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THE TANGENT BUNDLE OF A MODEL CATEGORY

YONATAN HARPAZ, JOOST NUITEN, MATAN PRASMA

Abstract. This paper studies the homotopy theory of parametrized spectrum objects
in a model category from a global point of view. More precisely, for a model category M

satisfying suitable conditions, we construct a map of model categories TMÐ→M, called
the tangent bundle, whose fiber over an object in M is a model category for spectra
in its over-category. We show that the tangent bundle is a relative model category
and presents the ∞-categorical tangent bundle, as constructed by Lurie. Moreover,
the tangent bundle TM inherits an enriched model structure from M. This additional
structure is used in subsequent work to identify the tangent bundles of algebras over an
operad and of enriched categories, but may be of independent interest.

1. Introduction

This paper discusses the homotopy theory of the abstract cotangent complex and Quillen
cohomology in the setting of model categories. Historically, the cotangent complex of
a ring provides one of the first applications of the theory of model categories: indeed,
Quillen’s work [Qui67, Qui70] on what later became known as André-Quillen cohomology
of rings describes the cotangent complex functor as the left derived functor of abelianiza-
tion. A spectral version of the cotangent complex has been studied by Schwede [Sch97],
notably for simplicial rings, and by Basterra–Mandell for E∞-ring spectra [BM05].

More recently, Lurie has developed a cotangent complex formalism in the setting of
∞-categories [Lur14, §7.3]. In this framework, one associates to a sufficiently nice ∞-
category C and an object A in C a certain ∞-category Sp(C/A) of spectrum objects
in C/A, which is universal among all stable ∞-categories with a finite-limit-preserving
functor to C/A. More concretely, Sp(C/A) can be described as the ∞-category of reduced
excisive functors from finite pointed spaces to C/A, or in other words, linear functors from
finite pointed spaces to C/A in the sense of Goodwillie [Goo91]. Following [Lur14], we will
denote TAC ∶= Sp(C/A) and refer to it as the tangent ∞-category of C at A.

The tangent ∞-category TAC can be considered as a homotopy theoretical analogue
of the category of abelian group objects over A, which are classically known as Beck
modules [Bec67]. When C is a presentable ∞-category, there is a natural “linearization”
functor

Σ∞
+ ∶ C/A Ð→ TAC,
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which leads to the notion of the cotangent complex LA ∶= Σ∞
+ (id ∶ A Ð→ A) ∈ TAC. As

in the work of Quillen [Qui67], one can then define the (Quillen) cohomology of an object
A with coefficients in an object E ∈ TAC by the formula Hn

Q(A,E) ∶= π0 MapTAC
(LA,E[n]),

where E[n] denotes the n’th suspension of E in TAC.
The cotangent complex LA mentioned above can be viewed as a functor in A by

means of the tangent bundle TC ∶= ∫A Sp(C/A) Ð→ C of C, given by assembling the
various tangent ∞-categories into a global object using an ∞-categorical version of the
Grothendieck construction. One can then define the cotangent complex functor L ∶ CÐ→
TC as the composite

C
∆Ð→ C∆1 = ∫

A
C/A

∫ Σ∞+Ð→ ∫
A
TAC = TC, (1)

where ∆ sends every object to its identity map. Many of the properties of Quillen co-
homology then become a consequence of the corresponding properties of the cotangent
complex. One such example is that Quillen cohomology always admits a transitivity
sequence, see [Lur14, Proposition 7.3.3.5], as in the classical case of André-Quillen co-
homology [Qui70].

To make practical use of the above mentioned cotangent complex formalism, it is de-
sirable to have a more explicit description of the tangent ∞-category, and the cotangent
complex functor, complementing their characterization by universal properties. In previ-
ous work, the authors identify the tangent ∞-category and the cotangent complex more
explicitly in various cases of interest:

1. Let P be a cofibrant symmetric dg-operad over a field k. Then the tangent bundle
to the ∞-category of dg-P-algebras can be identified with the ∞-category of P-
algebras and (operadic) modules over them [HNP17a, Theorem 1.0.1] (an analogous
statement in the setting of unital coherent ∞-operads was proven by Lurie in [Lur14,
§7.4]). Furthermore, the cotangent complex functor is the left derived functor of
(operadic) Kähler differentials [HNP17b, Corollary 2.5.11].

2. Consider the ∞-category of dg-categories over a field k. The tangent ∞-category at
a dg-category D can be identified with the ∞-category of D-bimodules [HNP17b,
Corollary 1.0.2].

Furthermore, the cotangent complex of D is the shifted bimodule MapD[−1], and
so the (abstract) Quillen cohomology of D with coefficients in a D-bimodule is
simply its shifted Hochschild cohomology (see loc. cit.). The latter can be computed
explicitly in terms of the bar complex [Kel03, §4.2].

3. The tangent ∞-category TD Cat∞ to the ∞-category of ∞-categories is equivalent to
the ∞-category of diagrams of spectra Tw(D) Ð→ Sp indexed by the twisted arrow
∞-category of D. The cotangent complex of D is the constant diagram with value
the shifted sphere spectrum S[−1] [HNP17b, Theorem 1.0.3].

4. The tangent ∞-category TD Cat(∞,2) to the ∞-category of (∞,2)-categories is equiv-
alent to the ∞-category of diagrams of spectra Tw2(D) Ð→ Sp indexed by the
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twisted 2-cell ∞-category of D, which is a suitable (∞,2)-analogue of the twisted
arrow category. The cotangent complex of D is the constant diagram with value
the twice shifted sphere spectrum S[−2] [HNP18, Theorem 1.1].

The ∞-categories in the above examples arise naturally from model categories. One
therefore has the freedom to study them either at the ∞-categorical or the model cat-
egorical level. The proofs in loc. cit. are given entirely in terms of model categories,
mainly because they make crucial use of the homotopy theory of enriched operads
and their algebras; this theory is well-developed in the model-categorical setting, but its
∞-categorical counterpart has only started being studied rather recently [CH17].

The purpose of this paper is to develop model-categorical tools to study the ∞-
categorical cotangent complex formalism of [Lur14, §7.3]. In particular, we construct the
model-categorical setup which is later employed in the papers [HNP17a, HNP17b, HNP18]
mentioned above. However, we believe it is of independent interest, especially since one
often applies the cotangent complex formalism to ∞-categories that arise naturally from
model categories. The framework we construct here then provides point-set ways to study
the cotangent complex and Quillen cohomology using tools from homotopical algebra.

Let us now give a brief outline of the rest of the paper. We will start in §2 by describing
a model Sp(M) for the stabilization of a model category M. When applied to pointed
objects in M/A, this gives the tangent model category TAM at A. For simplicial
model categories, there are well-known models for the stabilization of a model category
in terms of Bousfield-Friedlander spectra (or variants thereof, see [Hov01]). In contrast,
our construction does not make use of a particular choice of a point-set model for loops
and suspensions. In particular, it does not require the loop-suspension adjunction to arise
from a Quillen pair. This is particularly useful for the results mentioned above: model
categories of enriched categories, or enriched operads, do not seem to offer natural choices
for such a Quillen adjunction.

We then describe how the usual machinery of suspension- and Ω-spectrum replace-
ments arises in our setting. These replacements can be constructed abstractly using
Bousfield localization techniques. In many cases they also admit a more simple and ex-
plicit description, which can be used in situations where the Bousfield localization does
not exist. For example, when M is differentiable (see Definition 2.30) the Ω-spectrum re-
placement of a prespectrum can be described by an analogue of the usual Ω∞Σ∞-functor
(see Remark 2.36).

In the second half of the paper (§3) we use a similar approach to construct a model
π ∶ TM Ð→ M for the tangent bundle of M. We then show (Theorem 3.25) that this
indeed provides a presentation of the ∞-categorical projection

∫
A∈M∞

TAM∞ Ð→M∞

whose fibers are the tangent ∞-categories of the ∞-category M∞ underlying M. Our main
results are that TM enjoys particularly favorable properties on the model categorical level:
it exhibits TM as a relative model category over M, in the sense of [HP15], and forms



1042 YONATAN HARPAZ, JOOST NUITEN, MATAN PRASMA

a model fibration when restricted to the fibrant objects of M. This setup is used
in [HNP18], and relies on some general results about relative model categories, which
may be of independent interest.

Furthermore, when M is tensored over a suitable model category S, the tangent bun-
dle TM inherits this structure, and thus becomes enriched in S. This enrichment plays
a key role in the description of the tangent categories of algebras and of enriched cat-
egories as in [HNP17a] and [HNP17b]. The construction of such an enrichment in the
∞-categorical setting would presumably require further developments of the theory of
enriched ∞-categories (as defined in [GH15]).

Acknowledgments. We would like to thank the anonymous referee for their useful
comments and suggestions. While working on this paper the first author was supported
by the Fondation Sciences Mathématiques de Paris. The second author was supported by
NWO. The third author was supported by Spinoza, ERC 669655 and SFB 1085 grants.

2. Tangent model categories

In this section we discuss a particular model-categorical presentation for the homotopy
theory of spectra in a – sufficiently nice – model category M, as well as a model TM for the
homotopy theory of spectra parametrized by the various objects of M. The model category
Sp(M) of spectrum objects in M presents the universal stable ∞-category associated to
the ∞-category underlying M. When M is a simplicial model category, one can use
the suspension and loop functors induced by the simplicial (co)tensoring to give explicit
models for spectrum objects in M by means of Bousfield-Friedlander spectra or symmetric
spectra (see [Hov01]). In non-simplicial contexts this can be done as soon as one chooses
a Quillen adjunction realizing the loop-suspension adjunction.

The main purpose of this section is to give a uniform description of stabilization
which does not depend on a simplicial structure or any other specific model for the loop-
suspension adjunction. We will consequently follow a variant of the approach suggested
by Heller in [Hel97], and describe spectrum objects in terms of (N × N)-diagrams (see
also [Lur06, §8]). This has the additional advantage of admitting a straightforward ‘global’
analogue TM, which will focus on in §2.12 and §3.14.

2.1. Spectrum objects. Suppose that M is a weakly pointed model category, i.e. the
homotopy category of M admits a zero object. If X ∈M is a cofibrant object and Y ∈M
is a fibrant object, then a commuting square

X //

��

Z

��
Z ′ // Y

(2)

in which the objects Z and Z ′ are weak zero objects is equivalent to the datum of a map
ΣX Ð→ Y , or equivalently, a map X Ð→ ΩY . The square (2) is homotopy coCartesian if
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and only if the corresponding map ΣX Ð→ Y is an equivalence, and is homotopy Cartesian
if and only if the adjoint map X Ð→ ΩY is an equivalence.

Using this, one can describe (pre-)spectra in terms of (N ×N)-diagrams

X00
//

��

X01
//

��

⋯

X10
//

��

X11
//

��

⋯

⋮ ⋮

in which all the off-diagonal entries are weak zero objects. Indeed, the diagonal squares

Xn,n
//

��

Xn,n+1

��
Xn+1,n

// Xn+1,n+1

(3)

describe the structure maps of the pre-spectrum.

