property of the quotient map
on the left.

3.7. Lemma. Xm|mn : Xm → Xmn is an isometric embedding.

Proof. Let {xi}, {yi} ∈ Xm. Then using Lemma 3.2, we can write

dXmn
(
Xm|mn({xi}), Xm|mn({yi})

)
=

1

mn
min
A

∑
i,j,α,β

A(i,α),(j,β) dX(xi, yj),

where A ranges over all bistochastic matrices of size mn × mn with rows and columns
indexed by pairs (i, α) with i = 1, . . . ,m and α = 1, . . . , n. Similarly,

dXm({xi}, {yi}) =
1

m
min
B

∑
i,j

Bij dX(xi, yj).

For given B, one can achieve the same value of the first optimization by putting Aαβij :=
1
n
Bij for all values of the indices. Conversely, we can put Bij := 1

n

∑
α,β A(i,α),(j,β) in order

to achieve the same value in the other direction.

Thus the symmetrized power functor X(−) : Nop → CMet lands in the subcategory of
complete metric spaces and isometric embeddings.

Again we have a quotient map qS : XS → X|S| given by “forgetting the labeling” of
particular outcomes and only remembering the multiset of values of the given function
x(−) : S → X,

qS
(
x(−)

)
= {xs : s ∈ S} ∈ X|S|. (3.7)

It is the universal morphism which coequalizes all automorphisms of XS of the form Xσ,
where σ ranges over all bijections σ : S → S.

In this way, we obtain a natural transformation q : X(−) ⇒ X|−| of functors FinUnifop →
CMet.

3.8. Lemma. Via the map q appearing in the formula (3.7), the functor X(−) : Nop → Met
is the left Kan extension of X(−) : FinUnifop → Met along | − |op. Likewise for CMet in
place of Met.
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Proof. Again because CMet ⊆ Met is reflective, it is enough to prove the claim for Met.
There it follows from the universal property of the quotient map q. In more detail, we
have the diagram

FinUnifop Met

Nop

X(−)

|−|
q

X(−)

Consider now another functor K and a natural transformation α as in

FinUnifop Met

Nop

X(−)

|−|
α

K

Unraveling the definition, this means that for each S ∈ FinUnif we have a map

αS : XS → K(|S|),

and we need to find a factorization

XS X|S|

K(|S|)
αS

q

u|S| (3.8)

for some u : X(−) ⇒ K. By naturality of α with respect to automorphisms σ : S → S,
we know that αS is invariant under precomposing by Xσ. Therefore it factors uniquely
through q and this defines u|S|, which is enough since | − | is (essentially) bijective on
objects. It remains to prove naturality of u, which means that for all m,n ∈ N, the
diagram

Xm Xmn

K(m) K(mn)

um

Xm|mn

umn

K(m|mn)

commutes. This follows from the fact that | − | : FinUnif → N is also full, so that the
morphism Xm|mn is the image of some morphism in FinUnif, together with naturality of
α and the definition (3.8).

Equivalently, we could have obtained this result from the usual coend formula for left
Kan extensions: although general copowers do not exist in Met or CMet, since we require
all distances to be finite, they do exist in this particular case since Nop is a poset, so that
the coend formula only requires the existence of the trivial copowers by the empty set
and by singleton sets.

In conclusion, we also have endofunctors (−)S : CMet → CMet and (−)n : CMet →
CMet.
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3.9. Empirical distribution maps.

3.10. Definition. Let X ∈ Met. For S ∈ FinUnif, the empirical distribution map is
the map ιS : XS → PX which assigns to each S-indexed family x(−) ∈ XS the uniform
probability measure,

ιS(x(−)) :=
1

|S|
∑
s∈S

δ(xs). (3.9)

This map is clearly permutation-invariant, so it uniquely determines a map on sym-
metrized powers as well:

3.11. Definition. For n ∈ N, the symmetric empirical distribution map is the map
ιn : Xn → PX given by assigning to each multiset {x1, . . . , xn} ∈ Xn the corresponding
uniform probability measure,

ιn({x1 . . . xn}) :=
δ(x1) + · · ·+ δ(xn)

n
. (3.10)

The empirical distribution carries less information than the original sequence. The
information lost is precisely the ordering, as the following proposition shows.

3.12. Proposition. ιn : Xn → PX is an isometric embedding for each X and n.

Proof. For {xi}, {yi} ∈ Xn, consider the finite set

Nxy := {1x, . . . , nx} q {1y, . . . , ny},

and equip it with the pseudometric which makes the canonical map Nxy → X into an
isometric embedding, which means in particular that d(ix, jy) = dX(xi, yj). In the com-
mutative square

Nxy,n PNxy

Xn PX

ιn

ιn

both vertical arrows are isometric embeddings by Lemmas 3.3 and 2.12, where both P
and the lemmas generalize to pseudometric spaces in the obvious way. It is therefore
enough to prove that in PNxy, the distance between the uniform distribution on the
points {1x, . . . , nx} and {1y, . . . , ny} is equal to the distance between these two sets as
elements of Nxy,n. This is indeed the case, since the latter distance is given by (3.3),

d({ix}, {jy}) = min
A

1

n

∑
ij

Aij d(xi, yj),

where A ranges over all bistochastic matrices, which means exactly that 1
n
A ranges over

all couplings between the two uniform marginals as in the definition of the Wasserstein
distance (2.6).
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It is clear that ιS is natural in X, so we consider it as a transformation ιS : (−)S ⇒ P
between the power functor at S and the Kantorovich functor. Similarly, ιn : (−)n ⇒ P .

3.13. Lemma. Let n,m ∈ N, and X ∈ CMet. Then the following diagram commutes:

Xm Xmn

PX

ιm

Xm|mn

ιmn
(3.11)

Proof. For {x1, . . . , xm} ∈ Xm,

ιmn ◦Xm|mn({x1 . . . xm}) = ιmn({x1 . . . xm, . . . , x1, . . . , xm})

=
δ(x1) + · · ·+ δ(xm) + · · ·+ δ(x1) + · · ·+ δ(xm)

mn

=
δ(x1) + · · ·+ δ(xm)

m
= ιm(x1 . . . xm).

Therefore the symmetrized empirical distribution map ιn is natural in n. It follows
that the empirical distribution map ιS is natural in S.

3.14. Universal property.

3.15. Definition. Let X be a complete metric space, and consider the symmetrized
empirical distribution maps ιn : Xn → PX, which are embeddings for each n ∈ N. We
write I(X) for the union of their images,

I(X) :=
⋃
n∈N

ιn(Xn) ⊆ PX . (3.12)

3.16. Lemma. I(X) is the colimit of the functor X(−) : Nop → Met, and also of the
functor X(−) : FinUnifop → Met, with the ιn and the ιS forming the universal cocones.

Proof. By Lemma 3.8 and composition of Kan extensions, it is enough to prove this for
X(−). So let the {gn : Xn → Y } form a cocone, i.e. a family of short maps such that gm =
gmnXm|mn. Since the ιn : Xn → I(X) are jointly epic by definition of I(X), there can be
at most one map I(X)→ Y that is a morphism of cocones, which establishes uniqueness.
Concerning existence, every point of I(X) is of the form ιn({xi}) for some n and some
{xi} ∈ Xn, and we therefore define its image in Y to be gn({xi}). This is well-defined: if
ιn({xi}) = ιm({x′j}), then the relative frequencies of all points of X in the multiset {xi}
must coincide with those in {x′j}. In particular this implies Xm|mn({xi}) = Xn|mn({x′j}),
which is enough by the assumed naturality of the {gm}. Finally, the resulting map is still
short since any two points in I(X) come from some common Xn, and ιn : Xn → I(X) is
an isometric embedding.
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I(X) is not complete unless |X| ≤ 1. The following result is essentially proven in
[Bas15, Proposition 1.9] by reduction to the separable case treated in [Vil09]. We give
here an alternative proof that works without mentioning separability.

3.17. Theorem. Let X be a metric space. Then I(X) is dense in PX.

We prove this in several steps, starting with the compact case.

3.18. Lemma. Let X be a compact metric space. Then I(X) is dense in PX.

Proof. First of all, let p ∈ PX be finitely supported, but not necessarily with rational
coefficients. The measure p is of the form p = p1 δx1 + . . . pn δxn for some fixed finite n and
positive coefficients pi. For every ε > 0 and i = 1, . . . , n−1, we can find rational numbers
qi such that qi ≤ pi and pi − qi < ε. Define also qn := 1−

∑
i qi, which is rational as well.

The measure q := q1 δx1 + . . . qn δxn is then an element of I(X). Moreover, denoting by D
the (finite) diameter of X,

d(p, q) ≤
n−1∑
i=1

(pi − qi) · d(xi, xn)

≤
n−1∑
i=1

(pi − qi) ·D

≤ (n− 1) · ε ·D.

