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PRODUCTS AND COEQUALIZERS IN POINTED CATEGORIES

MICHAEL HOEFNAGEL

Abstract. In this paper, we investigate the property (P) that binary products com-
mute with arbitrary coequalizers in pointed categories. Examples of such categories
include any regular unital or (pointed) majority category with coequalizers, as well as
any pointed factor permutable category with coequalizers. We establish a Mal’tsev
term condition characterizing pointed varieties of universal algebras satisfying (P). We
then consider categories satisfying (P) locally, i.e., those categories for which every fibre
PtC(X) of the fibration of points π : Pt(C) → C satisfies (P). Examples include any
regular Mal’tsev or majority category with coequalizers, as well as any regular Gumm
category with coequalizers. Varieties satisfying (P) locally are also characterized by a
Mal’tsev term condition, which turns out to be equivalent to a variant of Gumm’s shift-
ing lemma. Furthermore, we show that the varieties satisfying (P) locally are precisely
the varieties with normal local projections in the sense of Z. Janelidze.

1. Introduction

Let C be a category with binary products. Recall that products are said to commute with
coequalizers in C when C satisfies the following property:

(P) For any two coequalizer diagrams

C1
v1
//

u1 // X1
q1 // Q1 C2

v2
//

u2 // X2
q2 // Q2,

in C, the diagram

C1 × C2
v1×v2

//
u1×u2 // X1 ×X2

q1×q2 // Q1 ×Q2,

is a coequalizer diagram in C.

For example, the dual categories Setop,Topop,Ordop of sets, topological spaces and or-
dered sets, as well as the dual of any topos, satisfy (P). More generally, any coextensive
category [4] with coequalizers satisfies (P) (see Proposition 2.7 below). The dual category
Eop
∗ of pointed objects in any topos E, or Topop

∗ the dual category of pointed topological
spaces, are all pointed regular majority categories [10, 12], and therefore satisfy (P)(see
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Proposition 2.11 below). Given any category C with binary products which satisfies (P),
the coslice category (X ↓ C) also satisfies (P) (since limits in (X ↓ C) are computed
as in C). If (P) is restricted to reflexive coequalizers, then (P) holds in any variety of
algebras [1], as well any Cartesian closed category [17]. Also, if (P) is restricted to split
coequalizers, then (P) holds in any category with binary products. Suppose that C is a
variety of algebras satisfying (P). If the theory of C admits no constants, then the empty
set would be the initial object 0 in C, and applying (P) to the two diagrams

X ×X
π1
//

π2 // X // 1 0
0
//

0 // X
1X // X

would imply that

0
0
//

0 // X ×X π2 // X

is a coequalizer for any non-empty algebra X. But this would force C to be a preorder,
since every algebra could have at most one element. Conversely, any preorder with binary
products satisfies (P) trivially. Therefore, if C is a non-trivial variety which satisfies (P),
then C must possess constants. In this paper, we are concerned with varieties which
possess a unique constant, i.e., pointed varieties. We show that a pointed variety satisfies
(P) if and only if there exists integers 0 6 m and 1 6 n such that its theory admits
binary terms bi(x, y) and unary terms ci(x) for each 1 6 i 6 m and (m + 2)-ary terms
p1, p2, ..., pn satisfying the equations:

p1(x, y, b1(x, y), b2(x, y), ..., bm(x, y)) = x,

pi(y, x, b1(x, y), ..., bm(x, y)) = pi+1(x, y, b1(x, y), ..., bm(x, y)),

pn(y, x,b1(x, y), b2(x, y), ..., bm(x, y)) = y,

and for each i = 1, ..., n we have

pi(0, 0, c1(z), ..., cm(z)) = z.