2.2. Definition. Let M be a weakly pointed model category. We will say that an (N×N)-
diagram X●,● ∶ N ×NÐ→M is

(1) a pre-spectrum if all its off-diagonal entries are weak zero objects in M;

(2) an Ω-spectrum if it is a pre-spectrum and for each n ≥ 0, the diagonal square (3) is
homotopy Cartesian;

(3) a suspension spectrum if it is a pre-spectrum and for each n ≥ 0, the diagonal
square (3) is homotopy coCartesian.

The category N ×N has the structure of a Reedy category (see [Hov99, Definition
5.2.1]) in which all maps are increasing. It follows that MN×N carries the Reedy model
structure, which agrees with the projective model structure where the weak equivalences
and fibrations are defined pointwise.

2.3. Definition. Let M be a weakly pointed model category. We will say that a map
f ∶X Ð→ Y in MN×N is a stable equivalence if for every Ω-spectrum Z the induced map
on derived mapping spaces

Maph(Y,Z) Ð→Maph(X,Z)

is a weak equivalence. A stable equivalence between Ω-spectra is always a levelwise equiv-
alence.
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2.4. Definition. Let M be a weakly pointed model category. The stable model struc-
ture on the category MN×N is – if it exists – the model structure whose

� cofibrations are the Reedy cofibrations.

� weak equivalences are the stable equivalences.

When it exists, we will denote this model category by Sp(M) and refer to it as the stabi-
lization of M.

To place the terminology of Definition 2.4 in context, recall that a model category M

is called stable if it is weakly pointed and Σ ∶ Ho(M) Ð→⊥←Ð Ho(M) ∶ Ω is an equivalence
of categories (cf. [Hov99, §7]). Equivalently, M is stable if the underlying ∞-category
M∞ (see Section 3.19) is stable in the sense of [Lur14, §1], i.e. if M∞ is pointed and the
adjunction of ∞-categories Σ ∶ M∞

Ð→⊥
←Ð M∞ ∶ Ω is an adjoint equivalence. This follows

immediately from the fact that an adjunction between ∞-categories is an equivalence if
and only if the induced adjunction on homotopy categories is an equivalence.

2.5. Remark. Alternatively, one can characterize the stable model categories as those
weakly pointed model categories in which a square is homotopy Cartesian if and only if it
is homotopy coCartesian (see [Lur14, §1]).

2.6. Proposition. Let M be a weakly pointed model category. Then Sp(M) is – if it
exists – a stable model category.

Proof. Observe that Sp(M) comes equipped with an adjoint pair of shift functors

[−n] ∶ Sp(M) //
Sp(M) ∶ [n]oo n ≥ 0

given by X[n]●● ∶= X●+n,●+n and X[−n]●,● = X●−n,●−n. Here Xi,j = ∅ when i < 0 or
j < 0. These form a Quillen pair: the functor [−n] preserves the Reedy cofibrations and
levelwise weak equivalences, so that [n] preserves Reedy (trivial) fibrations. Since [n]
also preserves Ω-spectra, it is right Quillen for the stable model structure [Hir03, Theorem
3.1.6, Proposition 3.3.18]. For each Ω-spectrum Z, there is a natural isomorphism Z Ð→
Ω(Z[1]) in Ho(Sp(M)), which shows that Ω ○R[1] is equivalent to the identity. On the
other hand, [1] is a right Quillen functor so that Ω ○R[1] ≃ R[1] ○ Ω, which shows that
Ω ∶ Ho(Sp(M)) Ð→ Ho(Sp(M)) is an equivalence.

When M is a left proper model category, the fibrant objects of Sp(M) are precisely the
Reedy fibrant Ω-spectra in M [Hir03, Proposition 3.4.1]. On the other hand, Ω-spectra
can always be characterized as the local object against a particular class of maps:

2.7. Lemma. Let M be a weakly pointed model category and let G be a class of cofibrant
objects in M with the following property: a map f ∶ X Ð→ Y in M is a weak equivalence
if and only if the induced map

Maph
M(D,X) Ð→Maph

M(D,Y )

is a weak equivalence of spaces for every D ∈ G. Then an object Z ∈MN×N is:
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(1) a pre-spectrum if and only if Z is local with respect to the set of maps

(⋆) ∅ Ð→ hn,m ⊗D

for every D ∈ G and n ≠m, where hn,m = hom((n,m),−) ∶ N×NÐ→ Set and ⊗ denotes
the natural tensoring of M over sets.

(2) an Ω-spectrum if and only if it is a pre-spectrum which is furthermore local with
respect to the set of maps

(⋆⋆)
⎡⎢⎢⎢⎢⎣
hn+1,n ∐

hn+1,n+1

hn,n+1

⎤⎥⎥⎥⎥⎦
⊗D Ð→ hn,n ⊗D

for every D ∈ G and every n ≥ 0.

Proof. Let Z be a Reedy fibrant object of MN×N. For any object A ∈ M, the diagram
hn,m ⊗A is the image of A under the left adjoint to the functor MN×N Ð→M;Z ↦ Zn,m.
Unwinding the definitions, the image of (⋆) under Maph(−, Z) can therefore be identified
with the map

Maph
M(D,Zn,m) Ð→Maph

M(∅, Zn,m) ≃ ∗.
It follows that Z is local with respect to the maps (⋆) iff Zn,m is a weak zero object, which
proves (1).

For (2), observe that for any cofibrant object D and any pair of n′ ≤ n, m′ ≤ m, the
maps hn,m ⊗D Ð→ hn′,m′ ⊗D are levelwise cofibrations between Reedy cofibrant objects.
Since homotopy pushouts in MN×N are computed levelwise, it follows that the domain
of (⋆⋆) is a homotopy pushout of N × N-diagrams. Using this, the image of (⋆⋆) under
Maph(−, Z) can therefore be identified with the map

Maph
M(D,Zn,n) Ð→Maph

M(D,Zn+1,n) ×h
Maph

M(D,Zn+1,n+1)
Maph

M(D,Zn,n+1).

The target of this map can be identified with Maph
M (D,Zn,n+1 ×h

Zn+1,n+1
Zn+1,n). It follows

that a pre-spectrum is local with respect to (⋆⋆) iff it is an Ω-spectrum.

2.8. Corollary. Let M be a left proper combinatorial model category which is weakly
pointed. Then the stabilization Sp(M) exists.

Proof. Because M is combinatorial there exists a set G of cofibrant objects of M which
together detect weak equivalences as above [Dug01, Proposition 4.7]. The stable model
structure can therefore be identified with the left Bousfield localization of the Reedy
model structure at a set of maps, which exists because M is left proper and combinatorial
[Bar10, Theorem 4.7].
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2.9. Proposition. If L ∶M Ð→⊥
←Ð N ∶ R is a Quillen adjunction between left proper combi-

natorial model categories then its levelwise prolongation

Sp(M)
Sp(L) //

Sp(N)
Sp(R)

⊥oo

is a Quillen adjunction with respect to the stable model structures on both sides. Further-
more, if L ⊣ R is a Quillen equivalence then so is Sp(L) ⊣ Sp(R).

Proof. Note that by Corollary 2.8, the stable model structures exist. Applying the
functor R levelwise induces a functor RN×N which preserves levelwise (equivalently, Reedy)
fibrations and trivial fibrations. Since RRN×N ∶ NN×N Ð→ MN×N preserves Ω-spectra, it
follows that the Quillen adjunction RN×N ⊣ LN×N descends to the stable model structure
[Hir03, Theorem 3.1.6, Proposition 3.3.18]. A Quillen equivalence L ⊣ R induces a Quillen
equivalence between Reedy model structures. This implies that the induced Quillen pair
between stabilizations is a Quillen equivalence as well. Indeed, the right Quillen functor
Sp(R) detects equivalences between Reedy fibrant Ω-spectra (which are just levelwise
equivalences [Hir03, Theorem 3.2.13]) and the derived unit map of Sp(R) can be identified
with the derived unit map of RN×N.

2.10. Remark. When M is combinatorial and weakly pointed, any Reedy cofibrant object
X ∈ MN×N admits a stable equivalence X Ð→ E to an Ω-spectrum. This either follows
formally from inspecting the proof of the existence of Bousfield localizations in the left
proper case, as treated e.g. in [Bar10, §4], or – if M is differentiable – from the explicit
constructions in Remark 2.27 and Corollary 2.35.

2.11. Remark. When the stable model structure does not exist, the class of Reedy cofi-
brations which are also stable equivalences is not closed under pushouts. However, this
class is closed under pushouts along maps with levelwise cofibrant domains and codomains.
Indeed, such pushouts are always homotopy pushouts (by the ‘cube lemma’ [Hov99, Lemma
5.2.6]) in the injective model structure on MN×N, hence in the Reedy model structure as
well. The homotopy pushout of a stable equivalence remains a stable equivalence (cf. the
proof of [Bar10, Theorem 4.7]).

2.12. Parametrized spectrum objects. In the previous section we have seen that
any – sufficiently nice – weakly pointed model category M gives rise to a model category
Sp(M) of spectra in M, depending naturally on M. One can mimic the description of
Sp(M) in terms of N × N-diagrams to produce a model category TM of parametrized
spectra in a model category M, with varying ‘base spaces’. Indeed, for a fixed base A ∈M ,
consider the pointed model category MA//A of retractive objects over A, i.e. maps B Ð→ A
equipped with a section. An Ω-spectrum in MA//A can be considered as a parametrized
spectrum over A. This notion was first studied by May and Sigurdsson [MS06] when
M is the category of topological spaces. In that case a parameterized spectrum over
A describes a functor from the fundamental ∞-groupoid of A to spectra (see [ABG11,
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Appendix B]). When M is the category of E∞-ring spectra, Basterra and Mandell [BM05]
showed that parameterized Ω-spectra over R ∈ M is essentially equivalent to the notion
of an E-module spectrum.

2.13. Definition. Let M be a model category. We will denote by

TAM ∶= Sp(MA//A)
the stabilization of MA//A, when it exists, and refer to it as the tangent model category
of M at A.

2.14. Remark. When M is combinatorial and left proper, then MA//A is combinatorial
and left proper for every A and the tangent model category TAM exists for every A, by
Corollary 2.8. In §3.19 we will show that under mild conditions the model category TAM

is also presentation of the tangent ∞-category TAM∞.

Note that a spectrum in MA//A is given by the datum of a diagram X ∶ N×NÐ→MA//A,
which is equivalent to the datum of a diagram

X ′ ∶ (N ×N)∗ Ð→M

such that X ′(∗) = A, where (N × N)∗ denotes the category obtained from N × N by
freely adding a zero object ∗. In other words, for a category I, the category I∗ has
object set Ob(I) ∪ {∗}, and maps HomI∗(i, j) = HomI(i, j) ∪ {∗} for every i, j ∈ I, and
HomI∗(i,∗) = HomI∗(∗, i) = {∗} for every i ∈ I (here the composition of ∗ with any other
map is again ∗). Parameterized spectra with varying base can therefore be described in
terms of (N ×N)∗-diagrams whose value at ∗ is not fixed in advance.

