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ON SPANS WITH RIGHT FIBRED RIGHT ADJOINTS

J. R. A. GRAY

Abstract. We introduce a new condition on an abstract span of categories which we
refer to as having right fibred right adjoints, RFRA for short. We show that:

(a) the span of split extensions of a semi-abelian category C has RFRA if and only if
C is action representable;

(b) the reversed span to the one considered in (a) has RFRA if and only if C is locally
algebraically cartesian closed;

(c) the span of split extensions of the category of morphisms of C has RFRA if and
only if C is action representable and has normalizers;

(d) the reversed span to the one considered in (c) has RFRA if and only if C is locally
algebraically cartesian closed.

We also examine our condition for the span of monoid actions (of monoids in a monoidal
category C on objects in a given category on which C acts), and for various other spans.

1. Introduction

It is well known that the category Grp of groups is very far from being cartesian closed.
Nevertheless it admits two constructions that can be seen as special types of exponents.
Specifically, given a group G one can form:

(a) the automorphism group Aut(G);

(b) for any group X the G-group XG.

Each of these two constructions can be defined purely-categorically, and their existence in
Grp is expressed by saying that Grp is action representable [5] and is locally algebraically
cartesian closed ([13], [14], [8]), respectively. There are also a few other examples of
categories that are action representable ([5], [6], [3], [4]) and of categories which are
locally algebraically cartesian closed ([14], [15], [8]).

The main purpose of this paper is threefold:
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I. To show that action representability and locally-cartesian-closedness, expressed in
the language of the span of split extensions, in a given semi-abelian category C,
become symmetric to each other. More precisely, we introduce a condition, RFRA
from the Abstract, on an abstract span S, so that:

(a) when S is

C Split extensions in Ccodomainoo kernel // C (1.1)

it has RFRA if and only if C is action representable;

(b) when S is the reversed span

C Split extensions in C codomain //kerneloo C (1.2)

it has RFRA if and only if C is locally algebraically cartesian closed.

II. To replace C with its category C2 of morphisms and show that:

(c) when S is

C2 Split extensions in C2codomainoo kernel // C2 (1.3)

it has RFRA if and only if C is action representable and has normalizers;

(d) when S is the reversed span

C2 Split extensions in C2 codomain //kerneloo C2 (1.4)

it has RFRA if and only if C is locally algebraically cartesian closed.

In addition to these facts, which essentially follow from I(a) and I(b) together with
Theorem 4.8 of [16] and Proposition 4.8 below, we show that:

(e) C is action representable and has normalizers if and only if for each split exten-
sion, and each pair of morphisms θ and φ as displayed using solid arrows in the
diagram

X
κ // A

α //

ψ

��

B

g

��

β
oo

X

θ
��

B

φ
��

Z
σ // C

γ // D,
δ

oo

(1.5)

there exists a universal lifting as displayed with dotted arrows;
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(f) C is locally algebraically cartesian closed if and only if for each split extension,
and each pair of morphisms θ and φ as displayed using solid arrows in the
diagram

X̄

e
��

κ̄ // Ā
ᾱ //

ψ̄

��

B
β̄
oo

X

θ
��

B

φ
��

Z
σ // C

γ // D
δ

oo

(1.6)

there exists a universal lifting as displayed with dotted arrows.

III. To examine having RFRA for various other spans, namely the following ones:

C C× C⊗oo π2 // C (1.7)

where C and ⊗ are part of the structure of a monoidal category (C, I,⊗, α, λ, ρ) and
π2 is the second projection;

C C2domoo cod // C (1.8)

where C is an arbitrary category, and dom and cod are the functors sending a
morphism to its domain and codomain, respectively;

C Span(C)Poo Q // C (1.9)

where Span(C) is the category of spans in an arbitrary category C, and P and Q

are the functors sending a span A S
poo q //B to A and B, respectively;

Mon(C) Act(A)Poo Q // X (1.10)

where Mon(C) is the category of monoids in a monoidal category C, Act(A) is the
category of monoid actions defined with respect to an action A of C on X, and P
and Q are forgetful functors; the various “dual” spans of 1.8, 1.9 and 1.10

The paper is organized as follows. First we introduce the condition of having RFRA in
Section 2. After that examining what it means for a span S to have RFRA, for various
induced or special spans, we consider the cases of:

• several “dual” spans Sop, S◦, etc. (Section 2);

• “functor span” SI (Section 3 );

• S being right regular (Section 4);

• S being the span (1.10) (Section 5, where it is denoted by Act(A));

• S being the span of split extensions in a pointed finitely complete category C under
various conditions on C (Section 6, where it is denoted by SE(C)).
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2. Right fibred right adjoints

In this section we introduce and study several conditions on a span of categories. Before
we do so let us introduce some notation and terminology.

Let F : C→ X be a functor. For an object X in X we will denote by F−1(X), the fibre
of F above X, that is the subcategory of C consisting of those objects and morphisms
which are mapped by F to X and 1X , respectively. For a span of categories S =

A SPoo Q //B (2.1)

and for each A in A and B in B, we will write QA : P−1(A)→ B and PB : Q−1(B)→ A for
the composite of the inclusion of P−1(A) in S with Q, and the composite of the inclusion
of Q−1(B) in S with P , respectively.

2.1. Definition. We will say that the span S has right fibred right adjoints (RFRA) if
for each B in B the functor PB : Q−1(B)→ A has a right adjoint.

For the span of categories S there are three dual spans Sop =

Aop SopP op
oo Qop

// Bop, (2.2)

S◦ =

B SQoo P // A (2.3)

and Sop
◦ =

Bop SopQop
oo P op

// Aop. (2.4)

Translating what it means for the spans Sop, S◦, and Sop
◦ to have RFRA into the language

of S, we will say that the span S has

• right fibred left adjoints RFLA, when for each B in B the functor PB : Q−1(B)→ A
has a left adjoint;

• left fibred right adjoints LFRA, when for each A in A the functor QA : P−1(A)→ B
has a right adjoint;

• left fibred left adjoints LFLA, when for each A in A the functor QA : P−1(A)→ B
has a left adjoint.

Let us begin by seeing how the condition of having RFRA fits in with some general
conditions in category theory. It is easy to observe that:
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2.2. Remark. For the span S:

(i) if A = 1 is the one object and one morphism category, then S having RFRA is
equivalent to the functor Q having terminal objects in its fibres;

(ii) if A has a terminal object, then S having RFRA implies that the functor Q has
terminal objects in its fibres;

(iii) if B = 1, then S having RFRA is equivalent to the functor P having a right adjoint.

For the span S we will write π1 : (P ↓ 1A) → S, π2 : (P ↓ 1A) → A, π1 : B × A → B
and π2 : B× A→ A for the respective projections of the categories (P ↓ 1A) and B× A.
We will denote by

〈Qπ1, π2〉 : (P ↓ 1A)→ B× A (2.5)

the unique functor with π1〈Qπ1, π2〉 = Qπ1 and π2〈Qπ1, π2〉 = π2. It straightforward to
check that:

2.3. Lemma. For the span of categories S and for each A in A and B in B, the categories
(PB ↓ A) and 〈Qπ1, π2〉−1(B,A) are isomorphic.

