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ADJUNCTION UP TO AUTOMORPHISM

D. TAMBARA

Abstract. We say a set-valued functor on a category is nearly representable if it is
a quotient of a representable functor by a group of automorphisms. A distributor is a
set-valued functor in two arguments, contravariant in one argument and covariant in the
other. We say a distributor is slicewise nearly representable if it is nearly representable
in either of the arguments whenever the other argument is fixed. We consider such a
distributor a weak analogue of adjunction. Under a finiteness assumption on the domain
categories, we show that every slicewise nearly representable functor is a composite of
two distributors, each of which may be considered as a weak analogue of (co-)reflective
adjunction.

1. Introduction

One of several equivalent presentations of adjunction between categories B and C is to give
a functor L:Bop×C → Set whose slices L(x,−) for every x ∈ B and L(−, y) for every y ∈ C
are representable. Indeed, given such L, we take isomorphisms L(x,−) ∼= HomC(F (x),−)
and L(−, y) ∼= HomB(−, G(y)); then we have HomC(F (x), y) ∼= L(x, y) ∼= HomB(x,G(y)),
hence a pair of adjoint functors F :B → C and G: C → B. A set-valued functor on
Bop × C is called a distributor between B and C. The object of the paper is to study
a distributor satisfying the slice condition with representability replaced by a weaker
property called near representability. We say a set-valued functor is nearly representable
if it is a quotient of a representable functor by a group of automorphisms. We say a
distributor L:Bop×C → Set is slicewise nearly representable if L(x,−) for every x ∈ B is
nearly representable and L(−, y) for every y ∈ C is nearly representable. In [Tull, 2019]
an instance of near representability is considered, the notion named “phased coproduct”,
which seems to arise from a construction in quantum theory. As for slicewise nearly
representable distributors we do not know at present natural occurrences, but we intend
here to develop a theory for them analogous to the theory of adjunction.

Our main result is that under a certain finiteness assumption on B or C (fulfilled when
B or C is finite), every slicewise nearly representable distributor Bop × C → Set is a
composite of two distributors of special kind, each of which may be viewed as an analogue
of adjunction for a (co-)reflective subcategory.
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To state the result precisely we define conditions (RH) and (LH). Let φ: C → D be
a functor. Put Gx = Ker(φ: Aut(x) → Aut(φ(x))) for x ∈ C. Condition (RH) for φ is
stated as: For every y ∈ D there exists x ∈ C such that φ(x) = y and for every x′ ∈ C
the map HomC(x

′, x)/Gx → HomD(φ(x′), y) induced by φ is bijective. When Gx = 1 for
all x, the condition reduces to saying that there exists a functor D → C which is a right
adjoint and right inverse of φ. Dually condition (LH) is defined.

We also need some language of distributor. Given functors φ:A → B and ψ:A → C, we
have the induced distributors (1×φ)∗HomB:Bop×A → Set and (ψ×1)∗HomC:Aop×C →
Set: the former takes (x, z) to HomB(x, φ(z)) and the latter (z, y) to HomC(ψ(z), y). By
composition we then have the distributor (1×φ)∗HomB⊗A (ψ×1)∗HomC:Bop×C → Set.
For an arbitrary distributor L:Bop × C → Set we say L is tabulated by (φ, ψ) if L is
isomorphic to (1 × φ)∗HomB ⊗A (ψ × 1)∗HomC. This terminology is suggested by the
referee, based on a usage in [Freyd and Scedrov, 1990, p.37]. A picture of the tabulation
may be a diagram

A
φ

��

ψ

��
B C

L
◦oo

in Borceux’s notation.
Suppose that C does not have an infinite sequence (gi)i≥0 of morphisms gi: yi+1 → yi

which are split epimorphisms but not isomorphisms. Our theorem states that a distributor
L:Bop × C → Set is slicewise nearly representable if and only if L is tabulated by some
pair (λ, µ) of a functor λ:G → B satisfying (LH) and a functor µ:G → C satisfying (RH).
We admit however that nature of functors satisfying (RH) is not yet fully understood.

The paper is organized as follows. In Section 2 we review some standard facts about
distributors. In Section 3 we collect basic properties of nearly representable functors and
slicewise nearly representable distributors. In Section 4 we introduce condition (RG) for
a functor φ: C → D, which assures that HomD(φ(−), y) is nearly representable for every
y ∈ D. It roughly means that the hom-sets of D are quotients of the hom-sets of C by
groups. In Section 5 we discuss condition (RH) for a functor stated above. Condition
(RH) is weaker than (RG). In Section 6, with a distributor L:Bop×C → Set we associate
certain categories of triples (x, y, a) for x ∈ B, y ∈ C, and a ∈ L(x, y). They are used
in later constructions. In Section 7, given a slicewise nearly representable distributor
L:Bop × C → Set, we construct morphisms ηx in B and εy in C, which are analogous to
unit and counit for adjunction. Under the finiteness assumption stated above, we show
that certain ηx and εy are isomorphisms.

The proof of the main result is given in Sections 8–10. Let L:Bop × C → Set be a
slicewise nearly representable distributor. We construct in Section 8 certain subcategories
B0 ⊂ B, C0 ⊂ C, and quotient categories B̄0, C̄0. We then define three distributors

M :Bop × B̄0 → Set, K: B̄op
0 × C̄0 → Set, N : C̄op

0 × C → Set,

and show that K yields an equivalence B̄0 ' C̄0. In Section 9, under the finiteness
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assumption we show that L is the composite of the three distributors:

L ∼= M ⊗B̄0 K ⊗C̄0 N.

In Section 10 we show that N is tabulated by a pair of a functor satisfying (LH) and a
functor satisfying (RG). Dually we have a similar tabulation of M . Combining these, we
obtain a desired tabulation of L

L ∼= (1× λ)∗HomB ⊗G (µ× 1)∗HomC,

where λ:G → B is a functor satisfying (LH) and µ:G → C is a functor satisfying (RH).
A set-valued functor F is said to be familially representable if F is a sum of repre-

sentable functors [Carboni and Johnstone, 1995]. As an obvious generalization we have
the notion of a familially nearly representable functor and also that of a slicewise famil-
ially nearly representable distributor. In Section 11 we show that every slicewise familially
nearly representable distributor is a composite of three distributors: a distributor coming
from a discrete fibration, a slicewise nearly representable distributor, and a distributor
coming from a discrete cofibration. Thus the structure of a slicewise familially nearly rep-
resentable distributor can be understood to some extent from that of a slicewise nearly
representable distributor.

2. Preliminaries

We review here some formal operations on functors and standard facts about distributors.
The category of sets is denoted by Set. All categories written in script letters such as

C are small. For a category C we write HomC(x, y) = C(x, y). The category of functors
C → Set is denoted by [C,Set]. When F : C → Set is a functor, the map F (f):F (x) →
F (x′) for a morphism f :x → x′ is abbreviated as f∗. When G: Cop → Set is a functor,
the map G(f):G(x′)→ G(x) for a morphism f :x→ x′ is abbreviated as f ∗.

Let L:Bop × C → Set be a functor. Such a functor is called a distributor [Borceux,
1994]. For a morphism f :x→ x′ of B and an object y ∈ C we have the map

L(f, 1y):L(x′, y)→ L(x, y).

We abbreviate this map as f ∗. Similarly for a morphism g: y → y′ of C and an object
x ∈ B we have the map

L(1x, g):L(x, y)→ L(x, y′),

which we abbreviated as g∗. For a ∈ L(x, y), a′ ∈ L(x′, y′) and morphisms f :x → x′,
g: y → y′, the equality f ∗(a′) = g∗(a) in L(x, y′) may be pictured as the diagram

x a

f
��

y

g
��

x′
a′

y′
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For a category C we have the distributor HomC: Cop × C → Set taking (x, y) to
HomC(x, y).

Let φ: C → D be a functor. For a functor G:D → Set the composite functor G◦φ: C →
Set is also denoted by φ∗G. The assignment G 7→ φ∗G defines the functor φ∗: [D,Set]→
[C,Set] between functor categories. This has a left adjoint functor [C,Set] → [D,Set],
denoted by φ!. It operates on a hom-functor as

φ!(C(x,−)) ∼= D(φ(x),−).

These notations are used for contravariant functors and distributors as well. For
example, given L:Bop×C → Set, φ: C → D and ψ:A → B, one has (1×φ)!L:Bop×D →
Set and (ψ × 1)∗L:Aop × C → Set.

For functors F : C → Set and G: Cop → Set the so-called coend construction
[Mac Lane, 1978] yields the set ∫ x∈C

F (x)×G(x),

which we denote by F⊗CG. For a functor F :B → Set and a distributor L:Bop×C → Set
one has the functor F ⊗B L: C → Set defined by

(F ⊗B L)(y) = F ⊗B L(−, y).

For distributors L:Bop × C → Set and M : Cop × D → Set, the composition distributor
L⊗C M :Bop ×D → Set is defined by

(L⊗C M)(x, z) = L(x,−)⊗C M(−, z)

(denoted L ◦M in [Borceux, 1994]).
The following two propositions are well-known.

2.1. Proposition. For F : C → Set we have a natural isomorphism

F ⊗C C(−, x) ∼= F (x).

2.2. Proposition. Let φ: C → D be a functor. We have natural isomorphisms

φ!F ∼= F ⊗C (φ× 1)∗HomD

for F : C → Set, and
φ∗G ∼= G⊗D (1× φ)∗HomD

for G:D → Set.

2.3. Proposition. Let L:Bop × C2 → Set, M : C1
op × D → Set, and γ: C1 → C2 be

functors. We have a natural isomorphism

(1× γ)∗L⊗C1 M ∼= L⊗C2 (γ × 1)!M.
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Proof. Using the isomorphisms of the preceding proposition and the associativity of
composition, we proceed as

(1× γ)∗L⊗C1 M ∼= (L⊗C2 (1× γ)∗HomC2)⊗C1 M
∼= L⊗C2 ((1× γ)∗HomC2 ⊗C1 M)

∼= L⊗C2 (γ × 1)!M

to obtain the asserted isomorphism.

2.4. Proposition. Let φ: C → D be a functor. Then we have a natural isomorphism

(1× φ)!HomC ∼= (φ× 1)∗HomD

of functors on Cop ×D, and a natural isomorphism

(φ× 1)!HomC ∼= (1× φ)∗HomD

of functors on Dop × C.

Proof. For any x ∈ C we have

((1× φ)!HomC)(x,−) = φ!(C(x,−)) ∼= D(φ(x),−) = ((φ× 1)∗HomD)(x,−).

Hence
(1× φ)!HomC ∼= (φ× 1)∗HomD.

2.5. Proposition. For functors λ:A → B and µ:A → C we have a natural isomorphism

(λ× µ)!HomA ∼= (1× λ)∗HomB ⊗A (µ× 1)∗HomC

of functors on Bop × C.

Proof.

