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THE GENUINE OPERADIC NERVE

PETER BONVENTRE

Abstract. We construct a generalization of the operadic nerve, providing a translation
between the equivariant simplicially enriched operadic world to the parametrized ∞-
categorical perspective. This naturally factors through genuine equivariant operads, a
model for “equivariant operads with norms up to homotopy”. We introduce the notion
of an op-fibration of genuine equivariant operads, extending Grothendieck op-fibrations,
and characterize fibrant operads as the image of genuine equivariant symmetric monoidal
categories. Moreover, we show that under the operadic nerve, this image is sent to
G-symmetric monoidal G-∞-categories. Finally, we produce a functor comparing the
notion of algebra over an operad in each of these two contexts.

1. Introduction

Operads have proven to be a valuable tool since they were introduced by Boardman-
Vogt [BV73] and May [May72]. In stable homotopy theory, Boardman-Vogt and May
introduced a class of simplicial operads1 called E∞-operads which encode homotopy
coherent multiplication in spaces and spectra. Further, Boardman-Vogt and May showed
that spaces equipped with such structures represented infinite loop spaces. Moreover, the
homotopy theory of simplicial operads is designed so that any cofibrant replacement of
the commutative operad is E∞, capturing the notion that E∞-algebras are the “correct”
homotopical replacements of strict topological monoids.

However, while simplicial operads can encode these homotopical structures, they
themselves remain fairly rigid objects. To obtain further homotopical flexibility, an
alternative framework has been pioneered by Lurie to work in the language of ∞-categories,
an extension of category theory defined by Boardman-Vogt [BV73] and refined by Joyal
[Joy02], where notions are only ever well-defined up to coherent homotopy. Lurie [Lur17]
constructs the theory of ∞-operads, a certain class of ∞-category equipped with a map to
the category of finite pointed sets F∗.

While these two theories aim to model the same homotopy theory, the equivalence
between them was not known for some time, and is not direct. Work of Cisinski-Moerdijk-
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1In general, we write “operad” and Op to refer to the category of colored operads, which includes
the classical single-colored notion as well as the more general notion (which often goes by the name of
“multicategory”). Additionally, we write “simplicial operad” and sOp to mean the category of (possibly
many colored) operads enriched in simplicial sets, as opposed to the more general notion of a simplicial
object in (colored) operads. Details will be given in Definition 2.2.1.
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Weiss [CM13a, CM13b, CM11, MW09], Chu-Haugseng-Heuts [CHH18], and Barwick
[Bar18] produces a zig-zag of Quillen equivalences between simplicial operads and ∞-
operads.

On the other hand, there is a fairly natural construction between these models. For
any simplicial operad O ∈ sOp, May-Thomason [MT78] produce an associated simplicial
category O⊗, living over the category F∗ of pointed finite sets, called the category of
operators, and moreover show that the theory of algebras over O and O⊗ coincide. The
homotopy coherent nerve of O⊗ is denoted N⊗(O), and is called the operadic nerve by
Lurie [Lur17, 2.1.1.22]. This construction has several nice properties. First, in [Lur17,
Prop. 2.1.1.27], Lurie showed that this sends a levelwise fibrant simplicial operad (where
all mapping spaces are Kan) to an ∞-operad (and in fact, Lurie’s definition of an ∞-operad
is truly a generalization of these categories of operators). Second, it is expected to be an
equivalence of homotopy theories, and has already been shown to be one when restricted to
non-unital operads by [HHM16]. Third, the operadic nerve preserves symmetric monoidal
categories. That is, there are canonical faithful inclusions of simplicial symmetric monoidal
categories into simplicial operads and symmetric monoidal ∞-categories into ∞-operads,
and the operadic nerve sends one subcategory to the other [Lur17, Prop. 4.1.7.10].

In this paper, we generalize the narrative of the operadic nerve to the equivariant
setting, incorporating actions of a finite group G. However, the appropriate source and
target of the new map are not simply the categories of G-objects of source and target of the
original operadic nerve. Instead, sophisticated categories have been built to capture the
more intricate homotopy theory of equivariant operads. This additional complexity comes
from the observation, first by Constenoble-Waner [CW91] and explored systematically by
Blumberg-Hill [BH15], that there are several possible notions of “equivariant homotopy
coherent multiplication”. The distinctions come from whether or not they encode norm
maps; as a distinguished and archetypal example, in G-spectra these are G-equivariant
maps of the form

G ⋅H N
AX ≃ G ⋅H ⋀

a∈A
i∗HX →X

for A some finite H-set with H ≤ G, X a G-spectrum, and NAX the indexed smash
product, with an H-action that both permutes the indices (via the action on A) and acts
on each X. So-called näıve E∞-operads, E∞-operads with a trivial G-action, only encode
norm maps for A a trivial H-set, while genuine G-E∞-operads encode all such maps. As
desired, there is a homotopy theory of simplicial G-operads which distinguishes these
classes of operads, constructed by the author and his collaborator Lúıs Pereira [BPc], and
independently by Gutierrez-White [GW18].

With respect to the operadic nerve, this has the following consequence. The new
source is the category sOpG of simplicial genuine2 equivariant operads, also introduced
in [BPc] by the author and Pereira. This is a generalization of simplicial G-operads,

2The genuine adjective here has two (related) etymologies. First, the image i∗O ∈ sOpG of any
genuine G-E∞-operad O ∈ sOpG is contractible at every level, while this fails when starting with a näıve
E∞-operad, and sOpG was designed precisely to see this distinction. Second, the adjective “genuine” has
been used regularly to describe homotopy theories of equivariant objects which see all possible fixed point



738 PETER BONVENTRE

which embed fully-faithfully as part of a right Quillen equivalence, where objects P ∈ sOpG
have evaluations at all finite H-sets A. Morally, the operations in P(A) precisely encode
A-norm maps, while the composition law details their interactions.

For the target, Barwick-Dotto-Glasman-Nardin-Shah [BDG+] have produced a beautiful
theory of parametrized ∞-categories and parametrized homotopy theory. In particular,
when the base is the orbit category OG of finite transitive G-sets, they recover a coherent
description of equivariant homotopy theory. Encoding algebraic structures here are OG-
∞-operads O⊗ ∈ Op∞,G, a certain class of OG-∞-categories equipped with a map to the

category FG∗ of all finite pointed H-sets for all H ≤ G (cf. Definition 3.1.1).
Given a simplicial genuine equivariant operad P ∈ sOpG, we construct an analogue of

the operadic nerve N⊗(P) dubbed the genuine operadic nerve, also built as the homotopy
coherent nerve of a (genuine) category of operators construction. The main results of this
paper are the following extensions of [Lur17, Prop. 2.1.1.27 and 4.1.7.10], providing a
(1-categorical) translation between these two theories of homotopical equivariant operads.

First, we prove the following in Section 4.2.

1.0.1. Theorem. The genuine operadic nerve is a faithful functor

N⊗(−) ∶ sOpG,f Ð→ Op∞,G

from the category of level fibrant genuine equivariant operads to the (1)-category of OG-∞-
operads, which recovers the original operadic nerve in the case where G = ∗.

Additionally, similarly to the inclusion sSymMon ↪ sOp of (simplicial) symmetric
monoidal categories into (colored, simplicial) operads, there are analogous notions of
“symmetric monoidal category” inside sOpG and Op∞,G, namely the (simplicial) EΣG-
algebras of the author and Pereira [BPd] and G-symmetric monoidal G-∞-categories
of Barwick et al. [Nar17]. We prove the following in Section 5.4, which says that the
genuine operadic nerve preserves these notions of symmetric monoidal categories and the
corresponding notions of symmetric monoidal functors.

1.0.2. Theorem. The functor N⊗ ∶ sOpG → Op∞,G restricts to a functor

N⊗ ∶ sSymMonqG,f Ð→ SymMon∞,G.

A major step in the proof of Theorem 1.0.2 is the identification of the image of
EΣG-algebras inside sOpG as those genuine operads which are “fibered” over the terminal
operad, in a sense which generalizes Grothendieck op-fibrations of categories, made precise
in Section 5.

Essentially, we prove the following; a precise statement can be found at Theorem 5.3.1.

information, namely the genuine/fine homotopy theory of G-spaces and the (fully) genuine homotopy
theory of G-spectra. Expanding on this, both named theories can be realized as presheaf categories, and
in particular their homotopy groups inherit extra structure. Similarly, results in [BPc] prove that the
homotopy groups of simplicial G-operads are naturally genuine G-operads of sets, and we should think of
genuine equivariant operads as appropriate analogues to presheaves in this algebraic setting.
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1.0.3. Theorem. The image of simplicial EΣG-algebras in genuine equivariant operads
are those operads such that the canonical map to the terminal operad is a genuine operadic
fibration.

All together, using the notation to be defined in the paper, these results amalgamate
into the following commuting diagram of well-defined faithful functors.

sPermG,f Fibf(Comm) FibfSegal(F
G
∗ ) SymMon∞,G

sSymMonqG,f Fibq(Comm) FibqSegal(F
G
∗ ) SymMon∞,G

Fib(Comm) FibSegal(F
G
∗ ) SymMon∞,G

OpG CatOpG Op∞,G

≃

P(−)
≅

≃

(−)⊗ N

P(−)
≅

(−)⊗ N

(−)⊗ N

(−)⊗ N

(1.1)

We end by showing that this framework preserves algebras over operads, if we make
small additional assumptions on V and our operads O. In Section 6.1, we build a model
V
◻
∞,G for the G-symmetric monoidal G-∞-category of strict G-objects in globally fibrant

symmetric monoidal simplicial categories V (Definition 6.1.2), and prove the following for
algebras over graph fibrant operads O (Definition 6.0.2).

1.0.4. Theorem. For any graph fibrant equivariant simplicial operad O ∈ sOpG and
globally fibrant symmetric monoidal simplicial category (V ,◻), there exists a functor of
∞-categories

NAlgO(V
G)Ð→ AlgN⊗(O)(V

◻
∞,G)

between associated categories of algebras.

1.0.5. Remark. We note that these results are not yet homotopical. However, as in the
non-equivariant case, we expect that N⊗ is an equivalence of homotopy theories.

1.0.6. Remark. The author’s joint work with Lúıs Pereira provides another model of
equivariant higher algebra, generalizing the dendroidal sets perspective of Moerdijk, Weiss,
Cisinski, and Heuts [CHH18, CM13a, CM13b, CM11, Heu, MW09] which has seen much
success. A homotopical analogue of Theorem 1.0.1 in this context is the precisely the
culmination of the papers [Per18, BPa, BPe, BPb], that the homotopy coherent dendroidal
nerve between equivariant simplicial operads and equivariant dendroidal sets is a right
Quillen equivalence.

1.0.7. Remark. These structures — EΣG-algebras, genuine equivariant operads, G-∞-
operads, and G-symmetric monoidal G-∞-categories — have corresponding notions for
any (weak) indexing system F in the sense of [BH15], [BH18], [Per18], [BPc], i.e. replacing
all instances of the category FG∗ of all finite pointed G-sets with the category FF∗ of those
finite pointed G-sets generated by F . We expect the results to extend to these settings.
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1.1. Organization. The paper is planned as follows.
We begin by recalling the relevant parts of the non-equivariant story in Section 2.

In Section 3, we discuss equivariant generalizations of the key players from Section 2,
namely the category of finite pointed G-sets, the category of (colored) simplicial genuine
equivariant operads P ∈ sOpG from [BPc], and the OG-∞-operads from [BDG+, Nar17].

In Section 4, we introduce our main constructions, the genuine equivariant category of
operators P⊗ and the genuine operadic nerve N⊗(P) associated to P , and prove Theorem
1.0.1. In Section 5 we define and analyze fibrations in sOpG. Section 5.1 defines genuine
operadic op-fibrations, Section 5.2 recalls EΣG-algebras from [BPd] with Proposition
5.2.10 giving the faithful inclusion of simplicial EΣG-algebras into sOpG, and Section 5.3
discusses how the different varieties of EΣG-algebras can be identified with specific classes
of fibrations in OpG, culminating in the proof of Theorem 1.0.3. Theorem 1.0.2 is finally
proved in Section 5.4.

Lastly, in Section 6, we give several examples of G-∞-operads and G-symmetric
monoidal G-∞-categories coming from the genuine operadic nerve, introduce categories of
algebras, and prove Theorem 1.0.4.

1.2. Acknowledgments. This paper owes much to the ongoing collaborations with Lúıs
Pereira; the author would like to thank him for his help and useful discussions throughout
their work together. In particular, the definitions of genuine equivariant operads (single-
and many-colored) and EΣG-algebras are joint with him.

The author would like to thank Asaf Horev for asking whether there was a conversion
between G-operads and G-∞-operads, leading to this work, for helpful conversations, and
for sharing notes of work in progress with Inbar Klang and Foling Zou, which in particular
influenced the exposition leading up to Definition 6.1.3. The author would also like to
thank Kate Ponto, Bert Guillou, and Nat Stapleton for their comments and suggestions.
Finally, the author would like to thank the referee for their careful comments.

2. Motivation and background

We begin by recalling the story in the non-equivariant setting (e.g. [Lur17]), which will
provide the guiding outline of the necessary results (as well as the style of proof) for many
parts of this article.

2.1. Categorical fibrations. First, we recall and establish our terminology for the
various different notions of “fibrations” of categories, as generalizations of these ideas
appear throughout this paper in many forms.