As an immediate corollary we see that having RFRA can be thought of as a certain
functor having terminal objects in its fibres.

2.4. Corollary. The span S has RFRA if and only if the functor 〈Qπ1, π2〉 : (P ↓
1A)→ B× A has terminal objects in its fibres.

Combining Remark 2.2 (iii) and Corollary 2.4 we obtain the following simple fact:

2.5. Proposition. A functor F : C → X has a right adjoint if and only if the second
projection π2 : (F ↓ 1X)→ X has terminal objects in its fibres.

We will also need the following fact:

2.6. Proposition. A functor F : C → X is a prefibration if and only if for each B in
C the functor FB : (C ↓ B) → (X ↓ F (B)), which sends (A, f) to (F (A), F (f)), has
terminal objects in its fibres.

To end this section we will give some examples of spans having RFRA which will not
be of central interest in the rest of the paper.

2.7. Proposition. Let C = (C, I,⊗, α, λ, ρ) be a monoidal category. The span

C C× C⊗oo π2 // C (2.6)

has RFRA if and only if C is (left) monoidal closed.

Proof. The statement of the proposition follows from the fact that for each B in C the
functor ⊗B : π−1

2 (B)→ C is essentially the same as −⊗B : C→ C.
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Throughout the rest of the paper we will denote by 2 the category with two objects 0
and 1 and one non-identity morphism 0→ 1. For a category C we will identify the category
C2 with the category of morphisms in C and write its objects as triples (A,B, f) where A
and B are objects and f : A→ B is a morphism in C. A morphism (A,B, f)→ (A′, B′, f ′)
in C2 will be written as a pair (u, v) where u : A→ A′ and v : B → B′ are morphisms in
C with f ′u = vf .

Throughout the rest of this section let C be a fixed category. Let us consider the span
Mor(C) =

C C2domoo cod // C (2.7)

where dom and cod are the domain and codomain functors.
Since for each A and B in C the category (domB ↓ A) is isomorphic to the category

of cones over the discrete diagram consisting of A and B we obtain:

2.8. Proposition. The span Mor(C) has RFRA if and only if C has binary products.

On the other hand.

2.9. Proposition. The span Mor(C) has LFRA if and only if C is indiscrete (i.e. there
is a unique morphism between any two objects).

Proof. Trivially if there is a unique morphism f : A→ B for each A and B in C, then the
terminal object in (codA ↓ B) is ((A,B, f), 1B). Conversely, suppose that ((A, B̄, f), e) is
the terminal object in (codA ↓ B). For each morphism g : A → B there exists a unique
morphism u : B → B making the two squares in the diagram

A
g // B

u
��

1B // B

A
f
// B̄ e

// B

(2.8)

commute. This however means that g = eug = ef and so hom(A,B) = {ef}.

Applying Propositions 2.8 and 2.9 to Cop, and using the fact that there is an isomor-
phism (the vertical arrow below) making the diagram

Cop (C2)op

��

codop
oo domop

// Cop

Cop (Cop)2
dom
oo

cod
// Cop

(2.9)

commute, we obtain:
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2.10. Proposition.

1. The span Mor(C) has LFLA if and only if C has binary coproducts.

2. The span Mor(C) has RFLA if and only if C is indiscrete.

Next we consider the span Span(C) =

C Span(C)Poo Q // C (2.10)

where Span(C) is the category of spans in C, and P and Q are the functors sending a
span

A S
poo q // B (2.11)

to A and B, respectively. Note that for objects A and B in C an object in (PB ↓ A) will
be represented by a diagram

A Ãeoo S
poo q // B

in C with the expected interpretation. It is easy to observe that:

2.11. Lemma. The functor sending each span A S
poo q // B in Span(C) to its reverse

span B S
qoo p // A is an isomorphism making the diagram

C Span(C)Poo Q //

��

C

C Span(C)
Q
oo

P
// C

(2.12)

commute.

We obtain:

2.12. Proposition. The following conditions are equivalent:

(a) the span Span(C) has RFRA;

(b) the span Span(C) has LFRA;

(c) C has binary products.
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Proof. The equivalence of (a) and (b) follows from Lemma 2.11. On the other hand, it
is easy to check that if C has binary products, then for A and B in C the diagram

A A
1Aoo A×Bπ1oo π2 // B (2.13)

is the terminal object in (PB ↓ A). Now suppose that Span(C) has RFRA. We will show
that C has binary products. If, for A and B in C, the diagram

A Āeoo S
poo q // B (2.14)

is the terminal object in (PB ↓ A), then there exist unique morphisms u and v making
the lower part (and hence the whole) of the diagram

A Ā
eoo

e
��

S

1S
��

poo q // B

A A
1Aoo

u
��

S

v
��

epoo q // B

A Āeoo S
poo q // B

(2.15)

commute. It follows that e is an isomorphism and hence the diagram

A A
1Aoo S

epoo q // B (2.16)

is also a terminal object in (PB ↓ A). One easily concludes that the span on the right in
(2.16) is a product.

The following proposition which seems to be interesting in its own right, will be useful
in analysing what having RFLA means for the span Span(C).

2.13. Proposition. If C is non-empty, then the following conditions are equivalent:

(a) the induced functor 〈P,Q〉 : Span(C) → C × C, where P and Q are the functors
forming part of Span(C), has initial objects in its fibres, i.e. for each pair of objects
A and B in C the category of cones over the discrete diagram consisting of A and B
has an initial object;

(b) C has an initial object.

Proof. If C has an initial object, then trivially

A 0oo // B (2.17)

is the initial object in 〈P,Q〉−1(A,B). This proves that (b) ⇒ (a). If C has a terminal
object 1, then 〈P,Q〉−1(1, 1) ∼= C and hence (a) implies (b). However we will see that
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this implication holds even if C doesn’t have a terminal object. Suppose that the functor
〈P,Q〉 has initial objects in its fibres, and for some A in C let

A S
poo q // A (2.18)

be an initial object in 〈P,Q〉−1(A,A). We will show that S is an initial object in C. For
an object B in C, let

B T
roo s // A (2.19)

be an initial object in 〈P,Q〉−1(B,A). Accordingly, there is a unique morphism making
the diagram

A S
poo q //

θ
��

A

A Tsoo s // A

(2.20)

commute, meaning that p = q = sθ. Furthermore, since rθ is a morphism from S to B,
and B was arbitrary, S is a weak initial object in C. Now suppose that f, g : S → B are
arbitrary morphisms in C. By assumption there is a unique morphism from the initial
object in 〈P,Q〉−1(B,B) as shown in the diagram

B S ′
p′oo p′ //

v
��

B

B S
f
oo

g
// B.

(2.21)

However since S is initial in 〈P,Q〉−1(A,A) any morphism into it is a split epimorphism
and hence f = g.