(1× λ)∗HomB ⊗A (µ× 1)∗HomC ∼= (λ× 1)!HomA ⊗A (1× µ)!HomA

∼= (λ× µ)!(HomA ⊗A HomA)

∼= (λ× µ)!HomA.



998 D. TAMBARA

If a distributor L:Bop×C → Set is isomorphic to the distributor (λ×µ)!HomA of the
proposition, we say L is tabulated by (λ, µ). This may be pictured as a diagram

A
λ

��

µ

��
B C

L
◦oo

The word “tabulation” was originally used for binary relations on sets and for morphisms
in allegories [Freyd and Scedrov, 1990].

Let F : C → Set be a functor. We recall the definition of the category of elements of
F , which we denote by E(F ). An object of E(F ) is a pair (x, a) composed of x ∈ C and
a ∈ F (x). A morphism (x, a) → (x′, a′) in E(F ) is a morphism f :x → x′ in C such that
f∗(a) = a′. The composition in E(F ) is given by the composition in C. The projection
functor π:E(F )→ C is given by (x, a) 7→ x.

The following is well-known.

2.6. Proposition. For any functor M :E(F ) → Set and x ∈ C we have a natural
bijection

(π!M)(x) ∼=
∐

a∈F (x)

M(x, a).

The construction of the category of elements is adapted for a distributor: Given a
distributor L:Bop × C → Set, the category E(L) is defined as follows.
• An object of E(L) is a triple (x, y, a) composed of x ∈ B, y ∈ C, a ∈ L(x, y).
• For objects (x, y, a) and (x1, y1, a1), a morphism (x, y, a)→ (x1, y1, a1) is a pair (f, g)

composed of f ∈ B(x, x1) and g ∈ C(y, y1) such that f ∗(a1) = g∗(a).
• The composition in E(L) is defined componentwise.
• The identity morphism of an object (x, y, a) is (1x, 1y).
We have the projection functors π1:E(L)→ B and π2:E(L)→ C:

π1: (x, y, a) 7→ x,

π2: (x, y, a) 7→ y.

By the definition of morphisms of E(L) we have a pullback diagram

E(L)((x, y, a), (x1, y1, a1))
π2 //

π1
��

C(y, y1)

��
B(x, x1) // L(x, y1)

where the right vertical arrow is the map g 7→ g∗(a), the lower horizontal arrow is the
map f 7→ f ∗(a1).

The following fact is well-known but we include the proof.
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2.7. Proposition. For every distributor L we have an isomorphism

(π1 × π2)!HomE(L)
∼= L.

Thus every distributor has a canonical tabulation.

Proof. We shall establish a natural bijection

Hom(L,M) ∼= Hom(HomE(L), (π1 × π2)∗M)

for any M :Bop × C → Set. The asserted isomorphism will then follow by the adjunction
between (π1 × π2)! and (π1 × π2)∗.

Firstly we have the natural bijection

Hom(HomE(L), (π1 × π2)∗M) ∼=
∫
E(L)

(π1 × π2)∗M

where the right-hand side denotes the end of the distributor (π1 × π2)∗M .
An element of

∫
E(L)

(π1 × π2)∗M is a family λ = (λz)z∈E(L) composed of elements

λz ∈ ((π1 × π2)∗M)(z, z) for z ∈ E(L) satisfying the condition that

h∗(λz) = h∗(λz1)

for every morphism h: z → z1 in E(L).
Write z = (x, y, a), z1 = (x1, y1, a1), h = (f, g). Then

((π1 × π2)∗M)(z, z) = M(x, y), λz ∈M(x, y),

and

h∗(λz) = g∗(λ(x,y,a)),

h∗(λz1) = f ∗(λ(x1,y1,a1)).

Therefore an element of
∫
E(L)

(π1 × π2)∗M is a family λ = (λ(x,y,a))(x,y,a)∈E(L) composed of

elements λ(x,y,a) ∈M(x, y) for (x, y, a) ∈ E(L) satisfying the condition that

g∗(λ(x,y,a)) = f ∗(λ(x1,y1,a1))

for every morphism (f, g): (x, y, a)→ (x1, y1, a1) in E(L).
As every morphism (f, g): (x, y, a)→ (x1, y1, a1) is the composite of

(1, g): (x, y, a)→ (x, y1, g∗(a)) = (x, y1, f
∗(a1))

and
(f, 1): (x, y1, f

∗(a1))→ (x1, y1, a1),
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the above condition for (λ(x,y,a)) is equivalent to the condition that

g∗(λ(x,y,a)) = λ(x,y1,g∗(a)),

f ∗(λ(x1,y1,a1)) = λ(x,y1,f∗(a1))

for every g : y → y1 and f :x→ x1. This means that the family of the maps tx,y:L(x, y)→
M(x, y) given by tx,y(a) = λ(x,y,a) defines a morphism t:L→M . Thus we have a bijection∫

E(L)

(π1 × π2)∗M ∼= Hom(L,M),

which completes the proof.

3. Nearly representable functors

In this section we review the definition of a nearly representable functor [Tambara, 2015]
and give the definition of a slicewise nearly representable distributor.

Let C be a category and F : C → Set a functor.
Recall that F is said to be representable if there exist an object v ∈ C and an isomor-

phism F ∼= C(v,−). Such an isomorphism is given by an element a ∈ F (v). A pair (v, a)
is then said to be universal for F .

When a group G acts on a set X, X/G denotes the quotient set (regardless of the
side of the action). When a group G acts on a functor F : C → Set, that is, when
a homomorphism G → Aut(F ) or Gop → Aut(F ) is given, F/G denotes the functor
C → Set given by (F/G)(x) = F (x)/G.

3.1. Definition. We say F is nearly representable if there exist an object v ∈ C, a
subgroup G of Aut(v), and an isomorphism F ∼= C(v,−)/G.

3.2. Definition. Let v ∈ C and a ∈ F (v). We say (v, a) is nearly universal for F if
there exists a subgroup G of Aut(v) such that G fixes a and the morphism C(v,−)/G→ F
induced by a is an isomorphism. Namely (v, a,G) is required to satisfy the following:

(1) f∗(a) = a for every f ∈ G.
(2) For every x ∈ C and b ∈ F (x) there exists f : v → x such that b = f∗(a).
(3) For every x ∈ C and f, f ′: v → x, if f∗(a) = f ′∗(a), then there exists g ∈ G such

that f = f ′g.

We note that (1) and (3) imply the following:
(4) G = Aut(v, a) = End(v, a).
Here Aut(v, a) denotes the group {f ∈ Aut(v) | f∗(a) = a}, and End(v, a) the monoid

{f ∈ End(v) | f∗(a) = a}. Indeed, let f : v → v and suppose f∗(a) = a. By (3) applied to
f ′ = 1v, there exists g ∈ G such that f = 1vg, whence f ∈ G.

The terminology is used for contravariant functors as well.

3.3. Proposition. If (v, a) and (v′, a′) are both nearly universal for F , then there exists
an isomorphism h: v → v′ such that a = h∗(a

′).
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Proof. Suppose that (v, a) and (v′, a′) are nearly universal for F . Put G = Aut(v, a) and
G′ = Aut(v′, a′). As (v, a) is nearly universal for F and a′ ∈ F (v′), there exists h: v → v′

such that a′ = h∗(a). As (v′, a′) is nearly universal for F and a ∈ F (v), there exists
h′: v′ → v such that a = h′∗(a

′). Then a = h′∗h∗(a) = (h′h)∗(a). As G = End(v, a), we
have h′h ∈ G. Similarly hh′ ∈ G′. Thus h′h and hh′ are both isomorphisms. Hence h is
an isomorphism.

3.4. Proposition. Suppose that F : C → Set is a nearly representable functor. Let K be
a subgroup of Aut(F ). Then the quotient functor F/K is nearly representable.

Proof. Let F = C(v,−)/G with v ∈ C and G a subgroup of Aut(v). Let N be the nor-
malizer of G in Aut(v). Then by the Yoneda lemma one has a surjective homomorphism
N → Aut(F ) (See [Tambara, 2015, Prop. 2.1] for details). Let K̃ be the inverse image of
K under this map. Then F/K = C(v,−)/K̃. Thus F/K is nearly representable.

3.5. Proposition. Let φ: C → C ′ be a functor. If F : C → Set is nearly representable,
then so is φ!F : C ′ → Set.

Proof. Suppose F ∼= C(v,−)/G. As φ! preserves colimits and hom-functors, we have

φ!F ∼= (φ!C(v,−))/G ∼= C ′(φ(v),−)/φ(G).

Here φ(G) is the image of G under φ: Aut(v)→ Aut(φ(v)).

Let L:Bop × C → Set be a distributor. Following the terminology “slicing” in
[Eilenberg and Mac Lane, 1945, p.245], we call the functor L(x,−): C → Set for x ∈ B a
slice of L, and similar for the functor L(−, y):Bop → Set for y ∈ C.

3.6. Definition. We say L is slicewise nearly representable if for every x ∈ B the functor
L(x,−): C → Set is nearly representable and for every y ∈ C the functor L(−, y):Bop →
Set is nearly representable.

Let u ∈ B, v ∈ C, and a ∈ L(u, v). Then we may use the phrase “(v, a) is nearly
universal for L(u,−)” or “(u, a) is nearly universal for L(−, v)”. The former means that
there exists a subgroup G of Aut(v) such that G fixes a and the morphism C(v,−)/G→
L(u,−) induced by a is an isomorphism. The condition required for (u, v, a,G) amounts
to the following:

(1) σ∗(a) = a for every σ ∈ G.
(2) For every y ∈ C and b ∈ L(u, y) there exists g: v → y such that g∗(a) = b.
(3) For every y ∈ C and g, g′: v → y, if g∗(a) = g′∗(a), then there exists σ ∈ G such

that g = g′σ.
As a consequence of (1) and (3) we have G = Aut(v, a) = End(v, a). Here Aut(v, a)

denotes the group {σ ∈ Aut(v) | σ∗(a) = a}.
That (u, a) is nearly universal for L(−, v) means that there exists a subgroup G of

Aut(u) such that G fixes a and the morphism B(−, u)/G → L(−, v) induced by a is an
isomorphism. The condition required for (u, v, a,G) amounts to the following:
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(1) σ∗(a) = a for every σ ∈ G.
(2) For every x ∈ B and b ∈ L(x, v) there exists f :x→ u such that f ∗(a) = b.
(3) For every x ∈ B and f, f ′:x → u, if f ∗(a) = f ′∗(a), then there exists σ ∈ G such

that f = σf ′.
As a consequence of (1) and (3) we have G = Aut(u, a) = End(u, a).
The following is immediate from the definition.

3.7. Proposition. (i) If (v, a) is nearly universal for L(u,−) and f :u′ → u is an iso-
morphism, then (v, f ∗(a)) is nearly universal for L(u′,−).

(ii) If (v, a) is nearly universal for L(u,−) and h: v → v′ is an isomorphism, then
(v′, h∗(a)) is nearly universal for L(u,−).