2.1.1. Definition. Given a functor p ∶ C → B, an arrow f ∶ c→ c′ in C is call p-cocartesian
if for any b ∈ B, preimage c′′ ∈ p−1(b), and arrows g ∶ p(c′) → b in B and h ∶ c → c′′ in C
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such that p(h) = gp(f), there exists a unique lift g ∶ c′ → c′′ such that p(g) = g and gf = h.

p(c) p(c′) c c′

b c′′

p(f)

p(h) ∀g

f

∀h ∃!g
(2.1)

We say p is a Grothendieck op-fibration if for every arrow in B and lift of the domain to
C, there exists some p-cocartesian lift. We say p is additionally q-split if we have a chosen
system of cocartesian lifts which are natural in the arrows of B. Finally, p is additionally
fully split if this chosen system is closed under composition.

Given two q-split (resp. fully split) op-fibrations p and p′, a functor F ∶ C → C′ is called
a map of (split) op-fibrations if F is a functor over B and sends (chosen) cocartesian
arrows to (chosen) cocartesian arrows. We denote the 1-categories of simplicial fully-split
and q-split op-fibrations over B with maps of op-fibrations by Fibf(B) ⊆ Fibq(B) ⊆ sCat ↓ B.

Dually, an arrow f is p-cartesian if f is p-cocartesian in Cop, and p is a Grothendieck
fibration if pop is a Grothendieck op-fibration. Explicitly, f ∶ c′ → c is p-cartesian if for
every g ∶ b→ p(c′) and h ∶ c′′ → c with p(c′′) = b and p(h) = p(f)g, there exists a unique lift
g ∶ c′′ → c′ of g such that fg = h.

The Grothendieck construction provides an equivalent characterization.

2.1.2. Theorem. The category of functors Fun(Bop,Cat) is isomorphic to the categories
of fully-split Grothendieck fibrations over B (dually, fully-split Grothendieck op-fibrations
over Bop) with maps of split (op)-fibrations.

More generally, the 2-category of pseudofunctors Bop → Cat is strictly 2-equivalent to the
2-category of fibrations over B (dually, op-fibrations over Bop) with maps of (op)-fibrations
and natural transformations.

More details on these notions can be found in e.g. [Gra66].
We can repackage Definition 2.1.1 as follows:

2.1.3. Lemma. Given a functor p ∶ C → B, An arrow f ∶ c → c′ is p-cocartesian if the
diagram

C(c′, c′′) C(c, c′′)

B(Fc′, F c′′) B(Fc,Fc′′)

f∗

F F

Ff∗

(2.2)

is a strict pullback.

2.1.4. Remark. Beardsley-Wong [BW] show that we can extend these definitions and
discussions to the category sCat of categories enriched in simplicial sets (or actually
any bicomplete closed symmetric monoidal category V): Given a functor p ∶ C → D of
simplicially enriched categories, an arrow f ∈ C(c, c′)0 is p-cocartesian if (2.2) is a pullback
in sSet.
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We define p-cartesian arrows, (q-split, fully split) Grothendeick (op)-fibrations, and
maps of (q-split, fully split) (op)-fibrations exactly as in Definition 2.1.1.

A main result [BW, Thm. 5.9] is precisely the analogue of Theorem 2.1.2 to this
context, so in particular we can freely move between fully split fibrations over B and
functors Bop → sCat.

2.2. Colored simplicial operads. We begin with our original object of study, a
colored simplicial operad.

2.2.1. Definition. Given any set C, a C-signature is a sequence (x1, . . . , xn;x) of length
n + 1 of elements in C; we call the first n objects the source of the signature, and the last
one the target.

A colored simplicial operad 3 O ∈ sOp consists of

� a set C = CO of colors (or objects);

� for each C-signature C = (x1, . . . , xn;x) of colors of length n + 1, a simplicial set
O(C) ∈ sSet of operations of arity n;

� for all collections of C-signatures of the form ⇀C = (x1, . . . , xn;x), ⇀Di = (xi1, . . . , x
i
mi

;xi)
for 1 ≤ i ≤ n, a composition law

O(
⇀C) ×∏

i

O(
⇀Di)→ O(

⇀C ○ (
⇀Di))

where
⇀C ○ (

⇀Di) = (x1
1, . . . , x

1
m1
, x2

1, . . . , . . . , x
n
mn

;x);

� a unit operation 1x ∈ O(x;x) for all colors x ∈ C; and

� for each σ ∈ Σn and sequences C of length n, an action map

O(
⇀C)

σ
ÐÐ→ O(σ∗⇀C) = O(xσ−11, . . . , xσ−1n;x);

such that the actions of Σn are unital and associative, composition is unital and associative,
and composition commutes with the action of Σn.

A map of operads F ∶ O → P is given by a map of sets F0 ∶ CO → CP , and maps

F (
⇀C) ∶ O(

⇀C)→ P(F ∗
0
⇀C) for all CO-signatures ⇀C which are compatible with all of the above

structure.

See Section 6 for some examples of (equivariant) simplicial operads.
We note that there is a natural path-component functor π0, and a forgetful functor j∗

which only remembers the operations of arity exactly 1.

π0 ∶ sOpÐ→ Op, j∗ ∶ sOp→ sCat.

Cisinski-Moerdijk have shown that sOp has a model structure given by the following:

3These have also been called multicategories enriched in simplicial sets.
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2.2.2. Definition. [CM13b] A map F ∶ O → P is called a

� weak equivalence if F (
⇀C) is a weak equivalence in sSet for all C-signatures ⇀C, and

π0j∗F is an equivalence of categories.

� fibration if F (
⇀C) is a fibration in sSet for all C-signatures ⇀C, and π0j∗F is an

isofibration of categories; i.e. F can lift isomorphisms.

Let Comm ∈ sOp denote the terminal operad, with a single color and Comm(−) = ∗. We
say O ∈ sOp is fibrant if the unique map O → Comm is a fibration; that is, O is locally

fibrant, with each O(
⇀C) a Kan complex.

2.3. Infinity operads. The original operadic nerve construction provided a translation
between this world of homotopical algebra with the theory of ∞-categories. We introduce
this second setting now; a more thorough discussion can be found at the original source
[Lur17, §2].

2.3.1. Definition. We outline some basic concepts in ∞-category theory we will need:
pointed finite sets, cocartesian arrows, and finally ∞-operads.

� Let F denote a fixed category of finite ordered sets and unordered set maps, such that
the subcategory with ordered maps is skeletal; i.e., if ever two sets in F are order
isomorphic, they are in fact equal. In particular, we may choose F to be the category
with objects n = {1,2, . . . , n} for all n ≥ 1 with unordered maps.

Let Fs and Σ denote the subcategories of F consisting of only surjective maps and
bijections, respectively.

These models are chosen so that all of the above have canonical choices for all small
limits and colimits using lexicographical ordering. In particular, F is bipermutative
with respect to cartesian product and disjoint union.

� Let F∗ denote the category of pointed finite sets A+ = {0}∐A with A ∈ F, and pointed
maps.

� A map f ∶ A+ → B+ in F∗ is called inert if f is surjective and f is injective away
from the basepoint, i.e. for all 0 ≠ b ∈ B, ∣f−1(b)∣ ≤ 1.

� A map f ∶ A+ → B+ is called a projection map if B = {1} and f(a) is not the basepoint
of B+ for exactly one r ∈ A; in this case, we denote f by πr.

� Given a map of simplicial sets p ∶ X → Y , we say that a 1-simplex ξ ∈ X is p-
cocartesian if for any diagram of the form below with 0 ≤ k < n and n ≥ 2, there exists
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a lift as denoted.

∆0,1

Λ0[n] X

∆[n] Y

ξ

p
∃

(2.3)

The map p is a cocartesian fibration if p is an inner fibration and satisfies the
analogue the definition of Grothendieck op-fibration: for all objects x ∈X and arrows
f ∶ y → p(x) in Y1, there exists a p-cocartesian f̂ ∈X1 such that p(f̂) = f .

It is clear that if an arrow f in some category C is p-cocartesian for p ∶ C → B, then
f ∈ N ′C1 is N ′(p)-cocartesian, and similarly that if p is a Grothendieck op-fibration,
then N ′(p) is a cocartesian fibration, where N ′ ∶ Cat→ sSet is the nerve.

� Given a map of ∞-categories C → D and a 0-simplex d ∈ D, denote by C⟨d⟩ the
pullback below in sSet.

C⟨d⟩ ∗

C D

d (2.4)

2.3.2. Definition. An ∞-operad is an ∞-category O⊗ equipped with a map of simplicial
sets p ∶ O⊗ → N(F∗) such that the following three conditions hold:

(i) For all inert maps f ∈ F∗(A,B), and for all objects x ∈ O⊗
⟨A⟩, there exists a p-

cocartesian morphism f ∶ x → x′ lifting f . In particular, f (and specified choices)
induces a functor f! ∶ O

⊗
⟨A⟩ → O

⊗
⟨B⟩.

(ii) For all maps f ∈ F∗(A,B), objects x ∈ O⊗
⟨A⟩ and y ∈ O⊗

⟨B⟩, and choices of p-cocartesian

lifts y → yb for each projection πb ∶ B+ → {b}+ from B onto one of its elements b, the
induced Segal map

MapfO⊗(x, y)Ð→∏
b∈B

MapπbfO⊗ (x, yb) (2.5)

is a weak equivalence, where MapfO⊗(−,−)↪MapO⊗(−,−) is the fiber over f .

(iii) For all objects A+ and all choices of functors (πa)!, the induced Segal map

O⊗
⟨A⟩ Ð→∏

a∈A
O⊗

⟨a⟩ (2.6)

is an equivalence of ∞-categories.

An arrow of ∞-operads is a map of simplicial sets F ∶ (O, p) → (P, q) over N(F∗)
which sends p-cocartesian maps to q-cocartesian maps.



THE GENUINE OPERADIC NERVE 745

2.4. Operadic nerve. To complete our motivation, we prove that there is a faithful
functorN⊗ ∶ sOpf → Op∞, the operadic nerve. The first stage of this map is the construction
of the category of operators associated to a simplicial operad.

2.4.1. Definition. [Lur17, 2.1.1.22] Given O ∈ sOp, we define the category of operators
associated to O, denoted O⊗, as the following simplicial category. The set of objects is the
set of all tuples (A, (xa)a∈A) with A+ ∈ F∗ and (xa) a tuple of colors of O indexed by A.
Given objects (A, (xa)) and (B, (yb)), define the mapping space by

O⊗((A, (xa)), (B, (yb))) = ∐
f ∶A+→B+

∏
b∈B
O((xa)a∈f−1(b); yb). (2.7)

Composition is as expected: given composable arrows A+
f
Ð→ B+

g
Ð→ C+ and operations

ψc ∈ O(g−1c), ξb ∈ O(f−1b)

for all c ∈ C and b ∈ B, define

(ψc)c∈C ○ (ξb)b∈B = (ψc ○ (ξb)b∈g−1(c))c∈C . (2.8)

This construction is functorial and faithful.

2.4.2. Definition. Given O ∈ sOp, the operadic nerve N⊗(O) is the simplicial set N(O⊗),
where N ∶ sCat→ sSet is the homotopy coherent nerve. Since O⊗ has a canonical map to
F∗, N⊗(O) has a canonical map to the nerve of F∗.

2.4.3. Proposition. [Lur17, Prop. 2.1.1.27] If O is a fibrant simplicial operad, then
N⊗(O) is an ∞-operad.

We record the following easy lemma.

2.4.4. Lemma. If D ∈ sSet is discrete, then a square with final object D is a pullback iff it
is a homotopy pullback iff each induced square with final object {d} is a pullback.

Lastly, we show this construction lifts to a functor. We could not find a statement or
proof of this result in the literature; we record it here for completeness and later reference.

2.4.5. Proposition. The assignment O ↦ N⊗(O) is part of a functor sOpf → Op∞ from
fibrant simplicial operads to ∞-operads.

Proof. For any functor F ∶ O → P in sOp, N⊗(F ) is a map over N(F∗) for the natural

maps N⊗(O)
p
Ð→ N(F∗) and N⊗(P)

q
Ð→ N(F∗). It thus suffices to check that for any functor

F ∶ O → P, N⊗(F ) sends p-cocartesian maps to q-cocartesian maps.
By [Lur17, Remark 2.1.2.9], it suffices to check this on p-cocartesian morphisms living

over the projection maps πr ∶ A+ → 1+, with πr(a) = 1 if r = a and the basepoint 0 of 1+
otherwise.
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To that end, consider the rectangle below, where σs ∶ 1+ → B+ sends 1 to s ∈ B,,
αr,s ∶ A+ → B+ is σsπr (so sends r to s and everything else to the basepoint), and
ϕ ∈ O⊗

πr((xa)a∈A;x) = O(xr;x) is some p-cocartesian map over πr.

O⊗
σs(x; (yb)b∈B) O⊗

αr,s
((xa)a∈A, (yb)b∈B)

P⊗σs(F (x); (F (yb))b∈B) P⊗αr,s
((F (xa))a∈A, (F (yb))b∈B)

{σs} {αr,s}

ϕ∗

F F

N⊗(ϕ)∗

(πr)∗

(2.9)

But we understand this rectangle explicitly:

O⊗
σs(x; (yb)b∈B) = ∏

b∈B∖s
O(∅; yb) ×O(x; ys)

O⊗
αr,s

((xa)a∈A; (yb)b∈B) = ∏
b∈B∖s

O(∅; yb) ×O(xr; ys)

and similarly for P⊗, and ϕ∗ is just pre-composition by the actual operation ϕ ∈ O(xr;x).
Since by [Lur09, Prop. 2.4.1.10] and Lemma 2.4.4 the big rectangle is a pullback, ϕ (and
hence ϕ∗) must be an isomorphism. Thus F (ϕ) (and hence N⊗(ϕ)∗) is an isomorphism,
and hence the lower rectangle is a pullback. The reverse directions of Lemma 2.4.4 and
[Lur09, Prop. 2.4.1.10] complete the proof.