2.14. Proposition. If C is non-empty, then the following conditions are equivalent:

(a) the span Span(C) has RFLA;

(b) the span Span(C) has LFLA;

(c) C has an initial object.

Proof. As in Proposition 2.12 the equivalence of (a) and (b) follows from Lemma 2.11.
On the other hand, it is easy to check that if C has an initial object 0, then for A and B
in C the diagram

A
1A // A 0oo // B (2.22)

is the initial object in (A ↓ PB). Now suppose that Span(C) has RFLA. We will show
that 〈P,Q〉 : Span(C)→ C×C has initial objects in its fibres. For A and B in C, suppose
the diagram

A
n̄ // Ā S̄

p̄oo q̄ // B (2.23)
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is the initial object in (A ↓ PB). We will show that n̄ is an isomorphism. To do so let

A ñ // Ã S̃
p̃oo q̃ // Ā (2.24)

be the initial object in (A ↓ PĀ). Accordingly, we obtain unique morphisms

A
ñ // Ã

u
��

S̃
p̃oo q̃ //

v
��

Ā A
n̄ // Ā

i
��

S̄
p̄oo q̄ //

j
��

B

A
n̄ // Ā S̄

p̄oo p̄ // Ā A
ñ // Ã S̃

p̃oo q̄v // B.

(2.25)

It follows that the left hand diagram commutes

A
n̄ // Ā

i
��

S̄
p̄oo q̄ //

j
��

B A
ñ // Ã

u
��

S̃
p̃oo q̃ //

v
��

Ā

A ñ // Ã

u
��

S̃
p̃oo q̄v //

v
��

B A n̄ // Ā

i
��

S̄
p̄oo p̄ //

j
��

Ā

A
n̄ // Ā S̄

p̄oo q̄ // B A
ñ // Ã S̃

p̃oo q̃ // Ā

(2.26)

and so we must have that ui = 1Ā and vj = 1S̄. This means that q̃j = p̄vj = p̄ and hence
the right hand diagram above commutes. It follows that iu = 1Ã and jv = 1S̃, and so u
and v are isomorphisms, and

A
n̄ // Ā S̄

p̄oo p̄ // Ā (2.27)

is an initial object in (A ↓ PĀ). Accordingly, there exist unique morphisms making the
upper part of the diagram on the left

A
n̄ // Ā

e

��

S̄
p̄oo p̄ //

f

��

Ā A
n̄ // Ā

1Ā

��

S̄
p̄oo p̄ //

p̄

��

Ā

A
1A // A

n̄
��

A
1Aoo n̄ //

n̄
��

Ā

A n̄ // Ā Ā
1Āoo 1Ā // Ā A n̄ // Ā Ā

1Āoo 1Ā // Ā

(2.28)

commute. This means that en̄ = 1A and n̄f = p̄. Therefore since the entire diagram on
the left as well as the diagram on the right commute it follows n̄e = 1Ā (and n̄f = p̄) so
that n̄ is an isomorphism, and

A
1A // A S̄

n̄−1p̄oo q̄ // B (2.29)

is an initial object in (A ↓ PB). From this it easily follows that for each pair of objects
A and B in C the category 〈P,Q〉−1(A,B) has an initial object, and hence so does C by
the previous proposition.
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Combining Propositions 2.12 and 2.14 we immediately obtain:

2.15. Corollary. If C is non-empty, then the span Span(C) and all its duals have
RFRA if and only if C has binary products and an initial object.

Using the fact that CoSpan(C), the span of cospans in C, can be defined by CoSpan(C) =

Span(Cop)op, translating Propositions 2.12 and 2.14, and Corollary 2.15 we obtain:

2.16. Corollary.

1. The following conditions are equivalent:

(a) the span CoSpan(C) has RFLA;

(b) the span CoSpan(C) has LFLA;

(c) C has binary coproducts.

2. If C non-empty, then the following conditions are equivalent:

(a) the span CoSpan(C) has RFRA;

(b) the span CoSpan(C) has LFRA;

(c) C has a terminal object.

3. If C is non-empty, then the span CoSpan(C) and all its duals have RFRA if and
only if C has binary coproducts and a terminal object.

3. Right fibred right adjoints for induced spans between functor categories

In this section we study the relationship between the span S having RFRA and, for some
category I, the induced span SI =

AI SIP I
oo QI

// BI (3.1)

having RFRA.
The following example shows that S having RFRA does not in general imply that SI

has RFRA.

3.1. Example. For I = 2, according to Remark 2.2 (i), it is sufficient to find a functor F
with terminal objects in its fibres, but such that F 2 has at least one fibre with no terminal
object. It is easy to see that such functors exist, for instance if C is the discrete category
with objects 0 and 1 and F : C → 2 is the functor which is identity on objects, then F
has terminal objects in its fibres but the functor F 2 does not have a terminal object in the
fiber above 0→ 1.

The following easy lemma and proposition will allow us to translate the problem of
comparing SI having RFRA, and S having RFRA, into a problem of comparing, for some
functor F : C → X, the existence of terminal objects in fibres of F I and the existence of
terminal objects in the fibres of F .
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3.2. Lemma. For the span of categories S and for a category I, the canonical isomor-
phisms of categories (the vertical functors below) are such that the diagram

(P I ↓ 1AI)

��

〈QIπ1,π2〉 // BI × AI

��
(P ↓ 1A)I

〈Qπ1,π2〉I
// (B× A)I

(3.2)

commutes.

3.3. Proposition. For the span of categories S and for a category I, the following con-
ditions are equivalent:

(a) the span SI has RFRA;

(b) the functor 〈QIπ1, π2〉 : (P I ↓ 1AI)→ BI × AI has terminal objects in its fibres;

(c) the functor 〈Qπ1, π2〉I : (P ↓ 1A)I → (B× A)I has terminal objects in its fibres.

Proof. Just combine the previous lemma with Corollary 2.4.

Note that throughout this paper we will say that a functor weakly creates a limit
dropping the uniqueness requirement from the definition of creation of limits by a functor.

For a functor F : C → X, the relationship between the existence of terminal objects
in the fibres of F , the existence of terminal objects in the fibres of F I for some finite I,
and F being a prefibration was studied in [17]. In order to apply Theorem 2.24 of [17] we
need the following lemma.

3.4. Lemma. For the span of categories S and for a diagram D : G → (P ↓ 1A), the
functor 〈Qπ1, π2〉 weakly creates the limit of D as soon as Q weakly creates the limit of
π1D.

Proof. Since the functor (Q×1A) : S×A→ B×A weakly creates the limit of D as soon
as Q weakly creates the limit of π1D, the statement of the lemma follows from the fact
that 〈Qπ1, π2〉 = (Q × 1A) ◦ 〈π1, π2〉 and the functor 〈π1, π2〉 : (P ↓ 1A) → S × A creates
limits.