Since this can be made arbitrarily small, I(X) is dense in the space of (arbitrary) finitely
supported probability measures. It remains to be shown that finitely supported probabil-
ity measures are dense in PX.

For given ε > 0, the open sets of diameter at most ε cover X. By compactness, already
finitely many of these, say U1, . . . , Un, cover X. Consider the Boolean algebra generated
by the Ui, its atoms are measurable sets A1, . . . , Ak of diameter at most ε which partition
X.
{Ai} is then a finite family of measurable subsets, mutually disjoint, which cover X.

Choosing arbitrary yi ∈ Ai, we have d(xi, yi) < ε for every xi ∈ Ai. For given p ∈ PX,
the probability measure

pε :=
k∑
i=1

p(Ai) δ(yi) . (3.13)

is finitely supported. To see that it is close to p, we choose a convenient joint,

m :=
k∑
i=1

p|Ai ⊗ δ(yi), (3.14)

where p|Ai is the measure with p|Ai(B) := p(B ∩ Ai). Therefore

dPX(p, pε) ≤
∫
X×X

dX(x, y) dm(x, y) =
∑
i

∫
Ai×X

dX(x, y) dp(x) δ(yi)(y) dy



A PROBABILITY MONAD AS THE COLIMIT OF SPACES OF FINITE SAMPLES 187

=
∑
i

∫
Ai

dX(x, yi) dp(x) ≤
∑
i

∫
Ai

ε dp(x) = ε
∑
i

p(Ai) = ε,

as was to be shown.

Before getting to the general case, we record another useful fact.

3.19. Lemma. Let p, q1, q2 ∈ PX and λ ∈ [0, 1]. Then

dPX
(
λq1 + (1− λ)p, λq2 + (1− λ)p

)
= λ dPX(q1, q2). (3.15)

This follows immediately from the duality (2.7), but it is instructive to derive the
inequality ‘≤’ directly by using the fact that any coupling r ∈ Γ(q1, q2) gives a coupling

λr + (1− λ)(P∆)(p) ∈ Γ
(
λq1 + (1− λ)p, λq2 + (1− λ)p

)
where ∆ : X → X×X is the diagonal embedding, and the second term does not contribute
to the expected distance as it is supported on the diagonal.

3.20. Lemma. Let X be a metric space. Then the set of compactly supported probability
measures is dense in PX.

Proof. We first show that boundedly supported measures are dense in PX by finite first
moment, and then that compactly supported measures are dense in boundedly supported
measures by tightness.

For the first part, let p ∈ PX and x0 ∈ X be given. Let B(x0, ρ) be the closed ball
of radius ρ > 0 around x0. We would like to approximate p by the boundedly supported
measure p|B(x0,ρ), but this is not normalized. The most convenient way to fix this is to
use

p′ := p|B(x0,ρ) + p(X\B(x0, ρ)) δ(x0)

By decomposing
p = p|B(x0,ρ) + p|X\B(x0,ρ) (3.16)

we can compute

dPX(p, p′)
(3.15)
= p(X\B(x0, ρ)) dPX

(
δ(x0),

p|X\B(x0,ρ)

p(X \B(x0, ρ))

)
(2.8)
=

∫
X\B(x0,ρ)

d(x, x0) dp(x)

=

∫
X

d(x, x0) dp(x)−
∫
B(x0,ρ)

d(x, x0) dp(x).

The second term on the right-hand side is the expectation value of the function

fρ(x) :=

{
d(x, x0) if d(x, x0) ≤ ρ,

0 otherwise.
(3.17)

which converges pointwise to d(−, x0) as ρ → ∞. By monotone convergence, this term
converges to the first term,

∫
X
dX(x, x0) dp(x), which is finite by the assumption of finite
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first moment. Hence dPX(p, p′) → 0 as ρ → ∞, and the approximating measures p′ are
boundedly supported.

For the second part, we can then assume that diam(X) <∞. Let p ∈ PX. For suit-
ably large compact K ⊆ X, we would like to approximate p by the compactly supported
measure p|K , where p|K(A) := p(A∩K), but this is not normalized. The most convenient
way to fix this is to choose an arbitrary point x0 ∈ K, and to use

p′ := p|K + p(X\K) δ(x0), (3.18)

By decomposing
p = p|K + p|X\K , (3.19)

we can compute

dPX(p, p′)
(3.15)
= p(X\K) d

(
pX\K
p(K)

, δ(x0)

)
(2.8)
= p(X\K) diam(X),

By tightness, this tends to 0 as K → X.

Theorem 3.17 then follows as a corollary.
We now consider what happens in the reflective subcategory of complete metric spaces,

CMet ⊆ Met.

3.21. Theorem. The space PX is the colimit of the functor X(−) : Nop → CMet, and
also of the functor X(−) : FinUnifop → CMet.

Proof. Use Lemma 3.16 together with Theorem 3.17, and the fact that if Y is a complete
metric space with X ⊆ Y dense, then Y is the completion of X with the inclusion as the
universal morphism.

Since colimits over FinUnifop or Nop in a category of functors into Met or CMet are
computed pointwise7, this implies that the Wasserstein space construction in the form of
the object P ∈ [CMet,CMet], is the colimit of the power functor construction:

3.22. Corollary. The empirical distribution maps form two colimiting cocones in the
following way:

(a) Consider the functor (=)(−) : Nop → [CMet,CMet] mapping n ∈ N to the sym-
metrized power functor X 7→ Xn. Then P ∈ [CMet,CMet] is the colimit of (=)(−),
with the colimit cocone given by the symmetrized empirical distribution maps ιn :
(−)n ⇒ P .

(b) Consider the functor (=)(−) : FinUnifop → [CMet,CMet] mapping S ∈ FinUnif to the
power functor X 7→ XS. Then P ∈ [CMet,CMet] is the colimit of (=)(−), with the
colimit cocone given by the empirical distribution maps ιS : (−)S ⇒ P .

7Technically, this relies on the fact that such colimits always exists in Met and CMet, per Lemma A.1.
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3.23. Remark. Readers concerned with size issues may find it problematic that the
endofunctor category [CMet,CMet] is not locally small, so that the above universal prop-
erties potentially involve bijections between proper classes (or large sets). One way to
see that [CMet,CMet] is not locally small is to borrow the fact that the functor category
[CMet, Setop] is not small from [FS95], and choose a faithful functor Setop → CMet, such
as the composition of the power set functor Setop → Set with the discrete metric space
functor Set→ CMet which equips every set with the discrete {0, 1}-valued metric. In this
way, a large hom-set in [CMet, Setop] embeds into a hom-set of [CMet,CMet], which must
therefore also be large.

It may be possible to alleviate this problem by uncurrying, using (=)(−) : Nop×CMet→
CMet and (=)(−) : FinUnifop×CMet→ CMet, as in the theory of graded monads developed
in [FKM16].

4. Monad structure

The main result of this section is that the functor P is part of a monad, with units and
compositions defined in a way analogous to the Giry monad [Gir82]. It was proven in
[vB05] that the restriction of P to compact metric spaces carries a monad structure. In
the spirit of categorical probability theory, the monad multiplication is given by averaging
a measure on measures to a measure, and the unit by assigning to each point its Dirac
measure.

An appealing feature of the Kantorovich functor is that its monad structure can be
constructed directly from the colimit characterization in terms of the power functors
defined in Section 3. This uses the fact that the power functors carry the structure of a
monad graded by FinUnifop, in the sense of a lax monoidal functor8 into the endofunctor
category [CMet,CMet], and similarly for the symmetrized power functors in terms of Nop.
This construction of the Kantorovich monad extends the idea that probability measures
are formal limits of finite samples to the level of integration.

4.1. The power functors form a graded monad. As we will see next, the functor
(=)(−) : FinUnifop → [CMet,CMet] has a canonical strong monoidal structure with respect
to the monoidal structure on FinUnif given by the cartesian product. We assume the
latter to be strict for notational convenience.

Concerning the unit, there is a canonical transformation δ : 1CMet ⇒ (=)1 with com-
ponents given by the identity isomorphisms X ∼= X1. For the multiplication, we use the
currying maps ES,T : (XS)T ∼= XS×T . It takes a T -indexed family of S-indexed families
{{xij}i∈S}j∈T to the (S×T )-indexed family {xij}i∈S, j∈T . A straightforward computation
shows that ES,T preserves distances, since distances add up across all components i and
j and get rescaled by |S| · |T | in both cases. It is also clear that ES,T is natural in X.

8An ordinary monad on a category C is graded by the terminal category 1: being a monoid in [C,C],
it is equivalently a lax monoidal functor 1→ [C,C].
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We find it curious that at this stage, both of these structure maps are isomorphisms,
resulting in a strong monoidal functor. While the relevant coherence properties are im-
mediate by the universal properties, we state them here for convenient reference.