2.4.6. Remark. In fact, this gives a functor N⊗(−) ∶ sOp→ PreOp∞ from all simplicial
operads to the (1)-category of ∞-preoperads (see [Lur17, §2.1.4]): the above functoriality
was independent from the fibrancy of O and P , and the construction N⊗(−) always gives
a preoperad by loc cit.

3. Equivariant preliminaries

For the rest of the paper, we fix a finite group G. We will now generalize the definitions
found in Sections 2.2 and 2.3 to an equivariant context.

3.1. Finite pointed G-sets. Analogously to how ∞-operads live over the category F∗
of finite pointed sets, equivariant ∞-operads live over a category of finite pointed G-sets.
However, to provide for a complete “genuine” equivariant picture, our category of finite
G-sets also needs to contain all finite H-sets as well for every H ≤ G, as in Definition 3.1.3
below.

3.1.1. Definition. Let FG denote the category of G-objects in F, i.e. a fixed full subcate-
gory of all ordered finite G-sets with unordered actions of G and unordered G-maps, such
that the wide4 subcategory with ordered G-maps is skeletal. In particular, following [GM],

4A subcategory is called wide if it contains all objects of the original category.
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we may choose FG to be the category with objects (n,α) with α ∶ G→ Σn a homomorphism.
As in Definition 2.3.1, FG has a natural bipermutative structure with respect to product
and disjoint union.

Let OG denote the full subcategory of FG of the transitive G-sets. A B-coefficient system
is a functor Oop

G → B for some category B.

Particularly simple coefficient systems are given by the system of fixed points of a
G-object X ∈ BG. Define the i∗X to be the coefficient system

i∗X(G/H) =XH ∶= lim(H → G
X
Ð→ B).

If B is closed symmetric monoidal with unit I, then XH ≃ BG(G/H ⋅ I,X).

3.1.2. Convention. To avoid confusion following Definition 2.1.1, we will specify which
type of Grothendieck fibration we mean by name and by identifying the base. Our single
exception will be for coefficient systems of sets, where we will just write “coefficient system”
to mean either the presheaf functor or the associated cartesian fibration.

Now, replacing the role of finite pointed sets from §2.3 will not just be finite pointed
G-sets FG∗ , but a whole coefficient system.

3.1.3. Definition. [BDG+, Nar17] Let FG∗ → Oop
G denote the Grothendieck op-fibration

associated to the functor below

Oop
G Ð→ Cat, R z→ FG∗ ↓+ R+,

where FG∗ ↓+ R+ denotes the full subcategory spanned by arrows for the form (A→ R)+.

We unpack this definition as follows. Objects are G-maps A → R with A ∈ FG and
R ∈ OG, and an arrow f ∶ (A → R) → (B → S) is given by a triple (q,Af , f) of a G-map
q ∶ S → R, an inclusion Af ↪ q∗A over S, and a G-map f ∶ Af → B over S.

A q∗A Af B

R S S S

⌞

f

q

(3.1)

Composition is given by pullbacks (see (3.3) below), and we have an obvious map
FG∗ → OG sending (A→ R) to R.

3.1.4. Remark. This description above indeed recovers FG∗ , the amalgamation of the
categories of pointed finite H-sets for all H ≤ G given by Definition 3.1.3. When R = G/H,
an arrow A → G/H is equivalent to data of an H-set by considering the fiber AH over
eH ∈ G/H. Moreover, for S = G/K with K ≤H and q ∶ G/K → G/H the canonical quotient
map, the pullback q∗A → G/K represents the restriction of AH to a K-set, as the fiber
over eK is precisely i∗KAH . Finally, a pointed map of K-sets AK,+ → BK,+ is the same as a
partially defined map of K-sets AK ↩ (Af)K → BK , where the orbits of AK ∖ (Af)K are
sent to the basepoint of BK,+. Thus, we should think of (3.1) as representing a pointed
equivariant map from a pointed H-set to a pointed K-set.
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3.1.5. Definition. For any object (A→ R), we define the set of orbits to be A/G, where
we remember that each element U ∈ A/G comes with a specified inclusion U ↪ A over R.

3.1.6. Notation. As a general convention, we will use A,B,C to denote arbitrary G-sets,
U,V,W to denote their orbits, and R,S,T to denote transitive G-sets acting as bases of
the objects in FG∗ .

Following Definition 2.3.1, we name several classes of maps in FG∗ .

3.1.7. Definition. A map f = (q,Af , f) ∶ A→ B in FG∗ is called

� inert if f is an isomorphism.

� a projection map if Af = B = U for some U ∈ A/G, and both q and f are identities;
in this case, we denote f by πU .

� a quotient map if Af = q∗A and f is an isomorphism.

� an orbit map if A = R, Af = q∗A, and f is the identity.

3.1.8. Remark. Remark 3.1.4 provides the equivalence of the above notions of inert and
projection with those from Definition 2.3.1: a map is inert (resp. a projection) if the map
of pointed G-sets over S is surjective and additionally injective away from the basepoint
(resp. B = U for some orbit U ∈ A/G, f(V ) is not the basepoint for all V ≠ U in A/G, and
f ∣U is the identity).

Let FG∗,in,Σ
G
⊆ FG∗ denote the wide subcategories with inert maps and quotient maps

respectively.

3.1.9. Remark. We note that ΣG is actually a subcategory of FG unpointed finite G-sets
(and in fact is the maximal G-subgroupoid over OG). Moreover, in the case G = ∗, ΣG is
just the symmetric category Σ = ∐Σn, the disjoint union of all symmetric groups. Keeping
with this terminology, we call ΣG the G-symmetric category.

We end this subsection with a technical look at composition in FG∗ . Specifically, given
arrows

(q,Af , f) ∶ (A→ R)→ (B → S), (p,Bg, g) ∶ (B → S)→ (C → T ), (3.2)

define Agf to be the pullback of Af and Bg over B. These pieces fit together in the
following commutative diagram, where in particular the denoted squares are pullbacks
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and we define the composite g ○ f to be the outer rectangle.

A p∗q∗A p∗Af p∗Af Agf C

A q∗A Af p∗Af Agf

B p∗B Bg C

R S S T T T

gf

f p∗f

p

⌞ ⌞

p g

q p

(3.3)

We may identify the inverse image of orbits in C under the composite gf .

3.1.10. Notation. Given q ∶ S → R in OG and (A→ R) ∈ FG∗ , for all U ∈ q∗A/G we write
qU ∶ U → q(U) for the induced map in OG.

3.1.11. Lemma. For arrows f and g as in (3.2), and any W ∈ C/G, we have

gf−1(W ) = ∐
V ∈g−1(W )/G

p∗
V
(f−1(p(V ))). (3.4)

Proof. First, we note that for any V ∈ B/G, we have that

∐
V ∈p−1(V )/G

p∗
V
(f−1(V )) = (p∗f)−1(p−1(V )). (3.5)

Indeed, the triple of inclusions (V ↪ p∗B, V ↪ B, f−1(V )↪ Af) induces an inclusion of
pullbacks p∗

V
(f−1(V )) ↪ p∗Af , whence we conclude (p∗f)−1(V ) = p∗

V
(f−1(V )). Second,

we in fact have the more general statement that for any G-closed subset S ⊆ (p∗V )/G,

∐
V ∈S

p∗
V
(f−1(V )) = (p∗f)−1(S). (3.6)

Finally, (3.4) follows since we have the identifications below for all W ∈ C/G by (3.3).

gf−1(W ) = (p∗f)−1 (g−1(W ))

∐
V ∈g−1(W )/G

p∗
V
(f−1(p(V ))) = ∐

V ∈B/G

⎛

⎝
∐

V ∈((p−1(V )) ∩ (g−1(W )))/G
p∗
V
(f−1(p(V )))

⎞

⎠
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3.2. Equivariant operads. In this section, we introduce two of the major players of
this paper, colored genuine equivariant operads and OG-∞-operads.

Colored genuine equivariant operads. We begin with the former. As noted in
the introduction, the category sOp

{∗}
G of single-colored genuine equivariant operads was

introduced in [BPc] as a projective model category Quillen equivalent to the category
sOpG{∗} of single-colored simplicial equivariant operads, i.e. operads in simplicial G-sets (or
equivalently G-objects in sOp{∗}). Objects P ∈ sOpG have evaluations for all finite H-sets

for all H ≤ G — in fact, have an underlying functor ΣG
→ sSet — and have composition

laws which respect the orbit structures of the various participating G-sets. Morally, these
play the same role coefficient system of spaces played in the Elmendorf-Piacenza Theorem
[Elm83, Pia91] showing the Quillen equivalence TopG ≃Q TopO

op
G .

Below, we give a description of a generalization of this structure which allows for
multiple objects/colors5. When working with many-colored equivariant simplicial operads,
the associated set of colors is in fact a G-set, with action inherited by the G-action on the
operad itself (see e.g. [BPe]). However, in the genuine setting, we are instead allowed to
have a non-trivial coefficient system of colors, agreeing with our moral intuition.

The main ingredient in this many-colored generalization is a replacement of ΣG
→ Oop

G

with a many-colored variant ΣG
C . First, we recall the following categories of tuples.

3.2.1. Definition. For any category C, let F ≀ C → F denote the (split) Grothendieck
fibration associated to the functor

Fop Ð→ Cat, A↦ C×A.

Explicitly, objects are tuples (A, (Xa)) of elements in C, and arrows (A, (Xa))→ (B, (Yb))
are maps α ∶ A→ B in F and arrows fa ∶Xa → Yα(a) in C.

We write Fs ≀ C (resp. Σ ≀ C) for the analogous definition replacing F with the wide
subcategory Fs of surjective maps (resp. Σ of isomorphisms).

3.2.2. Definition. Define the edge orbit and leaf orbit functors6

EG ∶ Σ
G,op

Ð→ Fs ≀OG, LG ∶ Σ
G,op

Ð→ Fs ≀OG, (3.7)

by letting EG(A → R) be the tuple of all orbits (A/G, (U)) ∐ (∗,R), and LG(A → R) =

(A/G, (U)) the tuple of orbits of the source.

5It would not be wrong to call these structures genuine equivariant multicategories. However, as with
our earlier conventions, we follow Lurie, Berger, Cisinski, and Moerdijk and write “operad” to refer to
both the classical single-colored notion as well as the more general many-colored variety.

6This terminology comes from recognizing ΣG as the category of G-corollas as in [BPc, Per18].
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3.2.3. Definition. Fix a coefficient system of sets C. The C-colored G-symmetric category,
denoted ΣG,op

C , is the pullback below.

ΣG,op
C Fs ≀ C

ΣG,op Fs ≀OG
EG

(3.8)

Objects are called C-signatures, and are written

⇀C = (A→ R, ((xU);xR)) = (
A
↓
R
, ((xU);xR)) (3.9)

with (A → R) in ΣG, U ∈ A/G, and xU ∈ CU and xR ∈ CR. We call (A → R) the arity of

the signature, and will sometimes denote the arity of ⇀C by C.
Arrows in the opposite7 category ΣG

C

f ∶ (
A
↓
R
, ((xU);xR))→ (

B
↓
S
, ((yV ); yS)) (3.10)

are given by quotient maps (q, f) ∶ (A → R) → (B → S) in FG∗ (with q ∶ S → R and

f ∶ q∗A
≅
Ð→ B as in Defn. 3.1.7) such that

q∗
U
xq(U) = yf(U) and q∗SxR = yS (3.11)

for all U ∈ q∗A/G (where we note q(S) = R).
A C-colored G-symmetric sequence is a functor ΣG

C → sSet.

A C-colored genuine equivariant operad consists of a C-colored G-symmetric sequence,
equipped with a “composition law” for all appropriately-compatible signatures.

3.2.4. Definition. Given some ⇀C = (A→ R, ((xU);xR)) ∈ ΣG
C , a compatible collection is

a collection of objects ⇀DU = (BU → U, ((xU,V );xU)), one for each U ∈ A/G. The composite

of the compatible collection is another object in ΣG
C , denoted ⇀C ○ (

⇀DU), defined to be

(
B
↓
R
, ((xU,V );xR)) , with B = ∐

U∈A/G
BU .

3.2.5. Definition. [cf. [BPc, Eq. (1.11)]] A colored genuine equivariant operad P is
given by the following data:

� A coefficient system C = C(P) of colors;

� A C-colored G-symmetric sequence P ∶ ΣG
C → sSet;

7This convention is further discussed in Warning 3.2.6.
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� For all compatible collections ⇀C, (
⇀DU) as in Definition 3.2.4, a composition structure

map

µ ∶ P (
A
↓
R
, ((xU);xR)) × ∏

U∈A/G
P (

BU
↓
U
, ((xU,V ), xU))Ð→ P (

B
↓
R
, ((xU,V ), xR))

where (B → R, ((xU,V );xR)) is the composite of the compatible collection.