3.5. Theorem. For the span S, if the categories A and B have finite limits, and Q weakly
creates finite limits, then the following conditions are equivalent:

(a) the span of categories S2 has RFRA;

(b) for each finite category I the span of categories SI has RFRA;

(c) the functor 〈Q2π1, π2〉 : (P 2 ↓ 1A2)→ B2 × A2 has terminal objects in its fibres;

(d) for each finite category I the functor 〈QIπ1, π2〉 : (P I ↓ 1AI) → BI × AI has terminal
objects in its fibres;
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(e) the functor 〈Qπ1, π2〉2 : (P ↓ 1A)2 → (B× A)2 has terminal objects in its fibres;

(f) for each finite category I the functor 〈Qπ1, π2〉I : (P ↓ 1A)I → (B × A)I has terminal
objects in its fibres;

(g) the functor 〈Qπ1, π2〉 : (P ↓ 1A)→ B× A is a prefibration;

(h) for each finite category I the functor 〈Qπ1, π2〉I : (P ↓ 1A)I → (B×A)I is a prefibration.

Proof. The equivalences (a)⇔ (c)⇔ (e), and (b)⇔ (d)⇔ (f) follow from Proposition
3.3. The equivalences (e) ⇔ (f) ⇔ (g) ⇔ (h) follow via Lemma 3.4 from Theorem 2.24
of [17] applied to the functor 〈Qπ1, π2〉 : (P ↓ 1A)→ B× A.

It is worth explaining explicitly what Condition 3.5 (g) means. To do so we shall
use the convention: for a functor F : C → X and two morphisms f : A → B in C and
θ : X → Y in X, a display of the form

A � F //

f
��

X

θ
��

B �
F
// Y

(3.3)

will be called a commutative diagram, if F (f) = θ. Furthermore, we will do the same
for displays containing such parts and commutative diagrams in the usual sense. Now
Condition 3.5 (g) means that, for objects A1, A2 in A, B1 in B, S2 in S and morphisms
α : A1 → A2 and e2 : P (S2) → A2 in A, and β : B1 → Q(S2) in B, the category with
objects all commutative diagrams of the form

A1

α

��

P (S1)

P (σ)
��

e1oo S1

σ

��

�Poo � Q // B1

β
��

A2 P (S2)e2
oo S2

�
P
oo �

Q
// Q(S2)

(3.4)

and morphisms all commutative diagrams of the form

A1

α

��

P (S ′1)

P (σ′)
��

e′1oo
P (u)

��

S ′1
�Poo � Q //

σ′

��

u

��

B1

β

��

A1

α

��

P (S1)

P (σ)

��

e1oo S1

σ

��

�
P

oo �
Q

// B1

β

��

A2 P (S2)e2
oo S2

�
P

oo � Q // Q(S2)

A2 P (S2)e2
oo S2

�
P

oo �
Q
// Q(S2)

(3.5)



ON SPANS WITH RIGHT FIBRED RIGHT ADJOINTS 867

has a terminal object. However, each of these categories is isomorphic to the category
defined in the same way where A2 is replaced by P (S2), α by the projection π2 : A1 ×A2

P (S2) → P (S2) of the pullback of α and e2, and e2 by the identity morphism 1P (S2) i.e.
the category with objects of the form

A1 ×A2 P (S2)

π2

��

P (S1)

P (σ)

��

e1oo S1

σ

��

�Poo � Q // B1

β

��
P (S2) P (S2)

1P (S2)

oo S2
�

P
oo �

Q
// Q(S2)

(3.6)

and morphisms defined in the expected way. The existence of terminal objects in cate-
gories of the last form can easily be seen to be equivalent to the condition:

3.6. Condition. For each object S in S, the induced span

(A ↓ P (S)) (S ↓ S)PS
oo QS

// (B ↓ Q(S)), (3.7)

where P S and QS are the functors which send (S ′, σ) to (P (S ′), P (σ)) and (Q(S ′), Q(σ)),
respectively, has RFRA.

Note that this means that this condition is a further equivalent condition of the above
theorem. Furthermore, since comma categories of the form (C ↓ C), where C is an object
in a category C, always have terminal objects, it follows by Remark 2.2 (ii), that QS has
terminal objects in its fibres, and hence by Proposition 2.6 the functor Q is a prefibration.
Therefore, we have proved:

3.7. Proposition. For the span S, suppose that the categories A and B have finite limits,
and that Q weakly creates finite limits. If any (and hence all) of the Conditions 3.5 (a) -
(h), Condition 3.6 hold, then Q is a prefibration.

4. Right/left fibred right adjoints for right regular spans

In this section we study a condition on a span S which, for most of the examples below,
does not hold for all of the dual spans Sop, S◦ or Sop

◦ . This condition might be thought
of as the source of the non-symmetric (or non-dual) descriptions and properties of action
representability and locally-algebraically-cartesian closedness. Recall that G. Janelidze
called a span S right regular [19] (splitting the definition of N. Yoneda’s regular span [22]
into two parts - the other part being the same condition for the span Sop

◦ ) if for each A
in A, S in S and α : A → P (S) in A, there exists a P -cartesian morphism σ : S̄ → S in
S such that P (σ) = α and Q(σ) = 1Q(S).

The following lemma is part of the folklore but we couldn’t find an explicit reference
for it.
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4.1. Lemma. Let F : C → X be a functor. Suppose that X has binary products and C
has a terminal object T . Let F T : (C ↓ T ) → (X ↓ F (T )) be the functor between comma
categories induced by F . The category (F T ↓ (X×F (T ), π2)) is isomorphic to the category
(F ↓ X), and hence (F T ↓ (X × F (T ), π2)) has a terminal object if and only if (F ↓ X)
does. As a consequence, under the conditions above, if F is a fibration or more generally
if F T has a right adjoint, then F has a right adjoint.

Proof. To see why these two categories are isomorphic note that for an object ((C,C →
T ), e) in (F T ↓ (X × F (T ), π2)) the morphism e is completely determined by π1e since
π2e must be the image under F of the unique morphism C → T .

It is easy to check that if the span S is right regular, then for each B in B the functor
PB is a fibration.

4.2. Proposition. If the span S is right regular (or more generally for each B in B the
functor PB is a fibration) and A has finite products, then the span S has RFRA if and
only if for each B in B the category Q−1(B) has a terminal object.

Proof. The “if” part follows from Lemma 4.1 applied to the functor PB : Q−1(B)→ A,
while the “only if” part follows trivially from the fact that right adjoints preserve limits.

The following lemma follows from Remark 2.14 of [17] and should also be compared
to Lemma 2.7 of [9]. To make the paper more self contained, we include a proof.

4.3. Lemma. Let F : C → X be a functor weakly creating pullbacks and let θ : X → Y
be a morphism in X. If the fibers F 2−1

(X, Y, θ) and F−1(Y ) have terminal objects, then
F admits precartesian liftings of θ.

Proof. By Lemma 2.6 of [17] we know that the morphism f : A → B forming part of
the terminal object in F 2−1

(X, Y, θ) has codomain terminal in F−1(Y ). Now if v is the
unique morphism from an object B′ to B in F−1(Y ) and the diagram on the left

A′
f ′ //

u
��

B′

v′

��

X
θ //

1X
��

Y

1Y
��

A
f
// B X

θ
// Y

is the pullback whose image under F is the pullback on the right (F weakly creates
pullbacks), then one easily checks that f ′ : A′ → B′ is an F -precartesian lifting of θ to
B′.