3.8. Proposition. Let L:Bop × C → Set, M : Cop × D → Set be distributors. If L and
M are slicewise nearly representable, then so is L⊗C M .

Proof. Let x ∈ B. Take an isomorphism L(x,−) ∼= C(y,−)/G with y ∈ C and G ⊂
Aut(y). Then

(L⊗C M)(x,−) ∼= L(x,−)⊗C M
∼= C(y,−)/G⊗C M
∼= (C(y,−)⊗C M)/G

∼= M(y,−)/G.

Now M(y,−) is nearly representable by assumption. As a quotient of a nearly repre-
sentable functor, M(y,−)/G is also nearly representable. Thus (L⊗C M)(x,−) is nearly
representable.

By a similar argument we see that (L ⊗C M)(−, z) is nearly representable for any
z ∈ D.

4. Condition (G)

We introduce condition (RG) for a functor φ: C → D, which assures that
HomD(φ(−), y): Cop → Set for every y ∈ D is nearly representable. The condition roughly
means that D is obtained by taking quotients by groups of automorphisms of objects of
C. A natural example of such a functor is found in group theory.

4.1. Definition. Let φ: C → D be a functor. For x ∈ C put Gx = Ker(Aut(x) →
Aut(φ(x))). Condition (RG) for φ consists of the following:

(1) φ is surjective on objects.
(2) For every x, x′ ∈ C the map

C(x′, x)/Gx → D(φ(x′), φ(x))

induced by φ is bijective.
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(2) is phrased as the natural morphism

C(−, x)/Gx → φ∗(D(−, φ(x)))

in [Cop,Set] is an isomorphism for every x ∈ C. (1) and (2) imply that φ∗(D(−, y)) is
nearly representable for every y ∈ D.

4.2. Definition. A functor φ: C → D is called a surjective equivalence if φ is fully
faithful and surjective on objects.

Thus φ is a surjective equivalence if and only if φ satisfies (RG) and the groups Gx

are trivial for all x.
The following is immediate from the definition.

4.3. Proposition. The functors satisfying (RG) are closed under composition.

Here is a construction of a functor satisfying (RG). Let C be a category. Suppose that
for each object x in C a subgroup Gx of Aut(x) is given so that the following condition is
satisfied.

(?) For every morphism f :x′ → x in C and v ∈ Gx′ , there exists u ∈ Gx such that
fv = uf .

This amounts to saying the action of Gx′ on C(x′, x)/Gx is trivial for every x, x′ ∈ C.
We then define a category D and a functor φ: C → D as follows:
• Obj(D) = Obj(C).
• D(x′, x) = C(x′, x)/Gx for objects x, x′.
• The composition

C(x′′, x′)× C(x′, x)→ C(x′′, x)

in C induces a map
C(x′′, x′)× C(x′, x)/Gx → C(x′′, x)/Gx,

which in turn induces

C(x′′, x′)/Gx′ × C(x′, x)/Gx → C(x′′, x)/Gx

owing to the triviality of the action of Gx′ on C(x′, x)/Gx. Define the composition

D(x′′, x′)×D(x′, x)→ D(x′′, x)

in D to be the above map.
Thus the category D is defined. The functor φ: C → D is defined as follows:
• φ is identical on objects.
• φ : C(x′, x)→ D(x′, x) is the natural surjection C(x′, x)→ C(x′, x)/Gx.

One sees readily that φ satisfies (RG).
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4.4. Remark. In [Puig, 2009, p.12] the above construction of D from C is called the
exterior quotient and utilized in his theory of Frobenius categories. Here is a classical
example. Let C be the category of groups. For each group x let Gx be the inner automor-
phism group of x. The assignment x 7→ Gx satisfies the above condition (?). Morphisms
of the resulting quotient category D are group homomorphisms modulo inner automor-
phisms. In [Tull, 2019] the term “choice of trivial isomorphisms” is used for a collection of
subgroups Gx satisfying (?), and some examples of quotient categories are provided from
projective geometry and quantum theory.

The left-sided version of (RG) is named (LG):

4.5. Definition. Let φ: C → D be a functor. Put Gx = Ker(Aut(x) → Aut(φ(x))).
Condition (LG) for φ consists of the following:

(1) φ is surjective on objects.
(2) For every x, x′ ∈ C the map

C(x, x′)/Gx → D(φ(x), φ(x′))

induced by φ is bijective.

(2) amounts to saying that

C(x,−)/Gx → φ∗(D(φ(x),−))

in [C,Set] is an isomorphism for every x ∈ C. (1) and (2) imply that φ∗(D(y,−)) is nearly
representable for every y ∈ D.

We have the left-sided version of the above quotient construction. Let C be a category.
Suppose that for each object x in C a subgroup Gx of Aut(x) is given so that the following
condition is satisfied.

(?) For every morphism f :x → x′ in C and v ∈ Gx′ , there exists u ∈ Gx such that
vf = fu.

This is equivalent to saying the action of Gx′ on C(x, x′)/Gx is trivial for every x, x′.
We then define a category D and a functor φ: C → D as follows:
• Obj(D) = Obj(C).
• D(x, x′) = C(x, x′)/Gx for objects x, x′.
The composition in D is induced from the composition in C.
The identity on objects and the natural surjections C(x, x′)→ D(x, x′) give a functor

φ: C → D, which satisfies (LG).

4.6. Proposition. Suppose that φ: C → D satisfies (RG). Put Gx = Ker(Aut(x) →
Aut(φ(x)) for x ∈ C. For any functor F : C → Set we have a natural isomorphism

(φ!F )(φ(x)) ∼= F (x)/Gx

for every x ∈ C.
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Proof. For any x ∈ C we have an isomorphism C(−, x)/Gx
∼= D(φ(−), φ(x)) as functors

on C. Also we have by Proposition 2.2 a natural isomorphism φ!F ∼= F ⊗C (φ× 1)∗HomD,
hence (φ!F )(y) ∼= F ⊗C D(φ(−), y) for y ∈ D. Let y = φ(x) for x ∈ C. Then

(φ!F )(φ(x)) ∼= F ⊗C D(φ(−), φ(x)) ∼= F ⊗C (C(−, x)/Gx)

∼= (F ⊗C C(−, x))/Gx
∼= F (x)/Gx.

Thus (φ!F )(φ(x)) ∼= F (x)/Gx.

4.7. Proposition. Let

C ′ ξ //

φ′

��

C
φ
��

D′ η
// D

be a fiber square of categories and suppose that φ satisfies (RG). Then we have the
following:

(i) φ′ satisfies (RG).
(ii) For any functor F : C → Set the natural morphism

φ′!ξ
∗F → η∗φ!F

is an isomorphism.

Proof. (i) Since the square

Obj(C ′) //

��

Obj(C)

��
Obj(D′) // Obj(D)

is a pullback and φ: Obj(C)→ Obj(D) is a surjection, φ′: Obj(C ′)→ Obj(D′) is a surjec-
tion.

Let x′ ∈ C ′ and x = ξ(x′). Put

Gx = Ker(φ: Aut(x)→ Aut(φ(x))),

Gx′ = Ker(φ′: Aut(x′)→ Aut(φ′(x′))).

Since the square
Aut(x′) //

��

Aut(x)

��
Aut(φ′(x′)) // Aut(φ(x))

is a pullback, ξ induces an isomorphism Gx′
∼= Gx.
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Let x′1 ∈ C ′, x1 = ξ(x′1). The square

C ′(x′1, x′) //

��

C(x1, x)

��
D′(φ′(x′1), φ′(x′)) // D(φ(x1), φ(x))

is a pullback and the right vertical arrow is the quotient map by Gx, hence the left vertical
arrow is the quotient map by Gx′ , namely

C ′(x′1, x′)/Gx′
∼= D′(φ′(x′1), φ′(x′)).

Thus φ′ satisfies (RG).
(ii) Let F : C → Set. For x′ ∈ C ′ put x = ξ(x′). Using the isomorphism of Proposition

4.6, we have

(η∗φ!F )(φ′(x′)) = (φ!F )(ηφ′(x′)) = (φ!F )(φ(x)) ∼= F (x)/Gx,

(φ′!ξ
∗F )(φ′(x′)) ∼= (ξ∗F )(x′)/Gx′ = F (x)/Gx.

Thus
(η∗φ!F )(φ′(x′)) ∼= (φ′!ξ

∗F )(φ′(x′)).

As φ′ is surjective on objects, we conclude η∗φ!F ∼= φ′!ξ
∗F .

Pullbacks need not preserve equivalences, but they do preserve surjective equivalences:

4.8. Proposition. Let

C ′ ξ //

φ′

��

C
φ
��

D η
// D

be a fiber square of categories and suppose that φ is a surjective equivalence. Then φ′ is a
surjective equivalence.

5. Condition (H)

Here we introduce condition (RH) for a functor φ: C → D, which is weaker than condition
(RG) of the preceding section. This condition still assures that the functor HomD(φ(−), y)
for every y ∈ D is nearly representable, but does not require that φ induces a bijection of
isomorphism classes. We may say that a functor satisfying (RH) admits a right adjoint
inverse modulo a functor satisfying (RG).
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5.1. Definition. Let φ: C → D be a functor. For x ∈ C put Gx = Ker(Aut(x) →
Aut(φ(x))). Condition (RH) for φ is stated as: For every y ∈ D there exists x ∈ C such
that φ(x) = y and for every x′ ∈ C the map

C(x′, x)/Gx → D(φ(x′), y)

induced by φ is bijective.

When (RH) holds, the functor D(φ(−), y) is nearly representable for every y ∈ D,
hence (φ× 1)∗HomD is slicewise nearly representable. Obviously (RG) implies (RH).

The following is immediate from the definition.

5.2. Proposition. The functors satisfying (RH) are closed under composition.

5.3. Proposition. Let φ: C → D be a functor. The following are equivalent.
(i) φ satisfies (RH).
(ii) There exist a category B and a functor τ :B → C such that ψ = φτ satisfies (RG)

and the morphism
(1× ψ)!(1× τ)∗HomC → (1× φ)!HomC

induced by the adjunction τ!τ
∗ → 1 is an isomorphism.

Proof. Put Gx = Ker(Aut(x) → Aut(φ(x))) for x ∈ C. Let τ :B → C be a functor such
that ψ = φτ satisfies (RG). Put Fu = Ker(Aut(u)→ Aut(ψ(u))) for u ∈ B. As ψ satisfies
(RG), applying Proposition 4.6 to the functor C(x′, τ(−)), we have

((1× ψ)!(1× τ)∗HomC)(x
′, ψ(u)) ∼= C(x′, τ(u))/Fu

for x′ ∈ C and u ∈ B. Also by the general isomorphism

(1× φ)!HomC ∼= (φ× 1)∗HomD

we have
((1× φ)!HomC)(x

′, ψ(u)) ∼= HomD(φ(x′), ψ(u)).