We then consider varieties which satisfy (P) locally, i.e., varieties for which each fibre
PtC(X) of the fibration of points π : Pt(C) → C satisfies (P). Every pointed variety
C satisfying (P) necessarily has normal projections in the sense of [13], i.e., every prod-
uct projection in C is a cokernel, but the converse is not true. However, it turns out
that a variety satisfies (P) locally if and only if it has normal local projections [14] (see
Theorem 3.7). Furthermore, we show how both (P) and its local version may be seen
as variants of Gumm’s shifting lemma [9], so that in particular any congruence modular
variety of algebras satisfies (P) locally.
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2. Main Results

Recall from [13] that a pointed category C has normal projections if any product projection
in C is a normal epimorphism. For example, every subtractive category [15], as well as
any unital category [2], have normal projections.

2.1. Proposition. If C is a pointed category with binary products which satisfies (P),
then the product of two normal epimorphisms is normal, and in particular C has normal
projections.

Proof. The product of two normal epimorphisms being normal is a trivial consequence
of (P), and any product projection π1 : X × Y → X may be obtained as the product of

X
1X−→ X and Y → 0, which are normal epimorphisms.

The lemma below has a straightforward proof, and therefore we leave the proof of it to
the reader.

2.2. Lemma. In a category, given morphisms

•
i1

��
•

u
//

v // • e1 // • e2 // •

•
i2

??

such that e2 ◦ e1 ◦ u = e2 ◦ e1 ◦ v, where e1 is a coequalizer of u ◦ i1, v ◦ i1 and e2 is a
coequalizer of e1 ◦ u ◦ i2, e1 ◦ v ◦ i2, then e2 ◦ e1 is a coequalizer of v, u.

In what follows, the 0 symbol is used to denote an initial object in a category C (if it
exists), and 0X denotes the unique morphism 0X : 0→ X.

2.3. Lemma. The following are equivalent for a category with binary products and an
initial object.

1. C satisfies (P), i.e., the product of two coequalizers is a coequalizer.

2. The product of any coequalizer diagram C ⇒ X → Y with the trivial coequalizer

0
0Z
//

0Z // Z
1Z // Z,

is a coequalizer diagram for any object Z in C.

Proof. We show that (2) implies (1). Suppose that

C1
v1
//

u1 // X1
q1 // Q1 C2

v2
//

u2 // X2
q2 // Q2
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are two coequalizer diagrams in C. Then applying (2), we have that the diagrams

C1 × 0
v1×0X2

//
u1×0X2// X1 ×X2

q1×1X2// Q1 ×X2 0× C2
0Q1
×v2
//

0Q1
×u2// Q1 ×X2

1Q1
×q2// Q1 ×Q2,

are coequalizer diagrams. We may then apply Lemma 2.2 to the diagram

C1 × 0
1C1
×0C2

%%
C1 × C2

v1×v2
//

u1×u2 // X1 ×X2

q1×1X2// Q1 ×X2

1Q1
×q2// Q1 ×Q2

0× C2

0C1
×1C2

99

to obtain q1 × 1X2 ◦ 1Q1 × q2 = q1 × q2 as a coequalizer of u1 × u2 and v1 × v2.

In what follows, we will be working with pointed categories. To simplify notation, we
will always denote zero-morphisms between objects by 0, when there is no ambiguity.

The proof of following proposition is straightforward, and is left to the reader.

2.4. Proposition. Given any reasonably commutative diagram

C1

e
����

v1
//

u1 // X1

f

��

q1 // Q1

g

��
C2

v2
//

u2 // X2 q2
// Q2

in any category, where the top row is a coequalizer diagram and e is an epimorphism, the
right-hand square is a pushout if and only if the bottom row is a coequalizer. In particular,
any category with coequalizers admits pushouts along regular epimorphisms (take e = 1C1).

2.5. Corollary. Let C be any category with coequalizers. For any two parallel pairs
of morphisms u1, v1 : C1 → X and u2, v2 : C2 → X which have a common coequalizer,
the pairs f ◦ u1, f ◦ v1 and f ◦ u2, f ◦ v2 have a common coequalizer, for any morphism
f : X → Y .