These composition structures are natural in ΣG
C , associative, and unital. Spelling out

naturality, we have that for any compatible collection as in Definition 3.2.4 with composite
⇀E =

⇀C ○ (
⇀DU), and arrows f = (q, f)∶ (A→ R)→ (C → S) in ΣG

C , the diagram

P (
A
↓
R
, ((xU); (xR))) × ∏

U∈A/G
P (

BU
↓
U
, ((xU,V );xU)) P(

⇀E)

P (
C
↓
S
, ((q∗Wxq(W )); q

∗
SxR)) × ∏

W ∈C/G
P (

q∗WBq(W )
↓
W

, ((q∗Wxq(W ),V ); q
∗
Wxq(W )) P(

⇀E′)

µ

(f,∆q) f

µ

(3.12)
commutes, where qW ∶W → f−1(W )→ q (f−1(W )) is the induced map on orbits, ∆q is the
“q-twisted diagonal”

∏
U

P (
BU
↓
U
)

∆
Ð→∏

W

P (
Bq(W )
↓

q(W )
)

ΠqW
ÐÐ→∏

W

P (
q∗WBq(W )

↓
W

) ,

and ⇀E′ = q∗⇀C ○ (q∗W
⇀DU) is the composite of the compatible collection written in the bottom

row of (3.12), which is naturally isomorphic to q∗⇀E.
A functor F ∶ P → P ′ of genuine equivariant operads consists of a map of coefficient

systems F0 ∶ C(P) → C(P ′) and maps F (C) ∶ P(C) → P ′(F (C)) for all C-signatures C,
compatible with the composition structure maps.

We denote the category of genuine equivariant operads and functors by sOpG.

See [BPc] for a monadic definition of the single-colored case and further discussion.

3.2.6. Warning. We record that some of the notational conventions in the previous
definition of genuine equivariant operads are dual to those written in [BPc]. This comes
out of [Nar17] and the author having chosen the opposite convention for which category
forms the base of the Grothendieck fibration associated to a functor Oop

G → Cat (see e.g.
Definition 3.1.3).

Specifically, the category Σop
G from [BPc] is canonically isomorphic (as a cartesian

fibration over Oop
G ) to ΣG.
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3.2.7. Notation. For P ∈ sOpG and (A→ R) ∈ ΣG, we let P(A→ R) denote

P (
A
↓
R
) ∶=∐P (

A
↓
R
, ((xU);xR))

where the disjoint union runs over all possible C-signatures in ΣG
C with arity (A→ R) ∈ ΣG.

As in the non-equivariant case, we expect there to be a model structure on colored
genuine equivariant operads, following [BPc, BPe]. For this paper, we will just need the
following.

3.2.8. Definition. A genuine equivariant operad P ∈ sOpG is called locally fibrant if

P(
⇀C) is a Kan complex in sSet for all C-signatures ⇀C ∈ ΣG

C . We denote the full-subcategory
spanned by locally fibrant operads by sOpG,f ⊆ sOpG.

OG-∞-operads. For the second player, we follow [Nar17],[BDG+] to define OG-∞-operads
as a particular case of parametrized ∞-operads. Parallel to replacing Σ with ΣG, we
replace N(F∗) with N(FG∗ ). Specifying Definition 2.3.1 to this case, if p ∶X → N(FG∗ ) is a
fixed map of simplicial sets, we refer to p-cocartesian morphisms in X as G-cocartesian.

3.2.9. Definition. [BDG+, Nar17], cf. Defn. 2.3.2 An OG-∞-operad is an ∞-category
O⊗ equipped with a map of simplicial sets p ∶ O⊗ → N(FG∗ ) such that the following three
conditions hold:

(i) For all inert maps f ∈ FG∗ (A→ R,B → S) and for all objects x ∈ O⊗
⟨A→R⟩, there exists

a G-cocartesian morphism f ∶ x→ x′ lifting f . In particular, f (and specified choices)
induces a functor f! ∶ O

⊗
⟨A→R⟩ → O

⊗
⟨B→S⟩.

(ii) For all maps f ∈ FG∗ (A→ R,B → S), objects x ∈ O⊗
⟨A→R⟩ and y ∈ O⊗

⟨B→S⟩, and choices

of G-cocartesian lifts y → yV for each projection πV ∈ FG∗ (B → S,V → S) of B onto
one of its orbits V , the induced Segal map

MapfO⊗(x, y)Ð→ ∏
V ∈B/G

MapπV fO⊗ (x, yV ) (3.13)

is a weak equivalence, where MapfO⊗(−,−)↪MapO⊗(−,−) is the fiber over f .

(iii) For all objects (A→ R) with set of orbits {U → R}A/G, and all choices of functors
(πU)!, the induced Segal map

O⊗
⟨A→R⟩ Ð→ ∏

U∈A/G
O⊗

⟨U→R⟩ (3.14)

is an equivalence of ∞-categories.

3.2.10. Remark. We will call an ∞-category O⊗ satisfying (i) a G-inert (cocartesian)
fibration, and those satisfying (i) and (iii) to be of Segal type.
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4. The genuine operadic nerve

In this section, we extend the non-equivariant construction N⊗(−) ∶ sOpf → Op∞ to the
genuine equivariant setting, and prove Theorem 1.0.1. As in Section 2, this will be the
composition of a “category of operators” construction followed by the homotopy coherent
nerve.

4.1. Genuine category of operators. We begin by extending Definition 2.4.1 by
again applying the philosophy of replacing F∗ with FG∗ . We first restrict to the case of a
single color.

4.1.1. Definition. Let P ∈ sOpG be a genuine equivariant simplicial operad with a single
color. We define the genuine equivariant category of operators associated to P, denoted P⊗,
as follows. The set of objects is precisely Ob(FG∗ ). Given objects (A→ R) and (B → S) in
FG∗ , define the mapping space

P⊗ (
A
↓
R
,
B
↓
S
) = ∐

f∈FG
∗ (A,B)

∏
V ∈B/G

P (
f−1(V )
↓
V

) . (4.1)

Given composable arrows

(A→ R)
(q,f)
ÐÐ→ (B → S)

(p,g)
ÐÐ→ (C → T )

and operations

ξV ∈ P (
f−1(V )
↓
V

) , ψW ∈ P (
g−1(W )
↓
W

)

for all V ∈ B/G and W ∈ C/G respectively, the composite is given by

(ψW )W ∈C/G ○ (ξV )V ∈B/G = (ψW ○ (p∗
V
ξp(V ))V ∈g−1(W )/G)W ∈C/G

. (4.2)

Heuristically, we need to pull back the operations ξV along pV until they line up with
the orbits of C, and then compose as in the non-equivariant case (2.8). Explicitly, this is
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the composite of the following arrows in sSet:

P⊗(B,C) ×P⊗(A,B) =
⎛

⎝
∐

g∈FG
∗ (B,C)

∏
W ∈C/G

P (
g−1(W )
↓
W

)
⎞

⎠
×
⎛

⎝
∐

f∈FG
∗ (A,B)

∏
V ∈B/G

P (
f−1(V )
↓
V

)
⎞

⎠

= ∐
(g,f)

⎡
⎢
⎢
⎢
⎢
⎣

∏
W ∈C/G

P (
g−1(W )
↓
W

) × ∏
V ∈B/G

P (
f−1(V )
↓
V

)

⎤
⎥
⎥
⎥
⎥
⎦

∆
Ð→ ∐

(g,f)

⎡
⎢
⎢
⎢
⎢
⎣

∏
W ∈C/G

⎛

⎝
P (

g−1(W )
↓
W

) × ∏
V ∈g−1(W )/G

P (
f−1(p(V ))

↓
p(V )

)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

p
V
Ð→ ∐

(g,f)

⎡
⎢
⎢
⎢
⎢
⎣

∏
W ∈C/G

⎛

⎝
P (

g−1(W )
↓
W

) × ∏
V ∈g−1(W )/G

P (
p∗
V
f−1(p(V ))
↓
V

)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

µ
Ð→ ∐

(g,f)
∏

W ∈C/G
P (

gf−1(W )
↓
W

)

↪ ∐
h∈FG

∗ (A,C)
∏

W ∈C/G
P (

h−1(W )
↓
W

) , (4.3)

where µ is the genuine operadic composition map, and pV denotes the map V → p(V ) in
OG as well as the associated cartesian arrow in ΣG.

Now, let P be an arbitrary genuine equivariant simplicial operad, with coefficient system
of colors C. The genuine equivariant category of operators associated to P, denoted P⊗, is
defined as follows. The set of objects is the set of equivariant tuples8

(
A
↓
R
, (xU)U∈A/G)

with xU ∈ CU (compared to C-signatures from (3.9), only the “input” orbits are labeled).
Given such tuples (A→ R, (xU)) and (B → S, (yV )), we define the mapping spaces

P⊗ ((
A
↓
R
, (xU)) , (

B
↓
S
, (yV ))) = ∐

f∈FG
∗ (A,B)

∏
V ∈B/G

P (
f−1(V )
↓
V

, ((q∗
U
xq(U))U∈f−1(V ); yV )) . (4.4)

Composition is defined analogously as in (4.3), by using the naturality of P with respect to
quotient maps in ΣG as in (4.5), for V ∈ p∗B/G and U ∈ q∗A/G (cf. (3.3)).

(
f−1(p(V ))

↓
p(V )

)
f=(p

V
,id)

ÐÐÐÐÐ→ (
p∗
V
(f−1(p(V )))

↓
V

) , (4.5)

P (
f−1(p(V ))

↓
p(V )

, ((q∗
U
xq(U)); yp(V )))

p
V
Ð→ P (

p∗
V
(f−1(p(V )))

↓
V

, (p∗
V
(q∗
U
Xq(U)) ;p∗

V
Yp(V ))) ,

where we observe the following.

p∗
V
((q∗

U
xq(U))U∈f−1(p(V ))

) = (p∗
Ü
q∗
p(Ü)xqp(Ü))

Ü∈p∗
V
(f−1(p(V )))

= ((qp)∗
Ü
xqp(Ü))Ü

8Following Definition 5.2.1, this will be the set of objects of the category denoted ΣG ≀ C.
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4.1.2. Convention. The results in this section about P ∈ sOpG will have proofs which
only speak to the case where P has a single color. The methods can be carried through
without issue — beyond excessive bookkeeping — into the many-colored setting (following
(3.11)).

The following is the main result of this subsection.

4.1.3. Proposition. For P ∈ sOpG, P⊗ is a simplicial category, and the construction
extends to a functor (−)⊗ ∶ sOpG → sCat.

Proof. It remains to check associativity, unitality, and functoriality.
The identity on an object A is given by the identity map in FG∗ (A,A) along with the

identity in each P(U → U), U ∈ A/G, and hence unitality of P⊗ follows from the naturality
of the unitality of P with respect to orbit maps.

Associativity will follow from the associativity of cartesian lifts in split Grothendieck
fibrations and the associativity of P. Specifically, given arrows

(
A
↓
R
)
f=(q,f)
ÐÐÐÐ→ (

B
↓
S
)
g=(p,g)
ÐÐÐ→ (

C
↓
T
)
h=(r,h)
ÐÐÐ→ (

D
↓
M
) ,

in FG∗ , (3.4) implies
hg−1(Q) = ∐

W ∈h−1(Q)/G
r∗
W
(g−1(r(W ))) (4.6)

for all Q ∈ D/G, and hence for all V̈ ∈ hg−1(Q)/G ⊆ r∗Bg/G, the following triangle
commutes.

V̈ r(V̈ )

pr(V̈ )

rV̈

(pr)V̈ pp(V̈ )
(4.7)

Thus, for each Q ∈D/G, we have a factorization of (rp)V̈ ○∆ as

∏
V ∈B/G

P (
f−1(V )
↓
V

)

∏
W ∈h−1(Q)/G,
V ∈g−1(r(W ))/G

P (
f−1(p(V ))

↓
p(V )

) ∏
W,

V̈ ∈r∗
W
g−1(r(W ))/G

P (
f−1(pr(V̈ ))

↓
pr(V̈ )

)

∏
W,V

P (
p∗
V
f−1(p(V ))
↓
V

) ∏
W,V̈

P (
p∗
r(V̈ )

f−1(pr(V̈ ))
↓

pr(V̈ )
) ∏

W,V̈

P (
(rp)∗

V̈
f−1(pr(V̈ ))
↓
V̈

) .

∆∆

∆

p
V (rp)V̈

∆ rV̈

(4.8)
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Hence, by the naturality of the multiplication µ in our genuine equivariant operad P
with respect to quotient maps, either order of the iterated composition factors through
the simplicial set

∏
Q∈D/G

⎛

⎝
P (

h−1(Q)
↓
Q

) × ∏
W ∈h−1(Q)/G

P (
r∗
W
g−1(r(W ))
↓
V

) × ∏
V̈ ∈hg−1(Q)/G

P (
(pr)∗

V̈
f−1(pr(V̈ ))
↓
V̈

)
⎞

⎠
, (4.9)

and thus associativity of P⊗ follows from associativity of P.
Lastly, functoriality is immediate, as maps of genuine equivariant operads are natural

with respect to maps in OG and preserve multiplication.

4.1.4. Example. The terminal genuine equivariant operad Comm ∈ sOpG has a single
color and Comm(−) = ∗. The associated genuine category of operators Comm⊗ is simply
all of FG∗ , generalizing [Lur17, Example 2.1.1.18].

4.2. Proof of Theorem 1.0.1. As indicated previously, we make the following definition.

4.2.1. Definition. [cf. Definition 2.4.2] Given P ∈ sOpG, the genuine operadic nerve of
P, denoted N⊗P, is the homotopy coherent nerve of the genuine category of operators

N⊗P = N(P⊗).

To prove Theorem 1.0.1, we now need to show that N⊗P is an OG-∞-operad whenever
P is locally fibrant, and that N⊗ extends to a functor, sending maps of genuine operads
to maps of OG-∞-operads. We take care of the first requirement now, extending [Lur17,
Prop. 2.1.1.26].