2.15. Remark. When I = (I, I+, I−) is a Reedy category, I∗ is again a Reedy category,
where we consider ∗ ∈ I∗ as being the unique object of degree 0 and such that for every i
the unique map ∗ Ð→ i is in I+∗ = (I∗)+ and the unique map iÐ→ ∗ is in I−∗.

2.16. Definition. Let M be a model category and let X ∶ (N ×N)∗ Ð→M be a diagram.
We will say that X is a parameterized Ω-spectrum in M if it is satisfies the following
two conditions:

1. for each n ≠m, the map X(n,m) Ð→X(∗) is a weak equivalence.

2. for each n ≥ 0 the square
Xn,n

//

��

Xn+1,n

��
Xn+1,n

// Xn+1,n+1

(4)

is homotopy Cartesian.

We will say that a map f ∶ X Ð→ Y in M(N×N)∗ is a stable equivalence if for every
parameterized Ω-spectrum Z the induced map on derived mapping spaces

Maph(Y,Z) Ð→Maph(X,Z)
is an equivalence.
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2.17. Remark. A diagram X ∶ (N × N)∗ Ð→ M is a Reedy fibrant parameterized Ω-
spectrum iff X(∗) is fibrant in M and X determines a Reedy fibrant Ω-spectrum in
MX(∗)//X(∗).

2.18. Definition. The tangent bundle TM of M is – if it exists – the unique model
structure on M(N×N)∗ whose cofibrations are the Reedy cofibrations and whose weak equiv-
alences are the stable equivalences.

When the tangent bundle TM exists, it has the same cofibrations and less fibrant
objects than the Reedy model structure. It follows that TM is a left Bousfield localization
of the Reedy model structure. In fact, Lemma 2.7 shows that TM can be obtained from
the Reedy model structure by left Bousfield localizing at the class of maps

h∗ ⊗D Ð→ hn,m ⊗D n ≠m,D ∈ G

together with the maps

⎡⎢⎢⎢⎢⎣
hn+1,n ∐

hn+1,n+1

hn,n+1

⎤⎥⎥⎥⎥⎦
⊗D Ð→ hn,n ⊗D n ≥ 0,D ∈ G.

Here hx ∶ (N × N)∗ Ð→ Set is the functor corepresented by x ∈ (N × N)∗, ⊗ denotes the
natural tensoring of M over sets and G is a class of cofibrant objects D such that the
functors Maph

M(D,−) mutually detect equivalences. For left proper combinatorial model
categories, we can choose G to be a set [Dug01, Proposition 4.7], so that the left Bousfield
localization always exists [Bar10, Theorem 4.7] and we obtain the following analogue of
Corollary 2.8:

2.19. Corollary. If M is a left proper combinatorial model category, then the tangent
bundle TM exists.

2.20. Examples.

1. When M = S is the category of simplicial sets with the Kan-Quillen model structure
then TXS gives a model for parameterized spectra over X which is equivalent to
that of [MS06] (see [HNP17b, §2.3]). Similarly, TS is the associated global model,
whose objects can be thought of as pairs consisting of a space X together with a
parameterized spectrum over X.

2. When M = sGr is the category of simplicial groups the tangent model category TG sGr
is Quillen equivalent to the model category of (naive) G-spectra (see [HNP17b, §2.4]).

3. If P is a cofibrant dg-operad over a field k, then the category M = dg AlgP of dg-
algebras over P carries a combinatorial model structure [Spi01, Theorem 4], which is
left proper [Fre09, 17.4.B(b)]. For every dg-P-algebra A the tangent category TAM

is Quillen equivalent to the category of dg-A-modules [Sch97, HNP17a].
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4. If S is an excellent symmetric monoidal model category [Lur09, Definition A.3.2.16]
and M = CatS is the model category of small S-enriched categories, then for every
fibrant S-enriched category C the tangent category TC CatS is Quillen equivalent to
the category of enriched lifts Cop ⊗ C Ð→ TS of the mapping space functor Map ∶
Cop ⊗ CÐ→ S [HNP17b, Corollary 3.1.16].

5. If M = SetJoy
∆ is the model category of simplicial sets endowed with the Joyal model

structure and C ∈ SetJoy
∆ is a fibrant object (i.e., an ∞-category) then TC SetJoy

∆ is
equivalent to the model category (Set∆)/Tw(C) of simplicial sets over the twisted
arrow category of C equipped with the covariant model structure. In particular,
the underlying ∞-category TC Cat∞ ≃ (TC SetJoy

∆ )
∞

is equivalent to the ∞-category
of functors Tw(C) Ð→ Spectra [HNP17b, Corollary 3.3.1].

2.21. Suspension spectra. In §2.1 we considered a model for spectrum objects in a
weakly pointed model category M, and saw that in good cases it yields a model cate-
gory Sp(M). We will now show that when this holds, one can also model the classical
“suspension-infinity/loop-infinity” adjunction via a Quillen adjunction.

2.22. Proposition. Let M be a weakly pointed model category such that Sp(M) exists.
Then the adjunction

Σ∞ ∶M Ð→⊥
←Ð Sp(M) ∶ Ω∞

given by Σ∞(X)n,m = X and Ω∞(X●●) = X0,0 is a Quillen adjunction. Furthermore, this
Quillen adjunction is natural in M in the following sense: any Quillen pair L ∶M Ð→⊥

←Ð N ∶ R
between two such model categories fits into a diagram of Quillen adjunctions

Sp(M)
Sp(L) //

Ω∞⊣

��

Sp(N)
Sp(R)

⊥oo

Ω∞⊣

��
M

Σ∞
OO

L //
N.

R

⊥oo

Σ∞
OO

Proof. The functor ev(0,0) ∶MN×N Ð→M evaluating at (0,0) is already right Quillen for
the Reedy model structure, so in particular for the stable model structure on MN×N. The
commutation of the diagram is immediate to check on right adjoints.

The adjunction Σ∞ ∶ M Ð→⊥
←Ð Sp(M) ∶ Ω∞ of Proposition 2.8 is offered as a model for

the classical suspension-infinity/loop-infinity adjunction. This might seem surprising at
first sight as the object Σ∞(X) is by definition a constant (N × N)-diagram, and not
a suspension spectrum. In this section we will prove a convenient replacement lemma
showing that up to a stable equivalence every constant spectrum object can be replaced
with a suspension spectrum, which is unique in a suitable sense (see Remark 2.25). This
can be used, for example, in order to functorially replace Σ∞(X) with a suspension
spectrum, whenever the need arises (see Corollary 2.24 below). While mostly serving for
intuition purposes in this paper, Lemma 2.23 is also designed for a more direct application
in [HNP17b].
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2.23. Lemma. Let M be a weakly pointed model category. Let f ∶ X Ð→ Y be a map in
MN×N such that X is constant and levelwise cofibrant and Y is a suspension spectrum.
Then there exists a factorization of f

X
f ′Ð→X ′ f ′′Ð→ Y

such that X ′ is a suspension spectrum, f ′ is a stable equivalence and f ′0,0 ∶X0,0 Ð→X ′
0,0 is

a weak equivalence. In particular, if f0,0 ∶ X0,0 Ð→ Y0,0 is already a weak equivalence then
f is a stable equivalence.

Proof. Let us say that an object Z●● ∈MN×N is a suspension spectrum up to n if Zm,k is
a weak zero object whenever m ≠ k and min(m,k) < n and if the m’th diagonal square is
a pushout square for m < n. In particular, the condition of being a suspension spectrum
up to 0 is vacuous. We will now construct a sequence of levelwise cofibrations and stable
equivalences over Y

X = P0 Ð→ P1 Ð→ ⋯Ð→ Pn Ð→ Pn+1 Ð→ ⋯

with the following properties: each Pn is a levelwise cofibrant suspension spectrum up
to n and the map (Pn)m,k Ð→ (Pn+1)m,k is an isomorphism whenever min(m,k) < n or

m = k = n. Then X ′ def= colimnPn ≃ hocolimnPn is a suspension spectrum by construction
and the map f ∶X Ð→X ′ satisfies the required conditions (see Remark 2.11).

Given a cofibrant object Z ∈ M equipped with a map Z Ð→ Yn,n, let us denote the
cone of the composed map Z Ð→ Yn,n Ð→ Yn,n+1 by Z Ð→ Cn,n+1(Z) Ð→ Yn,n+1 and the
cone of the map Z Ð→ Yn,n Ð→ Yn+1,n by Z Ð→ Cn+1,n(Z) Ð→ Yn+1,n. Since Y is weakly
contractible off diagonal it follows that Cn,n+1(Z) and Cn+1,n(Z) are weak zero objects.
Let ΣY (Z) ∶= Cn,n+1(Z)∐Z Cn+1,n(Z) be the induced model for the suspension of Z in M.
By construction the object ΣY (Z) carries a natural map ΣY (Z) Ð→ Yn+1,n+1. Let us now
define Qn,n+1(Z), Qn+1,n(Z) and Qn+1(Z) by forming the following diagram in MN×N

/Y
:

hn,n+1 ⊗Z

��

// hn,n+1 ⊗Cn,n+1(Z)

��
hn+1,n ⊗Z //

��

hn,n ⊗Z //

��

Qn,n+1(Z)

��
hn+1,n ⊗Cn+1,n(Z) // Qn+1,n(Z) // Qn+1(Z).

Since all objects in this diagram are levelwise cofibrant and the top right horizontal
map is a levelwise cofibration and a stable equivalence, all the right horizontal maps are
levelwise cofibrations and stable equivalences (see Remark 2.11). Similarly, since the left
bottom vertical map is a levelwise cofibration and a stable equivalence the same holds
for all bottom vertical maps. It then follows that hn,n ⊗ Z Ð→ Qn+1(Z) is a levelwise
cofibration and a stable equivalence over Y . We note that by construction the shifted
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diagram Qn+1(Z)[n + 1] is constant on ΣY (Z) (see Lemma 2.6 for the definition of the
shift functors).

Let us now assume that we have constructed Pn Ð→ Y such that Pn is a suspension
spectrum up to n and such that the shifted object Pn[n] is a constant diagram. This is

clearly satisfied by P0
def= X. We now define Pn+1 inductively as the pushout

hn,n ⊗ (Pn)n,n //

��

Qn+1((Pn)n,n)

��
Pn // Pn+1

Since the left vertical map becomes an isomorphism after applying the shift [n], so does
the right vertical map in the above square. It follows that Pn+1[n + 1] is constant and
that the n’th diagonal square of Pn+1 is homotopy coCartesian by construction. This
means that Pn+1 is a suspension spectrum up to n. Furthermore, by construction the map
Pn Ð→ Pn+1 is a levelwise cofibration and a stable equivalence which is an isomorphism
at (m,k) whenever at least one of m,k is smaller than n or k =m = n.