Proof. A common coequalizer for u1, v1 and u2, v2 can be pushed out along f , by Propo-
sition 2.4 to obtain a common coequalizer for f ◦ u1, f ◦ v1 and f ◦ u2, f ◦ v2.

Recall that a category C with binary products is called coextensive if for any two
objects X, Y in C, the canonical ’product’ functor (X ↓ C)× (Y ↓ C)→ (X × Y ↓ C) is
an equivalence of categories. Equivalently, we may define a coextensive category according
to the following theorem.
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2.6. Theorem. [4] A category with binary products is coextensive if and only if it has
pushouts along product projections and in every commutative diagram

A1

f1
��

A1 × A2
π1 //π2oo

f
��

A2

f2
��

X1 X x1
//

x2
oo X2

the bottom row is a product diagram if and only if the two squares are pushouts.

Note, that in every coextensive category, the product projections are automatically
epimorphisms (see Proposition 2.6 in [4]). The following proposition is likely to be folklore,
however, we could not find it in the literature, and we include it for completeness.

2.7. Proposition. For any coextensive category C with coequalizers, the property (P)
holds.

Proof. Let q1 : X1 → Q1 be a coequalizer for u1, v1 : C1 ⇒ X1, and q2 : X2 → Q2 a
coequalizer for u2, v2 : C2 ⇒ X2. Let q : X1 ×X2 → Q be a coequalizer for u1 × u2 and
v1 × v2. Then we may apply Proposition 2.4 to the diagram

C1

u1
��
v1
��

C1 × C2
// //oooo

u1×u2
��
v1×v2
��

C2

u2
��
v2
��

X1

q1
��

X1 ×X2
//oo

q

��

X2

q2
��

Q1 Q //oo Q2

so that the bottom squares are pushouts, and hence the bottom row is a product by
coextensivity.

2.8. Remark. The notion of an M-coextensive object in a category C, where M is a
distinguished class of morphisms from C, has been recently introduced and studied in [12].
Let C be a category with binary products and coequalizers, and let M = Reg(C) be the
class of regular epimorphisms in C. If every object in C isM-coextensive, then the same
argument above may be used to show that C satisfies (P). For example, every object in the
category Ring of unitary rings, or the category VonReg of von Neumann regular rings,
is M-coextensive with M = Reg(C). Moreover, every congruence distributive variety V
of algebras which admits at least one constant, has every algebra M-coextensive with
M = Reg(C).

2.9. Proposition. Let C be a pointed category with finite limits and coequalizers, then
the following are equivalent.

1. C satisfies (P).
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2. For any regular epimorphism q : X → Y and any object Z in C, the diagram

X
q //

(1X ,0)
��

Y

(1Y ,0)
��

X × Z
q×1Z

// Y × Z

is a pushout.

3. The product of a regular epimorphism in C with any identity morphism in C is a
regular epimorphism, and for any effective equivalence relation θ on any product X×
Z in C, we have that (x, 0)θ(y, 0) implies (x, z)θ(y, z) for any generalized elements
x, y : C → X and z : C → Z. This property is illustrated by the diagram below,
which can be seen as a variant of the “egg-box property” in the sense of [7].

(x, 0)

θ

Eq(π2)

Eq(π1)

(y, 0)

Eq(π1)

(x, z)

θ

Eq(π2)
(y, z)

Proof. For (1) =⇒ (2), let q : X → Y be a coequalizer of a parallel pair x, y : C → X.
By Lemma 2.3, the morphism q × 1Z is a coequalizer for (x, 0), (y, 0) : C → X × Z.
Applying Proposition 2.4, to the diagram

C

1C ����

y
//

x // X

(1X ,0)
��

q // Y

(1Y ,0)
��

C
(y,0)

//
(x,0) // X × Z

q×1Z
// Y × Z

implies that the right-hand square is a pushout.
For (2) =⇒ (3), let θ be any effective equivalence relation on a product X × Z in

