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A UNIVERSAL CHARACTERISATION OF CODESCENT OBJECTS

ALEXANDER S. CORNER

Abstract. In this work we define a 2-dimensional analogue of extranatural transfor-
mation and use these to characterise codescent objects. They will be seen as universal
objects amongst pseudo-extranatural transformations in a similar manner in which co-
ends are universal objects amongst extranatural transformations. Some composition
lemmas concerning these transformations are introduced and a Fubini theorem for code-
scent objects is proven using the universal characterisation description.

1. Introduction

A slick definition of promonoidal category [Day, 1971] is that it is a pseudomonoid in the
bicategory Prof of categories, profunctors, and natural transformations. This requires a
way of composing two profunctors F : Bop ×A → V , G : Cop × B → V , which is given by
a coend

(G · F )(c, a) =

∫ b∈B
G(c, b)× F (b, a).

Coends are often described as a coequalizer of a particular diagram involving the left
and right actions of functors of the form F : Cop × C → V . An equivalent formulation is
to define them as universal objects amongst extranatural transformations [Eilenberg and
Kelly, 1966b], a way of slightly tweaking the notion of natural transformation. In a similar
way as above, they are defined between functors F : Cop×C → E , G : Dop×D → E and act
as a mediator between the left and right actions of each functor. For example, rather than
requiring the usual naturality squares to commute, one of the axioms for an extranatural
transformation α : F

··⇒ G requires the commutativity of the following diagram.

F (b, c) F (b, b)

F (c, c) G(d, d)

F (b,f)
//

αbd
��

F (f,c)

��

αcd
//

The reader interested in investigating ends/coends further should read [Loregian, 2015].
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Our motivation in defining extranatural transformations and using them to charac-
terise codescent objects is to generalise Day’s convolution structure to the setting of
monoidal bicategories, shown in the author’s thesis. These colimits can be seen as a
2-dimensional generalisation of coends and are defined in reference to pseudofunctors
P : Aop × A → B. A slightly weaker notion of codescent object that we consider is the
bicodescent object. These objects are a type of bicolimit, having both a 1-dimensional
and 2-dimensional universal property but requiring only existence and not uniqueness of
1-cells in the 1-dimensional part.

In the first section we lay out the definition of pseudo-extranatural transformation
along with some other basic definitions. The subsequent section describes a host of useful
lemmas concerning the composition of such transformations. Following this we charac-
terise bicodescent objects as universal objects amongst pseudo-extranatural transforma-
tions before finishing with a Fubini theorem for codescent objects.

Notation and conventions. We will use the following notation for pseudofunctors
F : A → B between bicategories. The coherence cells are written

φFg,f : Fg · Ff ⇒ F (g · f)

and
φFa : Fida ⇒ idFa.

Similarly, the coherence cells for bicategories are written

rf : f · id⇒ f,

lf : id · f ⇒ f,

and
αh,g,f : (h · g) · f ⇒ h · (g · f).

Most coherence cells will not be explicitly written due to lack of space for cumbersome
composites, instead being represented by isomorphism symbols. However with these con-
ventions the full diagrams can easily be reproduced.

When considering pseudofunctors of the type P : Aop × Bop × B → C we will often
write, for example, Pabb′ for P (a, b, b′) for the image of the object (a, b, b′). Similarly, for
morphisms (f, g, g′) we will often write Pfgg′ for the image P (f, g, g′).

Bicodescent objects will be characterised up to adjoint equivalence [Gurski, 2012].

2. Pseudo-extranatural Transformations

We will define the notion of pseudo-extranatural transformation, a weak 2-dimensional
generalisation of extranatural transformations - a similar generalisation is seen in the
thesis of [Lawler, 2015]. We could generalise dinatural transformations in an analogous
way, though we do not investigate that here.

Before discussing pseudo-extranatural transformations we will set out a definition of
pseudonatural transformation for reference.
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2.1. Definition. Let F,G : A → B be pseudofunctors between bicategories. A pseudo-
natural transformation α : F ⇒ G consists of

• for each a ∈ A, a 1-cell αa : Fa→ Ga in B;

• for each f : a→ a′ in A, an invertible 2-cell

Fa Fa′

Ga Ga′

Ff
//

αa′

��

αa

��

Gf
//

αf{�

in B.