In view of these isomorphisms the morphism

(1× ψ)!(1× τ)∗HomC → (1× φ)!HomC

in (ii), evaluated at (x′, ψ(u)), is regarded as the map

C(x′, τ(u))/Fu → D(φ(x′), ψ(u))

induced by φ.
Now suppose (1×ψ)!(1× τ)∗HomC ∼= (1×φ)!HomC. Let y ∈ D. Take u ∈ B such that

ψ(u) = y. By the above observation we have

C(−, τ(u))/Fu ∼= D(φ(−), y).



1008 D. TAMBARA

This implies that the group τ(Fu) coincides with Gτ(u) and φ satisfies (RH).
Suppose conversely that φ satisfies (RH). Let B be the full subcategory of C consisting

of x ∈ C such that the morphism

C(−, x)/Gx → D(φ(−), φ(x))

induced by φ is isomorphic. Let τ : B → C be the inclusion and ψ = φτ .
Clearly ψ satisfies (RG) and

C(−, τ(u))/Gτ(u)
∼= D(φ(−), ψ(u))

for every u ∈ B. By the earlier observation we see that

(1× ψ)!(1× τ)∗HomC ∼= (1× φ)!HomC.

Thus (ii) holds.

The dual version of (RH) is named (LH):

5.4. Definition. Condition (LH) for φ: C → D is stated as: For every y ∈ D there exists
x ∈ C such that φ(x) = y and for every x′ ∈ C the map

C(x, x′)/Gx → D(y, φ(x′))

induced by φ is bijective.

The dual of Proposition 5.3 is the following:

5.5. Proposition. Let φ: C → D be a functor. The following are equivalent.
(i) φ satisfies (LH).
(ii) There exist a category B and a functor τ :B → C such that ψ = φτ satisfies (LG)

and the morphism
(ψ × 1)!(τ × 1)∗HomC → (φ× 1)!HomC

induced by the adjunction τ!τ
∗ → 1 is an isomorphism.

5.6. Proposition. Let

C ′ ξ //

φ′

��

C
φ
��

D′ η
// D

be a fiber square of categories and suppose that φ satisfies (RH). Then we have the
following:

(i) φ′ satisfies (RH).
(ii) For any functor F : C → Set the natural morphism φ′!ξ

∗F → η∗φ!F is an isomor-
phism.
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Proof. (i) For any x ∈ C and x′ ∈ C ′ put

Gx = Ker(φ: Aut(x)→ Aut(φ(x))),

Gx′ = Ker(φ′: Aut(x′)→ Aut(φ′(x′)))

as before. Then Gx′
∼= Gξ(x′).

Let y′ ∈ D′. Put y = η(y′). As φ satisfies (RH), we can take x ∈ C such that φ(x) = y
and

φ: C(−, x)→ D(φ(−), y)

is the quotient map by Gx. Take x′ ∈ C ′ such that φ′(x′) = y′ and ξ(x′) = x. Then we
have a pullback diagram

C ′(−, x′) ξ //

φ′

��

C(ξ(−), x)

φ

��
D′(φ′(−), y′) η

// D(φξ(−), y)

Since the right vertical arrow is quotient by Gx, the left vertical arrow is quotient by Gx′ .
Thus φ′ satisfies (RH).

(ii) Recall that
φ!F ∼= F ⊗C (φ× 1)∗HomD

for any F : C → Set, and
φ′!F

′ ∼= F ′ ⊗C′ (φ′ × 1)∗HomD′

for any F ′: C ′ → Set.
Let y′ ∈ D′. Take x′, x, y as in (i). Then

D(φ(−), y) ∼= C(−, x)/Gx

and
D′(φ′(−), y′) ∼= C ′(−, x′)/Gx′ .

Then
(φ!F )(y) ∼= F ⊗C D(φ(−), y) ∼= F ⊗C C(−, x)/Gx

∼= F (x)/Gx,

so
(η∗φ!F )(y′) = (φ!F )(y) ∼= F (x)/Gx.

Similarly

(φ′!ξ
∗F )(y′) ∼= ξ∗F ⊗C′ D′(φ′(−), y′) ∼= ξ∗F ⊗C′ C ′(−, x′)/Gx′

∼= (ξ∗F )(x′)/Gx′

= F (ξ(x′))/Gx′ = F (x)/Gx.

Thus
(φ′!ξ

∗F )(y′) ∼= (η∗φ!F )(y′).

This proves (ii).
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6. The subcategory nuE(L) of E(L)

Let L:Bop × C → Set be a distributor. We defined in Section 2 the category E(L). Its
objects are triples (x, y, a) for x ∈ B, y ∈ C, and a ∈ L(x, y). Here we introduce some
subcategories of E(L) defined by conditions of near universality. They will be used in
Sections 8 and 10.

Firstly we define nuE(L) as a full subcategory of E(L): An object of nuE(L) is an
object (x, y, a) of E(L) such that (x, a) is nearly universal for L(−, y).

Likewise we define Enu(L) as a full subcategory of E(L): An object of Enu(L) is an
object (x, y, a) of E(L) such that (y, a) is nearly universal for L(x,−).

We define nuEnu(L) to be nuE(L) ∩ Enu(L).
Using universality in place of near universality, we define uEu(L) as a full subcategory

of E(L): An object of uEu(L) is an object (x, y, a) of E(L) such that (x, a) is universal for
L(−, y) and (y, a) is universal for L(x,−).

Firstly we consider nuE(L). Put Č = nuE(L). We have the projection functors σ: Č → B
and π: Č → C:

σ: (x, y, a) 7→ x,

π: (x, y, a) 7→ y.

We have a pullback diagram

Č((x, y, a), (x1, y1, a1)) π //

σ

��

C(y, y1)

��
B(x, x1) // L(x, y1)

where the right vertical arrow is the map g 7→ g∗(a), the lower horizontal arrow is the
map f 7→ f ∗(a1).

6.1. Proposition. Assume that for every y ∈ C the functor L(−, y):Bop → Set is nearly
representable. Then we have the following:

(i) π satisfies (RG).
(ii) The pair (σ, π) tabulates L, that is, (σ × π)!HomČ

∼= L.

Proof. (i) The assumption implies that π is surjective on objects.
Let (x, y, a), (x1, y1, a1) be objects of Č. Put K1 = Aut(x1, a1). As (x1, a1) is nearly

universal for L(−, y1), the map

B(x, x1)→ L(x, y1): f 7→ f ∗(a1)

is quotient by the group K1. The pullback diagram shows that the map

π: Č((x, y, a), (x1, y1, a1))→ C(y, y1)

is also quotient by K1. Thus π satisfies (RG).
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(ii) In view of the general isomorphism (σ× 1)!HomČ
∼= (1× σ)∗HomB, it is enough to

show (1× π)!(1× σ)∗HomB ∼= L. Let (x, y, a) ∈ Č. Put K = Aut(x, a) so that

B(−, x)/K ∼= L(−, y).

As π: Č → C satisfies (RG) and

K ∼= Ker(π: Aut(x, y, a)→ Aut(y)),

we have by Proposition 4.6
(π!F )(y) ∼= F (x, y, a)/K

for any functor F : Č → Set. Taking F = σ∗B(x′,−) for any x′ ∈ B, we have

(π!σ
∗B(x′,−))(y) ∼= B(x′, σ(x, y, a))/K = B(x′, x)/K ∼= L(x′, y).

Thus
(1× π)!(1× σ)∗HomB ∼= L.

We next consider nuEnu(L). Put A = nuEnu(L). We have the projection functors
λ:A → B and µ:A → C.

6.2. Proposition. The functors λ and µ are full.

Proof. Let (x, y, a), (x1, y1, a1) ∈ A. As in the preceding proof we have a pullback
diagram

A((x, y, a), (x1, y1, a1))
µ //

λ
��

C(y, y1)

��
B(x, x1) // L(x, y1)

As (x1, a1) is nearly universal for L(−, y1), the lower arrow is a quotient map. Hence the
upper arrow is also a quotient map and in particular surjective. Thus µ is full.

Next we put D = uEu(L). We have the projection functors β:D → B and γ:D → C.

6.3. Proposition. The functors β and γ are fully faithful.

Proof. Let (x, y, a), (x1, y1, a1) ∈ D. We have again a pullback diagram

D((x, y, a), (x1, y1, a1))
γ //

β

��

C(y, y1)

��
B(x, x1) // L(x, y1)

As (x1, a1) is universal for L(−, y1) and (y, a) is universal of L(x,−), the lower arrow and
the right arrow are bijections. Hence the other arrows are bijections. Thus β and γ are
fully faithful.
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6.4. Corollary. Suppose that β and γ are surjective on objects. Then β and γ are
surjective equivalences, and we have L ∼= (β × γ)!HomD.

Proof. The pullback diagram shows D((x, y, a), (x1, y1, a1)) ∼= L(x, y1). This means
HomD ∼= (β × γ)∗L. As β and γ are equivalences, this implies (β × γ)!HomD ∼= L.

7. ε and η

An adjunction gives rise to two natural transformations called unit and counit. In this
section we pursue an analogous construction for a slicewise nearly representable distribu-
tor. Under a certain finiteness hypothesis we show a theorem about the invertibility of a
unit-like morphism, on which our factorization theorem depends.

Let L:Bop × C → Set be a distributor. Throughout this section we assume that L is
slicewise nearly representable.

For each x ∈ B take an object x̃ ∈ C, a subgroup Hx of Aut(x̃), and an isomorphism

C(x̃,−)/Hx
∼= L(x,−).

Take an element θx ∈ L(x, x̃) which induces this isomorphism. Thus, for every y ∈ C
and a ∈ L(x, y), there exists g ∈ C(x̃, y) such that g∗(θx) = a; such g is unique up to the
action of Hx. This is pictured as the diagram (Section 2)

x̃

��
x

θx

a y

In the language of Section 3 the pair (x̃, θx) is nearly universal for L(x,−) and Hx =
Aut(x̃, θx).

Likewise, for each y ∈ C take an object ŷ ∈ B, a subgroup Ky of Aut(ŷ), and an
isomorphism

B(−, ŷ)/Ky
∼= L(−, y).