C, and let x, y : C → X and z : C → Z be any morphisms such that (x, 0)θ(y, 0). Let
q : X → Y be a coequalizer of x and y. Then the right-hand square in the above diagram
being a pushout implies that q×1Z is a coequalizer of (x, 0) and (y, 0), by Proposition 2.4.
Since θ is effective and (x, 0)θ(y, 0), it follows that Eq(q×1Z) 6 θ and hence (x, z)θ(y, z).
Note that the product of a regular epimorphism in C with an identity morphism in C
being regular is an immediate consequence of (2).

For (3) =⇒ (1), suppose that we are given a coequalizer q : X → Y of x, y : C → X.
Let k1, k2 : Eq(q) → X be the projections associated to the kernel equivalence Eq(q).
Note that since x, y and k1, k2 have a common coequalizer, it follows that (k1, 0) and
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(k2, 0) and (u, 0), (v, 0) have a common coequalizer q′ : X × Z → Q′ by Corollary 2.5.
It suffices to show that Eq(q × 1Z) = Eq(q′), since q × 1Z is a regular epimorphism by
assumption. Note that we always have Eq(q′) 6 Eq(q × 1Z). Given any generalized
elements u, v : S → X and w : S → Z, if (u,w)Eq(q × 1Z)(v, w) then uEq(q)v. Since q′

is a coequalizer of (k1, 0), (k2, 0), and since uEq(q)v, it follows that (u, 0)Eq(q′)(v, 0) and
hence we may apply (3) to get (u,w)Eq(q′)(v, w), which shows that Eq(q×1Z) 6 Eq(q′).

In what follows we will fix a finitely complete pointed category C which has coequaliz-
ers, and we will assume that regular epimorphisms in C are stable under binary products.
Recall that C is unital if for any binary relation R in C between any two objects A and
B in C, we have aR0 and 0Rb implies aRb (see [2, 16]).

2.10. Proposition. If C is unital, then C satisfies (P).

Proof. We show that C fulfils condition (3) of Proposition 2.9. Let θ be any effective
equivalence relation on any product X × Z in C such that (x, 0)θ(y, 0). Then we may
consider the binary relation R between A×A and B ×B defined by (a, a′)R(b, b′) if and
only if (a, b)θ(a′, b′). By assumption we have (x, y)R(0, 0) and (0, 0)R(z, z) (by reflexivity
of θ) so that (x, y)R(z, z) and hence (x, z)θ(y, z).

Recall that C is a majority category [10, 12] if for any ternary relation R between
objects X, Y, Z we have

(x, y, z′) ∈ R and (x, y′, z) ∈ R and (x′, y, z) ∈ R =⇒ (x, y, z) ∈ R, (∗)

for any generalized elements x, x′ : S → X and y, y′ : S → Y and z, z′ : S → Z in C.

2.11. Proposition. If C is a majority category, then C satisfies (P).

Proof. Let θ be any effective equivalence relation on X ×Z and suppose that x, y, z are
as in (3) of Proposition 2.9. Then we consider the ternary relation R between A,B and
A × B defined by (a, b, (a′, b′)) ∈ R if and only if (a, a′)θ(b, b′). Then by assumption we
have (x, y, (0, 0)) ∈ R, and by reflexivity we have (x, x, (z, z)) ∈ R and (y, y, (z, z)) ∈ R.
Applying the majority property (∗) above to these three elements yields (x, y, (z, z)) ∈ R,
so that (x, z)θ(y, z).

The notion of a Gumm category [3] is the categorical analogue of varieties in which
Gumm’s shifting lemma holds [9], i.e., congruence modular varieties. A finitely complete
category C is a Gumm category if for any three equivalence relations R, S, T on any object
X in C such that R∩S 6 T , if (x, y), (w, z) ∈ R and (y, z), (x,w) ∈ S and (y, z) ∈ T then
we get (x,w) ∈ T . This implication of relations between the elements above is usually
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depicted with a diagram

y

T

S

R

z

R

x

T

S
w

where the dotted curve represents the relation induced from the relations indicated by
the solid curves.