These are required to satisfy the following axioms.

• PS1 Given f : a→ a′ and g : a′ → a′′ in A, there is an equality of pasting diagrams

Fa Fa′ Fa′′

Ga Ga′ G′′

Ff
//

Fg
//

Gf
//

Gg
//

αa

��

αa′

��

αa′′

��

G(gf)

??

αf{� αg{�

φGg,f��

Fa

Fa′

Fa′′

Ga G′′

Ff
11

Fg

��

G(gf)
//

αa

��

αc

��

F (gf) //

φFg,f��

αgf{�

in B.

• PS2 Given f, f ′ : a→ a′ and β : f ⇒ f ′ in A, there is an equality of pasting diagrams

Fa Fa′

Ga Ga′

Ff ′ //

αa′

��

αa

��

Gf ′
//

Ff

��
Fβ��

αf ′{�

Fa Fa′

Ga Ga′

Ff
//

αa′

��

αa

��

Gf //

Gf ′

AA

αf{�

Gβ��

in B.



A UNIVERSAL CHARACTERISATION OF CODESCENT OBJECTS 687

• PS3 Given a ∈ A, there is an equality of pasting diagrams

Fa Fa

Ga Ga

idFa //

αa

��

αa

��

idGa
//

Fida

��

αa

&&

φFa��

rαa��
l−1
αa
��

Fa Fa

Ga Ga

Fida //

αa

��

αa

��

Gida //

idGa

AA

αida{�

φGa��

in B.

Extranatural transformations were first defined by [Eilenberg and Kelly, 1966b] for use
in their subsequent article on closed categories [Eilenberg and Kelly, 1966a]. A notion of
pseudo-extranatural transformation has been defined previously by Vidal and Tur [Vidal
and Tur, 2010], therein defined as a special case of a lax-dinatural transformation between
pseudofunctors F,G : Cop × C → D. The notion we present here is more general in the
sense that the transformations are between pseudofunctors P : A × Bop × B → D and
Q : A× Cop × C → D.

2.2. Definition. Let P : A×Bop×B → D and Q : A×Cop×C → D be pseudofunctors.
A pseudo-extranatural transformation β : P

··⇒ Q consists of

• for each b ∈ B, c ∈ C, a pseudonatural transformation β−bc : P (−, b, b)⇒ Q(−, c, c);

• for each g : b→ b′ in B, an invertible 2-cell

P (a, b′, b) P (a, b, b)

P (a, b′, b′) Q(a, c, c)

P1g1
//

P11g

��

βabc
��

βab′c

//

βagc{�

in D;

• for each h : c→ c′ in C, an invertible 2-cell

P (a, b, b) Q(a, c′, c′)

Q(a, c, c) Q(a, c, c′)

βabc′//

βabc
��

Q1h1

��

Q11h

//

βabh
{�

in D.

These are required to satisfy the following axioms.
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• EP1 Given f : b→ b′ and g : b′ → b′′ in B, there is an equality of pasting diagrams

Pab′′b

Pab′b

Pabb

Pab′′b′

Pab′′b′′

Qacc

P1g1
((

P1f1

��

βabc
vv

P11f
vv

P11g

��

βab′′c
((

P11(gf)

��

P1(fg)1

��

∼=

βa(gf)c

ks

∼=

Pab′′b

Pab′b

Pabb

Pab′′b′

Pab′′b′′

Qacc

Pab′b′

P1g1
((

P1f1

��

βabc
vv

P11f
vv

P11g

��

βab′′c
((

P11f
vv

P1g1
((

βab′c

��

∼=

βafc_g
βagc
w�

for all a ∈ A, c ∈ C.