4.2.2. Theorem. If P ∈ sOpG is locally fibrant, then N⊗(P) is a OG-∞-operad.

Proof. Since P is locally fibrant, P⊗ is fibrant in sCat (as Kan complexes are closed under
products and coproducts), and hence N⊗(P) is an ∞-category. Moreover, the unique
arrow P → Comm induces a map p ∶ N⊗(P)→ N(FG∗ ) which is an inner fibration by [Lur09,
Prop. 2.3.1.5].

Now, for all inert maps f ∶ A→ B in FG∗ , we have a canonical map in P⊗(A,B), given
by isomorphisms in each component, which we identify with a 1-simplex f̂ in N⊗(P) lying
over f . By [Lur09, Prop. 2.4.1.10], f̂ is G-cocartesian, and hence (i) is satisfied.

For (ii), we note in particular that for all B and all orbits V ∈ B/G, there exist
G-cocartesian f̂V ∈ P⊗(B,V ) over the projection πV ∶ B → V in FG∗ (B,V ). We must show
that for all maps g ∶ A→ B in FG∗ , the product of canonical post-composition maps

MapgP⊗(A,B)Ð→ ∏
V ∈B/G

MapπV gP⊗ (A,V ) (4.10)

is a weak equivalence. In fact, it is clear that this map is an isomorphism.
Finally, we need to show that for all objects (A→ R) in FG∗ , the induced map

N⊗(P) ×N(FG
∗ ) {A→ R}→ ∏

U∈A/G
N⊗(P) ×N(FG

∗ ) {U → R} (4.11)
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is an equivalence. However, this is again an isomorphism. First, we note that for any
G-orbit U and object U → R in FG∗ , the simplicial category P⊗⟨U→R⟩ has a single object

(U → R) with mapping space P(U
=
Ð→ U). More generally, for any object in FG∗ of the form

(A ∐B → R), P⊗⟨A∐B→R⟩ also has a single object (A ∐B → R), with mapping space

P⊗⟨A∐B→R⟩(A∐B,A∐B) = ∏
U∈A/G

P (
U
↓
U
)× ∏

V ∈B/G
P (

V
↓
V
) = P⊗⟨A→R⟩(A,A)×P⊗⟨B→R⟩(B,B). (4.12)

The result then follows as the homotopy coherent nerve N preserves pullbacks and products.

4.2.3. Remark. Following Remark 2.4.6, there is a notion of a pre-OG-∞-operad consisting
of marked simplicial sets over FG∗ marked with inert morphisms. Analogously to the non-
equivariant case, the above proof shows that N⊗ is a functor sOpG → PreOp∞,G.

The first main theorem now follows.

Proof of Theorem 1.0.1. It remains to show functoriality. As [Lur17, Remark 2.1.2.9]
naturally generalizes in the OG-∞ setting to say that a map preserves all inert maps if
and only if it preserves all inert maps over the projection maps πV ∶ B → V , functoriality
follows exactly as in the proof of Proposition 2.4.5.

5. Genuine operadic op-fibrations

In this section, we prove Theorem 1.0.2 about a specialization of the functor N⊗. Here, we
twice extend the work of [Her00] and [Heu] — once each for equivariance and simplicial
enrichment — to define genuine operadic op-fibrations in sOpG in Section 5.1, a general-
ization of Grothendieck op-fibrations of categories. Section 5.2 then recalls an appropriate
notion of “symmetric monoidal (simplicial) category” in this genuine equivariant context,
dubbed (simplicial) EΣG-algebra, and shows that there is a faithful inclusion generalizing
SymMon ↪ Op. The remaining two subsections finish the proofs of Theorems 1.0.2 and
1.0.3, by identifying the image of simplicial EΣG-algebras in genuine equivariant operads
and showing that the genuine operadic nerve sends this notion of symmetric monoidal
category to the OG-∞-categorical version.

5.1. Genuine operadic op-fibrations. In this subsection, we define genuine operadic
op-fibrations.

5.1.1. Definition. Let F ∶P → Q be a map in sOpG, C ∈ ΣG, and ξ ∈ P(A→ R, ((xU);xR)).
The operation ξ called level F -cocartesian if, for every compatible (B ∐ R → S) ∈ ΣG,
YV ∈ CV for each V ∈ B/G, and YS ∈ CS, the commuting diagram below is a strict pullback
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of simplicial sets.

P (
B∐R
↓
S
, (((yV ), xR); yS)) P (

B∐A
↓
S
, (((yV ), (xU)); yS))

Q (
B∐R
↓
S
, (((F (yV )), F (xR));F (yS))) Q (

B∐A
↓
S
, (((F (yV )), (F (xU)));F (yS)))

ξ∗

F F

F (ξ)∗

(5.1)
The operation ξ is called F -cocartesian if it is level F -cocartesian and additionally for any
q ∶ (B → S)→ (A→ R) in ΣG, q∗ξ is level F -cocartesian.

If F ∶ P → Comm is the unique map to the terminal genuine operad, we refer to
F -cocartesian operations simply as cocartesian.

5.1.2. Remark. We make several remarks.

� We are being slightly cavalier with the ordering of the input colors and source G-sets.
However, as it is clear that ξ ∈ P(A→ R) is F -cocartesian iff σ ⋅ ξ is F -cocartesian
for any isomorphism σ in ΣG, we will often omit these distinctions.

� We will mostly be restricting to working with F -cocartesian operations when F ∶P →
Q is a local fibration, i.e. each

P(
⇀C)→ Q(F⇀C)

is a Kan fibration in sSet for all C(P)-signatures ⇀C. In particular, any map between
locally discrete genuine operads is a local fibration.

If F is a local fibration, then (5.1) is a pullback iff it is a homotopy pullback. As
such, in this restricted setting, we can bypass defining the more homotopical notion
of an “F -h-cocartesian” operation, where we instead require (5.1) to be a homotopy
pullback.

� We can repackage our definition of F -(h)-cocartesian to be of the form in (2.3)
(and [Heu, Defn. 1.3.1]) if we use the combinatorics of the genuine G-trees ΩG and
genuine equivariant dendroidal sets dSetG from [Per18, BPe], and an appropriate
enhancement of the homotopy coherent nerve to a functor N ∶ sOpG → dSetG: The
notion of level F -h-cocartesian can be captured by a similar ξ-restricted outer horn
lifting condition on the map N(F ) (cf. [Lur09, Lemma 2.4.1.10(ii)]).

ΩG[C]

ΛC[T ] N(P)

Ω[T ] N(Q)

ξ

F
∃

(5.2)
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However, this perspective, while meaningful, will not play a large role in the proofs
that follow. Thus for the sake of brevity and continuity, we will not elaborate on
this description.

We collect several results about F -cocartesian operations.

5.1.3. Lemma. Let F ∶ P → Q be a map between genuine equivariant operads. The
following hold:

(i) An F -cocartesian operation ξ ∈ P(R
=
Ð→ R, (x; y)) is an isomorphism iff its image in

Q is an isomorphism.

(ii) Sequential composites of F -cocartesian arrows are F -cocartesian: If the operations

ξ ∈ P (
A∐U0
↓
R
, (((xU), xU0

);xR)) and ψ ∈ P (
B
↓
U0

, ((xV );xU0))

are F -cocartesian, then so is their composite

ψ ○U0 ξ ∈ P (
B∐A
↓
R
, (((xV ), (xU));xR)) .

(iii) Parallel composites of F -cocartesian arrows have a similar universal property: If the
operations

ξR ∈ P (
A
↓
R
, ((xR,U);xR))

are all F -cocartesian for some collection of objects (A → R) ∈ ΣG, then for any
compatible (B ∐∐R → S) ∈ ΣG, yV ∈ C(P)V for each V ∈ B/G, and yS ∈ C(P)S, the
diagram below is a strict pullback of simplicial sets.

P (
B∐∐R
↓
S

, (((yV ), (xR)); yS)) P (
B∐∐A
↓
S

, (((yV ), ((xR,U))); yS))

Q (
B∐∐R
↓
S

, (((F (yV )), (F (xR)));F (yS))) Q (
B∐∐A
↓
S

, (((F (yV )), ((F (xR,U))));F (yS)))

(ξR)∗

F F

(F (ξR))∗

(5.3)

5.1.4. Definition. A map F ∶ P → Q is called a genuine operadic op-fibration if F is a
local fibration with cocartesian lifts: for any arity (A→ R) ∈ ΣG, sources xU ∈ C(P)U for
each U ∈ A/G, and operation ψ ∈ Q(A → R, ((F (xU)); yR)), there exists F -cocartesian
ξ ∈ P(A→ R, ((xU);xR)) such that F (ξ) = ψ.

F is additionally q-split if we have a chosen system of cocartesian lifts, natural in ΣG;
that is, fixed choices of colors and cocartesian arrows

(xU)
⊗(A→R) ∈ C(P)R, ξ(xU ) ∈ P (

A
↓
R
, ((xU); (xU)

⊗(A→R))) ,

such that for any arrow q∶ (B → S)→ (A→ R) in ΣG, we have ξq∗(xU ) = q∗ξ(xU ).
Lastly, if additionally the composite of chosen cocartesian arrows is again a chosen

cocartesian arrow, then F is called fully split.
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5.1.5. Definition. P ∈ sOpG is (q-split, fully split) op-fibrant if the unique map to
the terminal genuine equivariant operad Comm is a (q-split, fully split) genuine operadic
op-fibration 9.

5.1.6. Definition. Given two q-split genuine operadic op-fibrations P,P ′ → Q over the
same base, we say a functor F ∶ P → P ′ is a map of op-fibrations if F preserves cocartesian
arrows.

Following Definition 2.1.1, let Fibq(Q) ⊆ Fibf(Q) denote the subcategories of OpG ↓ Q
spanned by q-split and fully-split operadic op-fibrations over Q, respectively, with maps of
op-fibrations.

5.1.7. Lemma. Suppose P is op-fibrant. Then an operation ξ ∈ P(A→ R, ((xU);xR)) is
cocartesian iff the map

P (
R
↓
S
, (xR; yS))

ξ∗

Ð→ P (
A
↓
S
, ((xU); yS))

is an isomorphism for all S and yS ∈ CS.

Proof. Given (B ∐R → S) and (yV ) as in (5.1), let ψ be a cocartesian arrow with source
((yV ), xR) and arity (B ∐ R → S). The result then follows from Lemma 5.1.3(ii) and
2-out-of-3 for isomorphisms.

We end this subsection by comparing the above notion with the original 1-categorical
notions.

5.1.8. Remark. When G = ∗, a functor p∶P → P ′ between discrete operads is a genuine
operadic op-fibration iff it is an operadic fibration in the sense of [Heu]. If P and P ′

are in fact categories, then the notions of p-cocartesian and (q-split, fully-split) genuine
operadic op-fibrations correspond to the notions of p-cocartesian and (q-split, fully-split)
Grothendieck op-fibrations as in Definition 2.1.1.

5.2. Genuine equivariant symmetric monoidal categories. We now quickly
recall the main definitions from [BPd], namely a model for genuine equivariant symmetric
monoidal categories. Further details, discussions, and examples, as well as comparisons to
other models, can be found there.

A classic symmetric monoidal structure on a category V encodes a way to multiply
elements of V together. In particular10, for any tuple (x1, . . . , xn) of objects of V , there is
an associated object ⊗ixi. For any bicomplete closed symmetric monoidal category V , in
particular V = sSet, there is also a V-enriched notion, where the multiplication map (and
associated natural transformations) are required to be V-enriched.

Equivariantly. we make a similar definition, but starting with a coefficient system of
simplicially enriched categories. By Definition 2.1.4, this is equivalent to a split simplicial

9This is a significantly stronger notion of fibrant than what is required to model genuine equivariant
higher algebra: We expect there to be a (projective) model structure on sOpG Quillen equivalent to the
model structures on sOpG,dSetG, etc. from [Per18, BPe], where P is fibrant iff P is locally fibrant.

10Here, we are using the “unbiased” definition of symmetric monoidal category, following e.g. [Lei04].
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Grothendieck fibration V → OG. First, we need to define an appropriate notion of “tuple”
in this context. Our choice is the following, generalizing Definition 3.2.1.

5.2.1. Definition. Given a set or category C → OG over the orbit category, define ΣG ≀ C

to be the pullback

ΣG ≀ C Fs ≀ C

ΣG,op Fs ≀OG.
LG

(5.4)

Objects are tuples (A→ R, (xU)) with (A→ R) ∈ ΣG and for each U ∈ A/G, xU ∈ CU .

Giving OG and ΣG the discrete simplicial enrichment, we define ΣG ≀C for any simplicial
category C → OG over the orbit category to be the above pullback, taken in sCat.

Unpacking, the mapping spaces (or hom-sets) are given by

MapΣG≀C ((
B
↓
S
, (yV )) , (

A
↓
R
, (xU))) = ∐

(q,f)∈ΣG(A,B)
MapCV (yV , q

∗
V xq(V )) (5.5)

where q, qV are slight abuses of notation for the composite qf−1, resp. restricted to V .

5.2.2. Example. Objects in ΣG ≀ ΣG are “height 2 G-trees”, an example of which is
displayed below.

V3

U3

U2

V2V1

U1

R

(5.6)

5.2.3. Remark. [cf. Warning 3.2.6] If C = C is a coefficient system of sets, then we have
an isomorphism of fibrations over OG

ΣG,op
C ≃ ΣG ≀ C ×OG

C.

For any C-signature ⇀C from (3.9), ΣG ≀C records the labelings xU ∈ CU on the orbits of the
source, while the remaining C records the label xR ∈ CR on the target orbit.

The operation ΣG ≀(−) acts on the categories of Grothendieck fibrations from Definition
2.1.1.