It is straightforward to verify that:

4.4. Lemma. For the span S, for each object B in B, (Q−1(B))2 = Q2−1
(B,B, 1B) and

(PB)2 = P 2
(B,B,1B).

As a corollary we obtain:
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4.5. Lemma. If the span S has RFRA and the functor Q weakly creates pullbacks, then
for each morphism α : A1 → A2 in A and for each B in B, the functor 〈Qπ1, π2〉 : (P ↓
1A)→ (B× A) admits precartesian liftings of (1B, α) : (B,A1)→ (B,A2).

Proof. Let α : A1 → A2 be a morphism in A and B an object in B. Since by assumption
the functor PB has a right adjoint, it follows that the functor (PB)2 = P 2

(B,B,1B) has a right

adjoint. Therefore, according to Lemmas 2.3 and 3.2, the functors 〈Qπ1, π2〉 : (P ↓ 1A)→
(B× A) and 〈Qπ1, π2〉2 : (P ↓ 1A)2 → (B× A)2 have terminal objects in the fibres above
(B,A2) and ((B,A1), (B,A2), (1B, α)) respectively. The claim now follows from Lemmas
3.4 and 4.3.

4.6. Lemma. If the span S is right regular, then for each α : A1 → A2 in A and for
each B in B the functor 〈Pπ1, π2〉 : (Q ↓ 1B) → A × B admits cartesian liftings of
(α, 1B) : (A1, B)→ (A2, B).

Proof. Let α : Ā→ A be a morphism in A, let B be an object in B, let S be an object
in S such that P (S) = A, and let f : Q(S) → B be a morphism in B. Since the span S
is right regular, there exists a P -cartesian morphism σ : S̄ → S such that P (σ) = α and
Q(σ) = 1Q(S). It follows that the morphism (σ, 1B) : (S̄, B, f)→ (S,B, f) is a morphism
in (Q ↓ 1B) such that 〈Pπ1, π2〉(σ, 1B) = (α, 1B). We will show that (σ, 1B) is 〈Pπ1, π2〉-
cartesian. Let (σ′, β′) : (S ′, B′, f ′)→ (S,B, f) be a morphism in (Q ↓ 1B) and let (θ, φ) :
(P (S ′), B′)→ (Ā, B) be a morphism in A× B such that 〈Pπ1, π2〉(σ′, β′) = (α, 1B)(θ, φ).
This means that fQ(σ′) = β′f ′, P (σ′) = αθ and β′ = φ and hence the diagram

P (S ′)
θ

��αθ

��

S ′ �
Q //�Poo

σ′

��

u

��

Q(S ′)

Q(σ′)
��

f ′ //
Q(σ′)

��

B′
φ

��β′

��

Ā

α

��

S̄

σ

��

� Q //�Poo Q(S̄)
f
// B

A S � Q //�
P

oo Q(S)
f // B

A S �
Q

//�
P

oo Q(S)
f // B

(4.1)

commutes (in the sense described in the discussion immediately after Theorem 3.5). Ac-
cordingly there exists a unique morphism u : S ′ → S̄ such that σ′ = σu and P (u) = θ.
Since Q(u) = 1Q(S)Q(u) = Q(σu) = Q(σ′) it follows that fQ(u) = fQ(σ′) = β′f ′ and
hence (u, β′) : (S ′, B′, f ′) → (S̄, B, f) is the desired unique morphism in S such that
(σ′, β′) = (σ, 1B)(u, β′) and 〈Pπ1, π2〉(u, β′) = (θ, φ).

Recall the following well-known fact:

4.7. Lemma. Let F : C → X be a functor and let f : A → B and g : B → C be
morphisms in C. If f is F -precartesian and g is F -cartesian, then the composite g ◦ f is
F -precartesian.
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4.8. Proposition. If the span S is right regular and has LFRA, and P weakly creates
pullbacks, then the span S2 has LFRA.

Proof. Since each morphism (α, β) : (A1, B1) → (A2, B2) in A × B factors as (α, β) =
(α, 1B2)(1A1 , β) it follows from Lemmas 4.5, 4.6 and 4.7 that the functor 〈Pπ1, π2〉 : (Q ↓
1B) → A × B is a prefibration. Therefore, since by Corollary 2.4 it has terminal objects
in its fibres, it follows from Proposition 2.7 in [17] that 〈Pπ1, π2〉2 : (Q ↓ 1B)2 → (A×B)2

has terminal objects in its fibres and hence by Proposition 3.3 the span S2 has LFRA.

5. General monoid actions

In the paper [5] F. Borceux, G. Janelidze and G. M. Kelly gave an extremely informative
exposition on monoidal actions in general, and introduced and studied the notion of
representable monoid actions. We recall from [5] that an action of a monoidal category
C = (C, I,⊗, α, λ, ρ) on a category X can be defined as a monoidal functor (F, θ, φ)
from C to the strict monoidal category End(X) = (End(X), 1X, ◦) or equivalently as
a triple (•, θ, γ) where • is a functor C × X → X, and (θX : X → I • X)X∈X and
(γA,B,X : A • (B •X) → (A ⊗ B) •X)A,B∈C,X∈X are natural transformations making the
diagrams

A • (B • (C •X))

1A•γB,C,X

��

A • (B • (C •X))

γA,B,C•X
��

A • ((B ⊗ C) •X)

γA,B⊗C,X

��

(A⊗B) • (C •X)

γA⊗B,C,X

��
(A⊗ (B ⊗ C)) •X

αA,B,C•1X
// ((A⊗B)⊗ C) •X

(5.1)

A •X

λA•1X

��

A •X
θA•X
��

A •X
1A•θX

��

A •X

ρA•1X

��

I • (A •X)

γI,A,X

��

A • (I •X)

γA,I,X

��
(I ⊗ A) •X (A⊗ I) •X

(5.2)

commute. The two descriptions of an action are related by F (A)(X) = A •X, φA,BX
=

γA,B,X and θ is the same for both. Such an action is called strong when θ and φ (or
equivalently θ and γ) are isomorphisms. A monoidal functor (F, θ, φ) as above deter-
mines, as usual, a functor from the category Mon(C) of monoids in C to the category
Mon(End(X)) of monoids in End(X). Using the fact that monoids in Mon(End(X))
are monads, a monoid action, with respect to A = (C,X, •, θ, γ) can be defined as a pair
((M, e,m), (X, h)) where (M, e,m) is a monoid in C, (X, h) is an algebra for the monad
M •−. An algebra for this monad can be more explicitly described as a pair (X, h) where
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X is in X and h : M •X → X is a morphism making the diagram

M • (M •X)
γM,M,X //

1M•h
��

(M ⊗M) •X m•1X //M •X
h
��

I •Xe•1Xoo X
θXoo

M •X
h

// X

(5.3)

commute. A morphism of monoid actions with domain ((M, e,m), (X, h)) and codomain
((M ′, e′,m′), (X ′, h′)) is a pair (f, g) where f : M → M ′ and g : X → X ′ are morphisms
in C and X respectively, such that f is a monoid morphism (M, e,m)→ (M ′, e′,m′) and
h′(f • g) = gh. For the monoidal action A = (C,X, •, θ, γ), let us denote by Act(A)
the category of monoid actions and by P and Q the forgetful functors to Mon(C) and X
respectively. These data together forms a span Act(A) =

Mon(C) Act(A)Poo Q // X. (5.4)

Recall also that

5.1. Definition. The monoidal action A has representable monoid actions on an object
X in X, if the functor

Act(−, X) : Mon(C)op → Set (5.5)

which sends a monoid in C to the set of its actions on X is representable.