Take an element ωy ∈ L(ŷ, y) which induces this isomorphism. Thus, for every x ∈ B and
a ∈ L(x, y), there exists f ∈ B(x, ŷ) such that f ∗(ωy) = a; such f is unique up to the
action of Ky.

x a

��

y

ŷ

ωy

The pair (ŷ, ωy) is nearly universal for L(−, y) and Ky = Aut(ŷ, ωy).
For every x ∈ B, using the near universality of (ˆ̃x, ωx̃), we take a morphism ηx ∈ B(x, ˆ̃x)

such that θx = η∗x(ωx̃). For every y ∈ C, using the near universality of (˜̂y, θŷ), we take a
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morphism εy ∈ C(˜̂y, y) such that εy∗(θŷ) = ωy. These are pictured as the diagrams

x
θx

ηx
��

x̃

ˆ̃x

ωx̃

˜̂y

εy

��
ŷ

θŷ

ωy
y

For u ∈ B(x1, x2) take ũ ∈ C(x̃1, x̃2) such that u∗(θx2) = ũ∗(θx1); such ũ is unique up
to the action of Hx1 . For v ∈ C(y1, y2) take v̂ ∈ B(ŷ1, ŷ2) such that v∗(ωy1) = v̂∗(ωy2);
such v̂ is unique up to the action of Ky2 . Thus

x1

θx1

u

��

x̃1

ũ
��

x2 θx2
x̃2

ŷ1

ωy1

v̂
��

y1

v

��
ŷ2 ωy2

y2

7.1. Proposition. For x ∈ B we have εx̃η̃x ∈ Hx.

Proof. We have the diagrams

x
θx

ηx
��

x̃

η̃x��

ˆ̃x
θˆ̃x

ωx̃

˜̂̃x

εx̃

��
x̃

x
θxηx

��
ˆ̃x ωx̃

x̃

Hence

x
θx

θx

x̃

εx̃η̃x
��
x̃

By the uniqueness modulo Hx we see εx̃η̃x ≡ 1x̃ mod Hx, that is, εx̃η̃x ∈ Hx as required.

Dually we have

7.2. Proposition. For y ∈ C we have ε̂yηŷ ∈ Ky.

7.3. Proposition. For u1 ∈ B(x1, x2) and u2 ∈ B(x2, x3) we have ũ2u1 ≡ ũ2 ũ1 mod Hx1.
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Proof. We have the diagram

x1

θx1

u1

��

x̃1

ũ1
��

x2

θx2

u2

��

x̃2

ũ2
��

x3 θx3
x̃3

Hence

x1

θx1

u2u1

��

x̃1

ũ2ũ1
��

x3 θx3
x̃3

Also we have the diagram

x1

θx1

u2u1

��

x̃1

ũ2u1
��

x3 θx3
x̃3

It follows that ũ2ũ1 ≡ ũ2u1 mod Hx1 .

Dually we have

7.4. Proposition. For v1 ∈ C(y1, y2) and v2 ∈ C(y2, y3) we have v̂2v1 ≡ v̂2v̂1 mod Ky3.

7.5. Corollary. If u is an isomorphism in B, then ũ is an isomorphism in C. If v is
an isomorphism in C, then v̂ is an isomorphism in B.

7.6. Proposition. For v ∈ C(y1, y2) we have vεy1 ≡ εy2
˜̂v mod Hŷ1.

Proof. We have the diagram
˜̂y1

εy1

��
ŷ1

θŷ1

ωy1

v̂
��

y1

v

��
ŷ2 ωy2

y2

hence

ŷ1

θŷ1

v̂

��

˜̂y1

vεy1

��
ŷ2 ωy2

y2
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Also we have

ŷ1

θŷ1

v̂

��

˜̂y1

˜̂v
��

ŷ2

θŷ2

ωy2

˜̂y2

εy2

��
y2

hence

ŷ1

θŷ1

v̂

��

˜̂y1

εy2
˜̂v

��
ŷ2 ωy2

y2

Owing to the isomorphism C(˜̂y1,−)/Hŷ1
∼= L(ŷ1,−), we conclude from the two squares

above that vεy1 ≡ εy2
˜̂v mod Hŷ1 .

7.7. Proposition. Let x ∈ B. If ηˆ̃x is an isomorphism, then so is εx̃.

Proof. Put x1 = ˆ̃x, v1 = εx̃ so that

εx̃:
˜̂̃x→ x̃

is written as
v1: x̃1 → x̃.

Assume that ηx1 :x1 → ˆ̃x1 is an isomorphism. By Proposition 7.2 for x̃ we have ε̂x̃ηˆ̃x ∈ Kx̃,
so this is an isomorphism. Namely v̂1ηx1 is an isomorphism. As ηx1 is an isomorphism, it
follows that v̂1 is also an isomorphism.

The morphism
ηx:x→ ˆ̃x

gives rise to the morphism

η̃x: x̃→ ˜̂̃x.

Denote this by v2 so that
v2: x̃→ x̃1.

Proposition 7.1 says εx̃η̃x ∈ Hx, namely v1v2 ∈ Hx. In particular v1v2 is an isomorphism.
Then v̂1v2 is an isomorphism, and

v̂1v̂2 ≡ v̂1v2 mod Kx̃.

Therefore v̂1v̂2 is an isomorphism. As v̂1 is an isomorphism, so is v̂2.
Next we have

v̂2v1 ≡ v̂2v̂1 mod Kx̃1 ,
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so v̂2v1 is an isomorphism. Hence ˜̂v2v1 is an isomorphism. Proposition 7.1 for x1 says
εx̃1 η̃x1 ∈ Hx1 . As ηx1 is an isomorphism, it follows that εx̃1 is an isomorphism. And
Proposition 7.6 for v2v1: x̃1 → x̃1 says

(v2v1)εx̃1 ≡ εx̃1
˜̂v2v1 mod Hˆ̃x1

.

As εx̃1 and ˜̂v2v1 are isomorphisms, it follows that v2v1 is an isomorphism.
As the both v1v2 and v2v1 are isomorphisms, v1 and v2 are isomorphisms, that is, εx̃

and η̃x are isomorphisms.

The following is similarly proved.

7.8. Proposition. Let y ∈ C. If ε˜̂y is an isomorphism, then so is ηŷ.

7.9. Theorem. Suppose that C satisfies the following condition: If

· · · g2 // y2
g1 // y1

g0 // y0

is a sequence of morphisms in C and all gi have right inverses, then gn for large n are
isomorphisms.

Then εx̃ is an isomorphism for every x ∈ B, and ηŷ is an isomorphism for every y ∈ C.

Proof. Let y ∈ C. Put

y0 = y, xn = ŷn for n ≥ 0, yn = x̃n−1 for n > 0.

We have a diagram

· · · x2
oo

ω

x1

ηx1oo

θ
ω

x0

ηx0oo

θ
ω

· · · // y2 εy1
// y1 εy

// y

By Propositions 7.7 and 7.8 we have implications

ηxn is an isomorphism =⇒ εyn is an isomorphism (n = 1, 2, . . .),

εyn is an isomorphism =⇒ ηxn−1 is an isomorphism (n = 1, 2, . . .).

For every n ≥ 1, Proposition 7.1 for xn−1 says εyn η̃xn−1 ∈ Hxn−1 . Hence εyn has a right
inverse. By assumption εyn for a large n is an isomorphism. Then it follows that ηx0 is an
isomorphism, that is, ηŷ is an isomorphism.

Let x ∈ B. Put

x0 = x, yn = x̃n for n ≥ 0, xn = ŷn−1 for n > 0.
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We have a diagram

· · · x2
oo

θ
ω

x1

ηx1oo

θ
ω

x
ηxoo

θ

· · · // y2 εy1
// y1 εy0

// y0

By Propositions 7.7 and 7.8

ηxn is an isomorphism =⇒ εyn−1 is an isomorphism (n = 1, 2, . . .),

εyn is an isomorphism =⇒ ηxn is an isomorphism (n = 1, 2, . . .).

By assumption εyn for a large n is an isomorphism. Then εy0 is an isomorphism, that is,
εx̃ is an isomorphism.

The same conclusion holds when B satisfies the dual condition: if

x0
f0 // x1

f1 // x2
f2 // · · ·

is a sequence of morphisms in B and all fi have left inverses, then fn for large n are
isomorphisms.

8. Equivalence B̄0 ' C̄0

Let L:Bop × C → Set be a slicewise nearly representable distributor. In this section
we construct from L subcategories B0 of B, C0 of C, and quotient categories B̄0 of B0,
C̄0 of C0. We then construct distributors K: B̄op

0 × C̄0 → Set, M :Bop × B̄0 → Set, and
N : C̄op

0 × C → Set. We show that K gives an equivalence B̄0 ' C̄0.
We first make the category nuEnu(L) from L (Section 6). Put A = nuEnu(L). Recall

that an object of A is an object (x, y, a) of E(L) such that (x, a) is nearly universal
for L(−, y) and (y, a) is nearly universal for L(x,−). We have the projection functors
λ:A → B, µ:A → C, which are known to be full (Proposition 6.2). Define B0 = Imλ:
This is a full subcategory of B; an object of B0 is an object x of B such that (x, y, a) ∈ A
for some y, a. Define C0 = Imµ: This a full subcategory of C; an object of C0 is an object
y of C such that (x, y, a) ∈ A for some x, a.

8.1. Proposition. Let x ∈ B0. Take y ∈ C and a ∈ L(x, y) such that (x, y, a) ∈ A.
Then the subgroup Aut(x, a) of Aut(x) does not depend on the choice of y, a.

Proof. Suppose (x, y, a), (x, y′, a′) ∈ A. As (y, a) and (y′, a′) are both nearly universal
for L(x,−), there exists an isomorphism h: y → y′ such that a′ = h∗(a) by Proposition
3.3. Then Aut(x, a) = Aut(x, a′).



1018 D. TAMBARA

Owing to this proposition, we can define for every x ∈ B0 the group ∆x = Aut(x, a)
by taking (x, y, a) ∈ A. As (x, a) is nearly universal for L(−, y), a induces

L(−, y) ∼= B(−, x)/∆x.

Similarly

8.2. Proposition. Let y ∈ C0. Take x ∈ B and a ∈ L(x, y) such that (x, y, a) ∈ A.
Then the subgroup Aut(y, a) of Aut(y) does not depend on the choice of x, a.

We define for every y ∈ C0 the group Γy = Aut(y, a) by taking (x, y, a) ∈ A. The
element a induces

L(x,−) ∼= C(y,−)/Γy.

8.3. Proposition. For every x ∈ B0 and y′ ∈ C, the action of ∆x on L(x, y′) is trivial.

Proof. Take (x, y, a) ∈ A. Then ∆x = Aut(x, a). For any y′ ∈ C and a′ ∈ L(x, y′) take
g: y → y′ such that a′ = g∗(a). As ∆x fixes a and g∗ commutes with the action of Aut(x),
∆x fixes a′.

Similarly we have

8.4. Proposition. For every y ∈ C0 and x′ ∈ B, the action of Γy on L(x′, y) is trivial.

8.5. Proposition. For every y, y′ ∈ C0 the action of Γy′ on C(y, y′)/Γy is trivial.

Proof. Let y, y′ ∈ C0. Take (x, y, a) ∈ A. The element a gives

L(x,−) ∼= C(y,−)/Γy,

hence
L(x, y′) ∼= C(y, y′)/Γy

as Aut(y′)-sets. On the other hand, as y′ ∈ C0, the action of Γy′ on L(x, y′) is trivial
(Proposition 8.4). It follows that the action of Γy′ on C(y, y′)/Γy is trivial.