2.12. Proposition. If C is a Gumm category, then C satisfies (P).

Proof. The diagrammatic condition characterizing (P) in (3) of Proposition 2.9 is a
restriction of the shifting lemma, where R = Eq(π1), S = Eq(π2) and T = θ. Since we
always have Eq(π1) ∩ Eq(π2) = ∆X for any two complementary product projections π1
and π2 of an object X in C, we may apply the shifting lemma to the diagram in (3) of
Proposition 2.9.

Recall that an equivalence relation F on an object X is called a factor relation on X
if there exists a product projection p : X → A of X such that F = Eq(p).

2.13. Definition. [8] A regular category C is said to be factor permutable if for any
factor relation F and any equivalence relation E on any object X in C, we have F ◦E =
E ◦ F .

2.14. Lemma. [Lemma 2.5 in [8]] In any factor permutable category C the weak shifting
lemma holds: for any equivalence relations R and S on A×B in C such that Eq(π1)∩R 6
S, if (a, b), (a, c), (d, e), (d, f) are related via the solid arrows as in the diagram

(a, c)

S

R

Eq(π1)

(d, f)

Eq(π1)

(a, b)

S

R
(d, e)

then we have (a, b)S(d, e).

2.15. Proposition. Any pointed regular factor permutable category with coequalizers
satisfies (P).

Proof. Similar to the proof of Proposition 2.12, we may apply the weak shifting property
of Lemma 2.14 to the diagram in (2) of Proposition 2.9.
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The theorem below is a Mal’tsev type characterization of pointed varieties of universal
algebras satisfying (P). In the proof, we will use 2×2 matrices to represent elements of a
congruence C on a product A×B in the following way:(

a a′

b b′

)
∈ C ⇐⇒ (a, b)C(a′, b′).

2.16. Theorem. A pointed variety V of algebras satisfies (P) if and only if there exists
integers n > 1 and m > 0 such that V admits binary terms bi(x, y) and unary terms ci(x)
for each 1 6 i 6 m and (m+ 2)-ary terms p1, p2, ..., pn satisfying the equations:

p1(x, y, b1(x, y), b2(x, y), ..., bm(x, y)) = x,

pi(y, x, b1(x, y), ..., bm(x, y)) = pi+1(x, y, b1(x, y), ..., bm(x, y)),

pn(y, x, b1(x, y), b2(x, y), ..., bm(x, y)) = y,

and for each i = 1, ..., n we have pi(0, 0, c1(z), ..., cm(z)) = z.

Proof. We recall that V being a regular category, the product of two regular epimor-
phisms is automatically a regular epimorphism. Consider the principal congruence C on
FV(x, y)× FV(z) generated by the single relation (x, 0)C(y, 0), where FV(x, y) and FV(z)
are the free algebras over {x, y} and {z} respectively. Thus, by (3) of Proposition 2.9 it
follows that (x, z)C(y, z). The congruence C may be obtained by closing the relation

{(
x y
0 0

)
,

(
y x
0 0

)}
first under reflexivity, then under all operations in V , and then under transitivity. There-
fore, there exists w1, ..., wn+1 ∈ FV(x, y)× FV(z) such that w1 = (x, z) and wn+1 = (y, z),
where:

(wi, wi+1) = pi(

(
x y
0 0

)
,

(
y x
0 0

)
,

(
b1,i(x, y) b1,i(x, y)
c1,i(z) c1,i(z)

)
, · · · ,

(
bmi,i(x, y) bmi,i(x, y)
cmi,i(z) cmi,i(z)

)
).

for certain terms p1, . . . , pn and elements (bij(x, y), cij(z)) ∈ FV(x, y) × FV(z). Without
loss of generality, we may assume that m1 = · · · = mn = m, b1j = · · · = bnj = bj
and c1j = · · · = cnj = cj for all j ∈ {1, . . . ,m}. Then, writing out the identities above
coordinate-wise and noting that since (bj, cj) ∈ FV(x, y)×FV(z), each bj is a binary term
bj(x, y) and each cj is a unary term cj(z), we get the identities in the statement of the
theorem.