Taking Y in Lemma 2.23 to be the terminal object of MN×N we obtain the following
corollary:

2.24. Corollary. Let M be a weakly pointed model category and let X ∈ M be a cofi-
brant object. Then there exists a stable equivalence Σ∞X Ð→ Σ∞X whose codomain is a
suspension spectrum and such that the map X Ð→ Σ∞X0,0 is a weak equivalence.

2.25. Remark. If X is a levelwise cofibrant constant spectrum object, then Corollary 2.24
provides a stable equivalence X Ð→X ′ from X to a suspension spectrum which induces an
equivalence in degree (0,0). These “suspension spectrum replacements” can be organized
into a category, and Lemma 2.23 can be used to show (as in [Hir03, Theorem 14.5.6], for
example) that the nerve of this category is weakly contractible. We may hence consider a
suspension spectrum replacement in the above sense as essentially unique.

2.26. Remark. Examining the proof of Lemma 2.23 we see that the suspension spectrum
replacement of Corollary 2.24 can be chosen to depend functorially on X and the map
X Ð→ Σ∞X0,0 can be chosen to be an isomorphism.

2.27. Remark. A similar but simpler construction replaces any levelwise cofibrant (N ×
N)-diagram X by a weakly equivalent pre-spectrum: let X(0) = X and inductively define
X(k+1) such that X(k) Ð→X(k+1) is a pushout along

∐
n+m=k,n≠m

hn,m ⊗X(k)
n,m Ð→ ∐

n+m=k,n≠m

hn,m ⊗C(X(k)
n,m).

The map X(k) Ð→X(k+1) is then an isomorphism below the line m+n = k and replaces the
off-diagonal entries on that line by their cones. It is a levelwise cofibration and a stable
equivalence, being the pushout of such a map with cofibrant target (see Remark 2.11).
The (homotopy) colimit of the resulting sequence of stable equivalences yields the desired
pre-spectrum replacement.
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2.28. Differentiable model categories and Ω-spectra. Our goal in this subsec-
tion is to give a description of the fibrant replacement of a pre-spectrum, which resembles
the classical fibrant replacement of spectra (see [Hov01], or [Lur06, Corollary 8.17] for the
∞-categorical analogue). This description requires some additional assumptions on the
model category at hand, which we first spell out.

Let f ∶ I Ð→ M be a diagram in a combinatorial model category M. Recall that
a cocone f ∶ I▷ Ð→ M over f is called a homotopy colimit diagram if for some
cofibrant replacement f cof Ð→ f in the projective model structure on I-diagrams (see
[Hir03, Theorem 11.6.1]), the composed map

colim f cof(i) Ð→ colim f(i) Ð→ f(∗)

is a weak equivalence (where ∗ ∈ I▷ denotes the cone point). Similarly, one defines the
notion of a homotopy limit diagram using the injective model structure on MI.

A functor G ∶ M Ð→ N preserving weak equivalences is said to preserve I-indexed
homotopy colimits if it maps I▷-indexed homotopy colimit diagrams to homotopy
colimit diagrams. The notion of preserving homotopy limit diagrams is defined similarly.

2.29. Remark. The assumption above that M is combinatorial is only used in order
to make sure that the projective and injective model structures on diagrams in M exist.
These model structures sometimes exist also when M is not combinatorial (e.g., when I is
a directed or inverse category) in which case the notion of a homotopy (co)limit diagram
can be defined in the same way. When MI does not admit the injective (projective) model
structure, one can still define the notion of a homotopy (co)limit diagram by means of the
Bousfield-Kan formula [Hir03, Chapter 19].

2.30. Definition. [cf. [Lur14, Definition 6.1.1.6]] Let M be a model category and let N
be the poset of non-negative integers as above. We will say that M is differentiable if for
every homotopy finite category I (i.e., a category whose nerve is a finite simplicial set),
the right derived limit functor R lim ∶ MI Ð→ M preserves N-indexed homotopy colimits.
We will say that a Quillen adjunction L ∶M Ð→⊥

←Ð N ∶ R is differentiable if M and N are
differentiable and RR preserves N-indexed homotopy colimits.

2.31. Remark. The condition that M be differentiable can be equivalently phrased by
saying that the derived colimit functor L colim ∶ MN Ð→ M preserves finite homotopy
limits. This means, in particular, that if M is differentiable then the collection of Ω-
spectra in MN×N is closed under N-indexed homotopy colimits.

2.32. Example. Recall that a combinatorial model category M is called finitely com-
binatorial if the underlying category of M is compactly generated and there exist sets of
generating cofibrations and trivial cofibrations whose domains and codomains are compact
[RR15]. The classes of fibrations and trivial fibrations, and hence the class of weak equiv-
alences, are then closed under filtered colimits. Such a model category M is differentiable
because filtered colimit diagrams in M are already filtered homotopy colimit diagrams,
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while the functor colim ∶MN Ð→M preserves finite limits and fibrations (and hence finite
homotopy limits).

In the following lemma, we will use the injective model structure on MN×N, whose
cofibrations and weak equivalences are defined levelwise. This model structure exists
when M is combinatorial [Lur09, Proposition A.2.8.2].

2.33. Lemma. Let M be a weakly pointed combinatorial model category and let f ∶X Ð→
Y be a map of pre-spectra such that X is levelwise cofibrant and Y is an injective fibrant
Ω-spectrum at m, i.e. the square

Ym,m //

��

Ym,m+1

��
Ym+1,m

// Ym+1,m+1

(5)

is homotopy Cartesian. Then we may factor f as X
f ′Ð→X ′

f ′′Ð→ Y such that

(1) f ′ is a levelwise cofibration and a stable equivalence and the map f ′n,k ∶ Xn,k Ð→ X ′
n,k

is a weak equivalence for every n, k except (n, k) = (m,m).

(2) X ′ is an Ω-spectrum at m.

Proof. We first note that we may always factor f as an injective trivial cofibration
X Ð→ X ′′ followed by an injective fibration X ′′ Ð→ Y . Replacing X with X ′′ we may
assume without loss of generality that f is an injective fibration. Let

Xm,m Ð→ P Ð→ Ym,m ×
[Ym,m+1×Ym+1,m+1

Ym+1,m]
[Xm,m+1 ×Xm+1,m+1 Xm+1,m]

be a factorization in M into a cofibration followed by a trivial fibration. By our assumption
on Y the map Ym,m Ð→ Ym,m+1×Ym+1,m+1Ym+1,m is a trivial fibration and hence the composed
map P Ð→ Xm,m+1 ×Xm+1,m+1 Xm+1,m is a trivial fibration as well. Associated to the
cofibration j ∶Xm,m Ð→ P is now a square of (N ×N)-diagrams

(hm,m+1∐hm+1,m+1
hm+1,m) ⊗Xm,m

//

��

(hm,m+1∐hm+1,m+1
hm+1,m) ⊗ P

��
hm,m ⊗Xm,m

// hm,m ⊗ P

(6)

The rows of these diagrams are stable equivalences and levelwise cofibrations between
levelwise cofibrant objects. It follows that the induced map im ◻ j ∶ Q Ð→ hm,m ⊗ P from
the (homotopy) pushout to hm,m ⊗ P is a stable equivalence and a levelwise cofibration
(see Remark 2.11). One can easily check that im ◻ j is an isomorphism in every degree,
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except in degree (m,m) where it is the inclusion Xm,m Ð→ P . We now define X ′ as the
pushout

Q //

��

hm,m ⊗ P

��
X // X ′

where the left vertical map is the natural map. Since Q and X are levelwise cofibrant,
the resulting map X Ð→ X ′ is a stable equivalence and an isomorphism in all degrees,
except in degree (m,m) where it is the cofibration Xm,m Ð→ P . we now see that the map
X Ð→X ′ satisfies properties (1) and (2) above by construction.

2.34. Corollary. Let M be a weakly pointed combinatorial model category and let f ∶
X Ð→ Y be a map in MN×N between pre-spectra such that X is levelwise cofibrant and Y
is an injective fibrant Ω-spectrum below n, i.e., it is an Ω-spectrum at m for every m < n.
Then we may factor f as

X
f ′Ð→ LnX

f ′′Ð→ Y

such that f ′ is a levelwise cofibration and a stable equivalence, LnX is an Ω-spectrum
below n and the induced map f ′[n] ∶ X[n] Ð→ LnX[n] is a levelwise weak equivalence of
pre-spectra. In particular, if the induced map f[n] ∶ X[n] Ð→ Y [n] is already a levelwise
weak equivalence then f is a stable equivalence.

Proof. Apply Lemma 2.33 consecutively for m = n−1, ...,0 to construct the factorization
X Ð→ LnX Ð→ Y with the desired properties. Note that if f[n] ∶ X[n] Ð→ Y [n] is a
levelwise equivalence then the induced map LnX[n] Ð→ Y [n] is a levelwise equivalence.
Since both LnX and Y are Ω-spectra below n the map LnX Ð→ Y must be a levelwise
equivalence. It then follows that f ∶X Ð→ Y is a stable equivalence.

2.35. Corollary. Let M be a weakly pointed differentiable combinatorial model category
and let f ∶X Ð→ Y be a map in MN×N such that X is levelwise cofibrant pre-spectrum and
Y is an injective fibrant Ω-spectrum. Then there exists a sequence of levelwise cofibrations
and stable equivalences

X Ð→ L1X Ð→ L2X Ð→ ⋯
over Y such that for each n the map X[n] Ð→ LnX[n] is a levelwise weak equivalence and

LnX is an Ω-spectrum below n. Furthermore, the induced map X Ð→ L∞X
def= colimLnX

is a stable equivalence and L∞X is an Ω-spectrum.

Proof. Define the objects LnX inductively by requiring LnX Ð→ Ln+1X to be the map
from LnX to an Ω-spectrum below n + 1 constructed in Corollary 2.34. The resulting
sequence is easily seen to have all the mentioned properties.

Since all the maps LnX Ð→ Ln+1X are levelwise cofibrations between levelwise cofi-
brant objects it follows that the map X Ð→ L∞X is the homotopy colimit in MN×N of
the maps X Ð→ LnX. Since the collection of stable equivalences between pre-spectra is
closed under homotopy colimits we may conclude that the map X Ð→ L∞X is a stable
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equivalence between pre-spectra. The assumption that M is differentiable implies that
for each m the collection of Ω-spectra at m is closed under sequential homotopy colim-
its. We may therefore conclude that L∞X is an Ω-spectrum at m for every m, i.e., an
Ω-spectrum.

2.36. Remark. Since the map Xn,n Ð→ (LnX)n,n is a weak equivalence in M and LnX is
a pre-spectrum and an Ω-spectrum below n, it follows that the space (LnX)0,0 is a model for
the n-fold loop object ΩnXn,n in M. The above result then asserts that for any pre-spectrum
X, its Ω-spectrum replacement L∞X is given in degree (k, k) by hocolimn ΩnXk+n,k+n. In
particular RΩ∞X ≃ hocolimn ΩnXn,n.