Similarly we have

8.6. Proposition. For every x, x′ ∈ B0 the action of ∆x on B(x, x′)/∆x′ is trivial.

Let y, y′ ∈ C0 and y′′ ∈ C. The composition in C induces a commutative diagram

C(y, y′)× C(y′, y′′) //

��

C(y, y′′)

��
C(y, y′)/Γy × C(y′, y′′)/Γy′ // C(y, y′′)/Γy

because Γy′ acts trivially on C(y, y′)/Γy.
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The construction in Section 4 then gives us a quotient category C̄0 and a functor
q: C0 → C̄0: The category C̄0 has the same objects as C0; its hom-sets are given by

C̄0(y, y′) = C(y, y′)/Γy.

The functor q: C0 → C̄0 is identical on objects and the natural surjections on hom-sets.
We know q satisfies (LG).

Likewise, let x ∈ B and x′, x′′ ∈ B0. The composition in B induces a commutative
diagram

B(x, x′)× B(x′, x′′) //

��

B(x, x′′)

��
B(x, x′)/∆x′ × B(x′, x′′)/∆x′′

// B(x, x′′)/∆x′′

because ∆x′ acts trivially on B(x′, x′′)/∆x′′ .
The construction in Section 4 gives us a quotient category B̄0 and a functor p : B0 →

B̄0: B̄0 has the same objects as B0; its hom-sets are

B̄0(x, x′) = B(x, x′)/∆x′ .

The functor p : B0 → B̄0 is identical on objects and the natural surjections on hom-sets.
We know p satisfies (RG).

Let i:B0 → B and j: C0 → C be the inclusion functors. For x ∈ B, y ∈ C0, y ∈ C the
map

L(x, y)× C(y, y′)→ L(x, y′)

induces
L(x, y)× C(y, y′)/Γy → L(x, y′)

because Γy acts trivially on L(x, y). If y′ ∈ C0, we then have a map

L(x, y)× C̄0(y, y′)→ L(x, y′).

These maps for all x ∈ B, y, y′ ∈ C0 define a functor Bop × C̄0 → Set, which is denoted
by L′′. The restriction of L to Bop × C0 is denoted by L′, so that

L′ = (1× j)∗L, L′ = (1× q)∗L′′.

Thus we have a commutative diagram

Bop × C L // Set

Bop × C0

OO

��

L′
99

Bop × C̄0

L′′

CC
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Likewise, for x ∈ B, x′ ∈ B0, y ∈ C the map

B(x, x′)× L(x′, y)→ L(x, y)

induces a map
B(x, x′)/∆x′ × L(x′, y)→ L(x, y)

because ∆x′ acts trivially on L(x′, y). If x ∈ B0, we then have a map

B̄0(x, x′)× L(x′, y)→ L(x, y).

These maps for all x, x′ ∈ B0 and y ∈ C define a functor B̄op
0 ×C → Set, which is denoted

by L◦◦. The restriction of L to Bop
0 × C is denoted by L◦, so that

L◦ = (i× 1)∗L, L◦ = (p× 1)∗L◦◦.

Thus we have a commutative diagram

Bop × C L // Set

Bop
0 × C

OO

��

L◦
::

B̄op
0 × C

L◦◦

DD

In particular we have a functor K: B̄op
0 × C̄0 → Set, so that

(i× j)∗L = (p× q)∗K.

We make the category uEu(K) from the distributor K: B̄op
0 × C̄0 → Set (Section 6).

We put D = uEu(K). Recall that an object of D is a triple (x, y, a) composed of x ∈ B̄0,
y ∈ C̄0, and a ∈ K(x, y) such that (x, a) is universal for K(−, y) and (y, a) is universal for
K(x,−). We have the projection functors β:D → B̄0 and γ:D → C̄0.

8.7. Proposition. If (x, y, a) ∈ A, then (p(x), q(y), a) ∈ D.

Proof. Let (x, y, a) ∈ A. Then y ∈ C0 and L(x,−) ∼= C(y,−)/Γy on C, hence on
C0. Now L(x,−) = K(p(x), q(−)) on C0 and C(y,−)/Γy = C̄0(q(y), q(−)) on C0. Hence
K(p(x), q(−)) ∼= C̄0(q(y), q(−)) on C0. It follows that K(p(x),−) ∼= C̄0(q(y),−) on C̄0.
This isomorphism is induced by the element a ∈ K(p(x), q(y)). Thus (p(x), a) is universal
for K(−, q(y)).

Similarly (q(y), a) is universal for K(p(x),−).
This proves that (p(x), q(y), a) ∈ D.
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8.8. Proposition. The functors β and γ are surjective equivalences.

Proof. We know by Proposition 6.3 that β and γ are fully faithful. It remains to show
that they are surjective on objects. As λ:A → B has the image B0 and ρ:A → C has the
image C0, it follows by the preceding proposition that β:D → B̄0 has the image B̄0 and
γ:D → C̄0 has the image C̄0.

Therefore B̄0 and C̄0 are equivalent.
We next define distributors N : C̄op

0 × C → Set and M :Bop × B̄0 → Set.
For y ∈ C0 and y′ ∈ C set

N(y, y′) = C(y, y′)/Γy.
As seen before, for y, y′ ∈ C0 and y′′ ∈ C the composition

C(y, y′)× C(y′, y′′)→ C(y, y′′)

induces a map
C(y, y′)/Γy × C(y′, y′′)/Γy′ → C(y, y′′)/Γy,

that is,
C̄0(y, y′)×N(y′, y′′)→ N(y, y′′).

This makes N a distributor C̄op
0 × C → Set.

Likewise, for x ∈ B and x′ ∈ B0 set

M(x, x′) = B(x, x′)/∆x′ .

For x ∈ B, x′, x′′ ∈ B0 the composition

B(x, x′)× B(x′, x′′)→ B(x, x′′)

induces a map
B(x, x′)/∆x′ × B(x′, x′′)/∆x′′ → B(x, x′′)/∆x′′ ,

that is,
M(x, x′)× B̄0(x′, x′′)→M(x, x′′).

This makes M a distributor Bop × B̄0 → Set.
Thus we have obtained distributors

M : Bop × B̄0 → Set,

K: B̄op
0 × C̄0 → Set,

N : C̄op
0 × C → Set.

Recall that p:B0 → B̄0, q: C0 → C̄0 denote the projections and i:B0 → B, j: C0 → C
denote the inclusions. The natural maps B(x, x0)→M(x, p(x0)) for all x ∈ B and x0 ∈ B0

yield a morphism (1 × i)∗HomB → (1 × p)∗M , which by adjunction induces a morphism
(1× p)!(1× i)∗HomB → M or by Proposition 2.4 a morphism (i× p)!HomB0 → M . This
is shown to be an isomorphism:
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8.9. Lemma. (i× p)!HomB0
∼= M .

Proof. We shall show (1× p)!(1× i)∗HomB ∼= M . The functor p:B0 → B̄0 satisfies (RG)
and has the kernel

Ker(Aut(x0)→ Aut(p(x0))) = ∆x0

for x0 ∈ B0. Proposition 4.6 then tells us that

(p!F )(p(x0)) ∼= F (x0)/∆x0

for any functor F :B0 → Set. Applying this to F = i∗B(x,−):B0 → Set for x ∈ B, we
have

(p!i
∗B(x,−))(p(x0)) ∼= B(x, x0)/∆x0 = M(x, p(x0)).

Hence
(1× p)!(1× i)∗HomB ∼= M.

This proves the proposition.

Similarly we have

8.10. Lemma. (q × j)!HomC0
∼= N .

9. Factorization: the first step

Let L:Bop × C → Set be a slicewise nearly representable distributor. From now on we
assume that C satisfies the assumption of Theorem 7.9, that is, that C does not have an
infinite chain of non-isomorphic split epimorphisms. In this section we show that L is the
composite of the three distributors

M :Bop × B̄0 → Set, K: B̄op
0 × C̄0 → Set, N : C̄op

0 × C → Set

defined in Section 8, and that M and N are slicewise nearly representable. A picture in
Borceux’s notation:

B CL◦oo

N◦
��

B̄0

M ◦

OO

C̄0K
◦oo

Exactly as in Section 7, for each x ∈ B take x̃ ∈ C, a subgroup Hx of Aut(x̃), and an
isomorphism C(x̃,−)/Hx

∼= L(x,−). Take θx ∈ L(x, x̃) which induces this isomorphism.
Then (x̃, θx) is nearly universal for L(x,−). For each morphism u in B take a morphism
ũ in C as in Section 7.

For each y ∈ C take ŷ ∈ B, a subgroupKy of Aut(ŷ), and an isomorphism B(−, ŷ)/Ky
∼=

L(−, y). Take ωy ∈ L(ŷ, y) which induces this isomorphism. Then (ŷ, ωy) is nearly uni-
versal for L(−, y). For each morphism v in C take a morphism v̂ in B as in Section
7.
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For each x ∈ B take a morphism ηx:x → ˆ̃x, and for each y ∈ C take a morphism
εy: ˜̂y → y as in Section 7.

Let

B′0 = {x ∈ B | ηx is an isomorphism},
C ′0 = {y ∈ C | εy is an isomorphism}.

We regard these as full subcategories of B and C, respectively. We shall show that B′0 = B0,
C ′0 = C0.

We restate Theorem 7.9:

9.1. Proposition. (i) If x ∈ B, then x̃ ∈ C ′0.
(ii) If y ∈ C, then ŷ ∈ B′0.

9.2. Proposition. (i) If x ∈ B′0, then (x, θx) is nearly universal for L(−, x̃).
(ii) If y ∈ C ′0, then (y, ωy) is nearly universal for L(ŷ,−).

Proof. (i) Let x ∈ B′0. Then ηx:x→ ˆ̃x is an isomorphism. As (ˆ̃x, ωx̃) is nearly universal
for L(−, x̃) and θx = η∗x(ωx̃), it follows by Proposition 3.7 that (x, θx) is nearly universal
for L(−, x̃). (ii) is similarly proved.

9.3. Proposition. (i) If x ∈ B′0, then (x, x̃, θx) ∈ A.
(ii) If y ∈ C ′0, then (ŷ, y, ωy) ∈ A.

Proof. (i) Let x ∈ B′0. The pair (x̃, θx) is nearly universal for L(x,−) by definition, while
the pair (x, θx) is nearly universal for L(−, x̃) by Proposition 9.2. Thus (x, x̃, θx) ∈ A.
(ii) is similarly proved.

9.4. Proposition. If (x, y, a) ∈ A, then x ∈ B′0 and y ∈ C ′0.

Proof. Let (x, y, a) ∈ A. As (x, a) and (ŷ, ωy) are both nearly universal for L(−, y), there
exists an isomorphism f :x → ŷ such that a = f ∗(ωy) by Proposition 3.3. As (y, a) and
(x̃, θx) are both nearly universal for L(x,−), there exists likewise an isomorphism g: x̃→ y
such that a = g∗(θx). We have η∗x(ωx̃) = θx and ĝ∗(ωy) = g∗(ωx̃). So (ĝηx)

∗(ωy) = g∗(θx),
hence (ĝηx)

∗(ωy) = a. Comparing this with f ∗(ωy) = a, we have by the near universality
of (ŷ, ωy) that ĝηx ≡ f mod Ky. As ĝ and f are isomorphisms, so is ηx. Thus x ∈ B′0.