For the converse, suppose that C is any congruence onX×Z in V , and that (x, 0)C(y, 0).
Consider the elements of C defined by:

(w1,i, w2,i) = pi(

(
x y
0 0

)
,

(
y x
0 0

)
,

(
b1(x, y) b1(x, y)
c1(z) c1(z)

)
, · · · ,

(
bm(x, y) bm(x, y)
cm(z) cm(z)

)
).
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Then the equations in the statement of the theorem imply that w2,i = w1,i+1 as well as
(x, z) = w1,1 and (y, z) = z2,n, so that by the transitivity of C we get (x, z)C(y, z).

2.17. Example. If V is a unital variety of algebras, then the theory of V admits a
Jónsson-Tarski operation +, i.e., a binary operation satisfying x + 0 = x = 0 + x where
0 is the unique constant. We may take n = 1 = m in the theorem above, and define
p1(x, y, z) = x + z and b1(x, y) = 0 and c1(z) = z. Then the equations in the statement
of the theorem hold with respect to these terms.

2.18. Example. If V is a pointed variety which admits a majority term m(x, y, z), then
we may take n = 1 and m = 2 where p1(x, y, z, w) = m(x, z, w) and b1(x, y) = x and
b2(x, y) = y, and c1(z) = z = c2(z), then the equations in the theorem above hold with
respect to these terms.

3. Normal local projections and products of coequalizers

Recall that the category of points PtC(X) of an object X in a category C consists of
triples (A, p, s) where p : A → X is a split epimorphism and s is a splitting for p. A
morphism f : (A, p, s)→ (B, q, t) in PtC(X) is a morphism f : A→ B such that q ◦f = p
and f ◦ s = t. The category PtC(X) is pointed, where the zero-object is (X, 1X , 1X).
The zero-morphism from (A, p, s) to (B, q, t) is given by t ◦ p. When C has coequalizers
and pullbacks, then PtC(X) has products and coequalizers. Moreover, if C is a regular
category, then so is PtC(X).

In what follows, we will say that a category C satisfies (P) locally if for every object
X in C the category PtC(X) satisfies (P).

3.1. Example. Every regular Mal’tsev category [6, 5] with coequalizers satisfies (P) lo-
cally. This is because a finitely complete category C is Mal’tsev if and only if for any
object X the category PtC(X) is unital (see [2]). Moreover, C being regular with coequal-
izers implies that PtC(X) is pointed regular with coequalizers. Then by Proposition 2.10
it follows that PtC(X) satisfies (P), for any object X in C.

3.2. Example. For essentially the same reasons as the above example every regular
majority category with coequalizers satisfies (P) locally: if C is a regular majority category
with coequalizers, then so is PtC(X) for any object X, which is moreover pointed (see
Example 2.15 in [10]). Hence by Proposition 2.11 we have that C satisfies (P) locally.

3.3. Example. Every regular Gumm category C with coequalizers satisfies (P) locally:
if C is a Gumm category with coequalizers, then so is PtC(X) (see Lemma 2.5 in [3]
and the discussion proceeding it), and hence by Proposition 2.12 it follows that PtC(X)
satisfies (P) for any object X in C.

Recall from the introduction that a category C is said to have normal local projections
if for any object X in C, the category PtC(X) has normal projections.
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3.4. Theorem. [14] The following are equivalent for a variety V of universal algebras.

• V has normal local projections.

• There exists integers n > 1 and m > 0 such that V admits binary terms b1, ..., bm,
c1, ..., cm and (m+ 2)-ary terms p1, p2, ..., pn satisfying

– p1(x, y, b1(x, y), ..., bm(x, y)) = x.