4.2. Theorem. The above structure transformations δ and E−,− equip the functor (=)(−)

with a strong monoidal structure, i.e. the following diagrams commute for all X ∈ CMet:

• The unit triangles

XS (XS)1 XS (X1)S

XS×1 X1×S

δ

ES,1

δS

E1,S (4.1)

• The associativity square

((XR)S)T (XR)S×T

(XR×S)T XR×S×T

ES,T

(ER,S)T ER,S×T

ER×S,T

(4.2)

For the proof, it is enough to verify commutativity at the level of the underlying sets,
where these are standard properties of currying which follow from the universal property
of exponential objects.

4.3. The symmetrized power functors form a graded monad. We now move
on to consider the analogous structure on the symmetrized power functors X 7→ Xn. By
definition, the quotient map qn : Xn → Xn is the universal map which coequalizes the
action of the symmetric group Sn permuting the factors. In order to analyze the graded
monad structure, we need to analyze the power of a power. The four ways of forming a
power of a power fit into the square

(Xm)n (Xm)n

(Xm)n (Xm)n

qn

(qm)n (qm)n

qn

(4.3)

which commutes by naturality of qn. The left arrow has a universal property as well:

4.4. Lemma. In CMet, the morphism (qm)n is the universal map out of (Xm)n which
coequalizes the action of (Sm)×n given by acting on each outer factor separately.

Proof. For every space Y , the map Y ⊗qm : Y ⊗Xm → Y ⊗Xm is also the coequalizer of
the Sm-action on Xm, thanks to Proposition A.4. Therefore (qm)⊗n : (Xm)⊗n → (Xm)⊗n

is the coequalizer of the factor-wise action of (Sm)×n on (Xm)⊗. Finally, the analogous
statement for (qm)n : (Xm)n → (Xm)n follows by rescaling both metrics by 1/n, which is
an automorphism of the category and therefore preserves colimits.
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It follows that the diagonal morphism is the universal morphism which coequalizes
the action of the wreath product group Sm oSn, where Sn acts on (Sm)×n by permutation
of the factors. We are not aware of any description for (qm)n other than the factorization
across qn by the universal property of the latter.

We now define Em,n : (Xm)n → Xmn by the universal property of the Sm oSn-quotient
map (Xm)n → (Xm)n as the unique morphism which makes the diagram

(Xm)n Xmn

(Xm)n Xmn

Em,n

qmn

Em,n

(4.4)

commute. Explicitly, Em,n takes a multiset of n multisets of cardinality m and forms
the union over the outer layer, resulting in a single multiset of cardinality mn. This is a
graded version of the multiplication in the commutative monoid monad; in particular, in
contrast to the Em,n, the Em,n are not isomorphisms (unless m = 1 or n = 1). Naturality
in X follows directly from the definition. Concerning the unit, we have the composite
isomorphism X ∼= X1 ∼= X1, which we also denote by δ.

4.5. Theorem. The above structure transformations δ and E−,− equip the functor (=
)(−) with a lax monoidal structure, meaning that the following diagrams commute for all
X ∈ CMet:

• The unit triangles

Xm (Xm)1 Xm (X1)m

Xm×1 X1×m

δ

Em,1

δm

E1,m
(4.5)

• The associativity square

((X`)m)n (X`)mn

(X`m)n X`mn

Em,n

(E`,m)n E`,mn

E`m,n

(4.6)

Proof. We reduce the claim to Theorem 4.2. Only the associativity square is nontrivial.
By reasoning similarly to (4.3), composing the quotient maps results in a unique
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epimorphism ((X`)m)n → ((X`)m)n. In fact, we get a cube:

((X`)m)n ((X`)m)n

((X`)m)n ((X`)m)n

((X`)
m)n ((X`)m)n

((X`)
m)n ((X`)m)n

((ql)
m)n

(qm)n

((ql)m)n

((ql)
m)n

qn

(qm)n

qn

(qm)n

qn

(qm)n

((ql)m)n

qn

(4.7)

where the top, bottom, right, and left faces commute by naturality of qn, and the front
and back faces commute by the naturality of qm. Using this, we consider the cube

((X`)m)n (X`)mn

((X`)m)n (X`)mn

(X`m)n X`mn

(X`m)n X`mn

Em,n

(E`,m)n

E`,mn
Em,n

(E`,m)n
E`m,n

E`m,n

E`,mn
(4.8)

where the unlabeled diagonal arrows are the quotient maps discussed previously. We need
to show that the back face commutes. The bottom and right faces commute by (4.4).
The top face also commutes, thanks to

((X`)m)n (X`)mn

((X`)
m)n (X`)

mn

((X`)m)n ((X`)m)n

Em,n

Em,n

Em,n

and similarly for the left face. Finally, commutativity of the front face follows from
Theorem 4.2. Therefore, since ((X`)m)n → ((X`)m)n is epi, this implies that the back
face commutes as well.
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We can also consider the Nop-graded monad (=)(−) as the universal Nop-graded monad
that one obtains from the FinUnifop-graded monad (=)(−) by change of grading along
FinUnifop → Nop. In fact, this follows from Lemma 3.8 and Theorem B.1 in Appendix B:

4.6. Theorem. Let MonCat be the bicategory of monoidal categories, lax monoidal func-
tors, and monoidal transformations. Then the lax monoidal functor (=)(−) : Nop →
[CMet,CMet] is the left Kan extension in MonCat of (=)(−) : FinUnifop → [CMet,CMet]
along FinUnifop → Nop.

Proof. By Lemma 3.8, this Kan extension works in Cat, and it is clear that FinUnifop →
Nop is strong monoidal and essentially surjective. In order to apply Theorem B.1, it re-
mains to check two things: first, that the transformation q : (=)(−) → (=)(−) is monoidal,
which boils down to the diagram

(Xm)n Xmn

(Xm)n Xmn

Em,n

q ◦ q q

Em,n

which is (4.4) again. Second, that q ⊗ q is an epimorphism in the functor category
[FinUnifop×FinUnifop, [CMet,CMet]], which follows from the fact that even every individual
double quotient map (Xm)n → (Xm)n is an epimorphism.

4.7. The monad structure on the Kantorovich functor. Now that we have
shifted the graded monad structure from FinUnifop to Nop, we shift it one step further
to a lax monoidal functor 1 → [CMet,CMet], i.e. to an ungraded monad on CMet whose
underlying functor is P .

We define the unit and multiplication maps in terms of the power functors and the
empirical distribution maps.

4.8. Definition. For X ∈ CMet and n ∈ N , The Dirac delta embedding is the composite

X X1 PX,δ ι1

which we also denote by δ.

Proposition 3.12 implies that δ is an isometric embedding. As a composite of natural
transformations, we also have naturality δ : 1⇒ P . Before getting to the multiplication,
we need another bit of preparation. As we show in Corollary A.2, CMet has sifted colimits.
These colimits are preserved by the power functors:

4.9. Lemma. Both the power functors (−)S and the symmetrized power functors (−)n
preserve sifted colimits in CMet.
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Proof. Let D be a sifted category. Since (−)S is (−)⊗S composed with a rescaling,
it is enough to show that (−)⊗S preserves D-colimits. But since the monoidal product
preserves colimits in each argument, (−)⊗S turns a D-colimit into a D×S-colimit. But
since the diagonal functor D → D×S is final by the siftedness assumption, the claim for
(−)S follows. The claim for (−)n follows by commutation of colimits with colimits.

Nop is trivially sifted thanks to being directed. However, the category FinUnifop itself
is not sifted: for example, the spans in FinUnif

S S

S S S S

α

are not connected by any zig-zag, for any S ∈ FinUnif with a non-identity automorphism
α : S → S.

Similarly to the quotient maps (Xm)n → (Xm)n in (4.3), we have a commutative
square

(Xm)n (PX)n

P (Xm) PPX

(ιm)n

ιn ιn

Pιm

(4.9)

where now all maps are isometric embeddings. In the following, we use this composite as
the map (Xm)n → PX.

4.10. Proposition. PPX is the colimit of both

(a) the (Xm)n with the colimiting cocone given by the ιn◦(ιm)n = Pιm◦ιn for m,n ∈ Nop;

(b) the subdiagram of this formed by the (Xn)n for n ∈ Nop.

While measures on spaces of measures are often quite delicate to handle, this result
gives a concrete way to work with them in terms of finite data only. Although we do not
currently have any use for even higher powers of P , the analogous statement holds for
any P nX.

Proof. The second claim follows from the first since Nop is sifted. For the first, the
Lemma 4.9 tells us that the (ιm)n : (Xm)n → (PX)n form a colimiting cocone for each n;
the claim then follows from the construction of a colimit over Nop × Nop by first taking
the colimit over the first factor and then over the second.
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4.11. Lemma. For X ∈ CMet, there is a unique morphism E : PPX → PX such that

(Xm)n Xmn

PPX PX

Em,n

E

(4.10)

commutes for all m,n ∈ N.