5.2. Theorem. For the monoidal action A. If C has finite products, then the span
Act(A) has RFRA if and only if A has representable monoid actions.

Proof. Note that for an object X in X the category of elements of the functor Act(−, X) :
Mon(C)op → Set is isomorphic to Q−1(X) and hence Act(−, X) is representable if and
only if the fibre Q−1(X) has a terminal object. For an object X in X, it is easy to see that
PX : Q−1(X) → Mon(C) is a discrete fibration, in fact this is used to make Act(−, X)
into a functor. Therefore, Proposition 4.2 implies that the span Act(A) has RFRA if and
only if A has representable monoid actions.

5.3. Corollary. If A is strong monoidal and C has finite products, then the span
Act(A) has RFRA as soon as, for each X in X, the functor − • X : C → X has a
right adjoint.

Proof. F. Borceux, G. Janelidze and G. M. Kelly explained in [5] that under the above
assumptions the action A has representable monoid actions. The statement of the corol-
lary now follows from Theorem 5.2.



872 J. R. A. GRAY

5.4. Remark. Note that the condition, for each X in X the functor − •X : C→ X has
a right adjoint, from the previous corollary could be stated as the span

X C× X•oo π2 // X (5.6)

has RFRA.

5.5. Definition. The monoidal action A has exponentiable monoid actions for a monoid
(M, e,m), if the forgetful functor from the category of algebras over the induced monad
M • − to the category X has a right adjoint.

Since for the monoidal action A and each monoid (M, e,m) in Mon(C) the functor

Q(M,e,m) : P−1((M, e,m))→ X (5.7)

induced by the span Act(A) is essentially the forgetful functor from the category of
algebras over the monad M • − to X we obtain essentially by definition:

5.6. Theorem. The span Act(A) has LFRA if and only if A has exponentiable monoid
actions.

Recall the following well-known fact (see [11]).

5.7. Lemma. Let T = (T, η, µ) be a monad in X. The functor T has a right adjoint
if and only if the forgetful functor UT from the category of T-algebras to X has a right
adjoint.

5.8. Theorem. The span Act(A) has LFRA, if and only if for each monoid (M, e,m)
in Mon(C) the functor M • − has a right adjoint.

Proof. Since, as explained above, for each monoid (M, e,m) in Mon(C) the functor
Q(M,e,m) : P−1((M, e,m)) → X is essentially the forgetful functor from the category
of M • − algebras to X, it follows easily from Lemma 5.7 that the two conditions are
equivalent.

5.9. Remark. It is sometimes of interest to have a more explicit description of the right
adjoint above. Using the notation from the previous theorem and writing −M for the right
adjoint of M • −, the right adjoint of Q(M,e,m) sends X to ((M, e,m), (XM , h)) where h
is the unique morphism making the diagram

M • (M •XM)

1M•h
��

γ
M,M,XM

// (M ⊗M) •XM
m•1

XM //M •XM

εX

��
M •XM

εX
// X,

(5.8)

in which ε is the counit of the adjunction M • − a −M , commute.

For the monoidal action A and a monoid (M, e,m) in Mon(C), let us write RM for
the right adjoint of the forgetful functor from the category of algebras over the induced
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monad M •− to the category X when it exists. Let us add a column to the table on pages
242 and 243 of [5] in order to give some examples. Recall that [X] in the table below
denotes the representing object for Act(−, X).

Monoidal
category C

Action of C
on X

Monoid M in
C

M -action on
an object in
X

[X] RM(X)

An ordinary
monoid M

An ordinary
M -action
on a set X

e, the identity
element of the
monoid

Every object
has a unique
action

e X

End(X)

The (strict)
evaluation
action of
End(X) on
X defined
by A •X =
A(X)

A monad T on
X

An algebra
over the
monad T

〈X,X〉 the
right Kan
extension of
X (considered
as a functor
from the
category 1 to
X) along itself
provided that
Kan extension
does exist

The right
adjoint of the
forgetful
functor from
the category
of T -algebras
to X applied
to X
(provided it
exists)

A category
C with finite
products
regarded as
a monoidal
category
with ⊗ = ×

C
canonically
acting on
C; so that
A •X =
A×X

An internal
monoid (=
monoid
object) M in
C in the usual
sense

An internal
M -action in
C (=
M -object in
C) in the
usual sense

XX provided
C is cartesian
closed

XM , with
algebra
structure as
in Remark
5.9, provided
C is cartesian
closed

As above,
but with
C = Set

As above,
but with
X = C =
Set

An ordinary
monoid M

An ordinary
M -action in
Set (=
M -set)

XX XM

A category
C with finite
coproducts
regarded as
a monoidal
category
with ⊗ = +

C
canonically
acting on C
so that
A •X =
A+X

Every object
M in C has a
unique monoid
structure given
by the unique
morphism
0→M and
the codiagonal
M +M →M

An object in
C equipped
with a
morphism
from M to it

X

Only exists if
M is an
initial object,
in which case
it is X
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Ab, the
category of
abelian
groups with ⊗
the ordinary
tensor
product

C canonically
acting on C;
so that
A•X = A⊗X

A ring M
(with 1)

An
M -module

The ring
Hom(X,X)

∏
m∈M

X with the

usual action

Any monoidal
category C

C trivially
acting (i.e.
A •X = X)
on any
category X

A monoid
M in
Mon(C)

Every object
has a unique
action of M

A terminal
object in
Mon(C),
provided it
exists

X

Set regarded
as a monoidal
category with
⊗ = ×

X a category
with
coproducts,
and A •X =∐

a∈AX with
evident
remaining
structure

An ordinary
monoid M

An
(“external”)
M -action on
an object in
X in the
usual sense

End(X),
the
monoid of
endomor-
phisms of
X

RanM(X) the
right Kan
extension of X
(considered as a
functor from the
category 1 to X)
along 1→M
provided that
Kan extension
does exist

Recalling that for each monoid (M, e,m) in Mon(C) the functorQ(M,e,m) : P−1(M, e,m)→
X is essentially the forgetful functor from the category of (M •−)-algebras to X it follows
that:

5.10. Proposition. The span Act(A) has LFLA.

Recall that for the monoidal category C and for a category I we can construct a
monoidal category CI = (CI, I I,⊗I, αI, λI, ρI) where CI is the usual functor category, I I

is the constant functor onto I, ⊗I is defined point-wise, and αI, λI and ρI are natural
transformations whose components are natural transformations defined point-wise. Fur-
thermore the monoidal action A induces a monoidal action AI = (CI,XI, •I, θI, γI) where
•I is defined point-wise and θI and γI are natural transformations whose components are
natural transformations defined point-wise.