– pn(y, x, b1(x, y), ..., bm(x, y)) = y.

– For any i ∈ {1, 2, ..., n− 1} we have

pi(y, x, b1(x, y), ..., bm(x, y)) = pi+1(x, y, b1(x, y), ..., bm(x, y)).

– For any i ∈ {1, 2, ..., n} we have pi(u, u, c1(u, v), ..., cm(u, v)) = v and bi(z, z) =
ci(z, z).

In what follows we will see that a variety of algebras satisfies (P) locally if and only if
it has normal local projections.

3.5. Characterization of varieties satisfying (P) locally. Given two objects
(A, p, s) and (B, q, t) in PtC(X) consider the diagram below where the square is a pullback

X

(s,t)
$$

t

""

s

%%

A×X B
p2 //

p1
��

d

$$

B

q

��
A p

// X

Then (A ×X B, d, (s, t)) together with p1, p2 form a product for (A, p, s) and (B, q, t) in
PtC(X). Then we may adapt Lemma 2.3 to the local situation, and obtain the following:

3.6. Proposition. For a category C with finite limits, the following are equivalent.

• C satisfies (P) locally.

• For any object X in C, and for any coequalizer diagram

(C, r, n)
u
//

v // (A, p, s)
f // (B, q, t)

in PtC(X), the diagram

C
(u,j◦r)

//
(v,j◦r)// A×X D

f×X1D// B ×X D

is a coequalizer in C for any object (D,m, j) in PtC(X).
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3.7. Theorem. For a variety V the following are equivalent.

1. For any object X in V the product of two coequalizer diagrams in PtV(X) is a
coequalizer diagram.

2. For any object X in V the product of two normal-epimorphisms in PtV(X) is a
normal epimorphism in PtV(X).

3. V has normal local projections.

4. There exists n > 1 and m > 0 such that V admits binary terms b1, ...bm, c1, ..., cm
and (m+ 2)-ary terms p1, p2, ..., pn such that

• p1(x, y, b1(x, y), ..., bm(x, y)) = x.

• pn(y, x, b1(x, y), ..., bm(x, y)) = y.

• For any i ∈ {1, 2, ..., n− 1} we have

pi(y, x, b1(x, y), ..., bm(x, y)) = pi+1(x, y, b1(x, y), ..., bm(x, y)).

• For any i ∈ {1, 2, ..., n} we have pi(u, u, c1(u, v), ..., cm(u, v)) = v and bi(z, z) =
ci(z, z).

5. For any two morphisms f : A→ X and g : B → X, and any congruence C on the
pullback A×XB of f along g, if (x, u)C(y, u) then (x, v)C(y, v) where (x, v), (y, v) ∈
A×X B. This can be visualized as follows

(x, u)

C

Eq(p2)

Eq(p1)

(y, u)

Eq(p1)

(x, v)

C

Eq(p2)
(y, v)

In the proof below, we make use of the same notation as described in the paragraph
preceding Theorem 2.16.

Proof. The implications (1) =⇒ (2) =⇒ (3) are the content of Proposition 2.1, and (3)
=⇒ (4) is the content of Theorem 3.4. We show (4) =⇒ (5) =⇒ (1). Suppose that C is a
congruence on the pullback A×XB in (5), and that we are given (x, u)C(y, u), and suppose
that (x, v), (y, v) ∈ A×XB are any two elements. Note that since (x, u), (y, u), (x, v), (y, v)
are all elements of A ×X B, it follows that f(x) = f(y) = g(u) = g(v), and since
bi(z, z) = ci(z, z) we have f(bi(x, y)) = bi(f(x), f(y)) = ci(g(u), g(v)) = g(ci(u, v)), so
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that (bi(x, y), ci(u, v)) ∈ A×X B. Consider the elements (z1,i, z2,i) of C given by:

(z1,i, z2,i) = pi

((
x y
u u

)
,

(
y x
u u

)
,

(
b1(x, y) b1(x, y)
c1(u, v) c1(u, v)

)
, · · · ,

(
bm(x, y) bm(x, y)
cm(u, v) cm(u, v)

))
.