The map E : PPX → PX amounts to taking the expected distribution.

Proof. This amounts to showing that the ιmn◦Em,n form a cocone to which the universal
property of Proposition 4.10 applies. Since every morphism in N is a divisibility relation,
this corresponds to commutativity of the two diagrams

(Xm)n (X`m)n (Xm)n (Xm)`n

Xmn X`mn Xmn X`mn

PX PX

Em,n

(Xm|`m)n

E`m,n Em,n

(Xm)n|`n

Em,`n

ιmn

Xmn|`mn

ι`mn

Xmn|`mn

ιmn ι`mn

for every ` ∈ N. The upper squares commute by naturality of E in its two arguments in
N, and the triangles by Lemma 3.13.

E : PPX → PX is natural in X thanks to the uniqueness, i.e. we have a natural
transformation E : PP ⇒ P .

Let us show why the map E is exactly the integration map taking the expected dis-
tribution. Denote for now by Ẽ the usual integration map, i.e. for all µ ∈ PPX, let
Ẽµ ∈ PX be the measure mapping every Lipschitz function f : X → R to∫

X

f d(Ẽµ) :=

∫
PX

(∫
X

f dp

)
dµ(p),

Ẽ is short because the map p 7→
∫
X
f dp is. It furthermore makes diagram (4.10) commute,

since for all {{x11, . . . , xm1}, . . . , {x1n, . . . , xmn}} in (XM)N , by linearity of the integral:∫
f d(Ẽ ◦ ιn ◦ (ιm)n{{x11, . . . , xm1}, . . . , {x1n, . . . , xmn}})

= f(x11) + · · ·+ f(xm1) + · · ·+ f(x1n) + · · ·+ f(xmn)

=

∫
f d(ιmn ◦ Em,n{{x11, . . . , xm1}, . . . , {x1n, . . . , xmn}}).

Therefore, again by uniqueness, Ẽ = E.
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4.12. Monad axioms. E and δ satisfy the monad axioms. This can be proven using the
universal property and the monoidal properties of the power functors described in 4.3.

4.13. Theorem. (P, δ, E) is a monad on CMet. In other words, we have commutative
diagrams:

P PP P

P

Pδ

E

δP

(4.11)

and:
PPP PP

PP P

PE

EP E

E

(4.12)

When equipped with this additional structure, we call the Kantorovich functor P the
Kantorovich monad.

Proof. We already know that δ and E are natural. Hence we only need to check the
commutativity at each object X ∈ CMet. Because of the universal property of P , En, E
and ι, we have the following.

(a) The left unit triangle at X is the back face of the following prism:

PX PPX

Xm (Xm)n PX

Xmn

δ

E

(Xm)1|n◦δ

Xm|mn
Em,n

(4.13)

Now:

• The front face can be decomposed into the following diagram:

Xm (Xm)1 (Xm)n

Xm Xmn

δ (Xm)1|n

Em,1 Em,n

Xm|mn

(4.14)

which commutes by the left unit diagram of Theorem 4.5, together with natu-
rality of Em,−;
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• The top face can be decomposed into the following diagram:

Xm (Xm)1 (Xm)n

PX (PX)1 (PX)n PPX

ιm

δ

(ιm)1

(Xm)1|n

(ιm)n

δ (PX)1|n
ιn

(4.15)

which commutes by naturality of δ and (−)1|n;

• The right face commutes by Lemma 4.11;

• The left bottom face commutes by the naturality of the empirical distribution
map.

The empirical distribution maps are not epic, but across all m,n they are jointly
epic, therefore the back face has to commute as well.

(b) The right unit triangle at X is the back face of the following prism:

PX PPX

Xn (Xm)n PX

Xmn

Pδ

E

(X1|m◦δ)n

Xm|mn
Em,n

(4.16)

Now:

• The front face can be decomposed into the following diagram:

Xn (X1)n (Xm)n

Xn Xmn

(δ)n (X1|m)n

E1,n Em,n

Xn|mn

(4.17)

which commutes by the right unit diagram of Theorem 4.5, together with
naturality of E−,n;

• The top face can be decomposed into the following diagram:

Xn (X1)n (Xm)n

PX P (X1) P (Xm) PPX

ιn

(δ)n

ιn

(X1|m)n

ιn

Pδ P (X1|m) Pιm

(4.18)

which commutes by naturality of ιn;
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• The right face commutes again by Lemma 4.11;

• The left bottom face commutes again by the naturality of the empirical distri-
bution map.

Again, the empirical distribution maps across all m,n are jointly epic, therefore the
back face has to commute as well.

(c) The associativity square at each X is the back face of the following cube:

PPPX PPX

((X`)m)n (X`m)n

PPX PX

(X`)mn X`mn

PE

E

E

Em,n

(E`,m)n

E

E`,mn

E`m,n
(4.19)

where the map ((X`)m)n → PPPX is uniquely obtained in the same way as the
map ((X`)m)n → ((X`)m)n in the proof of Theorem 4.5, using naturality of ι instead
of q. Now:

• The front face is just the associativity square of Theorem 4.5;

• The top face can be decomposed into:

((X`)m)n (PPX)n PPPX

(X`m)n (PX)n PPX

(E`,m)n

ιn

(E)n PE

ιn

(4.20)

which commutes by Lemma 4.11, and by naturality of ιn;

• The left, right, and bottom faces commute by Lemma 4.11.

Once again, the empirical distribution maps across all `,m, n are jointly epic, there-
fore the back face has to commute as well.

It follows that (P, δ, E) is a monad.

In analogy with Theorem 4.6, we can now conclude that P is the monad that one
obtains by taking the FinUnifop-graded monad (=)(−) or the Nop-graded monad (=)(−)

and “crushing them down” universally to an ungraded monad:
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4.14. Theorem. As a lax monoidal functor, P : 1→ [CMet,CMet] is the Kan extension
in MonCat

(a) of the strong monoidal functor (=)(−) : FinUnifop → [CMet,CMet] along
! : FinUnifop → 1, and

(b) of the lax monoidal functor (=)(−) : Nop → [CMet,CMet] along ! : Nop → 1,

with respect to the empirical distribution maps making up the universal transformation.

Together with Corollary 3.22 and Theorem 4.6, this means that we have a diagram

FinUnifop

N [CMet,CMet]

1

|−|
(=)(−)

q

!

(=)(−)

ι(−)

P

in which all 2-cells are Kan extensions, both in Cat and in MonCat.

Proof. By composition of Kan extensions and Theorem 4.6, it is enough to prove the
second item. In order to apply Theorem B.1, it remains to check two things: first, that
the transformation ι(−) : (=)(−) ⇒ P is monoidal, which boils down to the diagram

(Xm)n Xmn

PPX PX

Em,n

ιn◦(ιm)n ιmn

E

which equals (4.10) again. Second, that i ⊗ i is an epimorphism in the functor category
[Nop×Nop, [CMet,CMet]], which follows from the fact that for every X, the maps (Xm)n →
PPX are jointly epic.

The uniqueness statement in Theorem B.1 also shows that the monad structure on P
is the only one which makes the empirical distribution maps into a morphism of graded
monads.



200 TOBIAS FRITZ AND PAOLO PERRONE

5. Algebras of the Kantorovich monad

A P -algebra for the Kantorovich monad P consists of A ∈ CMet together with a map
e : PA→ A such that the following diagrams commute:

A PA PPA PA

A PA A

δ

e E

Pe

e

e

The expectation value of a real- or vector-valued random variable is of central importance
in probability theory. Indeed, as is generally the case in categorical probability, this is
precisely what the map e encodes: PR is the space of distributions of real-valued random
variables with well-defined expectation value, and the operation of taking the expectation
is a morphism PR→ R which makes R into a P -algebra. Replacing R by other P -algebras
results in a definition of integral or expectation for A-valued random variables X → A by
composing the induced map PX → PA with the algebra map PA → A. In this sense,
the characterization of P -algebras of Theorem 5.4 together with our purely categorical
construction of the Kantorovich monad P via Theorem 4.14 below can be regarded as a
definition of integral which does not require any measure theory.

A morphism of P -algebras eA : PA→ A and eB : PB → B is a short map f : A→ B
such that

PA PB

A B

eA

Pf

eB

f

commutes. We also say that f is P -affine. The Eilenberg-Moore category CMetP is then
the category of P -algebras and P -affine maps. Any Wasserstein space PX is a free P -
algebra, with structure map e = E : PPX → PX. The Kleisli category CMetP is the full
subcategory of CMetP on the free algebras. Its morphisms are the short maps X → PY
for complete metric spaces X,Y , which correspond bijectively and naturally to P -affine
maps PX → PY , so that it naturally contains CMet as a subcategory.