Note that the canonical isomorphisms (the vertical arrows) make the diagram

Mon(C)I

��

Act(A)IP I
oo

��

QI
// XI

Mon(CI) Act(AI)Poo Q // XI.

(5.9)

commute. Therefore as a corollary of Theorem 3.5 via Theorem 5.2 we obtain:
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5.11. Theorem. For the monoidal action A. If X and C have finite limits, then the
following conditions are equivalent:

(a) the induced action A2 has representable monoid actions;

(b) for each finite category I the induced action of AI has representable monoid actions.

and imply that the action of A has representable monoid actions.

We could write down a similar (essentially dual) theorem about exponentiable monoid
actions. However, using Theorems 3.5, 5.6 and 5.8 we will prove a stronger result (see
Theorem 5.14 (ii) below.) To do so we use the following proposition which is closely
related to Theorem 2.12 of [21]. The proof given in [21] can easily be adapted as follows:

5.12. Proposition. Let A, B, C and I be categories such that B and C have finite limits
and products indexed by I1, let H : A × B → C be a functor, and let HI : AI × BI → CI

be the induced functor. For A in AI, the functor HI(A,−) : BI → CI has a right adjoint
if for each object I in I the functors H(A(I),−) : B→ C have right adjoints.

Proof. Let J : I0 → I be the inclusion of the objects of I as a discrete category. The
product assumptions on B and C allow us to conclude the functors BJ : BI → BI0 and
CJ : CI → CI0 have right adjoints given by right Kan extensions along J . Note that the
diagram

BI HI(A,−) //

BJ

��

CI

CJ

��
BI0

HI0 (AJ,−)
// CI0

(5.10)

commutes and the vertical functors are comonadic. Therefore, since the bottom functor
has right adjoint as soon as for each I in I the functors H(A(I),−) have a right adjoint,
we see that the claim follows from a standard adjoint lifting theorem (see e.g. Lemma 2.1
of [21]).

5.13. Remark. One can give a longer alternative proof of the previous proposition drop-
ping the limit requirements on C.

5.14. Theorem. For the monoidal action A, suppose that X and C have finite limits.

(i) If A is a strong action, and for each object X in X the functor −•X has a right ad-
joint, then for each finite category I the induced action of CI on XI has representable
monoid actions.

(ii) For each monoid (M, e,m) in Mon(C), the functor M •− has a right adjoint if and
only if for each finite category I the induced action of CI on XI has exponentiable
monoid actions.
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Proof.

(i) It is immediate that if A is a strong action so is A2. Therefore, since for each
(X1, X2, χ) in X2 by Proposition 5.12 the functor −• (X1, X2, χ) has a right adjoint
it follows by Corollary 5.3 that A2 has representable monoid actions, and hence by
Theorem 5.11 so does AI.

(ii) The “if” part follows immediately from Theorems 5.6 and 5.8. For the “only if” part,
suppose that for each monoid (M, e,m) in Mon(C) the functor M • − has a right
adjoint. It follows from Proposition 5.12 that for each ((M, e,m), (M ′, e′,m′), f) in
Mon(C)2 the functor

(M,M ′, f) • − : X2 → X2 (5.11)

has a right adjoint, and hence by Theorem 5.8 the span Act(A2) has LFRA. Theo-

rem 3.5 now tells us that Act(AI) has LFRA and hence by Theorem 5.6 the action

AI has exponentiable monoid actions as required.

5.15. Remark. Using the fact that the span Act(A) is right regular it is possible to
construct a second proof of (ii) above using Proposition 4.8

6. Split extensions

Recall that for a pointed category C, a split extension (of B with kernel X) is a diagram
in C

X
κ // A

α // B
β
oo (6.1)

where κ is the kernel of α, and αβ = 1B. A morphism of split extensions is a diagram in
C

X κ //

u
��

A
α //

v
��

B
β

oo

w
��

X ′ κ′ // A′
α′ // B′
β′
oo

(6.2)

where the top and bottom rows are split extensions (the domain and codomain respec-
tively), and vκ = κ′u, vβ = β′w and wα = α′v. In this section we consider the span
SE(C) =

C SplExt(C)Poo K // C (6.3)

where SplExt(C) is the category of split extensions and P and K are the functors send-
ing the split extension (6.1) to B and X respectively. When C is semi-abelian, in the
sense of G. Janelidze, L. Màrki and W. Tholen in [20], it was shown by F. Borceux, G.
Janelidze and G. M. Kelly in [5] that the category SplExt(C) is equivalent to a cate-
gory Act(C,C, •, θ, γ) where C is the monoidal category with tensor defined by binary
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coproduct in C. Furthermore one easily checks that this equivalence is such that it makes
the diagram

C

��

SplExt(C)

��

Poo K // C

Mon(C) Act(C,C, •, θ, γ)Poo Q // C,

(6.4)

where the vertical functor on the left is the isomorphism which sends each object C in
C to C equipped with the unique monoid structure on it, commute. We will see that
this means that for a semi-abelian category some of the results in this section could be
obtained from the results in the previous section. However, there are examples for which
this equivalence no longer exists, to which results in this section will be applicable. In
particular some of the results below will be applicable to the category of finite groups
or more generally to a category of internal groups in a finitely complete cartesian closed
category.

For a pointed category C and for an object X in C, a terminal object (when it exists)
in the fibre K−1(X) of the functor K : SplExt(C) → C is essentially by definition a
generic split extension with kernel X in the sense of [5]. Accordingly we will say that
a pointed category C has generic split extensions when the fibres of K have terminal
objects. Therefore, since the span SE(C) is right regular, as soon as C has finite limits,
applying Proposition 4.2 to the span SE(C) we obtain:

6.1. Proposition. If C is pointed and finitely complete, then the following conditions
are equivalent:

(a) C has generic split extensions;

(b) the span SE(C) has RFRA.

As a corollary we obtain:

6.2. Theorem. If C is semi-abelian, then the following conditions are equivalent:

(a) C is action representable;

(b) the span SE(C) has RFRA.