2.37. Corollary. Let R ∶ M Ð→ N be a differentiable right Quillen functor between
weakly pointed combinatorial model categories. Then the right derived Quillen functor
RRN×N ∶MN×N

Reedy Ð→ NN×N
Reedy preserves stable equivalences between pre-spectra. If in addition

RR detects weak equivalences then RRN×N detects stable equivalences between pre-spectra.

Proof. Let f ∶ X Ð→ Y be a stable equivalence between pre-spectra. We may assume
without loss of generality that X is levelwise cofibrant. Let

Y Ð→ L1Y Ð→ L2Y Ð→ ⋯

be constructed as in Corollary 2.35 with respect to the map Y Ð→ ∗. We will denote
Y∞ = colimnLnY . Similarly, let

X Ð→ L1X Ð→ L2X Ð→ ⋯

be a sequence as in Corollary 2.35 constructed with respect to the map X Ð→ Y∞, and
let X∞ = colimnLnX. Since LnX is an Ω-spectrum below n it follows that RRN×N(LnX)
is an Ω-spectrum below n. Furthermore, the map RRN×N(X)[n] Ð→ RRN×N(LnX)[n]
is a levelwise equivalence, so that the final part of Corollary 2.34 implies that the map
RRN×N(X) Ð→ RRN×N(LnX) is a stable equivalence. By the same argument the map
RRN×N(Y ) Ð→ RRN×N(LnY ) is a stable equivalences. Since the maps LnX Ð→ Ln+1X are
levelwise cofibrations between levelwise cofibrant objects, we have that X∞ ≃ hocolimLnX
and Y∞ ≃ hocolimnLnY . Since RR preserves sequential homotopy colimits by assump-
tion, the maps RRN×N(X) Ð→ RRN×N(X∞) and RRN×N(Y ) Ð→ RRN×N(Y∞) are stable
equivalences. Now since X∞ Ð→ Y∞ is a stable equivalence between Ω-spectra it is
also a levelwise weak equivalence [Hir03, Theorem 3.2.13]. We thus conclude that the
map RRN×N(X∞) Ð→ RRN×N(Y∞) is a levelwise equivalence. The map RRN×N(X) Ð→
RRN×N(Y ) is then a stable equivalence in NN×N by the 2-out-of-3 property.

2.38. Corollary. Let L ∶M Ð→⊥
←Ð N ∶ R be a differentiable Quillen pair of weakly pointed

left proper combinatorial model categories and let n ≥ 0 be a natural number.

(1) If the derived unit uX ∶ X Ð→ RR(LX) either has the property that ΩnuX is an
equivalence for every cofibrant X or ΣnuX is an equivalence for every cofibrant X, then
the derived unit of Sp(L) ⊣ Sp(R) is weak equivalence for every levelwise cofibrant
pre-spectrum.
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(2) If the derived counit νX ∶ LL(RY ) Ð→ Y either has the property that ΩnνX is an
equivalence for every fibrant Y or ΣnνY is an equivalence for every fibrant Y , then
the derived counit of Sp(L) ⊣ Sp(R) is weak equivalence for every levelwise fibrant
pre-spectrum.

Proof. We will only prove the first claim; the second claim follows from a similar ar-
gument. Let A ∈ MN×N be a levelwise cofibrant pre-spectrum object in M. Since R is
differentiable we have by Corollary 2.37 that RRN×N preserves stable equivalences between
pre-spectra. It follows that the derived unit map is given levelwise by the derived unit
map of the adjunction L ⊣ R. In particular, if each component of this map becomes an
equivalence upon applying Σn, then the entire unit map becomes a levelwise equivalence
after suspending n times (recall that suspension in Sp(M), like all homotopy colimits, can
be computed levelwise). Since Sp(M) is stable this means that the derived unit itself is
an equivalence.

Now assume that uX becomes an equivalence after applying Ωn. Since L ⊣ R is a
Quillen adjunction between weakly pointed model categories, the above map is a map of
pre-spectra. It therefore suffices to check that the induced map

Afib Ð→ R (L(A)Reedy−fib)fib

on the (explicit) fibrant replacements provided by Corollary 2.35 is a levelwise equivalence.
By Remark 2.36 this map is given at level (k, k) by the induced map

hocolimi Ω
iAk+i,k+i Ð→ hocolimi Ω

iRR(L(Ak+i,k+i)).

We now observe that ΩiAk+i,k+i Ð→ ΩiRR(L(Ak+i,k+i)) is a weak equivalence for all i ≥ n
by our assumption, and so the desired result follows.

3. The tangent bundle

The tangent bundle TM can informally be thought of as describing the homotopy theory
of parameterized spectra in M, with varying base objects. Accordingly, one can consider
TM itself as being parameterized by the objects of M: for every object A ∈ M, there is
a full subcategory of the tangent bundle consisting of spectra parameterized by A. More
precisely, the tangent bundle fits into a commuting triangle of right Quillen functors

TM

π !!

Ω∞+ //M[1]

codom||
M

(7)

where the functor Ω∞
+ sends a diagram X ∶ (N ×N)∗ Ð→M to its restriction X(0,0) Ð→

X(∗) and the functor “codom” takes the codomain of an arrow in M.
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The functors π ∶ TMÐ→M and codom ∶M[1] Ð→M have various favorable properties.
For example, in addition to being right adjoint functors, they are left adjoints as well, with
right adjoints given by the formation of constant diagrams. More importantly, they are
both Cartesian and coCartesian fibrations, with fiber over A ∈M given by the categories

(MA//A)
N×N

and M/A, respectively.
The purpose of this section is to show that this behaviour persists at the homotopical

level. In §3.1 we discuss how the functor π behaves like a fibration of model categories
(cf. [HP15]) which is classified by a suitable diagram of model categories and left Quillen
functors between them. In §3.19, we show that the triangle of right Quillen functors (7)
realizes TM as a model for the tangent ∞-category of the ∞-category underlying M.

3.1. The tangent bundle as a relative model category. Recall that a suitable
version of the classical Grothendieck correspondence asserts that the data of a (pseudo-
)functor from an ordinary category C to the (2,1)-category of categories and adjunc-
tions is equivalent to the data of a functor D Ð→ C which is simultaneously a Cartesian
and a coCartesian fibration. This result admits a model categorical analogue, developed
in [HP15], classifying certain fibrations N Ð→M of categories equipped with three wide
subcategories

WM,CofM,FibM ⊆M

(similarly for N). We will refer to such a category equipped with three wide subcategories
as a pre-model category. The morphisms in WM, CofM, FibM, CofM ∩WM and FibM ∩
WM will be called weak equivalences, cofibrations, fibrations, trivial cofibrations and
trivial fibrations respectively.

3.2. Definition. Let M,N be two pre-model categories and π ∶ N Ð→M a (co)Cartesian
fibration which preserves the classes of (trivial) cofibrations and (trivial) fibrations. We
will say that π exhibits N as a model category relative to M if the following conditions
are satisfied:

1. π ∶ N Ð→M is (co)complete, i.e., admits all relative limits and colimits.

2. Let f ∶ X Ð→ Y and g ∶ Y Ð→ Z be morphisms in N. If two of f, g, g ○ f are in WN

and if the image of the third is in WM then the third is in WN.

3. (CofN ∩WN,FibN) and (CofN,FibN ∩WN) are π-weak factorization systems relative
to (CofM ∩WM,FibM) and (CofM,FibM ∩WM) respectively. In other words, every
lifting/factorization problem in N which has a solution in M admits a compatible
solution in N (see [HP15, Definition 5.0.2] for the full details).

In this case we will also say that π is a relative model category.

3.3. Remark. In [HP15] the authors consider the notion of a relative model category in
the more general case where π is not assumed to be a (co)Cartesian fibration. However,
for our purposes we will only need to consider the more restrictive case, which is also
formally better behaved (for example, it is closed under composition, see [HP17ER]).
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3.4. Remark. If N Ð→ M is a relative model category then the cofibrations and trivial
fibrations in N determine each other, in the following sense: if f ∶ X Ð→ Y is a map
such that π(f) is a cofibration in M, then f is a cofibration in N if and only if it has
the relative left lifting property against all trivial fibrations in N which cover identities.
Indeed, this follows from the usual retract argument, where one factors f as a cofibration
i ∶ X Ð→ Ỹ over π(f), followed by a trivial fibration p ∶ Ỹ Ð→ Y over the identity and
shows that f is a retract of i (over π(f)) using that f has the relative left lifting property
against p.

3.5. Example. If π ∶ N Ð→ M is a relative model category and M is a model category
then N is a model category and π is both a left and right Quillen functor.

If π ∶ N Ð→M is a relative model category, then the functor ∅ ∶M Ð→ N left adjoint
to π preserves all (trivial) cofibrations and the functor ∗ ∶ M Ð→ N right adjoint to π
preserves all (trivial) fibrations. Orthogonally, for every object A ∈M, the (co)fibrations
and weak equivalences of N that are contained in the fiber NA, together determine a
model structure on NA: indeed, the relative factorization, lifting and retract axioms in
particular imply these axioms fiberwise.

Since π ∶ N Ð→M is a (co)Cartesian fibration every map f ∶ AÐ→ B in M determines
an adjoint pair

f! ∶ NA
Ð→⊥
←Ð NB ∶ f∗.

This adjunction is a Quillen pair, as one easily deduces from the following result:

3.6. Lemma. Let π ∶ N Ð→M be a relative model category and let f ∶ X Ð→ Y be a map
in N. Then f is a (trivial) cofibration if and only if π(f) is a (trivial) cofibration in M

and the induced map π(f)!X Ð→ Y is a (trivial) cofibration in Nπ(Y ).

Proof. Consider a lifting problem in N of the form

X //

f
��

Z

��

A //

π(f)
��

C

��
Y //

g̃

>>

W B

g

>>

// D

� π //

together with a diagonal lift of its image in M, as indicated. Finding the desired diagonal
lift g̃ covering g is equivalent to finding a diagonal lift g′ covering g for the diagram

π(f)!X

��

// Z

��
Y //

g′

::

W.

It follows that a map f ∶ X Ð→ Y has the relative left lifting property against all trivial
fibrations in N if and only if the induced map π(f)!X Ð→ Y does. In other words (see
Remark 3.4), if π(f) is a cofibration, then f is itself a cofibration in N iff π(f)!X Ð→ Y
is a cofibration in N and the result follows. A similar argument applies to the trivial
cofibrations.
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3.7. Remark. In particular, Lemma 3.6 implies that any coCartesian lift of a (trivial)
cofibration in M is a (trivial) cofibration in N (see also [HP15, Lemma 5.0.11] for an
alternative proof). Dually, any Cartesian lift of a (trivial) fibration in M is a (trivial)
fibration in N.