5.2.4. Proposition. [BPd] The endofunctor ΣG ≀ (−) from Definition 5.2.1 is a monad
on the category of fully split simplicial Grothendieck fibrations over OG.

In particular, we have a simplicially enriched functor

ΣG ≀ΣG ≀ V
σ0

Ð→ ΣG ≀ V , (
A
↓
R
, (

BU
↓
U
, (xU,V )))z→ (

∐BU
↓
R
, (xU,V )) .

We use this monad to define our algebraic structure.
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5.2.5. Definition. A simplicial q-split EΣG-algebra is a fully split simplicial Grothendieck
fibration V → OG equipped with the structure of a pseudo-algebra over the monad ΣG ≀ (−)

in the (2,1)-category of fully split simplicial fibrations over OG and maps of split fibrations.
Unpacking, this is the data of a simplicially-enriched functor of split fibrations over OG

ΣG ≀ V
⊗
Ð→ V

and a natural simplicially enriched associativity isomorphisms

ΣG ≀ΣG ≀ V ΣG ≀ V

ΣG ≀ V V

⊗

σ0 ⊗α

⊗

which are unital and satisfy a “pentagon identity”.
If α is the identity, we say V is fully split or G-permutative.

We will often abuse notation, and omit the adjectives “simplicial” and “q-split”.

5.2.6. Remark. What is written above differs from the more general definition given in
[BPd]. However, when restricting to the q-strict case, i.e. when we require that ⊗ is a map
of split fibrations, the two definitions agree: functors Vop →Wop of split fibrations are the
same data as functors V →W of split fibrations, even though they are not the same in
general.

Definition 6.1.1 below provides a large class of examples: any symmetric monoidal
category generates an EΣG-algebra.

5.2.7. Definition. A strong q-split monoidal functor between two q-split EΣG-algebras
V and W is a functor F ∶ V → W of split fibrations over OG together with a natural
isomorphism

ΣG ≀ V ΣG ≀W

V W

F

⊗ ⊗ρ

F

(5.7)

which is compatible with the associativity isomorphisms of V and W.
We denote the category of simplicial q-split (resp. fully-split) EΣG-algebras and strong

q-split monoidal functors by sSymMonqG (resp. sPermG), and sSymMonqG,f (resp. sPermG,f)
for the full subcategories spanned by the locally fibrant V.

In [Bon], we establish the following coherency result using an extension of Mac Lane’s
construction, and as a consequence we have that “any diagram of associators commutes”.

5.2.8. Theorem. The inclusion sPermG,f ↪ sSymMonqG,f is an equivalence of categories.

We are now in position to extend the construction SymMon↪ Op(Set) into the genuine
equivariant setting.
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5.2.9. Remark. Given any simplicial split Grothendieck fibration V , we have an additional
“fiberwise” mapping space functor

Map● ∶ V ×OG
V
op
Ð→ sSetop (U,x, y)z→MapVU (x, y), (5.8)

where Vop is the “fiberwise opposite” category, i.e. the Grothendieck fibration associated
to

Oop
G Ð→ sCat, U z→ VopU . (5.9)

A map (V,x, y) → (U,x, y) in V ×OG
V
op is given by a map q ∶ V → U in OG and maps

f ∶ x→ q∗x, g ∶ q∗y → y, and Map● sends this triple to the composite

MapVU (x, y)
q∗

Ð→MapVV (q
∗x, q∗y)

f∗g∗
ÐÐ→MapVV (x, y); (5.10)

an easy adjunction argument shows this functor is in fact enriched.

5.2.10. Proposition. There is a faithful functor P(−) ∶ sSymMonqG → sOpG from q-split
EΣG-algebras to multicolored genuine equivariant operads.

Proof. Fix an EΣG-algebra V , and let C denote the coefficient system of objects. Define
the C-colored G-symmetric sequence PV to be the (opposite of the) following composite:

P
op
V ∶ ΣG,op

C ≃ ΣG ≀ C ×OG
Cop → ΣG ≀ V ×OG

V
op ⊗
Ð→ V ×OG

V
op Map●
ÐÐÐ→ sSetop. (5.11)

Explicitly, PV(A → R, ((xU);xR)) ∶= MapVR
((xU)⊗A→R, xR), and for arrows f ∈ ΣG

C as in
(3.10), define

PV(f)∶MapVR
((xU)

⊗(A→R), xR)Ð→MapVS
((q∗V xq(V ))

⊗(B→S), q∗xR),

ϕz→ ((q∗V xq(v))
⊗(B→S) =

Ð→ q∗((xU)
⊗(A→R))

q∗(ϕ)
ÐÐÐ→ q∗(xR))

where the first map in the image of ϕ is a bijection since ⊗ is a map of split fibrations.
The composition and associativity of V endow this genuine equivariant symmetric

sequence with the structure of a genuine operad, via maps of the form

MapVR
((xU)⊗(A→R), xR) ×∏U MapVU

((xU,V )⊗(BU→U), xU)→MapVR
((xU,V )⊗(∐BU→R), xR),

(5.12)

(ϕ, (ψU))↦ ((xU,V )⊗(∐BU→R) α
Ð→ ((xU,V )

⊗(BU→U)
)
⊗(A→R) (ψU )⊗(A→R)

ÐÐÐÐÐÐ→ (xU)⊗(A→R) ϕ
Ð→ xR) .

(5.13)
Associativity and unitality of PV follow from the coherence of associativity and unitality
of V .
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Now, suppose we have a strong q-split map (F, ρ) ∶ (V ,⊗)→ (W ,⊗). Define F ∶ PV →
PW on an object (A→ R, ((xU);xR)) ∈ ΣG

C by

MapVR
((xU)⊗(A→R), xR)

F
Ð→MapWR

(F ((xU)⊗(A→R)), F (xR))
ϕ∗

Ð→MapWR
((F (xU))

⊗(A→R)
, F (xR)) .

(5.14)
A simple diagram chase, using the fact that V, W, and F are all q-split, shows that this
map is natural in (A → R, ((xU);xR)). Moreover, F is a map of genuine equivariant
operads: For any compatible collections as in (5.13), we have the diagram below.

(F (xU,V ))
⊗(∐BU→R)

((F (xU,V ))⊗(BU→U))
⊗(A→R)

(F ((xU,V )⊗(BU→U)))
⊗(A→R)

(F (xU))
⊗(A→R)

F ((xU)⊗(A→R)) F (xR)

F ((xU,V )⊗(∐BU→R)) F (((xU,V )⊗(BU→U))
⊗(A→R)

) F ((xU)⊗(A→R)) F (xR)

ρ

α ρ ψU

ρ ρ

ρ ϕ

α ψU ϕ

(5.15)
The left square is precisely the compatibility condition for ρ and hence commutes, while
the middle square commutes by the naturality of ρ.

Finally, this functor is faithful, as the original map F can be recovered from F ∶ PV → PW
by its actions on the objects (U → U, ((xU); yU)).

We record a result of this proof.

5.2.11. Lemma. Fix an EΣG-algebra V. Let ⇀C = (A→ R, ((xU); (xU)⊗(A→R))) ∈ ΣG
CV

be a

C(V)-signature, and

ξ ∈ PV(
⇀C) = MapVR

((xU)
⊗(A→R), (xU)

⊗(A→R))

the identity. Then for all q ∶ S → R in OG, q∗ ∶ PV(C)→ PV(q∗C) sends ξ to the identity.

5.2.12. Remark. We note that the definition given of PV is not well-defined unless (V ,⊗)

is q-split, and F ∶ PV → PW is not even natural in (A→ R) ∈ ΣG unless F itself was q-split.

5.3. Proof of Theorem 1.0.3. In this section, we characterize the image of P(−) in
terms of operadic op-fibrations, and build an inverse functor. Specifically, we prove the
following technical version of Theorem 1.0.3.

5.3.1. Theorem. The faithful inclusion of categories

sSymMonqG ↪ sOpG,

from Proposition 5.2.10 restricts to compatible isomorphisms of categories

sPermG,f Fibf(Comm) sOpG,f

sSymMonqG,f Fibq(Comm) sOpG,f ,

P(−)
≅

≃ ≃

P(−)
≅

(5.16)
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where Fibf(Comm) ⊆ Fibq(Comm) ⊆ sOpG are defined as in Definition 5.1.6.

This is accomplished in three mains steps: Proposition 5.3.3 establishes that the
map P(−) restricts as above, Proposition 5.3.6 proves that we have a well-defined map
in the opposite direction, and the proof of Theorem 5.3.1 follows from identifying the
compatibility between the two constructions.

First, we identify the cocartesian arrows in PV .

5.3.2. Lemma. For all (A → R) ∈ ΣG and tuples of objects (xU)U∈A/G with xU ∈ VU ,
an operation ξ ∈ PV(A → R, ((xU);xR)) is cocartesian iff ξ ∶ (xU)⊗(A→R) → xR is an
isomorphism in VR.

Proof. This follows immediately from the composition structure of PV from (5.13).

5.3.3. Proposition. For any q-split (resp. fully split) EΣG-algebra V, PV is a q-split
(resp. fully split) op-fibrant genuine equivariant operad.

Proof. The identity map

id = ξ(xU ) ∈ PV ((xU), (xU)
⊗(A→R)) = MapVR

((xU)
⊗(A→R), (xU)

⊗(A→R))

is a cocartesian lift by Lemma 5.3.2. Moreover, Lemma 5.2.11 then implies that these
choices are natural in (A → R) ∈ ΣG. Finally, we observe that the composite of chosen
cocartesian arrows is an instance of the natural isomorphism α, and thus these composites
are all the identity iff α is the identity.

We will now show that these split op-fibrant genuine equivariant operads are precisely
the image of sSymMonqG,f by defining an inverse operation.

5.3.4. Definition. Fix a q-split op-fibrant object P ∈ sOpG,f with coefficient system of
colors C. Define the coefficient system V = V[P] by setting VU to be the simplicial category
with object set CU and mapping spaces

MapVU
(x, y) = P (

U
↓
U
, (x; y)) .

Given q ∶ V → U in OG, define the restriction map VU → VV by

xz→ q∗x, P (
U
↓
U
, (x; y))

q∗

Ð→ P (
V
↓
V
, (q∗x; q∗y)) .

Given (A→ R) ∈ ΣG and objects xU ∈ CU for each U ∈ A/G, let (xU)⊗(A→R) denote the
codomain of the chosen cocartesian arrow associated to (A → R, (xU)), and denote the
arrow itself by

ξ(xU ) ∶ (xU)Ð→ (xU)
⊗(A→R), ξ(xU ) ∈ P (

A
↓
R
, ((xU); (xU)

⊗(A→R))) .
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We define the genuine monoidal product ΣG ≀ V
⊗
Ð→ V on objects by (A → R, (xU)) ↦

(xU)⊗(A→R). Given an arrow11, (q, (fV )) ∶ (B → S, (yV ))→ (A→ R, (xU)) in ΣG,op
C define

the associated arrow in V by

(yV )
⊗(B→S) (fV )⊗(B→S)

ÐÐÐÐÐÐ→ (q∗V xq(V )) = q
∗ ((xU)

⊗(A→R))
q
Ð→ (xU)

⊗(A→R),

where (fV )⊗(B→S) is the unique operation (via Lemma 5.1.3(iii)) such that the following
commutes

(yV ) (q∗V xq(V )) (q∗V xq(V ))⊗D

(yV )⊗D,

(fV )

ξ(yV )

ξq∗(xU )

∃! (fv)⊗D

(5.17)

and we know (q∗V xq(V )) = q∗((xU)⊗C) since P is q-split.

5.3.5. Lemma. The above multiplication map ⊗ ∶ ΣG ≀ V[P] → V[P] is functorial, and
moreover a map of split fibrations over OG.

Proof. The “moreover” statement follows by the naturality of the chosen cocartesian
arrows. Given composable maps

(E, (zW ))
(p,(gW ))
ÐÐÐÐ→ (D, (yV ))

(q,(fV ))
ÐÐÐÐ→ (C, (xU))

in ΣG ≀ V[P], the first claim holds since the following diagram commutes,

(zW ) (yW ) = p∗(yV ) p∗ ((xV )) = (xW )

(zW )⊗E (yW )⊗E = p∗ ((yV )⊗D) p∗ ((xV )⊗D) = (xW )⊗E,

(gW )

ξ(zW )

p∗((fV ))

ξ(yW ) p∗ξ(yV ) p∗ξ(xV )
ξ(xW )

(gW )⊗E p∗((fV )⊗D)

(5.18)

where
xV = q∗V xq(V ), xW = p∗Wxp(W ), yW = p∗Wyp(W ).

5.3.6. Proposition. For P ∈ sOpG,f q-split (resp. fully split) op-fibrant, (V[P],⊗) is a
q-split (resp. fully split) EΣG-algebra

Proof. Let C be the coefficient system of colors associated to P. Consider an element
(A→ R, (BU → U, (xU,V ))) ∈ ΣG≀ΣG≀V , so xU,V ∈ CV for all V ∈ BU/G and all U ∈A/G, and

11We warn that this is now the reverse of what we saw in (3.10).
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let B = ∐BU . We will build a natural isomorphisms (xV )⊗(B→R) → ((xV )⊗(BU→U))
⊗(A→R)

and it’s inverse. Let

ξB ∶(xV )V ∈B/G Ð→ (xV )
⊗(B→R),

ξU ∶(xV )V ∈BU /G Ð→ (xV )
⊗(BU→U),

ξA ∶ ((xV )
⊗(BU→U))

U∈A/G Ð→ ((xV )
⊗(BU→U))

⊗(A→R)

denote the chosen cocartesian arrows.
First, define α ∶ (xV )⊗(B→R) → ((xV )⊗(BU→U))

⊗(A→R)
in P(A → R) to be the unique

operation (since ξB is cocartesian) such that α ○ ξB = ξA ○ (ξU).