Similarly we have y ∈ C ′0.

The preceding two propositions give the following:

9.5. Proposition. The categories B′0 and C ′0 respectively coincide with B0 and C0 defined
in Section 8: B0 = B′0, C0 = C ′0.

Recall that i:B0 → B and j: C0 → C denote the inclusions and p:B0 → B̄0 and
q: C0 → C̄0 the projections.

9.6. Lemma. (i) L ∼= (1× j)!(1× j)∗L.
(ii) L ∼= (i× 1)!(i× 1)∗L.
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Proof. (i) Let x ∈ B. We have

L(x,−) ∼= C(x̃,−)/Hx

on C. We have x̃ ∈ C0 by Proposition 9.1. Hence

j∗(L(x,−)) ∼= C0(x̃,−)/Hx.

Then
j!j
∗(L(x,−)) ∼= j!(C0(x̃,−)/Hx) ∼= C(x̃,−)/Hx.

Thus
j!j
∗(L(x,−)) ∼= L(x,−).

This proves (i).

9.7. Lemma. L ∼= (i× j)!(i× j)∗L.

Proof.
L ∼= (1× j)!(1× j)∗L
∼= (1× j)!(1× j)∗(i× 1)!(i× 1)∗L

∼= (1× j)!(i× 1)!(1× j)∗(i× 1)∗L

∼= (i× j)!(i× j)∗L.

9.8. Proposition. We have an isomorphism L ∼= M ⊗B̄0 K ⊗C̄0 N .

Proof. We know (Section 8)

(i× j)∗L = (p× q)∗K,
(i× p)!HomB0

∼= M,

(q × j)!HomC0
∼= N.

Then we proceed as

L ∼= (i× j)!(i× j)∗L
∼= (i× j)!(p× q)∗K
∼= (i× j)! [(1× p)!HomB0 ⊗B̄0 K ⊗C̄0 (q × 1)!HomC0 ]

(by Propositions 2.2 and 2.4)

∼= (i× 1)!(1× p)!HomB0 ⊗B̄0 K ⊗C̄0 (1× j)!(q × 1)!HomC0

∼= M ⊗B̄0 K ⊗C̄0 N.

This proves the proposition.
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Recall that L◦ = (i× 1)∗L, L◦ = (p× 1)∗L◦◦ (Section 8).

9.9. Proposition. The distributors L◦ and L◦◦ are slicewise nearly representable.

Proof. For any y ∈ C we have L(−, y) ∼= B(−, ŷ)/Ky on B. As ŷ ∈ B0, L(−, y) is nearly
representable on B0. For any x ∈ B, L(x,−) is nearly representable on C, hence also for
any x ∈ B0. Thus L◦:Bop

0 × C → Set is slicewise nearly representable.
For any x ∈ B0 we have L◦◦(p(x),−) = L◦(x,−) on C, which is nearly representable.

For any y ∈ C we have L◦(−, y) = p∗L◦◦(−, y). As p is full and surjective on objects,
we have p!p

∗ ∼= 1, so p!L
◦(−, y) ∼= L◦◦(−, y). As L◦(−, y) is nearly representable, so is

p!L
◦(−, y). Hence L◦◦(−, y) is nearly representable. Thus L◦◦ is slicewise nearly repre-

sentable.

Recall that N : C̄op
0 × C → Set is defined as N(y, y′) = C(y, y′)/Γy.

9.10. Lemma. L◦◦ ∼= K ⊗C̄0 N .

Proof. We know

L ∼= (1× j)!(1× j)∗L,
(i× j)∗L = (p× q)∗K,

N ∼= (q × j)!HomC0 .

Using these, we proceed as

L◦ = (i× 1)∗L

∼= (i× 1)∗(1× j)!(1× j)∗L
∼= (1× j)!(i× j)∗L

= (1× j)!(p× q)∗K
∼= (p× q)∗K ⊗C0 (1× j)!HomC0 (by Propositions 2.2 and 2.4)

∼= (p× 1)∗[(1× q)∗K ⊗C0 (1× j)!HomC0 ]

∼= (p× 1)∗[K ⊗C̄0 (q × j)!HomC0 ] (by Proposition 2.3)

∼= (p× 1)∗(K ⊗C̄0 N),

hence
L◦ ∼= (p× 1)∗(K ⊗C̄0 N).

As L◦ = (p× 1)∗L◦◦ and p!p
∗ ∼= 1, we conclude

L◦◦ ∼= K ⊗C̄0 N.
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9.11. Proposition. The distributor N is slicewise nearly representable.

Proof. The distributor K: B̄op
0 × C̄0 → Set gives an equivalence between B̄0 and C̄0.

The distributor L◦◦ is slicewise nearly representable and isomorphic to K ⊗C̄0 N . It then
follows that N is also slicewise nearly representable.

Similarly

9.12. Proposition. The distributor M is slicewise nearly representable.

10. Factorization: the second step

We keep the assumption of the preceding section. Here we prove that the distributor
N is tabulated by a pair of a functor satisfying (RG) and a functor satisfying (LH). A
corresponding fact holds also for the distributor M . Then we prove the main theorem
that L is tabulated by a pair of a functor satisfying (LH) and a functor satisfying (RH).

From the distributor N : C̄op
0 ×C → Set we make the category nuE(N) (Section 6). Put

Č = nuE(N). An object of Č is a triple (x, y, a) composed of x ∈ C̄0, y ∈ C, a ∈ N(x, y)
such that (x, a) is nearly universal of N(−, y).

We have the projection functors

σ: Č → C̄0: (x, y, a) 7→ x,

π: Č → C: (x, y, a) 7→ y.

As N(−, y) is nearly representable for every y ∈ C (Proposition 9.11), we see by
Proposition 6.1 the following:

10.1. Proposition. The functor π satisfies (RG). The pair (σ, π) tabulates N , that is,
N ∼= (σ × π)!HomČ.

Define a functor τ : C0 → Č as follows. For y ∈ C0 we set

τ(y) = (q(y), y, 1q(y)).

Note that N(q(y′), y) = C̄0(q(y′), q(y)) for y, y′ ∈ C0. So (q(y), 1q(y)) is universal for
N(−, y), hence (q(y), y, 1q(y)) ∈ Č. For a morphism f : y → y1 of C0 we set

τ(f) = (q(f), f).

Note that
q(f)∗(1q(y1)) = q(f) = f∗(1q(y)).

Hence
(q(f), f): (q(y), y, 1q(y))→ (q(y1), y1, 1q(y1))

is really a morphism.
Thus τ is a functor and στ = q, πτ = j.
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10.2. Proposition. For y ∈ C0 and (x1, y1, a1) ∈ Č the map

Č(τ(y), (x1, y1, a1))/Γy → C̄0(q(y), x1)

induced by σ is bijective.

Proof. Let (x, y, a), (x1, y1, a1) ∈ Č. We have a pullback diagram

Č((x, y, a), (x1, y1, a1)) π //

σ

��

C(y, y1)

��
C̄0(x, x1) // N(x, y1)

where the right vertical arrow is the map g 7→ g∗(a) and the lower horizontal arrow is the
map f 7→ f ∗(a1).

Now let y ∈ C0. Set (x, y, a) = (q(y), y, 1q(y)). The diagram becomes

Č((q(y), y, 1q(y)), (x1, y1, a1)) //

��

C(y, y1)

��
C̄0(q(y), x1) // N(q(y), y1)

Note
N(q(y), y1) = C(y, y1)/Γy,

g∗(1q(y)) = q(g) ∈ C(y, y1)/Γy

for g ∈ C(y, y1). So the right vertical arrow is the quotient map by Γy.
Since the diagram is a pullback, it follows that the left vertical arrow is also the

quotient map by Γy, that is,

Č((q(y), y, 1q(y)), (x1, y1, a1))/Γy ∼= C̄0(q(y), x1).

This proves the proposition.

10.3. Proposition. The functor σ: Č → C̄0 satisfies (LH).

Proof. The bijection of the preceding proposition gives an isomorphism

Č(τ(y),−)/Γy ∼= C̄0(q(y), σ(−))

of functors on Č for every y ∈ C0. Then τ(Γy) coincides with Ker(σ: Aut(τ(y)) →
Aut(q(y))). As q is surjective on objects, it follows that σ satisfies (LH).
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The above proof, compared with the proof of Proposition 5.3, shows that τ satisfies
condition (ii) of Proposition 5.5: q = στ satisfies (LG) and

(q × 1)!(τ × 1)∗HomČ
∼= (σ × 1)!HomČ.

Dually we make the category Enu(M) from M :Bop×B̄0 → Set. We put B̌ = Enu(M).
An object of B̌ is a triple (x, y, a) composed of x ∈ B, y ∈ B̄0, a ∈M(x, y) such that (y, a)
is nearly universal for M(x,−).

Define θ: B̌ → B and ρ: B̌ → B̄0 as the projections.

10.4. Proposition. The functor θ satisfies (LG). The pair (θ, ρ) tabulates M , that is,
M ∼= (θ × ρ)!HomB̌.

10.5. Proposition. The functor ρ satisfies (RH).

Now we deduce the final factorization of L. We have so far constructed the functors

B̌
θ

��

ρ

��

D
β

��

γ

��

Č
π

��

σ

��
B B̄0 C̄0 C

and the distributors

M : Bop × B̄0 → Set,

K: B̄op
0 × C̄0 → Set,

N : C̄op
0 × C → Set.

We know the factorization
L ∼= M ⊗B̄0 K ⊗C̄0 N. (1)

We know π satisfies (RG), σ satisfies (LH), and

N ∼= (σ × π)!HomČ. (2)

We know θ satisfies (LG), ρ satisfies (RH), and

M ∼= (θ × ρ)!HomB̌. (3)

Also β and γ are surjective equivalences, and

K ∼= (β × γ)!HomD. (4)

Form the pullback of categories

E
γ1

��

σ1

��
D

γ
��

Č

σ��
C̄0
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Then we find that σ1 satisfies (LH), γ1 is a surjective equivalence, and

σ∗γ!F ∼= γ1!σ1
∗F (5)

for any functor F :D → Set (because γ is an equivalence).
Form the pullback

F
ρ1

  

β1

��
B̌

ρ ��

D

β��
B̄0

Then we find that ρ1 satisfies (RH), β1 is a surjective equivalence, and

β∗ρ!F ∼= ρ1!β1
∗F (6)

for any functor F : B̌ → Set (because β is an equivalence).
Form the pullback

G
σ2

��

ρ2

��
F

ρ1   

E

σ1��
D

Then we find that ρ2 satisfies (RH), σ2 satisfies (LH), and

σ∗1ρ1!F
∼= ρ2!σ

∗
2F (7)

for any functor F :F → Set (because ρ1 satisfies (RH)).
For any functor F :B → Set we have

F ⊗B L ∼= F ⊗BM ⊗B̄0 K ⊗C̄0 N (by (1))

∼= π!σ
∗γ!β

∗ρ!θ
∗F (by (2), (3), (4)).