In general, the Quillen pair associated to a weak equivalence in M need not be a
Quillen equivalence; to guarantee this, it suffices to require the relative model category
π ∶ N Ð→M to satisfy the following additional conditions:

3.8. Definition. [HP15, Definition 5.0.8] Let π ∶ N Ð→M be a (co)Cartesian fibration
which exhibits N as a relative model category over M. We will say that π is a model
fibration if it furthermore satisfies the following two conditions:

(a) If f ∶X Ð→ Y is a π-coCartesian morphism in N such that X is cofibrant in Nπ(X)

and π(f) ∈WM then f ∈WN.

(b) If f ∶X Ð→ Y is a π-Cartesian morphism in N such that Y is fibrant in Nπ(Y ) and
π(f) is in WM then f ∈WN.

3.9. Remark. These two conditions are equivalent to the following assertion: let f ∶
X Ð→ Y be a map in M covering a weak equivalence in M such that X ∈ Nπ(X) is
cofibrant and Y ∈ Nπ(Y ) is fibrant. Then f is a weak equivalence iff the induced map
π(f)!X Ð→ Y is an equivalence in Nπ(Y ) iff X Ð→ π(f)∗Y is an equivalence in Nπ(X).
In particular, f! ⊣ f∗ is a Quillen equivalence for any f ∈WM.

The main result of [HP15] asserts that such model fibrations are completely classified
by the functor MÐ→ModCat sending A↦ NA (and f to the left Quillen functor f!) and
that conversely, any functor M Ð→ ModCat determines a model fibration as soon as it
is relative (i.e. weak equivalences are sent to Quillen equivalences) and proper (see loc.
cit. for more details).

Our goal in this section is to prove the following theorem:

3.10. Theorem. Let M be a left proper combinatorial model category and let

π ∶ TMÐ→M

be the projection evaluating an (N×N)∗-diagram on the basepoint ∗. Then π exhibits TM

as relative model category over M. Furthermore, the restriction TM ×M Mfib Ð→Mfib to
the full subcategory Mfib ⊆M of fibrant objects is a model fibration, classified by

F ∶Mfib Ð→ModCat; A↦ Sp(MA//A).

Let us start by showing that π ∶ TM Ð→ M is a relative model category. Since TM

is a left Bousfield localization of the Reedy model structure, this will following from the
following two results:
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3.11. Lemma. Let M be a model category, J a Reedy category and n ≥ 0 a given integer.
If J≤n ⊆ J denotes the full subcategory spanned by the objects of degree ≤ n, then the
restriction functor

MJ
Reedy Ð→MJ≤n

Reedy (8)

is a relative model category.

Proof. Since the domain and codomain of (8) are model categories the relative 2-out-of-3
property and relative closures under retracts are automatic. Furthermore, it is straight-
forward to check that since M is (co)complete and I≤n ↪ I is a fully-faithful inclusion
then the restriction functor MJ Ð→ MJ≤n is a (co)Cartesian fibration which is relatively
(co)complete.

To verify that (8) has relative factorizations and relative lifting properties, one proceeds
by induction, analogous to the proof of the existence of the Reedy model structure (see
e.g. [Hov99, Theorem 5.2.5]): given a factorization (lifting) problem with a solution in
degrees ≤ n, the problem of extending this solution to degrees ≤ n + 1 is equivalent to
a certain set of factorization (lifting) problems in M, involving (n + 1)-st latching and
matching objects. Inductively choosing such factorizations (lifts) in M produces the
desired compatible factorization (lift) in MJ.

3.12. Proposition. Let π ∶ N Ð→ M be a (co)Cartesian fibration which exhibits N as
a relative model category over a model category M, and suppose that N admits a left
Bousfield localization LSN at a set of maps S. Then the functor π ∶ LSN Ð→ M is a
relative model category as soon as it preserves the S-local trivial cofibrations.

Proof. The relative 2-out-of-3 and retract axioms are obviously satisfied, since LSN
and M are model categories. Since the cofibrations and trivial fibrations of LSN agree
with those of N, they still satisfy the relative factorization and lifting axioms. It remains
to verify the relative factorization and lifting axioms for the classes of S-local trivial
cofibrations and S-local fibrations.

For the lifting axiom, consider a diagram

X //� _

ĩ ∼S

��

Z

p̃
����

A //

i

��

C

p

��
Y //

f̃

>>

W B

f

>>

// D

� π //

together with a diagonal lift of its image in M, as indicated. Here ĩ is an S-local trivial
cofibration and p̃ is an S-local fibration, so that their images in M are a trivial cofibration
(by assumption) and a fibration, respectively.

Arguing as in the proof of Lemma 3.6 we see that to find the desired diagonal lift f̃
covering f , it suffices to find a diagonal lift for the diagram

f!i!X

��

// Z

��
f!Y //

;;

p∗W

(9)
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in the fiber NC over C. Since the entire diagram is already contained in NC , any diagonal
lift in N will automatically be contained in the fiber NC . It therefore suffices to verify that
the map α ∶ f!i!X Ð→ f!Y is an S-local trivial cofibration, while the map β ∶ Z Ð→ p∗W
is an S-local fibration.

To see that α is an S-local trivial cofibration, observe first that it arises as the pushout
of the map i!X Ð→ Y along the coCartesian edge i!X Ð→ f!i!X covering f . To see that
i!X Ð→ Y is an S-local trivial cofibration, note that it fits into a sequence

ĩ ∶X Ð→ i!X Ð→ Y

where X Ð→ i!X is a coCartesian lift of the trivial cofibration i and hence a trivial
cofibration in N, by Remark 3.7. The map i!X Ð→ Y is then a cofibration by Lemma 3.6
and an S-local weak equivalence by the 2-out-of-3 property.

Similarly, the map β ∶ Z Ð→ p∗W fits into a sequence

p̃ ∶ Z // p∗W //W

whose composite is the S-local fibration p̃ and where p∗W Ð→W is a Cartesian lift of the
fibration p ∶ C Ð→D in M. In particular, β is a fibration in N, before localizing at S (by
the dual of Lemma 3.6). On the other hand, p∗W Ð→W fits into a pullback square

p∗W //

��

W

��∗C // ∗D.

Since ∗ ∶M Ð→ LSN is right Quillen by assumption and C Ð→ D is a fibration, the map
p∗W Ð→W is an S-local fibration. To conclude that β ∶ Z Ð→ p∗W is an S-local fibration
as well, we can consider it as a map

β ∶ (Z Ð→W ) Ð→ (p∗W Ð→W )

in the over-category N/W . Note that the slice model structure on N/W induced from LSN
is a left Bousfield localization of the slice model structure induced from N. The map β is
now a (non-local) fibration between two local objects in N/W , hence it is a local fibration
itself [Hir03, Proposition 3.3.16]. In particular, β ∶ Z Ð→ p∗W is an S-local fibration, and
we conclude that the desired lift in (9) exists.

For the factorization axiom, let f ∶X Ð→ Y be a map in N with a factorization of its
image in M as a trivial cofibration, followed by a fibration

(X f // Y ) � π // (A � �
i

∼ // Ã
p // // B).

We have to provide a compatible factorization of f . To this end, decompose f as

X // i!X
f ′ // p∗Y // Y
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where the maps X Ð→ i!X and p∗Y Ð→ Y are coCartesian and Cartesian lifts of i and
p, respectively. By Remark 3.7, the map X Ð→ i!X is a trivial cofibration (even before
Bousfield localization), while p∗Y Ð→ Y is an S-local fibration (being the base change of
the S-local fibration ∗Ã Ð→ ∗B). It therefore suffices to provide a factorization within the
fiber NÃ of the map f ′ into an S-local trivial cofibration, followed by an S-local fibration.

In other words, we can reduce to the case where f ∶ X Ð→ Y is contained in a fiber
NA. Let

X �
� ĩ
∼S
// X̃

p̃ // // Y

be a factorization of this map into an S-local trivial cofibration, followed by an S-local
fibration. The image of this factorization in M is a factorization

A �
� i

∼
// Ã ∼

p // // A

of the identity map into a trivial cofibration i, followed by a trivial fibration p. Now
consider the following diagram:

X �
� ∼ // i!X

� � ∼S //

��

X̃

��

p̃

    
X = p!i!X

� �

∼S
// p!X̃ // Y.

(10)

Here the top row is the factorization of ĩ as a π-coCartesian arrow, followed by an arrow
in NÃ. The vertical map i!X Ð→ p!i!X is a π-coCartesian lift of the map p, the middle
square is a pushout in N and the map p!X̃ Ð→ Y is the universal map. The bottom row
provides a factorization of the map f ∶X Ð→ Y within the fiber NA.

Since i is a trivial cofibration in M, the coCartesian arrow X Ð→ i!X is a trivial
cofibration before Bousfield localization. Since the top horizontal composite in (10) is ĩ,
it follows that the map i!X Ð→ X̃ is an S-local trivial cofibration. Its pushout X Ð→ p!X̃
is then an S-local trivial cofibration as well. Furthermore, the map i!X Ð→ X is a weak
equivalence in N (before Bousfield localization) by the 2-out-of-3 property. Finally, note
that the pushout square in (10) can be considered as a homotopy pushout square in the
slice model category NX/: indeed, i!X Ð→ X̃ is a cofibration and the maps X Ð→ i!X

and X Ð→ p!i!X are cofibrations. It then follows that X̃ Ð→ p!X̃ is a weak equivalence in
N as well.

The desired factorization of f within the fiber NA is now given by

X �
� ∼S // p!X̃

� � ∼ // X ′
q // // Y.

Here p!X̃ Ð→X ′ Ð→ Y is a factorization within NA into a trivial cofibration in N (before
localization), followed by a fibration in N (before localization). Such a factorization exists
because NA is a model category before left Bousfield localization. The map X Ð→ X ′ is
an S-local trivial cofibration within NA, so it remains to verify that the map q ∶X ′ Ð→ Y
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is not just a fibration in N, but also an S-local fibration. But now observe that the map
q fits into a commuting triangle

X̃

p̃ !! !!

∼ // p!X
∼ // X ′

q}}}}
Y

where the two horizontal maps are weak equivalences in N (before localization). Since the
map p̃ ∶ X̃ Ð→ Y was an S-local fibration, we deduce that the fibration q is (non-locally)
weakly equivalent to an S-local fibration. This implies that q is itself an S-local fibration
as well [Hir03, Proposition 3.3.15], so that X Ð→ X ′ Ð→ Y is a fiberwise factorization of
f into an S-local trivial cofibration, followed by an S-local fibration.

When M is a left proper combinatorial model category, we can apply Lemma 3.11 and
Proposition 3.12 to the situation where N =M

(N×N)∗
Reedy , where π ∶ N Ð→M evaluates at the

unique object ∗ of degree 0 and where the left Bousfield localization LSN = TM is as in
Corollary 2.19. One then finds that π ∶ TMÐ→M is a relative model category.

We will now verify that π is a model fibration when restricted to the fibrant objects
of M. Let us start by verifying this before left Bousfield localization.