As usual in categorical probability, the Kleisli morphisms should be thought of as
stochastic maps or Markov kernels [Gir82]. An important difference between other ap-
proaches to categorical probability theory and the one developed by van Breugel [vB05]
and in this work is that these stochastic maps are also required to be short. This leads to
the unpleasant phenomenon that conditional expectations do not always exist: for given
p ∈ PX and f : X → Y , it is generally not possible to write p as the image of the
pushforward (Pf)(p) under a Kleisli morphism PY → PX.

In this section, we will give equivalent characterizations of the P -algebras and their
category. In the context of compact and of 1-bounded complete metric spaces, it seems
to be known that the Kantorovich monad captures the operations of taking formal binary
midpoints [vBHMW05, Section 4]. We develop similar ideas for all complete metric spaces.
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By evaluating the structure map on a finitely supported measure, one assigns to every
formal convex combination of points another point. In this way, a P -algebra looks like a
convex set in which the convex structure interacts well with the metric. And indeed, we
will show that the category of P -algebras is equivalent to the category of closed convex
subsets of Banach spaces with short affine maps. A similar characterization of the category
of algebras of the Radon monad exists, as the category of compact convex sets in locally
convex spaces [Świ74]; see also [Kei08] for a more recent exposition. A similarly simple
characterization of the algebras of the Giry monad is apparently not known; even for
the Giry monad on the category of Polish spaces with continuous maps, the existing
characterization is significantly more complicated [Dob06].

5.1. Convex spaces. A set together with an abstract notion of convex combination
which satisfies the same equations as convex combinations in a vector space is a convex
space. This is a notion which has been discovered many times over in various forms,
e.g. in [Sto49, Gud73, Świ74]. A convex space can be defined as an algebra of the con-
vex combinations monad on Set. This monad assigns to every set M the set of finitely
supported probability measures on M , where the unit is again given by the Dirac delta
embedding and the multiplication by the formation of the expected measure,∑

i

αi δ

(∑
j

βijδ(xij)

)
7−→

∑
i,j

αiβijδ(xij)

Equivalently, a convex space is a model of the Lawvere theory opposite to the category
of stochastic matrices, FinStoch [Fri09]. An axiomatization in terms of binary operations
is as follows:

5.2. Definition. A convex space is a set A equipped with a family of binary operations
c : [0, 1] × A × A → A, such that the following properties hold for all x, y, z ∈ A and
λ, µ ∈ [0, 1]:

(a) Unitality: c0(x, y) = x;

(b) Idempotency: cλ(x, x) = x;

(c) Parametric commutativity: cλ(x, y) = c1−λ(y, x);

(d) Parametric associativity: cλ(cµ(x, y), z) = cλµ(x, cν(y, z)), where:

ν =

{
λ(1−µ)
1−λµ if λ, µ 6= 1;

any number in [0, 1] if λ = µ = 1.
(5.1)

The category of convex spaces has as morphisms the maps f : A→ B for which

A× A B ×B

A B

cλ

f×f

cλ

f

(5.2)
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commutes for every λ ∈ [0, 1].

In the following, we will make use of the standard equivalence between this definition
of convex spaces and algebras of the convex combinations monad C : Set→ Set.

5.3. Equivalent characterizations of P -algebras.

5.4. Theorem. The following structures are equivalent on a complete metric space A, in
the sense that there is an isomorphism of categories over CMet:

(a) A P -algebra structure;

(b) A short map en : An → A for each n ∈ N, such that e1 = δ−1, and such that the
diagrams

Am Amn

A

em

Am|mn

emn

(Am)n An

Amn A

Em,n

(em)n

en

emn

(5.3)

commute. Structure-preserving maps are those f : A→ B for which the diagrams

An Bn

A B

en

fn

en

f

(5.4)

commute for all n ∈ N.

(c) A short map eS : AS → A for each S ∈ FinUnif, such that e1 = δ−1, and such that
the diagrams

AT AS

A
eT

Aφ

eS

(AS)T AT

AS×T A

ES,T

(eS)T

eT

eS×T

(5.5)

commute for every S, T ∈ FinUnif and φ ∈ FinUnif(S, T ). Structure-preserving maps
are those f : A→ B for which the diagrams

AS BS

A B

eS

fS

eS

f

(5.6)

commute for all S ∈ FinUnif.
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(d) A structure of convex space satisfying a compatibility inequality with the metric,

d
(
cλ(x, z), cλ(y, z)

)
≤ λ d(x, y), (5.7)

where the morphisms are the short maps that are also morphisms of convex spaces.

We make two remarks on related literature. First, in the special case of complete
separable metric spaces, [MPP16, Theorem 10.9]9 can also be interpreted as establishing
the equivalence between (a) and (d). Second, the structures in (c) and (b) are different
from the graded algebras in the sense of [FKM16, Definition 1]: for a graded algebra,
the algebra morphisms would have to be of type (Am)n → Amn and (AS)T → AS×T ,
respectively.

It follows from Theorem 5.6 that in structures of type (d), the inequality (5.7) neces-
sarily holds with equality.

Proof. We first show that the structures of type (a), (c) and (b) are equivalent, using
the universal property proven in 3.14.

• (b)⇔(c): By composing with the quotient maps AS → A|S|, the (en)n∈N determine
morphisms eS : AS → A, and conversely by the universal property. The equiva-
lence between the triangles in (5.3) and (5.5) follows from e|S| = eS ◦ q and the
diagram (3.6). For the same reason, (5.4) and (5.6) are equivalent.

It remains to verify the equivalence of the squares in (5.3) and (5.5). This follows
by a cube similar to (4.8),

(Am)n An

(Am)n An

Amn A

Amn A

(em)n

Em,n

en
(em)n

Em,n
emn

emn

en

where the front face commutes if and only if the back face commutes, since all other
faces commute, the quotient map on the upper left is epic, and the identity on the
lower right is monic.

9Modulo the earlier footnote 1.
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• (a)⇔(b): This works similarly. By the universal property of PA, the cocone defined
by the first diagram in (5.3) is equivalent to a short map e : PA → A. The
equivalence between the square in (5.3) and the multiplication square of a P -algebra
follow by considering the cube

PPA PA

(Am)n An

PA A

Amn A

Pe

E

e

Em,n

(em)n

e

emn

en
(5.8)

and using that the upper left diagonals are jointly epic as m and n vary.

• (a)⇒(d): Finite convex combinations with real coefficients are a special case of
Radon measures, and therefore every P -algebra e : PA→ A also is a convex space
in a natural way. Technically, this is based on the morphism of monads

CMet CMet

Set Set

U

P

U
η

C

where U is the forgetful functor, and η is the natural transformation with η :
CUX → UPX given by the map which reinterprets a finitely supported measure on
UX as a finitely supported measure on X, considered as an element of the under-
lying set of PX. It is straightforward to check that this is a morphism of monads.
Thus we have a functor from P -algebras in CMet to C-algebras in Set. In other
words, every P -algebra is a convex space in a canonical way.

Let us now check compatibility with the metric. Since e is short, we get

d
(
cλ(x, z), cλ(y, z)

)
= d(e(λδ(x) + (1− λ)δ(z)), e(λδ(y) + (1− λ)δ(z)))

≤ d(λδ(x) + (1− λ)δ(z), λδ(y) + (1− λ)δ(z))

Lemma 3.19
= λ d(δ(x), δ(y)) = λ d(x, y).

• (d)⇒(c): Intuitively, the eS correspond to taking convex combinations with equal
weights, and commutativity of (5.5) follow from the equations satisfied by taking
convex combinations in any convex space. To make this precise, it is most convenient
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to consider a convex space as a model of the Lawvere theory FinStochop. Considering
FinUnif as a subcategory FinUnif ⊆ FinSet ⊆ FinStoch, defining maps uS : 1 → S
in FinStoch which select the uniform distribution on each finite set S results in
commutativity of the two diagrams

1

S T

uS uT

φ

1 S × T

T S × T

uS×T

uT

uS×T

for every S, T ∈ FinUnif and φ ∈ FinUnif(S, T ). Thus, given a convex space A as
a model of FinStochop, the uS become maps eS : AS → A satisfying the required
equations, and every affine map between convex spaces will make (5.6) commute.
To see that the eS are short apply (5.7) twice, to get

d
(
cλ(x, z), cλ(y, w)

)
≤ λ d(x, y) + (1− λ) d(z, w),

which generalizes to

d

(
e

(∑
i

λiδ(xi)

)
, e

(∑
i

λiδ(yi)

))
≤
∑
i

λid(xi, yi) (5.9)

by decomposing a general convex combination into a sequence of binary ones and
by induction. Shortness of eS is the special case where the λi’s are uniform and
equal to 1/|S|.