Proof. The equivalence of (a) and (b) follows from the previous proposition and from
[5] where it was proved that a semi-abelian category is action representable if and only if
it has generic split extensions.
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For C pointed with finite limits, if in our description of the category SplExt(C) we
omitted all kernels from the diagrams involved we would obtain an equivalent category
which is called by D. Bourn the category of points and denoted Pt(C). Recall that the
functor π : Pt(C)→ C sending a split epimorphism to its codomain is called the fibration
of points. Since the composite of the forgetful functor SplExt(C)→ Pt(C) and π gives
the functor P , it follows that for each B in C the functor KB is “up to equivalence”
what is known as the kernel functor KerB : PtB(C)→ C (i.e. the functor sending a split
epimorphism in the fibre of π−1(B) = PtB(C) to a chosen kernel). This means that:

6.3. Proposition. If C is pointed and finitely complete, then the following conditions
are equivalent:

(a) for each B the functor KerB has a right adjoint;

(b) the span SE(C) has LFRA.

For a category C with finite limits, recall that C is said to be locally algebraically
cartesian closed when each change of base functor between fibres of π has a right adjoint.
According to Theorem 5.1 of [15], for a pointed (Bourn-)protomodular category [7], this
is the case whenever each kernel functor has a right adjoint and hence we obtain:

6.4. Theorem. If C is pointed protomodular and finitely complete, then the following
conditions are equivalent:

(a) the category C is locally algebraically cartesian closed;

(b) the span SE(C) has LFRA.

Examples of locally algebraically cartesian closed categories include the categories of
groups (internal to any finitely complete cartesian closed category) and Lie algebras over
any commutative ring (for details see [14], [15] and [8]). Note that:

6.5. Remark. X. G. Martinez and T. Van der Linden noticed that Proposition 6.9 of [15]
is incorrect, so that the category of commutative rings satisfying xyz = 0 is not a locally
algebraically cartesian closed category (see [12]). Using the notation from Proposition 6.9
and its proof, the error in the proof is that R is defined on objects and claimed to be a
functor, but in fact can’t be made into a functor.

Using the well-known fact that for a pointed finitely complete category the existence
of a left adjoint to each kernel functor is equivalent to the existence of binary coproducts
we obtain:

6.6. Theorem. If C is pointed and finitely complete, then the following conditions are
equivalent:

(a) C has binary coproducts;

(b) the span SE(C) has LFLA.
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Next we investigate, in the pointed protomodular context, what condition RFLA
means for the span SE(C). Recall that a pointed finitely complete protomodular cat-
egory is additive if and only if for each object X the morphisms 1X and 1X commute in
the sense of S. A. Huq [18] i.e. there is a (unique) morphism ϕ : X ×X → X such that
the diagram

X
〈1,0〉 //

1X ##

X ×X
ϕ

��

X
〈0,1〉oo

1X{{
X

(6.5)

commutes. Recall also that the existence of ϕ in (6.5) makes (X,ϕ, 0) an internal abelian
group. For reference, the reader may consult [2] or more explicitly, in semi-abelian case
Theorem 6.9 and Corollary 7.3 of [1].

6.7. Theorem. If C is pointed protomodular and finitely complete, then the following
conditions are equivalent:

(a) C is additive;

(b) the span SE(C) has RFLA.

(c) the span SE(C) and all its duals have RFRA.

Proof. (b)⇒(a): Let X and B be objects in C and let the upper row of the diagram

X
κ̄ // Ā

ᾱ //

v
��

B̄
β̄

oo

��

B
ηBoo

X
1X // X // 0oo Boo

(6.6)

be an initial object in (B ↓ PX). It follows that there is a unique morphism as shown
above and hence by protomodularity that

X
〈1,0〉 // X × B̄

π2 // B̄
〈0,1〉
oo B

ηBoo (6.7)

is an initial object in (B ↓ PX). Accordingly, we obtain the unique morphism as displayed
in the upper part of the diagram

X
〈1,0〉 // X × B̄

f
��

π2 // B̄
〈0,1〉
oo

g

��

B
ηBoo

X
〈1,0〉 // X ×B

π2 //

1×ηB
��

B
〈0,1〉
oo

ηb
��

B
1Boo

X
〈1,0〉 // X × B̄

π2 // B̄
〈0,1〉
oo B

ηBoo

(6.8)
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whose composite with the morphism displayed in the lower part of the diagram must be the
identity morphism. This means that g is an isomorphism and hence by protomodularity
that the middle row of the above diagram is an initial object in (B ↓ PX). In particular
when B = X we obtain the unique morphism

X
〈1,0〉 // X ×X

π2 //

ϕ

��

X
〈0,1〉
oo

1X
��

X
1Xoo

X
〈1,0〉 // X ×X

π2 // X
〈1,1〉
oo X

1Xoo

(6.9)

meaning that 1X commutes with itself and hence C is additive. Since trivially (c)⇒(b),
it remains to prove that (a)⇒(c). However this easily follows from the fact that if C is
additive, then for each object C in C the functors PC andKC are both parts of equivalences
of categories.

Since for each category I there is an isomorphism (the vertical functor) making the
diagram

CI SplExt(C)IP I
oo KI

//

��

CI

CI SplExt(CI)Poo K // CI

(6.10)

commute, according to Proposition 6.1 and Theorem 3.5 as well as Theorem 4.8 of [16],
we obtain:

6.8. Corollary. If C is pointed and finitely complete, then Conditions 3.5 (a) - (h)
and 3.6, for the span SE(C), are all equivalent to C2 having generic split extensions.
Furthermore, if C is semi-abelian, then these conditions are all further equivalent to C
being action representable and having normalizers.

While, according to Proposition 4.8 and Theorems 6.4 and 3.5 we obtain:

6.9. Corollary. If C is pointed protomodular and finitely complete, then Conditions 3.5
(a) - (h) and 3.6, for the span SE(C)

◦
, are all equivalent to C being locally algebraically

cartesian closed.

In particular, by considering Condition 3.6, for SE(C) and SE(C)
◦
, when C is semi-

abelian, we obtain II(e) and II(f) of the introduction, respectively.
Note that both II(e) and II(f) are equivalent to the same condition restricted to where

φ is required to be an identity morphism. These restricted conditions although simpler
are no longer symmetric.

One can show that requiring the existence of universal liftings, as in II(e), where θ and
φ are monomorphisms is equivalent (via Theorem 2.8 of [9]) to the existence of normalizers.
This leads to the question of whether it might be interesting to study the symmetric
condition requiring universal liftings as in II(f) but restricted to monomorphisms. This
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condition turns out to be closely related to algebraic coherence [10] and is part of the
subject of a forthcoming joint paper with D. Bourn, A. S. Cigoli and T. Van der Linden.

References

[1] F. Borceux, A survey of semi-abelian categories, Fields Institute Communications,
Galois theory, Hopf algebras, and semiabelian categories 43 , American Mathematical
Society, Providence, RI, 27–60, 2004.

[2] F. Borceux and D. Bourn, Mal’cev, protomodular, homological and semi-abelian cat-
egories, Kluwer Academic Publishers, 2004.

[3] F. Borceux, D. Bourn, and P. T. Johnstone, Initial normal covers in bi-Heyting
toposes, Archivum mathematicum 42, 335–356, 2006.

[4] F. Borceux, M. M. Clementino, and A. Montoli, On the representability of actions
for topological algebras, Textos de Matemáticai (Série B) 46, 41–56, 2014.
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