3.13. Proposition. Let J be a Reedy category and let J∗ be the induced Reedy category
obtained by adding a zero object, which is the unique object of degree 0 in J∗. If M is a
left proper model category, then the base changed relative model category

MJ
Reedy ×M Mfib Ð→Mfib (11)

is a model fibration and the functor Mfib Ð→ModCat which classifies it (under the equiv-
alence of [HP15, Theorem 5.0.10]) is given by A↦ (MA//A)JReedy.

Proof. Since (11) is the restriction of the relative model category (8), it is a relative
model category as well. Furthermore it is clear that π is (co)Cartesian fibration which

is classified by the functor Mfib Ð→ AdjCat given by A ↦ (MA//A)
J
, where for every

f ∶ AÐ→ B the induced adjunction (MA//A)
J Ð→ (MB//B)

J
is defined by

f!(AÐ→X● Ð→ A) = B Ð→X●∐
A

B Ð→ B

and
f∗(B Ð→ Y● Ð→ B) = AÐ→ Y● ×B AÐ→ A.

It remains to verify conditions (a) and (b) of Definition 3.8. To prove (a), let ι! ∶MÐ→MJ∗

be the left Kan extension functor along the inclusion ι ∶ {∗} ⊆ J∗. Consider a functor
F ∶ J∗ Ð→M such that ι!F(∗) Ð→ F is a Reedy cofibration (this is the condition that F is
cofibrant in its fiber over M). Let ϕ ∶ F(∗) Ð→ B be a weak equivalence in M and let

ψ ∶ F Ð→ F ∐
ι!F(∗)

ι!B
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be its coCartesian lift. We need to prove that ψ is a weak equivalence. We now observe
that since ∗ is initial in J∗ the functor ι! sends A ∈M to the constant functor with value
A. We hence just need to show that the map ψ(x) ∶ F(x) Ð→ F(x)∐F(∗)B is a weak
equivalence for every x ∈ J. But this now follows from the fact that the map F(∗) Ð→ B
is a weak equivalence, the map F(∗) Ð→ F(x) is a cofibration, and M is left proper. The
proof of (b) is similar, using that F(∗) is assumed to be fibrant.

We now prove that this model fibration is classified by the functor

Mfib Ð→ModCat; A↦ (MA//A)JReedy.

In particular, we need to show that the induced model structure on F(A) = (MA//A)
J

coincides with the Reedy model structure.
Let ϕ ∶ F Ð→ G be a map in MJ∗ which is contained in the fiber over an object

A. Under the equivalence of the previous paragraph, the map ϕ corresponds to a map
ϕ′ ∶ F′ Ð→ G′ of functors from J to MA//A, where F′ and G′ are simply the restrictions of
F and G to J ⊆ J∗. It then suffices to show that ϕ is a Reedy (trivial) cofibration in MJ∗

if and only ϕ′ is a Reedy (trivial) cofibration in (MA//A)J.
For an object i ∈ J, let us denote by

LJ
i ∶ (MA//A)J Ð→MA//A Ð→M and LJ∗

i ∶MJ∗ Ð→M

the corresponding i’th latching object functors, both taking values in M. Our goal is to
show that for i ∈ J, the map

LJ∗
i (G) ∐

LJ∗
i (F)

F(i) Ð→ G(i) (12)

is a (trivial) cofibration if and only if the map

LJ
i (G′) ∐

LJ
i (F

′)

F′(i) Ð→ G′(i) (13)

is a (trivial) cofibration in M. For an object i ∈ J let J+
/i
⊆ J/i be subcategory whose

objects are the non-identity maps j Ð→ i in J+ and whose morphisms are maps in J+

over i, and let J+
∗/i

be the defined similarly. Note that J+
∗/i

is obtained from J+
/i

by freely

adding an initial object. Consequently, the data of a diagram J+
∗/i
Ð→M is equivalent (by

adjunction) to the data of a diagram J+
/i
Ð→MF(∗)/. It follows that

LJ∗
i (F) = colim

j→i∈J+∗/i
F(j) = [colim

j→i∈J+/i
F(j)] ∐

colim
j→i∈J+/i

F(∗)
F(∗) = LJ

i (F′) ∐
LJ
i (F(∗))

F(∗)

and similarly
LJ∗
i (G) = LJ

i (G′) ∐
LJ
i (G(∗))

G(∗)
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where by abuse of notation we considered F(∗) and G(∗) as constant functors J+
/i
Ð→M

(with value A). We now see that both 12 and 13 can be identified with the colimit of the
diagram

F(i) LJ
i (F′)oo Id // LJ

i (F′)

F(∗)

OO

��

LJ
i (F(∗)) //oo

��

OO

LJ
i (F′)

��

Id

OO

G(∗) LJ
i (G(∗))oo // LJ

i (G′)

in the category M: for 12 we first compute the pushouts of the rows and for 13 we start
with the columns, using that LJ

i preserves colimits for the middle column.

Proof Proof of Theorem 3.10. Let πpre ∶ M(N×N)∗
Reedy Ð→M be the functor evaluating

at the basepoint ∗. By Lemma 3.11, this functor is a relative model category and a
(co)Cartesian fibration, whose domain is left proper and combinatorial.

To see that the functor π ∶ TM Ð→ M is a relative model category as well, we have
to show that π is a left Quillen functor for the tangent model structure, by Proposition
3.12. Since the tangent model structure is a left Bousfield localization of the Reedy model
structure, it suffices to show that its right adjoint ∗ ∶ M Ð→ TM sends fibrant objects
to local objects, i.e. parameterized Ω-spectra in M [Hir03, Theorem 3.1.6, Proposition
3.3.18]. But now observe that for any fibrant object A, the value ∗A is simply the constant
(N ×N)∗-diagram on A, which is certainly a Reedy fibrant Ω-spectrum in MA//A.

We conclude that π is a relative model category, so that its restriction

πfib ∶ TM ×M Mfib //Mfib

to the fibrant objects is a relative model category as well. To see that it is a model
fibration, it suffices to verify conditions (a) and (b) of Definition 3.8. For (a), let f ∶
X Ð→ Y be a π-coCartesian map in TM×MMfib whose image π(f) is a weak equivalence
in Mfib and whose domain is cofibrant in the fiber TMπ(X). Then X is cofibrant in the

fiber (M(N×N)∗
Reedy )

π(X)
as well, so by Proposition 3.13, the map X Ð→ Y is a (Reedy) weak

equivalence, hence a stable weak equivalence. The proof for (b) is exactly the same, using

that a fibrant object in a fiber TMA is in particular fibrant in (M(N×N)∗
Reedy )

A
.

Finally, we show that the model fibration πfib is classified by the functor

Mfib Ð→ModCat; A↦ Sp(MA//A).

As we have already seen in Proposition 3.13, the Cartesian and coCartesian fibration
underlying πfib is given by

Mfib Ð→ AdjCat; A↦ (MA//A)
N×N

.
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It remains to show that for each fibrant object A, the restriction of the model structure on

TM to the fiber TMA agrees with Sp(MA//A), the stable model structure on (MA//A)
N×N

.
Note that TM has the same cofibrations and less fibrations than the Reedy model

structure on M(N×N)∗ . Consequently, the fibers of π ∶ TMÐ→M have the same cofibrations
and less fibrations than the fibers of πpre ∶M(N×N)∗

Reedy Ð→M. In other words, the fiber TMA

is a left Bousfield localization of π−1
pre(A), which Proposition 3.13 identifies with the Reedy

model structure on (MA//A)N×N.
Both TMA and Sp(MA//A) are therefore left Bousfield localizations of the Reedy model

structure on (MA//A)N×N, and it suffices to identify their fibrant objects. But by Remark
2.17, for any fibrant object A ∈M, an object in TMA is fibrant if and only if it is a Reedy
fibrant Ω-spectrum in MA//A. These are precisely the fibrant objects in Sp(MA//A) as
well.

3.14. Tensor structures on the tangent bundle. When M is tensored over a
symmetric monoidal model category S [Hov99, §4.2], the category M(N×N)∗ inherits a
natural levelwise tensor structure [Bar10, Lemma 3.36]. In favorable cases, this levelwise
tensor structure is compatible with the tangent model structure.

3.15. Proposition. Let S be a tractable symmetric monoidal model category, i.e. a
combinatorial model category with a set I = {Kα Ð→ Lα} of generating cofibrations with
cofibrant domain. Suppose that M is a model category which is tensored and cotensored
over S and that LSM is a left Bousfield localization of M at a set of maps S between
cofibrant objects. If cotensoring with a cofibrant object in S preserves S-local objects in
M then LSM is tensored and cotensored over S as well.

Proof. Since the pushout-product axiom holds before left Bousfield localization by
[Bar10, Lemma 3.36], it is enough to check that the pushout-product of a map i ∶Kα Ð→
Lα in I against a trivial cofibration X Ð→ Y in LSM is a local weak equivalence. If
cotensoring with a cofibrant object K in S preserves S-local objects in M, then [Hir03,
Theorem 3.1.6, Proposition 3.3.18] implies that the Quillen pair K ⊗(−) ∶M Ð→⊥

←ÐM ∶ (−)K
descends to a Quillen pair

K ⊗ (−) ∶ LSM Ð→⊥
←Ð LSM ∶ (−)K .

Since the objects Kα and Lα are cofibrant, the maps Kα⊗X Ð→Kα⊗Y and Lα⊗X Ð→
Lα ⊗ Y are trivial cofibrations in LSM. Since the cobase change of a trivial cofibration
is again a trivial cofibration, it follows from the 2-out-of-3 property in LSM that the
pushout-product map

Kα ⊗ Y ∐
Kα⊗X

Lα ⊗X Ð→ Lα ⊗ Y

is a weak equivalence in LSM.
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3.16. Corollary. Let M be a left proper combinatorial model category which is ten-
sored and cotensored over a tractable symmetric monoidal model category S. Then TM is
naturally tensored and cotensored over S, where the tensor structure is given by

K ⊗ (B Ð→X●● Ð→ B) =K ⊗B Ð→K ⊗X●● Ð→K ⊗B

and the cotensor is given by

(B Ð→X●● Ð→ B)K = BK Ð→ (X●●)K Ð→ BK .

Proof. By [Bar10, Lemma 3.36] the levelwise tensor-cotensor structure over S is compat-
ible with the Reedy model structure on M(N×N)∗ . To verify the condition of Proposition
3.15, is suffices to prove that cotensoring with a cofibrant object K ∈ S preserves param-
eterized Ω-spectra. This follows from the fact that cotensoring with K preserves weak
equivalences between fibrant objects and homotopy Cartesian squares involving fibrant
objects, since (−)K ∶MÐ→M is right Quillen.

3.17. Example. If M is a simplicial left proper combinatorial model category, then TM

is naturally a simplicial model category.