(xV ) ((xV )⊗(BU→U)) ((xV )⊗(BU→U))
⊗(A→R)

(xV )⊗(B→R).

(ξU )

ξB

ξA

∃!α

(5.19)

Conversely, by Lemma 5.1.3(iii) there exists a unique β ∶ ((xV )⊗(BU→U))→ (xV )⊗(B→R)

in P(A→ R) such that β ○ (ξU) = ξB. Then

α ○ β ○ (ξU) = α ○ ξB = ξA ○ (ξU),

and hence Lemma 5.1.3)(iii) implies α ○ β = ξA.

Now, let γ ∶ ((xV )⊗(BU→U))
⊗(A→R)

→ (xV )⊗(B→R) in P(A → R) denote the unique
operation such that γ ○ ξA = β. We claim α and γ are inverse natural isomorphisms. We
observe that

γ ○ α ○ ξB = γ ○ ξA ○ (ξU) = β ○ (ξU) = ξB,

and hence uniqueness implies γ ○ α = id. Similarly,

α ○ γ ○ ξA ○ (ξU) = α ○ β ○ (ξU) = α ○ ξB = ξA ○ (ξU),

and again Lemma 5.1.3(iii) implies that α ○ γ = id.
Second, naturality of α and γ follow from the naturality of the chosen cocartesian

arrows ξ.
Third, unitality and the “pentagon identity” for (V[P],⊗, α) follow from analogous

arguments as above, using the uniqueness of these factorizations involving the cocartesian
arrows.

Finally, if the composite of chosen cocartesian arrows is a chosen cocartesian arrow,
then by considering (5.19) we conclude that α must be the identity.
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We may now prove Theorem 5.3.1.

Proof of Theorem 5.3.1. On objects, P(−) and V[−] are inverses by (5.1) and by
unpacking definitions and using the fact that our chosen lifts in PV are the identities.

On arrows, for any q-split strong monoidal F ∶V →W , PF sends cocartesian morphisms
to their composite with the associated component of the natural isomorphism ρ, which
is again cocartesian by Lemma 5.3.2. Conversely, any F ∶ PV → PW induces a map of
coefficient systems V →W, and if F also preserves cocartesian arrows, we define ρ(xU ) to
be the image under F of the chosen cocartesian (identity) maps ξ(xU ). It is straightforward
to check that this produces a strong q-split monoidal simplicial functor, and that these
operations are inverse on hom-sets.

5.3.7. Notation. By abuse of notation, we will use (V ,⊗) to denote either a EΣG-algebra
or its image in sOpG.

5.4. Proof of Theorem 1.0.2. We will now show that the subcategory sSymMonqG in
sOpG,f maps under N⊗ to the (1)-subcategory of G-symmetric monoidal G-∞-categories
SymMon∞,G inside the (1)-category of OG-∞-operads. The bulk of the work is in Propo-
sition 5.4.3, which translates fibration information in sOpG to fibration information in
sCat.

First, recalling Definition 3.2.9(iii) and Remark 3.2.10, we consider the following.

5.4.1. Definition. [Nar17],[BDG+] A G-symmetric monoidal G-∞-category is an ∞-
category C equipped with a map F ∶ C → FG∗ which is a cocartesian fibration in sSet of Segal
type. A monoidal functor between G-symmetric monoidal G-∞-categories is a map of
fibrations over FG∗ , i.e. it preserves cocartesian arrows. We denote this (1)-category by
SymMon∞,G.

Moving back to the category of (1)-categories briefly, we make the following definition.

5.4.2. Definition. [cf. Definition 3.2.9(iii), Remark 3.2.10] Let C → FG∗ be a (split)
simplicial Grothendieck op-fibration of categories. We say C is of Segal type if for all
objects (A→ R) ∈ FG∗ , the product of the maps induced by the (chosen) cocartesian liftings
against the inert projection maps πU ∈ FG∗ (A→ R,U → R)

C⟨A→R⟩
(πU )
ÐÐ→ ∏

U∈A/G
C⟨U→R⟩ (5.20)

is an equivalence of simplicial categories.
Extending Definition 2.1.1, we write FibfSegal(F

G
∗ ) ⊆ FibqSegal(F

G
∗ ) for the full subcategories

of Fibf(FG∗ ) ⊆ Fibq(FG∗ ) spanned by op-fibrations of Segal type.

We have the following.

5.4.3. Proposition. Let F ∶ P → Comm be a map in sOpG. Then F is a (q-split, fully
split) genuine operadic op-fibration if and only if F⊗ ∶ P⊗ → Comm⊗

= FG∗ is a (q-split,
fully split) Grothendieck op-fibration of Segal type.
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Proof. Suppose F⊗ is a (q-split, fully split) genuine operadic op-fibration. Fix (A→ R),
(B → S) in FG∗ , an arrow f = (q, f) ∈ FG∗ (A,B), and an object (A → R, (xU)) ∈ P⊗ over
(A→ R). For each V ∈ B/G, let

ξV ∶ (xU))U∈f−1(V )/G Ð→ xV , xU = q∗
U
xq(U),

denote a (chosen) cocartesian lift in P with arity (f−1(V ) → V ) and the given source.
Then the collection (ξV ) is in fact a lift of f in P⊗ with source (A→ R, (xU)).

Moreover, we claim it is F⊗-cocartesian. Given another object (C → T ), we can identify
the composition map (ξV )∗ as in the diagram below.

P⊗ ((
B
↓
S
, (xV )) , (

C
↓
T
, (zW ))) P⊗ ((

A
↓
R
, (xU)) , (

C
↓
T
, (zW )))

∐
(p,g)

∏
W ∈C/G

P (
g−1(W )
↓
W

, ((p∗
V
xp(V )); zW)) ∐

(p,g)
∏

W ∈C/G
P (

gf−1(W )
↓
W

, (xÜ); zW))

(ξV )∗

∏p∗
V
ξ
p(V )

where for each Ü ∈ (qp)∗A/G, we define the color xÜ in CÜ = C(P)Ü to be the image of
xqp(Ü) under either map below (cf. (4.7)).

Cqp(Ü) Cp∗(Ü)

CÜ

q∗
p(Ü)

(qp)∗
Ü

p∗
Ü

These maps are all well-defined by (3.4), each p∗
V
ξp(V ) is cocartesian since ξV is cocartesian,

and thus the map is an isomorphism by Lemma 5.1.3(iii).
Conversely, if F⊗ is a simplicial Grothendieck op-fibration, then the (chosen) cocartesian

arrow of P⊗ over the canonical map (A → R) → (R → R) with source (A → R, (xU)) is
precisely an operation, cocartesian by Lemma 5.1.7, for P with source (xU) and arity
(A→ R).

Lastly, naturality and composite stability of chosen lifts in fully split op-fibrant P ∈ OpG
exactly correspond to naturality and composite stability of chosen lifts in P⊗.

5.4.4. Proposition. Suppose p ∶ C⊗ → FG,∗ is a Grothendieck op-fibration of Segal type.
Then the homotopy coherent nerve N(p) of p in sSet is a cocartesian fibration of Segal
type.

Proof. Since Grothendieck op-fibrations are in particular local fibrations, N(p) is a
cocartesian fibration by [Lur09, Lemma 2.4.1.10(ii)]). As N is right adjoint, it preserves
pullbacks, products, and equivalences, and hence translates one Segal type condition to
the other.
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Putting these pieces together, we have our proof.

Proof of Theorem 1.0.2. Since the category sSymMonqG,f is isomorphic to the category
of q-split op-fibrant objects in OpG, the composite

sSymMonqG,f ↪ sOpG,f
N⊗

Ð→ Op∞,G

factors through SymMon∞,G by combining Propositions 5.4.3 and 5.4.4.

We end this section by showing that the above functor also preserves the underlying
categories.

5.4.5. Definition. Given V ∈ sSymMonqG,f , the underlying OG-category is the underlying
Grothendieck fibration V → OG.

Given a G-symmetric monoidal G-∞-category V⊗, the underlying OG-∞-category is the
cocartesian fibration given by the left pullback square below, while the underlying symmetric
monoidal ∞-category is given by the right pullback square.

V V
⊗

V⊗

Oop
G FG∗ F∗

Unpacking definitions, the following is clear.

5.4.6. Lemma. If C → B is a fully split Grothendieck fibration, then Cop,op → Bop is the
associated dual fully split Grothendieck op-fibration (cf. Remark 5.2.9).

5.4.7. Corollary. Fix (V ,⊗) ∈ sSymMonqG,f . Then N(V
op,op

) is an OG-∞-category.
Moreover, the underlying OG-∞-category associated to the G-symmetric monoidal OG-

∞-category N⊗(V ,⊗) is equivalent to N(V
op,op

), and the underlying symmetric monoidal ∞-
category is equivalent to N⊗(VG/G,⊗), the non-equivariant operadic nerve of the symmetric
monoidal simplicial category (VG/G,⊗).

Proof. The first claim follows by Lemma 5.4.6 and [Lur09, Lemma 2.4.1.10(ii)], while
the moreover follows from the straightforward check that the squares below are pullbacks
of simplicial categories.

V
op,op

(V ,⊗)⊗ (VG/G,⊗)⊗

Oop
G FG∗ F∗
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6. Examples and Algebras

As indicated in [BPc, Cor. 4.40], the usual notion of equivariant simplicial operads form
a reflexive subcategory of genuine equivariant simplicial operads. Thus Theorem 1.0.1
provides a means to convert our favorite G-operads into OG-∞-operads. In this section,
we unpack this for four prominent examples of single-colored equivariant operads.

6.0.1. Definition. [BPc, §4.3] Given O ∈ sOpG with a single color, define i∗O ∈ sOpG by

i∗O (
A
↓
R
) = (∏

r∈R
O(Ar))

G

≃ O(∣Ar0 ∣)
ΓAr0 , (6.1)

where Ar is the inverse image of r ∈ R, r0 any fixed element of R, and ΓAr = Γ(αr) the
graph of the homomorphism structure map αr ∶Hr → Σ∣Ar ∣ encoding the Hr-action on Ar.

6.0.2. Definition. We recall that a subgroup Γ ≤ G ×Σn is called a graph subgroup if
Γ∩Σn = {e}. This is equivalent to the condition that Γ is the graph of some homomorphism
G ≥H → Σn.

A simplicial G-operad O ∈ sOpG with a single color is called G-graph fibrant if for all
n ≥ 0 and all graph subgroups Γ ≤ G ×Σn, O(n)Γ is a fibrant simplicial set.

The main result of [BPc] states that the inclusion i∗ ∶ sOpG → sOpG is a Quillen
equivalence between the G-graph model structure on sOpG, where weak equivalences and
fibrations are detected on graph-subgroup fixed points, and the projective model structure
on sOpG.

6.0.3. Corollary. Suppose O ∈ sOpG is a G-graph-fibrant simplicial operad with a single
color. Then i∗O ∈ sOpG is locally fibrant, and thus there exists an associated OG-∞-operad
N⊗(O).

Moreover, composition in O⊗ = (i∗O)⊗ is defined just as in the non-equivariant category
of operators: the functor i∗ can be thought of as an encapsulation of the fact that
composition in O is well-defined when restricted to the fixed-point subspaces of this form.

6.0.4. Example. Following Example 4.1.4, for O = Comm ∈ sOpG, the associated OG-∞-
operad is simply the identity on N(FG∗ ).

6.0.5. Example. Let V be a finite-dimensional real orthogonal G-representation. The
little V -disks operad DV has n-ary operations the space of affine embeddings EmbAff

(n ×
D(V ),D(V )).

Let T be an (ordered) H-set with n-elements, and α ∶H → Σn the associated structure
map. Then

DV (n)
ΓT = DV (n)

Γ(α) = DV (T )H = EmbAff,H
(T ×D(V ),D(V )), (6.2)

and moreover this space is homotopy equivalent to the space of H-equivariant embeddings
EmbH(T,V ) (for more discussion, see e.g. [GM17, Lemma 1.2], [BH15, Thm. 4.19]).
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Thus, for any two objects (A→ G/H) and (B → G/K) in FG∗ , we see that

D⊗V (
A
↓

G/H
,
B
↓

G/K
) ≃ ∐

f ∶A→B
∏

Gb∈B/G
EmbAff,Gb(f−1(b) ×D(V ),D(V )) ∼ ∐

f ∶A→B
∏

Gb∈B/G
EmbGb(f−1(b), V ).

(6.3)
Now, we say that a map f ∶ Af → B of G-spaces is DV -admissible if for all b ∈ B, f−1(b)

has a StabG(b)-equivariant embedding into V . Given an arrow f = (q,Af , f), we note that
if f is not DV -admissible, then the f -component of D⊗V (A,B) is empty.

Asaf Horev has constructed a completely OG-∞-categorical model for the framed little
V -disks operad, and has shown it is equivalent to N⊗(DV ) as an OG-∞-operad [Hor, §3.9],
with applications to genuine equivariant factorization homology. Additional uses of the
N⊗ construction will appear in upcoming work of Horev, Inbar Klang, and Foling Zou.

6.0.6. Example. [cf. [GM17, Defn 1.2]] Let V be a finite-dimensional real orthogonal
G-representation. Let EmbV (n) denote the G-space of embeddings Emb(n × V,V ). With
the obvious composition, these assemble into the V -embeddings operad EmbV .