It is clear that, starting with a P -algebra A and applying the constructions (a)⇒(d)⇒(c),
one recovers the underlying (c)-structure of A. To see that the composite functor (d)⇒(b)
⇔(a)⇒(d) is the identity as well, we claim that two convex space structures c and c′ which
satisfy the metric compatibility inequality and coincide for convex combinations with
rational weights must be equal. Indeed, we prove d(cλ(x, y), c′λ(x, y)) = 0 for all λ ∈ (0, 1):
first, as λ varies, this distance is bounded because d(cλ(x, y), y) = d(cλ(x, y), cλ(y, y)) ≤
λd(x, y) ≤ d(x, y), and similarly for c′, so that we get an upper bound of 2d(x, y),

d(cµ(x, y), c′µ(x, y)) ≤ 2d(x, y) ∀µ ∈ [0, 1].

We choose a sufficiently small rational ε > 0, as well as a rational ν ∈
(
λ−ε
1−ε ,

λ
1−ε

)
, and put

z := cν(x, y) = c′ν(x, y). Then

cλ(x, y) = cε(cµ(x, y), z), c′λ(x, y) = c′ε(c
′
µ(x, y), z),

where µ := λ−(1−ε)ν
ε

is in [0, 1] due to the assumed bounds on ν. Now since ε is rational,
we can bound the distance between these two points by

d(cλ(x, y), c′λ(x, y)) = d(cε(cµ(x, y), z), cε(c
′
µ(x, y), z))

≤ ε d(cµ(x, y), c′µ(x, y)) ≤ 2ε d(x, y),

from which the claim follows as ε→ 0.
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We suspect that P -algebras also coincide with the metric mean-value algebras of
[vBHMW05, Definition 6], if the requirement of 1-boundedness is dropped.

5.5. Algebras as closed convex subsets of Banach spaces. If (E, ‖ · ‖) is a
Banach space and A ⊆ E is a closed convex subset, then A is a convex space which
carries the metric

d(x, y) := ‖x− y‖

with respect to which it is complete. These two structures fulfill the metric compatibility
inequality (5.7),

‖(λx+ (1− λ)z)− (λy + (1− λ)z)‖ = ‖λx− λy‖ = λ‖x− y‖,

which even holds with equality. Therefore, by Theorem 5.3(d), A is a P -algebra e :
PA→ A in a canonical way. In particular, we can define the expectation value

∫
A
x dp(x)

of any p ∈ PA (which has finite first moment) to be e(p). By functoriality of P , this also
defines the expectation value of any Banach-space valued random variable with finite first
moment on any (other) complete metric space.

Let ConvBan be the category whose objects are closed convex subsets of Banach spaces
A ⊆ E, and whose morphisms f : (A ⊆ E) → (B ⊆ F ) are the short affine maps
f : A→ B.10 We have a canonical functor ConvBan→ CMetP which is fully faithful.

Moreover, it was shown in [CF13] that this functor is essentially surjective, meaning
that every P -algebra in the form (d) is isomorphic both as a convex space and as a metric
space (or equivalently as a P -algebra) to a closed convex subset of a Banach space. We
therefore conclude that P -algebras and closed convex subsets of Banach spaces are the
same concept:

5.6. Theorem. The functor CBan→ CMetP is an equivalence of categories.

A. Colimits of (complete) metric spaces

The main goal of this section is to prove that the monoidal structures of Met and CMet
preserve colimits (Proposition A.4).

To this end, it is useful to consider Met∞, by which we mean the category defined
just as Met above, with the only difference that we now allow distances in [0,∞]. Given
(X, d) ∈ Met∞, the “having finite distance” relation partitions the set X into equivalence
classes, each of which is a metric space with finite distances and therefore an object of Met.
The morphisms of Met∞ must respect this equivalence relation. By this line of reasoning,
it is straightforward to verify that Met∞ is a free coproduct completion of Met, with the
inclusion functor Met→ Met∞ as the universal arrow. The advantage of Met∞ over Met is

10One might be tempted to define morphisms to be equivalence classes of short affine maps f : E → F
which satisfy f(A) ⊆ B, where two such maps are identified whenever they are equal on A. This is not
equivalent, since a short affine map A → F can in general not be extended to a short (or even merely
continuous) affine map E → F .
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that Met∞ is cocomplete, with colimits of the following form. Let U : Met∞ → Set be the
underlying set functor and F : C → Met∞ be a diagram indexed by a small category C.
Equip the set colim (U ◦ F ) with the largest pseudometric (with possibly infinite values)
which makes the colimiting cocone components `c : U(F (c)) → colim (U ◦ F ) short; this
pseudometric can be computed by starting with the distance function

d̂(x, y) := inf { dF (c)(x
′, y′) : c ∈ C, `c(x

′) = x, `c(y
′) = y }, (A.1)

and then by shortest path optimization on d̂ in order to enforce the triangle inequality,
resulting in a pseudometric on colim (U ◦ F ) (with possibly infinite values). Identifying
all pairs of points with distance zero results in an object of Met∞, and it is not hard to
see that this is the colimit of F in Met∞.

The very same statements apply to the category CMet∞, defined as the full subcategory
of CMet on the complete spaces, and its full subcategory CMet. Since CMet∞ ⊆ Met∞
is also a reflective subcategory of Met∞ with the completion as the reflector, colimits in
CMet∞ can be computed as colimits in Met∞ using the procedure above and then taking
the completion.

A.1. Lemma. A functor F : C → Met (resp. F : C → CMet) for a small category C
has a colimit if and only if the full subcategory on those objects c ∈ C with F (c) 6∼= ∅ is
connected.

Intuitively, the only obstruction to the existence of colimits is the lack of coproducts.

Proof. We only treat the case of Met, since the case of CMet is completely analogous.
If F : C → Met satisfies the connectedness assumption, then the shortest path opti-

mization for (A.1) will clearly have a finite result, so that the resulting colimit in Met∞
is actually an object in Met, and is a colimit in there as well since Met ⊆ Met∞ is full.

Conversely, suppose that F : C→ Met does not satisfy the connectedness assumption.
By restricting F to the full subcategory C′ on those c ∈ C with F (c) 6= ∅, we obtain
F ′ : C′ → Met such that F -cocones and F ′-cocones are in canonical bijection, thanks to
initiality of ∅. We can therefore assume F = F ′ without loss of generality, or equivalently
F (c) 6= ∅ for all c. Then the non-connectedness assumption also means that the category
C is not connected, and therefore can be partitioned into disjoint subcategories C1 and
C2 without any morphisms between them, and inhabited by objects c1 ∈ C1 and c2 ∈ C2

with points x1 ∈ F (c1) and x2 ∈ F (c2). Considering the space Y := {1, 2} with d(1, 2) =
r ∈ R+ a parameter, there is a cocone from F to Y which takes all points in the spaces
assigned to C1 to 1 ∈ Y , and all points in the spaces assigned to C2 to 2 ∈ Y . Hence if the
colimit existed in Met, then the distance of the images of x1 and x2 in the colimit space
would have to be lower bounded by d(1, 2) = r. This is absurd since r was arbitrary.

The characterization of sifted categories as inhabited categories with connected cate-
gories of cospans [AR01, Theorem 1.6] now implies:

A.2. Corollary. Sifted colimits exist both in Met and in CMet.

In addition, we obtain:
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A.3. Proposition. The inclusion functor Met ⊆ Met∞ (resp. CMet ⊆ CMet∞) preserves
all colimits which exist in Met.

Proof. As we saw in the proof of Lemma A.1, the colimits which exist in Met are all
also colimits in Met∞, and likewise in the complete case.

A.4. Proposition. For every X ∈ Met (resp. X ∈ CMet), the functor X ⊗− : Met →
Met (resp. X ⊗− : CMet→ CMet) preserves colimits.

Proof. We first treat the case of Met. We note that Met∞ is monoidal closed under the
`1-product, using the supremum distance for turning the hom-sets Met(X, Y ) into metric
spaces; this is essentially [Law73, Section 2]. Hence X ⊗ − : Met∞ → Met∞ is a left
adjoint for every X ∈ Met, and as such it preserves colimits, including those of Met.

The complete case is again analogous, noting that the hom-space CMet∞(X, Y ) :=
Met∞(X, Y ) with the sup-distance is already complete (by the existence of pointwise
limits). This makes CMet∞ also closed, and the inclusion CMet∞ ⊆ Met∞ preserves
exponential objects.

B. Kan extensions of lax monoidal functors

In this section we give a criterion for when a Kan extension of lax monoidal functors is
a Kan extension in the bicategory MonCat of monoidal categories, lax monoidal functors
and monoidal natural transformations. This in particular comprises the Kan extensions
used to define the monad structure of P in Section 4.