Now
π!σ
∗γ!β

∗ρ!θ
∗ ∼= π!γ1!σ1

∗ρ1!β1
∗θ∗ (by (5), (6))

∼= π!γ1!ρ2!σ2
∗β1
∗θ∗ (by (7))

∼= (πγ1ρ2)!(θβ1σ2)∗.

Put µ = πγ1ρ2 and λ = θβ1σ2, so that

B Gλoo µ // C.
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We have obtained
F ⊗B L ∼= µ!λ

∗F

for any F . And canonically

µ!λ
∗F ∼= F ⊗B (λ× µ)!HomG.

Hence
L ∼= (λ× µ)!HomG.

As θ satisfies (LG) and σ2 satisfies (LH), λ satisfies (LH). As π satisfies (RG) and ρ2

satisfies (RH), µ satisfies (RH).
Thus we obtain

10.6. Theorem. The functor λ:G → B satisfies (LH), the functor µ:G → C satisfies
(RH), and we have an isomorphism L ∼= (λ× µ)!HomG.

10.7. Theorem. Suppose that C satisfies the assumption of Theorem 7.9. Let L:Bop ×
C → Set be a distributor. The following are equivalent.

(i) L is slicewise nearly representable.
(ii) There exist a categoryM, a functor φ:M→ B satisfying (LH), a functor ψ:M→

C satisfying (RH), and an isomorphism L ∼= (φ× ψ)!HomM.

Proof. We have proved that (i) implies (ii). For the converse suppose

L ∼= (φ× ψ)!HomM

with φ:M→ B satisfying (LH), ψ:M→ C satisfying (RH). We have

L ∼= (1× φ)∗HomB ⊗G (ψ × 1)∗HomC.

By Definitions 5.1 and 5.4 (ψ × 1)∗HomC and (1 × φ)∗HomB are slicewise nearly rep-
resentable. Then so is their composite by Proposition 3.8. Thus L is slicewise nearly
representable.

Our factorization of a slicewise nearly representable distributor L:Bop × C → Set
relies on the finiteness assumption on B or C. For a slicewise truly representable dis-
tributor L:Bop × C → Set, namely an adjunction, [Applegate and Tierney, 1970] gives a
factorization of L under the completeness assumption on B or C.

11. Familial condition

Recall that a set-valued functor F is said to be familially representable if F is a sum of
representable functors [Carboni and Johnstone, 1995]. Following this terminology we say
F is familially nearly representable if F is a sum of nearly representable functors. We say
a distributor L:Bop × C → Set is slicewise familially nearly representable if L(x,−) for
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every x ∈ B is familially nearly representable and L(−, y) for every y ∈ C is familially
nearly representable.

In this section we show that every slicewise familially nearly representable distributor
is a composite of three: a distributor coming from a discrete fibration, a slicewise nearly
representable distributor, and a distributor coming from a discrete cofibration.

Let L:Bop × C → Set be a functor. For each x ∈ B let F (x) be the set of connected
components of the functor L(x,−): C → Set. Each element of F (x) is a connected
subfunctor of L(x,−) and L(x,−) is a disjoint union of all elements of F (x):

L(x,−) =
⋃

U∈F (x)

U (disjoint union).

For a morphism f :x→ x′ in B the induced morphism f ∗:L(x′,−)→ L(x,−) maps each
connected component of L(x′,−) into a connected component of L(x,−), hence defines a
map F (x′)→ F (x). Thus F becomes a functor Bop → Set. Let πx,y:L(x, y)→ F (x) for
x ∈ B, y ∈ C denote the natural map: For U ∈ F (x) we have π−1

x,y({U}) = U(y).
Likewise, for each y ∈ C let G(y) be the set of connected components of the functor

L(−, y):Bop → Set. Then G naturally becomes a functor C → Set. Let σx,y:L(x, y) →
G(y) denote the natural map: For V ∈ G(y) we have σ−1

x,y({V }) = V (x).
Consider the category of elements E(F ) with projection p:E(F )→ B, and the category

of elements E(G) with projection q:E(G) → C. For (x, U) ∈ E(F ) and (y, V ) ∈ E(G)
define

M((x, U), (y, V )) = π−1
x,y({U}) ∩ σ−1

x,y({V }) = U(y) ∩ V (x).

This is a subset of L(x, y) and

L(x, y) =
⋃

U∈F (x),V ∈G(y)

M((x, U), (y, V )) (disjoint union).

Let f :x→ x′ be a morphism in B, and g: y → y′ a morphism in C. For U ′ ∈ F (x′) let
U = f ∗(U ′), and for V ∈ G(y) let V ′ = g∗(V ). Then we have the morphism f : (x, U) →
(x′, U ′) in E(F ) and the morphism g: (y, V )→ (y′, V ′) in E(G).

We have commutative diagrams

L(x, y)
πx,y // F (x)

L(x′, y) πx′,y
//

f∗

OO

F (x′)

f∗

OO
L(x, y)

g∗
��

πx,y // F (x)

L(x, y′)

πx,y′

::

L(x, y)
σx,y //

g∗
��

G(y)

g∗
��

L(x, y′) σx,y′
// G(y′)

L(x, y)
σx,y // G(y)

L(x′, y)

f∗

OO

σx′,y

::
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By the first and the forth of the diagrams we see that f ∗:L(x′, y) → L(x, y) maps the
subset M((x′, U ′), (y, V )) into the subset M((x, U), (y, V )). Denote the resulting map

M((x′, U ′), (y, V ))→M((x, U), (y, V ))

by f ∗, so that the diagram

L(x, y) M((x, U), (y, V ))oo

L(x′, y)

f∗

OO

M((x′, U ′), (y, V ))

f∗

OO

oo

commutes, where the horizontal arrows are the inclusion maps. By the second and the
third of the diagrams we see that g∗:L(x, y)→ L(x, y′) maps the subset M((x, U), (y, V ))
into the subset M((x, U), (y′, V ′)). Denote the resulting map

M((x, U), (y, V ))→M((x, U), (y′, V ′))

by g∗, so that the diagram

L(x, y)

g∗
��

M((x, U), (y, V ))oo

g∗
��

L(x, y′) M((x, U), (y′, V ′))oo

commutes. The sets M((x, U), (y, V )) together with thus defined maps f ∗ and g∗ make a
functor M :E(F )op × E(G)→ Set.

11.1. Proposition. We have an isomorphism (p× q)!M ∼= L.

Proof. Use Proposition 2.6 and its dual.

11.2. Proposition. The distributor L is slicewise familially nearly representable if and
only if M is slicewise nearly representable.

Proof. Let (x, U) ∈ E(F ). We shall show that U : C → Set is nearly representable if and
only if M((x, U),−):E(G)→ Set is nearly representable.

As ⋃
V ∈G(y)

V = L(−, y),

we have ⋃
V ∈G(y)

V (x) = L(x, y).

And U(y) ⊂ L(x, y). Hence ⋃
V ∈G(y)

(U(y) ∩ V (x)) = U(y).
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By Proposition 2.6

(q!(M((x, U),−)))(y) ∼=
∐

V ∈G(y)

M((x, U), (y, V )) =
∐

V ∈G(y)

(U(y) ∩ V (x)) ∼= U(y),

hence
q!(M((x, U),−)) ∼= U.

Let y ∈ C, t ∈ U(y). Put Γ = Aut(y, t). The element t gives a morphism

τ : C(y,−)/Γ→ U.

Put K = σx,y(t), the image of t under the map σx,y:L(x, y) → G(y). Then (y,K) ∈
E(G) and t ∈ K(x). Hence t ∈ U(y) ∩ K(x) = M((x, U), (y,K)). As Γ stabilizes t, Γ
stabilizes K. Thus Γ ⊂ Aut((y,K), t). The element t gives a morphism

τ ′:E(G)((y,K),−)/Γ→M((x, U),−).

Through the isomorphisms

q!(E(G)((y,K),−)/Γ) ∼= C(y,−)/Γ

and
q!(M((x, U),−)) ∼= U,

the functor q! takes τ ′ to τ . As q! reflects isomorphisms, we see that τ is an isomorphism
if and only if τ ′ is an isomorphism. This means that (y, t) is nearly universal for U if and
only if ((y,K), t) is nearly universal for M((x, U),−).

This proves that U is nearly representable if and only if M((x, U),−) is nearly repre-
sentable.

Therefore L(x,−) is familially nearly representable if and only if M((x, U),−) is nearly
representable for all U ∈ F (x).

Likewise, L(−, y) is familially nearly representable if and only if M(−, (y, V )) is nearly
representable for all V ∈ G(y).

This proves the proposition.

Under the assumption of Theorem 7.9, if L is slicewise familially nearly representable,
the factorization theorem can apply to M , from which a factorization for L results. We
refrain from going into details.

11.3. Proposition. Let L:Bop×C → Set be a distributor. The following are equivalent.
(i) L is slicewise familially nearly representable.
(ii) There exist a discrete fibration p:B′ → B, a discrete cofibration q: C ′ → C, a

slicewise nearly representable distributor L′:B′op × C ′ → Set, and an isomorphism L ∼=
(p× q)!L

′.



1034 D. TAMBARA

Proof. We have shown that (i) implies (ii). Let us show the converse. Let p:B′ → B be
a discrete fibration, q: C ′ → C a discrete cofibration, and L′:B′op × C ′ → Set a slicewise
nearly representable distributor. We shall show that (p×q)!L

′ is slicewise familially nearly
representable.

We may assume that B′ = E(H) for a functor H:Bop → Set and C ′ = E(K) for a
functor K: C → Set, and p, q are the natural projections.

For x ∈ B we have by Proposition 2.6 that

((p× q)!L
′)(x,−) ∼=

∐
a∈H(x)

q!(L
′((x, a),−)).

By assumption L′((x, a),−):E(K) → Set is nearly representable. By Proposition 3.5 it
follows that q!(L

′((x, a),−)): C → Set is nearly representable. Hence ((p× q)!L
′)(x,−) is

familially nearly representable.
Argue similarly for ((p× q)!L

′)(−, y).

We have also the notion of a slicewise familially representable distributor. By the
same argument as above we see that it is exactly the composite of a discrete fibration, a
slicewise representable distributor, and a discrete cofibration.

11.4. Remark. A distributor L:Bop × C → Set whose one-sided slice L(x,−) for every
x ∈ B is familially representable is the same thing as a familially representable functor
C → [Bop,Set] in the sense of [Leinster, 2004, Appendix C.3].
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Julie Bergner, University of Virginia: jeb2md (at) virginia.edu
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