Now, let RV ⊆ EV (1) denote the subspace of distance reducing embeddings. A Steiner
path is a map h ∶ I → RV with h(1) = id; let PV denote the G-space of Steiner paths.
There is a natural “evaluation at 0” map ε0 ∶ PV → RV . Let KV (n) denote the G-space of
ordered n-tuples of Stein paths (hi) such that ε0(hi) are all distinct. With composition
defined by amalgamation of paths pointwise, these form the V -Steiner operad KV .

We observe that for all H-sets T with n-objects and associated structure map α ∶H →
Σn,

KV (n)
ΓT = KV (n)

Γ(α) = KV (T )H (6.4)

is equal to the set of “H-stable T -tuples of ε0-distinct Steiner paths”; that is, T -indexed
tuples of Steiner paths (ht) with distinct ε0-values and g.hg−1t = ht for all g ∈H and t ∈ T .

Additionally, by [GM17, Lemma 1.5], we have a G-graph equivalence of operads
DV → KV , and so KV (n)ΓT ∼ EmbH(T,V ).

6.0.7. Example. For any G-set A, let EA denote the associated chaotic G-category, with
object G-set A and a unique morphism between any two objects. Now let PG denote the
equivariant Barratt-Eccles operad from [GM17, GMM17], with PG(n) = Cat(EG,EΣn) =

ESet(G,Σn). Then for any graph subgroup Γ ≤ G×Σn, PG(n)Γ ≃ E (Set(G,Σn)
Γ), and so

(PG)
⊗ (

A
↓
R
,
B
↓
S
) ≃ ∐

(q,f)
∏

V ∈B/G
E (Set(G,Σ∣f−1(v0)∣)

Γ
f−1(v0)) .

6.1. G-symmetric monoidal G-∞-category of strict G-objects. We investigate
the effects of these constructions on a fundamental class of EΣG-algebras.

6.1.1. Definition. [cf. [BPd]] Let (V ,◻) be an (unbiased) symmetric monoidal simplicial
category, and let OG ≀ V → OG denote the simplicial Grothendieck fibration associated to
the functor

Oop
G Ð→ sCat, U z→ VG⋉U ,
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where G ⋉ U denotes the action groupoid of G on U . This is naturally a simplicial
EΣG-algebra, denoted OG ≀ V

◻, via the composition

ΣG ≀ (OG ≀ V)
≃
Ð→ OG ≀ (Σ ≀ V)

OG≀ ◻
ÐÐÐ→ OG ≀ V . (6.5)

Explicitly, an object in the source is equivalent to the data

(
A
↓
R
,G ⋉A

X
Ð→ V) ,

and the composite (6.5) is given on objects by

(A→ R,X)⊗(A→R) = C◻
∗X, C◻

∗X(r) =⊗
Ar

xa,

where C ∶A→ R is as given, and C◻
∗ is the indexed monoidal product of [HHR16, §A.3.2].

On mapping spaces, this is given by

MapΣG≀OG≀V ((
B
↓
S
, Y ) , (

A
↓
R
, X)) MapOG≀V ((S,D

⊗
∗ Y ), (R,C◻

∗X))

∐
(q,f)

MapVG⋉B (Y, q∗X) ∐
q

MapVG⋉R (D◻
∗Y,D

◻
∗(q

∗X)) ,

⊗

∐D◻
∗

(6.6)

where C ∶A→ R and D∶B → S are as given, the equality is given by adapting (5.5) to our
case of C = OG ≀ V, and D◻

∗(q
∗X) is naturally isomorphic to q∗(C◻

∗X) by [HHR16, Prop.
A.31].

Now, the associated genuine category of operators (OG ≀ V
◻,⊗)⊗ has objects (A →

R,G ⋉A
X
Ð→ V), and, following (4.4) and (6.6), mapping spaces of the form

Map ((
A
↓
R
, G ⋉A

X
Ð→ V) , (

B
↓
S
, G ⋉B

Y
Ð→ V)) = ∐

(q,f)∈FG
∗ (A,B)

∏
V ∈B/G

MapVG⋉B ((fV )
◻
∗ f

∗X,Y )

where
f∗X ∶G ⋉ f−1(B)→ G ⋉ q∗A

q
Ð→ G ⋉A

X
Ð→ V , fV ∶ f−1(B)→ V,

and we are using that the following square commutes up to natural isomorphism for all
covering categories p ∶ I → J and q ∶ I ′ → J ′.

VI × VJ VI∐J

VI
′
× VJ

′
VI

′∐J ′

p⊗∗×q⊗∗

≃

(p∐q)⊗∗
≃

To ensure that all of our mapping spaces are in fact Kan complexes, we need an
additional assumption on V .
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6.1.2. Definition. We say that a symmetric monoidal simplicial category is globally
fibrant if the simplicial category of strict G-objects VG is locally fibrant for every finite
group G.

We note that any symmetric monoidal topological category is globally fibrant.

6.1.3. Definition. Let (V ,◻) be a globally fibrant symmetric monoidal simplicial category.
We define the G-symmetric monoidal G-∞-category of strict G-objects in (V ,◻), denoted
V
◻
∞,G, to be N⊗(OG ≀ V

◻,⊗) the genuine operadic nerve of the genuine equivariant operad
associated to the simplicial EΣG-algebra OG ≀ V

◻.
Since action groupoids G ⋉B are equivalent to disjoint unions of groups ∐[b]∈B/GGb,

the genuine equivariant operad (OG ≀ V
◻,⊗) is locally fibrant, and thus, by Theorem 1.0.2,

V
◻
∞,G is in fact a G-symmetric monoidal G-∞-category.

We elaborate on this construction for a particular example.

6.1.4. Example. Let (V ,⊗) = (Top,∐) denote the category of compactly-generated spaces

(with compactly-generated mapping spaces). Then for G-sets U , functors G ⋉U
X
Ð→ Top

are equivalent to maps of G-spaces X → U , and under this presentation, the EΣG-algebra
structure on OG ≀Top

∐ takes the form

((
XU
↓
U
)
U∈A/G

)
⊗(A→R)

= (
∐XU
↓
R

) .

Let P denote the associated genuine equivariant operad, with colors and mapping
spaces

CU = TopG ↓ U, P (
A
↓
R
, ((

XU
↓
U
) ;

Y
↓
R
)) = MapTopG↓R (

∐XU
↓
R
,
Y
↓
R
) .

We see that the genuine category of operators (OG ≀Top
∐
)⊗ = P⊗ has objects of the form

(
A
↓
R
, (G ⋉U

XU
ÐÐ→ Top)) , or equivalently

⎛

⎝

X
↓
A
↓
R

⎞

⎠
,

and mapping spaces

Map
⎛

⎝

X
↓
A
↓
R

,

Y
↓
B
↓
S

⎞

⎠
= ∐

(q,f)
∏

V ∈B/G
MapTopG↓V (

XV
↓
V
,
YV
↓
V
) , (6.7)

where XV is the fiber of q∗X over f−1(V ), and YV is the fiber of Y over V . Unpacking
further, we see that the vertices of (6.7) are given by triples (q, f ,F ), such that the
following diagram commutes, where the two left-most and the top-middle squares are
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pullbacks.

X q∗X Xf Y

A q∗A Af B

Rq S S S

⌞

F

⌞

⌞

f

q

This construction recovers the G-symmetric monoidal G-∞-category of G-spaces under
disjoint union, as found in [Hor].

6.1.5. Remark. Let V be any globally fibrant symmetric monoidal simplicial category.
Following Corollary 5.4.7, we note that:

� the underlying OG-∞-category of V ◻∞,G is N((OG ≀ V)
op,op), without it’s monoidal

structure, and in particular the fiber over (G/G = G/G) is simply N(VG), the
coherent nerve of the category of strict G-objects in V .

� The underlying symmetric monoidal ∞-category of V ◻∞,G is N⊗((OG ≀ V )G/G,⊗) =

N⊗(VG,◻).

6.1.6. Example. For (V,◻) = (F∗,∐), the underlying OG-∞-category of F∐∗,∞,G is precisely

FG∗ .

6.1.7. Remark. There is a similarly named construction in parametrized higher category
theory, the G-∞-category of G-objects from [BDG+, Defn. 7.4]. Given any ∞-category
D, BDGNS define an OG-∞-category DG → Oop

G whose fiber over G/G is equivalent to the
functor ∞-category Fun(Oop

G ,D).
We warn that V ◻∞,G is distinct from this notion applied to the infinity category D = N(V),

even after forgetting the monoidal structure. Specifically, consider the fibers over G/G,
N(VG) and Fun(Oop

G ,N(V)). The objects in these categories differ in two important ways:

(i) Objects in N(VG) are simply objects with G-action, while those in Fun(Oop
G ,N(V))

are genuine G-objects ; and

(ii) Objects in N(VG) have a strict G-action, while those in Fun(Oop
G ,N(V)) have a

homotopy coherent Oop
G -action.

6.2. Algebras over operads. An algebra in a closed symmetric monoidal simplicial
category (V ,◻) over a simplicial operad O ∈ sOp can be recovered as a functor of simplicial
operadsO → (V ,◻), where we identify (V ,◻) with its image under the inclusion sSymMon↪
sOp that we extend in Proposition 5.2.10.

Similarly, an algebra in the simplicial category of G-objects VG over a simplicial
G-operad O ∈ sOpG can be recovered as a functor of simplicial G-operads O → (VG,◻),
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where VG is the G-enriched variation on (V ,◻): objects are G-objects in V , with mapping
G-spaces of all arrows, with G acting via conjugation.

In this short subsection, we prove Theorem 1.0.4, which translates algebras over operads
from the equivariant and simplicially-enriched setting to the G-∞-categorical one.

We first define the categories in question.

6.2.1. Definition. Given an equivariant simplicial operad O ∈ sOpG and a symmetric
monoidal simplicial category V, define the simplicial category of O-algebras in VG, denoted
AlgO(V

G), to be the simplicial category of functors FunsOpG(O, (VG,◻)), with objects maps

F ∶ O → (VG,◻) in sOpG, and mapping spaces

Nat(F,G) ⊆ ∏
x∈C(O)

MapV(F (x),G(x))

the subcomplex generated by the vertices (Φx) which form operadic natural transformations.
i.e. for all ϕ ∈ O(x1, . . . , xn;x0), the diagram below commutes.

◻
n
F (xi) ◻

n
G(xi)

F (x0) G(x0)

Φ

F (ϕ) G(ϕ)
Φx0

For P ∈ sOpG and EΣG-algebra V, we analogously define simplicial categories

AlgP(V) = FunsOpG(P, (V ,⊗)), AlgP⊗(V
⊗
) ⊆ FunsCat↓FG

∗
(P⊗,V⊗).

We note that in the case where V or V is locally fibrant, so are these simplicial categories.
Finally, essentially by construction, we have simplicially-enriched comparison maps

AlgO(V
G)Ð→ Algi∗O(i∗VG), AlgP(V)Ð→ AlgP⊗(V

⊗
).

6.2.2. Definition. For O⊗ a OG-∞-operad and C a G-symmetric monoidal G-∞-category,
define the ∞-category of O⊗-algebras in C, denoted AlgO⊗(C), to be the full subcomplex of
MapsSet↓FG

∗
(O⊗,C) spanned by the maps of OG-∞-operads.

The following observation is the key step in the proof of Theorem 1.0.4.

6.2.3. Lemma. There exists a natural transformation

sSymMon sSymMonG sOpG

sSymMonG sOpG

(−)G

OG≀(−) i∗
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Proof. This follows from unpacking definitions. Let (V ,◻) be a symmetric monoidal
simplicial category. The genuine equivariant operad i∗(VG,◻) has object coefficient system
the constant system at Ob(VG), and we define our natural transformation on objects by
sending a pair (U,X) to the diagram

∆UX ∶G ⋉U → V , u↦X, (u→ g.u)↦ (X
g
Ð→X).

By [BH20, Prop. 5.2], there is a natural isomorphism of mapping spaces

Mapi∗(VG,◻) (
A
↓
R
, ((XU);Y )) MapOG≀V (

A
↓
R
, ((∆UXU); ∆RY ))

(∏
r∈R

MapV ( ◻
C(a)=r

XU , Y ))

G

MapVG⋉R (C⊗
∗ (∆AX); ∆RY ) .≃

where XU , Y ∈ VG for each U ∈ A/G. The result follows.

Proof of Theorem 1.0.4. First, given an algebra O → (VG,◻), we have an associated
composite of locally finite genuine equivariant operads

i∗O Ð→ i∗(VG,◻)Ð→ (OG ≀ V
◻,⊗).

By functoriality, this induces a map of OG-∞-operads N⊗(O)→ V
◻
∞,G.

Second, using Definition 6.2.1 and Lemma 6.2.3, we have simplicial functors

AlgO(V
G)Ð→ Algi∗O(i∗VG)Ð→ Algi∗O(OG ≀ V

◻)Ð→ Alg(i∗O)⊗ ((OG ≀ V)
⊗) .

Third, for any simplicial categories C and D, we have a canonical map of simplicial sets

N(Fun(C,D))Ð→ Fun(NC,ND)

produced over two adjoints via the composite

τ (NFun(C,D) ×NC)→ τNFun(C,D) × τNC
ε
Ð→ Fun(C,D) × C

ev
Ð→ D,

where τ ∶ sSet→ sCat is the left adjoint of the homotopy coherent nerve N .
Combining these with Definition 6.2.2, we produce a functor of ∞-categories as desired.

NAlgO(V
G)Ð→ AlgN⊗O(V

◻
∞,G)
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