Kan extensions in MonCat, or more generally, Kan extensions preserving some given al-
gebraic structure, are known in the literature as algebraic Kan extensions [Web16,Kou15].
There are some results in the literature on when a left Kan extension in Cat of lax or
strong monoidal functors is again monoidal (see [MT08, Theorem 1] and [Pat12, Proposi-
tion 4]) in such a way that the Kan extension also holds in MonCat. There are also general
results on when a Kan extension on a 2-category or double category can be lifted to a Kan
extension in the 2-category of pseudoalgebras of a 2-monad (see [Kou15, Theorem 1.1b],
[Kou, Theorem 7.7] and [Web16, Theorem 2.4.4]), which can be applied to the monoidal
category 2-monad. In [FP18], we also derive a statement of this type, which is very close
to an instance of Koudenburg’s result [Kou, Theorem 7.7]. For a more detailed discussion
of the literature, and for additional context on algebraic Kan extensions, we refer to the
discussion in [FP18, Section 1.2].

None of the results cited above applies verbatim to the situation of Section 4. There-
fore, here we derive a result of this type, tailored to our needs.

For a monoidal category C, we denote its unit e : 1→ C and multiplication ⊗ : C×C→
C without explicit reference to the category. For a lax monoidal functor F , we denote its
unit by ηF and its multiplication by µF .

B.1. Theorem. Let the following hypotheses be satisfied:
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• In MonCat, we have a diagram

C D

C′
G

F

λ
L

(B.1)

• λ makes L into the left Kan extension of F along G in Cat.

• G : C→ C′ is strong monoidal and essentially surjective.

• The natural transformation λ(−)⊗ λ(−), by which we mean

C× C D× D D

C′ × C′

F×F

G×G

⊗

L×L
λ×λ (B.2)

is an epimorphism in the functor category Cat(C× C,D).

Then λ makes L into the left Kan extension of F along G also in MonCat. Moreover, the
monoidal structure of L is the only monoidal structure that can be put on L such that λ
is monoidal.

In comparison to previous results, this is closest to [Kou15, Theorem 1.1b]. In fact,
Koudenburg’s theorem could alternatively be used for the proof of Theorem 4.14, but not
for the proof of Theorem 4.6, for which we really need Theorem B.1.

Proof. Given a lax monoidal functor X : C′ → D and a monoidal transformation χ :
F ⇒ X ◦G, we can apply the Kan extension property in Cat, so that there exists a unique
u : L⇒ X such that

C D

C′

G

F

λ L

X

u ≡

C D

C′

G

F

χ

X

(B.3)

What we need to show is that this u is automatically monoidal. We first prove that it
respects the units,

C′

1

D

X

L

u

e

e

ηL ≡

C′

1

D

X

e

e

ηX
(B.4)
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To obtain this, we use that λ respects units, which means

C

1 C′

D

G
e

e

e

ηG

ηL

L

≡

C

1 C′

D

G

F
λ

e

e

ηF

L

(B.5)

and similarly for χ. Since ηG is an isomorphism, (B.4) follows if we can prove it after
postcomposing with ηG,

C

1 C′

D

G

e

e

e

ηG ∼=

ηL

X

L

u

≡

C

1 C′

D

G

F

λ

e

e

ηF

X

L
u

≡

C

1 C′

D

G

F
χ

e

e

ηF

X

≡

C

1 C′

D

G

e

e

e

ηG ∼=

ηX

X

which proves the claim.
Proving compatibility with the multiplication

C′ × C′ C′

D× D D

L×L X×X

⊗

µX
X

⊗

u×u ≡

C′ × C′ C′

D× D D

L×L

⊗

µL

L X
u

⊗

(B.6)
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works similarly, but is a bit trickier. We use compatibility of λ with the multiplication

C× C C

C′ × C′ C′

D× D D

F×F
λ×λ

⊗

G×G µG
G

L×L

⊗

µL

L

⊗

≡

C× C C

C′

D× D D

F×F

⊗

µF

F

G

λ

L

⊗

(B.7)

and similarly for χ, in order to compute

C× C C

C′ × C′ C′

D× D D

G×G

F×F

⊗

µG
∼=λ×λ

G

L×L

X×Xu×u
µX

⊗

X

⊗

≡

C× C C

C′ × C′ C′

D× D D

G×G

F×F

⊗

µG
∼=

χ×χ

G

X×X

⊗

µX

X

⊗

≡

C× C C

C′

D× D D

F×F

⊗

µF F

G

χ

X

⊗
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≡

C× C C

C′

D× D D

F×F

⊗

µF F

G

λ

X

L
u

⊗

≡

C× C C

C′ × C′ C′

D× D D

G×G

F×F

⊗

µG
∼=λ×λ

G

L×L

⊗

µL

X

L
u

⊗

The natural transformation (B.2) is epic, so that λ × λ, whiskered by D × D → D, can
be canceled. µG is an isomorphism, so that it can be canceled as well. Finally G × G
is essentially surjective, and therefore pre-whiskering by it can also be canceled. We are
then left with (B.6).

Now suppose that η′L and µ′L give another monoidal structure on L. For λ to be
monoidal, the equations (B.5) and (B.7) need to be satisfied. But now by (B.5) and
the invertibility of ηG, we get η′L = ηL. Similarly, by (B.7) and the fact that µG is an
isomorphism, λ⊗λ is epic, and G×G is essentially surjective, we conclude that µ′L = µL.

It may help to visualize these equations three-dimensionally, by interpreting every
rewriting step as a globular 3-cell, and whiskering and composing these 3-cells so as to
form a 3-dimensional pasting diagram. This way, (B.7) becomes a full cylinder, with the
two caps formed by λ × λ and λ, and with the three multiplications forming the side
surface. The same is true for equation (B.5), but with the λ× λ cap collapsed to a single
point, so that one obtains a cone with λ on the base.

C. Convex combinations of metric spaces

In this section, we will establish that Met is a pseudoalgebra for the simplex operad, which
means that there is a notion of “convex combination” of metric spaces which behaves
very similarly to convex combinations in a vector space. The n-fold uniform convex
combination of a metric space X with itself is the power Xn from Section 3.1. This
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motivates the definition of the latter, and in particular the rescaling of the metric by 1
n
,

which may otherwise seem unnatural. Very informally, by Theorem 3.21, we can therefore
think of the Wasserstein space PX as a uniform infinitary convex combination of X with
itself.

C.1. The simplex operad. Standard simplices, or equivalently spaces of probability
measures on finite sets, or also equivalently convex combinations of arbitrary finite arity,
naturally form an operad.

C.2. Definition. [e.g. [Lei11, BF14]] The simplex operad ∆, or convex combination
operad has a set of operations of arity n given by the (n− 1)-simplex11,

∆n :=

{
(λ1, . . . , λn) ∈ Rn

∣∣∣∣ λi ≥ 0,
∑
i

λi = 1

}
(C.1)

The unit of the operad is the unique element 1 ∈ ∆1. The composition is defined as

∆n ×∆m1 × . . .×∆mn −→ ∆m1+...+mn

(ν, λ1, . . . , λn) 7−→ (ν1λ11, . . . , ν1λ1m1 , . . . , νnλn1, . . . , νnλnmn).

The symmetry of the operad is given by permutations of the vertices of the simplex: for
σ ∈ Sn,

Sn ×∆n −→ ∆n

(σ, λ) 7−→ (λσ(1), . . . , λσ(n)).

For example, every convex space (Definition 5.2) is an algebra of ∆ in Set. It can be
shown that ∆ is the operad generated by binary operations cλ with λ ∈ [0, 1] subject to
the relations encoded by the parametric symmetry and associativity of Definition 5.2. In
other words, the concept of ∆-algebra in Set is a relaxation of the notion of convex space
without the requirements 5.2(a)–(b).

C.3. Pseudometric spaces are a pseudoalgebra. We can turn Met into a pseu-
doalgebra (or weak algebra) in Cat of the simplex operad. To do so, it is more convenient
to work with a similar category PMet, whose objects are pseudometric spaces, i.e. sets
with a distance function satisfying d(x, x) = 0, symmetry, and the triangle inequality, but
where d(x, y) = 0 may not imply x = y. As morphisms, we again choose short maps. In
the following, we define a ∆-pseudoalgebra structure on PMet, where it is more explicit.
Below, we will use this to turn Met into a ∆-pseudoalgebra as well. Since all operations
turn out to map the full subcategory CMet to itself, we also have a pseudoalgebra structure
on CMet.

In the following, in contrast to the main text, we use subscript notation Xi to refer to
members of a sequence or family of spaces.