3.18. Example. If M is a left proper tractable symmetric monoidal model category, then
TM is naturally tensored over M.

3.19. Comparison with the∞-categorical construction. Recall that any model
category M (and in fact any relative category) has a canonically associated ∞-category
M∞, obtained by formally inverting the weak equivalences of M (see e.g. [Hin13] for
a thorough account, or alternatively, the discussion in [BHH16, §2.2]). Furthermore, a
Quillen adjunction L ∶ M Ð→⊥

←Ð N ∶ R induces an adjunction of ∞-categories L∞ ∶ M∞
Ð→⊥
←Ð

N∞ ∶ R∞ ([Hin13, Proposition 1.5.1] or [Maz16]).
Our goal in this section is to show that the construction of (parameterized) spectrum

objects described in §2.1 and §2.12 is a model categorical presentation of its ∞-categorical
counterpart. This will make use of the fact that diagrams in M∞ can be rectified to
diagrams in M, which generally only holds when M is combinatorial [Lur09, Proposition
4.2.4.4]. Consequently, the results of this section only apply to combinatorial model
categories.

Our first step is to show that the ∞-category associated to the stabilization Sp(M) of
a (combinatorial) model category M presents the universal stable ∞-category associated
to M∞, in the sense of [Lur14, Proposition 1.4.2.22]. For this it will be useful to consider
stabilization also in the not-necessarily pointed setting. Recall that if C is a presentable

∞-category then the ∞-category C∗
def= C∗/ of objects under the terminal object is the

universal pointed presentable ∞-category receiving a colimit preserving functor from C.
Since any stable ∞-category is necessarily pointed we see that any colimit preserving
functor from C to a stable presentable ∞-category factors uniquely through C∗. The com-
position C Ð→ C∗ Ð→ Sp(C∗) thus exhibits Sp(C∗) as the universal stable presentable
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∞-category admitting a colimit preserving functor from C. Given a left proper combi-
natorial model category M we will therefore also consider Sp(M∗) as the stabilization of
M, where M∗ = M∗/ is equipped with the coslice model structure. When M is already
weakly pointed, there is a Quillen equivalence M∗

Ð→⊥
←Ð M, so that this poses no essential

ambiguity. We let Σ∞
+ ∶M Ð→⊥

←Ð Sp(M∗) ∶ Ω∞
+ denote the composition of Quillen adjunctions

Σ∞
+ ∶M

(−)∐∗//
M∗

U
oo

Σ∞
//
Sp(M∗) ∶ Ω∞

+
Ω∞
oo .

We note that the above construction is only appropriate if M∗ is actually a model for the
∞-category (M∞)∗. We shall begin by addressing this issue.

3.20. Lemma. Let M be a combinatorial model category and X ∈ M an object. Assume
either that X is cofibrant or that M is left proper. Then the natural functor of ∞-categories
(MX/)∞ Ð→ (M∞)X/ is an equivalence.

Proof. If M is left proper then any weak equivalence f ∶ X Ð→ X ′ induces a Quillen
equivalence f! ∶ MX/

Ð→⊥
←Ð MX′/ ∶ f∗ and hence an equivalence between the associated

∞-categories. Similarly, for any model category the adjunction f! ⊣ f∗ is a Quillen
equivalence when f is a weak equivalence between cofibrant objects. It therefore suffices
to prove the lemma under the assumption that X is fibrant-cofibrant.

Note that for any Quillen equivalence L ∶ N Ð→⊥
←Ð M ∶ R and a fibrant object X ∈ M,

the induced Quillen pair NR(X)/
Ð→⊥
←Ð MX/ is a Quillen equivalence as well. By the main

theorem of [Dug01] there exists a simplicial, left proper combinatorial model category
M′, together with a Quillen equivalence M′ Ð→⊥

←Ð M. We may therefore reduce to the case
where M is furthermore simplicial and X ∈M is fibrant-cofibrant, in which case the result
follows from [Lur09, Lemma 6.1.3.13].

3.21. Proposition. Let M be a left proper combinatorial model category. Then the
functor (Ω∞

+ )∞ ∶ Sp(M∗)∞ Ð→M∞ exhibits Sp(M∗)∞ as the stabilization of M∞, in the
sense of the universal property of [Lur14, Proposition 1.4.2.23].

Proof. Since M is left proper, Lemma 3.20 implies that the natural functor (M∗)∞ Ð→
(M∞)∗ is an equivalence. It therefore suffices to show that for a weakly pointed model
category M, the map (Ω∞)∞ ∶ Sp(M)∞ Ð→M∞ exhibits Sp(M)∞ as the stabilization of
the pointed ∞-category M∞.

To this end, recall that for any left Bousfield localization LSN of a combinatorial model
category N, the underlying ∞-category (LSN)∞ can be identified with the full sub-∞-
category of N∞ on the S-local objects: this follows, for instance, from the fact that the
Quillen adjunction N Ð→⊥

←Ð LSN induces an adjunction N∞
Ð→⊥
←Ð (LSN)∞ of ∞-categories,

given by the derived functors and the derived unit and counit maps [Hin13, Proposition
1.5.1], [Maz16]. The derived counit is always an equivalence and the derived unit is an
equivalence exactly for S-local objects.

Since Sp(M) is a left Bousfield localization of MN×N
Reedy (Corollary 2.8), it follows that

the underlying ∞-category Sp(M)∞ is equivalent to the full subcategory of (MN×N
Reedy)∞
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spanned by the local objects, i.e., by the Ω-spectra. Furthermore, since M is combinato-
rial, the natural map

(MN×N)∞ Ð→ (M∞)N×N

is an equivalence of ∞-categories [Lur09, Proposition 4.2.4.4]. We may therefore conclude
that Sp(M)∞ is equivalent to the full subcategory Sp′(M∞) ⊆ (M∞)N×N spanned by those
diagrams F ∶ N ×N Ð→M∞ such that F(n,m) is zero object for n ≠ m and F restricted
to each diagonal square is Cartesian.

We now claim that the evaluation at (0,0) functor ev(0,0) ∶ Sp′(M∞) Ð→M∞ exhibits
Sp′(M∞) as the stabilization of M∞. By [Lur14, Proposition 1.4.2.24] it will suffice to
show that ev(0,0) lifts to an equivalence between Sp′(M∞) and the homotopy limit of the
tower

⋯ Ð→M∞

ΩÐ→M∞

ΩÐ→M∞. (14)

The proof of this fact is completely analogous to the proof of [Lur06, Proposition 8.14].
Indeed, one may consider for each n the ∞-category D′

n of (N≤n ×N≤n)-diagrams in M∞

which are contractible off-diagonal and have Cartesian squares on the diagonal. It follows
from Lemma 8.12 and Lemma 8.13 of [Lur06] (as well as [Lur09, Proposition 4.3.2.15])
that the functor ev(n,n) ∶ D′

n Ð→ M∞ is a trivial Kan fibration (hence a categorical
equivalence). Under these equivalences, the restriction functor D′

n+1 Ð→ D′
n is identified

with the loop functor Ω ∶M∞ Ð→M∞. It follows that the homotopy limit of the tower 14
can be identified with the homotopy limit of the tower of restriction functors {⋯ Ð→
D′

2 Ð→ D′
1 Ð→ D′

0}. Since these restriction functors are categorical fibrations between
∞-categories, the homotopy limit agrees with the actual limit, which is the ∞-category
Sp′(M∞).

3.22. Corollary. If M is a stable combinatorial model category, then the adjunction
Σ∞ ⊣ Ω∞ of Corollary 2.8 is a Quillen equivalence.

3.23. Remark. If M is a weakly pointed, combinatorial model category which is not left
proper we can still consider the full relative subcategory Sp′(M) ⊆ MN×N spanned by Ω-
spectra (with weak equivalences the levelwise weak equivalences). The composite functor
Sp′(M)∞ Ð→ (MN×N)∞

∼Ð→ (M∞)N×N identifies Sp′(M)∞ with the full sub-∞-category
Sp′(M∞) ⊆ (M∞)N×N spanned by those diagrams which are contractible off diagonal and
have Cartesian diagonal squares. The proof of Proposition 3.21 now implies that for any
weakly pointed combinatorial model category M, the stabilization of M∞ can be modeled
by the relative category Sp′(M).

3.24. Remark. Corollary 3.21 can be used to compare Sp(M) with other models for the
stabilizations appearing in the literature. For example, the construction of Hovey [Hov01]
using Bousfield-Friedlander spectra is also known to present the ∞-categorical stabilization
[Rob12, Proposition 4.15]. Since both models for the stabilization are combinatorial model
categories they must consequently be related by a chain of Quillen equivalences [Lur09,
Remark A.3.7.7].
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Another closely related model is that of reduced excisive functors [Lyd98]. Let
Sfin
∗ denote the relative category of finite pointed simplicial sets. When M is left proper

and combinatorial we may form the left Bousfield localization Exc∗(M) of the projec-
tive model structure on MSfin∗ in which the local objects are the relative reduced exci-
sive functors. Restriction along ι ∶ {S0} ↪ Sfin

∗ then yields a right Quillen functor
ι∗ ∶ Exc∗(M) Ð→M and by [Lur09, Proposition 4.2.4.4] and [Lur14, §1.4.2] the induced
functor ι∗∞ ∶ (Exc∗(M))∞ Ð→ M∞ exhibits (Exc∗(M))∞ as the stabilization of M∞. In
this case one can even construct a direct right Quillen equivalence Exc∗(M) Ð→ Sp(M)
by restricting along a suspension spectrum object f ∶ N ×NÐ→ Sfin

∗ with f(0,0) ≅ S0.

The above results show that for any fibrant-cofibrant object A of a left proper com-
binatorial model category M, the stable model category Sp(MA//A) is a model for the
∞-categorical stabilization of (M∞)A//A. This shows that TA(M∞) is equivalence to
(TAM)∞. Our final goal in this section is to compare the model-categorical tangent bun-
dle of M to the ∞-categorical tangent bundle of M∞:

3.25. Theorem. Let M be a left proper combinatorial model category. The induced map
of ∞-categories π∞ ∶ TM∞ Ð→M∞ exhibits TM∞ as a tangent bundle to M∞.

Proof. Let j ∶ [1] Ð→ (N × N)∗ be the inclusion of the arrow (0,0) Ð→ ∗ in (N × N)∗.
Restriction along j induces a diagram of right Quillen functors

TM
j∗ //

π $$

M
[1]
Reedy

ev1xx
M.

which induces a triangle of ∞-categories

(TM)∞
j∗ //

π ''

(M∞)[1]
ev1ww

M∞.

To see that this triangle exhibits (TM)∞ as the tangent bundle to M∞, let TM′ ⊆ TM

be the full relative subcategory on objects in TM whose image in M is fibrant and let
M′[1] ⊆ M[1] be the full subcategory of fibrations with fibrant codomain. Both of these
inclusions are equivalences of relative categories, with homotopy inverse given by a fibrant
replacement functor. It will hence suffice to show that for every fibrant A ∈ M the
induced map ((TM)∞)A Ð→ (M∞)[1]A ≃ (M∞)/A exhibits ((TM)∞)A as the stabilization
of (M∞)/A. But this now follows directly from Theorem 3.10, [Hin13, Proposition 2.1.4]
and the fiberwise comparison given by Proposition 3.21.
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