Then the equations in the statement of the theorem imply that z1,1 = (x, v) and z2,n =
(y, v), and moreover that z2,i = z1,i+1, so that by the transitivity of C we have (x, v)C(y, v).
For (5) =⇒ (1), we note that condition (5) implies that PtV(X) satisfies (3) of Proposi-
tion 2.9, since products in PtV(X) are pullbacks in V , and the domain functor PtV(X)→ V
sends equivalence relations in PtV(X) to equivalence relations in V (since it preserves pull-
backs and equalizers), and reflects isomorphisms.

In light of the theorem above, it is natural to ask if every variety with normal projec-
tions satisfies (P). We answer this question in the negative: every subtractive category
has normal product projections, but not every subtractive variety satisfies (P). To see
this, consider the subtraction algebra X which has underlying set {0, x, y}, and whose
subtraction is defined as a− 0 = a and a− b = 0 if b 6= 0, where a and b are any elements
of X. Similarly, let Z be the subtraction algebra with underlying set {0, z}, where the
subtraction is defined as X’s is. Let θ be the congruence on X × Z generated by the re-
lation (x, 0)θ(y, 0). By (3) of Proposition 2.9 it is enough to show that ((x, z), (y, z)) /∈ θ.
Using the same notation as we described in the paragraph preceding Theorem 2.16, we
claim that θ = R ∪∆X×Z where

R =

{(
x y
0 0

)
,

(
y x
0 0

)
,

(
0 0
0 0

)}
.

Note that R ∪ ∆X×Z is an equivalence relation, so that it remains only to show that
it is a subalgebra of (X × Z) × (X × Z). Since both R and ∆X×Z are subalgebras of
(X ×Z)× (X ×Z), it suffices to show that the subtraction of any element of R with any
element of ∆X×Z , and visa-versa, results with an element in R ∪ ∆X×Z . The following
table, together with the table that results from swapping x and y, shows that this is the
case. Therefore ((x, z), (y, z)) /∈ θ, which shows that the variety of subtraction algebras
does not satisfy (P).

.

4. Concluding remarks

We have been unable to establish a categorical counterpart of Theorem 3.7, and leave
the investigation of this question for a future work. Moreover, for varieties which are not
necessarily pointed we have been unable to determine whether or not the property (P)
can be characterized by a Mal’tsev condition as we did in Theorem 2.16. We leave it as
an open question of whether or not (P) is a Mal’tsev property for not-necessarily pointed
varieties, and conjecture that it is not. As mentioned earlier in Remark 2.8, every category
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A B A−B B − A(
x y
0 0

) (
0 0
0 0

) (
x y
0 0

) (
0 0
0 0

)
(
x y
0 0

) (
x x
0 0

) (
0 0
0 0

) (
0 0
0 0

)
(
x y
0 0

) (
y y
0 0

) (
0 0
0 0

) (
0 0
0 0

)
(
x y
0 0

) (
0 0
z z

) (
x y
0 0

) (
0 0
z z

)
(
x y
0 0

) (
x x
z z

) (
0 0
0 0

) (
0 0
z z

)
(
x y
0 0

) (
y y
z z

) (
0 0
0 0

) (
0 0
z z

)

with binary products in which every object is M-coextensive in the sense of [11], where
M = Reg(C) is the class of regular epimorphisms in C, satisfies (P). Thus for example,
the category Ring of unitary rings satisfies (P), but Ring is not pointed. Moreover, in
any congruence distributive V which admits constants every object isM-coextensive with
M = Reg(V), and thus V satisfies (P).
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
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Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: ross.street@mq.edu.au
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