11Usually ∆n stands for the n-simplex of dimension n, but in this context it is less confusing to index
the standard simplices by the number of vertices rather than by dimension.
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C.4. Definition. For any n and λ ∈ ∆n, the functor

kλ : PMetn → PMet

takes a tuple of pseudometric spaces (X1, . . . , Xn) to the pseudometric space
kλ(X1, . . . , Xn) ∈ PMet, where:

• The underlying set is the Cartesian product X1 × · · · ×Xn;

• The pseudometric is given by the convex combination of the pseudometrics,

d
(
(x1, . . . , xn), (y1, . . . , yn)

)
:= λ1 d(x1, y1) + · · ·+ λn d(xn, yn). (C.2)

This strongly suggests that PMet is indeed a pseudoalgebra of ∆ in a canonical way.
For the technical details, we use [Web15, Definition 4.1] as the definition of pseudoalgebra.
First, (C.2) shows why it is important to work with pseudometric spaces, since this metric
is guaranteed to be nondegenerate only when λ has full support; thus setting up the same
structure on Met directly would be more cumbersome, since then the underlying set would
also have to vary with λ.

In order to construct the necessary coherence maps and prove the required equations,
it is most convenient to use the fact that the Cartesian products make Set into a symmetric
monoidal category, which is the same thing as a pseudoalgebra of the terminal operad
Comm [Web15, Example 4.5]. (This gives an unbiased definition of symmetric monoidal
category, in the spirit of [Lei04, Definition 3.1.1].) Thanks to the unique operad morphism
∆ → Comm, the category Set becomes a pseudoalgebra of ∆ as well, where the action
by λ ∈ ∆n is given by (X1, . . . , Xn) 7→ X1 × . . . ×Xn. This corresponds to the kλ from
Definition C.4 under the forgetful functor PMet→ Set. Since the latter functor is faithful,
there is at most one way to lift the coherence isomorphisms to PMet, where the required
equations then automatically hold. Proving that such liftings exist boils down to showing
that the coherence isomorphisms are isometries, but this is straightforward to see from
the definition (C.2).

It remains to transport this pseudoalgebra structure to Met. To this end, we first
consider the category PMet∼, which is the quotient of PMet where f, g : X → Y are
considered equivalent if d(f(x), g(x)) = 0 for all x ∈ X. Considering a metric space as a
pseudometric space gives a fully faithful functor Met→ PMet∼. By identifying all points
that have distance zero, every pseudometric space has a metric quotient to which it is
isomorphic in PMet∼, using the axiom of choice to construct a section of the quotient map.
Therefore the functor PMet∼ → Met is an equivalence of categories, and it is enough to
construct a ∆-pseudoalgebra structure on PMet∼. But this follows immediately from the
fact that the functors kλ from Definition C.4 respect the equivalence relation on morphisms
and therefore descend to functors PMet∼ → PMet∼.

In summary, we have turned the category Met into a pseudoalgebra of the simplex
operad ∆. The n-ary convex combination with weights λ ∈ ∆n of metric spacesX1, . . . , Xn



A PROBABILITY MONAD AS THE COLIMIT OF SPACES OF FINITE SAMPLES 215

is the metric space with underlying set X1 × . . . × Xn, but where those Xi with λi = 0
are omitted, and metric (C.2). The power Xn is the special case where λ = ( 1

n
, . . . , 1

n
) is

the uniform distribution, since then one gets from C.2,

d
(
(x1, . . . , xn), (y1, . . . , yn)

)
=

1

n

n∑
i=1

d(xi, yi). (C.3)

which is exactly the metric on the power Xn defined by 3.1.
Strangely, the category of finite probability spaces and measure-preserving maps,

FinProb, is also a pseudoalgebra of ∆ [BF14, Appendix B], but in a very different way,
where a convex combination of spaces is based on the disjoint union of sets with the cor-
responding convex combination of probability measures, supported on these disjoint sets.
At present we do not know whether to regard this as coincidental or deep.

C.5. Internal algebras and the microcosm principle. The concept of monoid
makes sense internally to any monoidal category. Similarly, commutative monoids can
be considered internally to any symmetric monoidal category. More in general, there
are situations where one expects an internal structure to be naturally defined within a
categorified version of that same structure. This phenomenon has been called “microcosm
principle” by Baez and Dolan [BD98], and they made this statement precise in terms of
operads: if a category C is equipped with a pseudoalgebra structure for an operad O,
then an internal algebra in C is specified by a lax morphism of pseudoalgebras 1→ C. In
the following, we will show that the internal ∆-algebras in CMet are closely related to the
P -algebras of Section 5.

In our case, we have the simplex operad ∆, and the pseudoalgebra structure on Met,
or equivalently on PMet∼. The terminal category 1 is also trivially an algebra for ∆. A
lax morphism between these pseudoalgebras is then a functor A : 1 → PMet∼, selecting
an object A ∈ PMet∼, and for each n and λ ∈ ∆n a natural transformation

1n PMetn∼

1 PMet∼

!

A×n

cλ kλ

A

(C.4)

or equivalently a morphism cλ : kλ(A, . . . , A)→ A, satisfying certain coherence conditions
which we specify below. Before doing so, it is instructive to look at what it means for cλ
to be short: the metric on kλ(A, . . . , A) is given by

d
(
(x1, . . . , xn), (y1, . . . , yn)

)
=
∑
i

λi d(xi, yi). (C.5)

Thus shortness of cλ means that

d
(
cλ(x1, . . . , xn), cλ(y1, . . . , yn)

)
≤
∑
i

λi d(xi, yi), (C.6)
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which is the metric compatibility inequality from Section 5 in the generalized form (5.9).
Following [Web15, Definition 4.10], the cλ’s have to satisfy the following conditions in

order to define a lax morphism:

• Unit condition. For 1 ∈ ∆1, the composite

1 PMet∼

A

k1(A)

A

ι

c1

(C.7)

must be equal to the identity transformation of A, where ι is one of the coherences
of the pseudoalgebra structure of PMet. So explicitly, this means that the map
c1 : k1(A) → A must be inverse to the canonical isomorphism A → k1(A). This is
the same as the unit condition for convex spaces when defined as algebras of the
convex combinations monad.

• Composition condition. We consider arities n with λ ∈ ∆n and m1, . . . ,mn with
µi ∈ ∆mi , and write m :=

∑
imi. The composite 2-cell

PMetm∼ PMetn∼

1m 1n

1 PMet∼

∏
i kµi

kλ

A×m ∏
i cµi

A×n

cλ

A

(C.8)

has to be equal to the composite

PMetm∼ PMetn∼

1m

1 PMet∼

∏
i kµi

kλ◦µ
kλ

A×m

cλ◦µ

A

(C.9)

where all unlabelled morphisms are the obvious ones. This amounts to commuta-
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tivity of

kλ(kµ1(A, . . . , A), . . . , kµn(A, . . . , A)) kλ(A, . . . , A)

kλ◦µ(A, . . . , A) A

kλ(cµ1 ,...,cµn )

cλ

cλ◦µ

(C.10)

• Equivariance condition. Since all symmetries of 1 are trivial, this is basically only
an invariance condition. Let σ ∈ Sn. The composite 2-cell

PMetn∼

1n PMetn∼

1 PMet∼

σ

kλ

A×n

!

cλ

kσ(λ)

A

(C.11)

has to be equal to the composite

PMetn∼

1n 1n PMetn∼

1 PMet∼

σA×n

!

σ A×n

cσ(λ)

kσ(λ)

A

(C.12)

where all unlabelled morphisms are the obvious ones. This amounts to commuta-
tivity of the following equivariance diagram,

kσ(λ)(A, . . . , A) A

kλ(A, . . . , A) A

cσ(λ)

cλ

(C.13)

where the left arrow corresponds to the coherence isomorphism associated to the
pseudoalgebra structure of PMet∼, i.e. to permutation of the factors of the under-
lying cartesian product.

Taken together, these conditions state precisely that the underlying set of A must
be an algebra of the simplex operad, with the additional condition that the maps cλ :
kλ(A, . . . , A)→ A must be short. The latter is exactly the metric compatibility inequal-
ity in the generalized form (5.9). So by Theorem 5.4, there is a fully faithful functor from
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P -algebras to internal ∆-algebras in PMet∼. However, this functor is not essentially sur-
jective, since the unitality and idempotency conditions 5.2(a)–(b) cannot be expressed in
operadic terms. For example, we can choose any fixed y ∈ A and define cλ(x1, . . . , xn) := y
for all λ ∈ ∆n of arity n ≥ 2. This defines an internal ∆-algebra in PMet∼ which is not
in the essential image of the forgetful functor from CMetP if |A| ≥ 2.

In order to improve on this and to obtain a complete characterization of P -algebras
as internal algebras, it may therefore be necessary to consider PMet∼ as a lax algebra of
a suitable 2-monad. We have not done this yet.

Bibliography
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Julie Bergner, University of Virginia: jeb2md (at) virginia.edu
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: ross.street@mq.edu.au
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