• EP2 Given h : c→ c′ and i : c′ → c′′ in C, there is an equality of pasting diagrams

Pabb

Qac′′c′′

Qac′c′′

Qacc

Qacc′

Qacc′′

βabc′′
((

Q1i1

��

Q1h1

vv

βabc
vv

Q11h

��

Q11i
((

Q1(hi)1

��

Q11(ih)

��

∼=

βab(ih)ks

∼=

Pabb

Qac′′c′′

Qac′c′′

Qacc

Qacc′

Qacc′′

Qac′c′

βabc′′
((

Q1i1

��

Q1h1

vv

βabc
vv

Q11h

��

βabc′

��

Q11i
((

Q11i
((

Q1h1
vv ∼=

βabi
w�

βabh_g

for all a ∈ A, b ∈ B.

• EP3 For each f : a → a′ in A and g : b → b′ in B there is an equality of pasting
diagrams

Pab′b

Pa′b′b

Pa′bb

Qa′cc

Pab′b′

Qacc

Pa′b′b′

Pf11
((

P1g1

��

βa′bc
vv

P11g
vv

βab′c

��

Qf11
((

P11g

vv

βa′b′c

��

Pf11
((

∼=

βa′gc
w�

βfbc_g

Pab′b

Pa′b′b

Pa′bb

Qa′cc

Pab′b′

Qacc

Pabb

Pf11
((

P1g1

��

βa′bc
vv

P11g
vv

βab′c

��

Qf11
((

P1g1

��

Pf11
((

βabc
vv

∼=
βagc_g

βfb′c

ks

for all c ∈ C.
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• EP4 For each f : a → a′ in A and h : c → c′ in C there is an equality of pasting
diagrams

Pabb

Pa′bb

Qa′c′c′

Qa′cc′

Qacc

Qacc′

Qa′cc

Pf11
((

βa′bc′

��

Q1h1

vv

βabc
vv

Q11h

��

Qf11
((

βa′bc
vv

Q11h

��

Qf11
((

∼=

βfbc′
w�

βabh_g

Pabb

Pa′bb

Qa′c′c′

Qa′cc′

Qacc

Qacc′

Qac′c′

Pf11
((

βa′bc′

��

Q1h1

vv

βabc
vv

Q11h

��

Qf11
((

βabc

��

Qf11
((

Q1h1
vv

∼=

βfbc
ks

βa′bh_g

for all b ∈ B.

• EP5 For each a ∈ A, b ∈ B, and c ∈ C,

βa1bc = idβabc·Pabb , βab1c = idQacc·βabc .

• EP6 Given g, g′ : b→ b′ and γ : g ⇒ g′ in B, there is an equality of pasting diagrams

Pab′b Pabb

Pab′b′ Qacc

Pag′b

//

Pab′g′

��

βabc

��

βab′c

//

Pagb

  

βag′c
{�

Paγb��
Pab′b Pabb

Pab′b′ Qacc

Pagb
//

Pab′g

��

βabc

��

βab′c

//

Pab′g′

##

βagc{�
Pab′γks

for all a ∈ A, c ∈ C.

• EP7 Given h, h′ : c→ c′ and δ : h⇒ h′ in C, there is an equality of pasting diagrams

Pabb Qac′c′

Qacc Qacc′

βabc′ //

βabc

��

Qahc′

��Qach //

Qah′c

==

βabh
{�

Qacδ��

Pabb Qac′c′

Qacc Qacc′

βabc′ //

βabc

��

Qah′c′

��

Qach′
//

Qahc′

{{

βabh′
{�

Qaδc′ks

for all a ∈ A, b ∈ B.
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2.3. Remark. There are a large number of axioms in the definition of a pseudo-extranat-
ural transformation. In practice we will find that only a subset of these need to be checked.
For example, if Q is a constant pseudofunctor in the definition above then each 2-cell βabh
is in fact an identity idQ · idβab· . This then means that EP2, EP4, EP7, and the second
part of EP5 all hold automatically. In many cases from this point onwards we deal
with pseudo-extranatural transformations into or out of constant pseudofunctors on an
object of a bicategory. We denote the constant pseudofunctor on an object H either by
∆H : 1op × 1→ C or, most commonly, simply by H.

In the one dimensional case a transformation is extranatural in the pair (a, b) if and
only if it is extranatural in a and b separately. For pseudo-extranatural transformations,
however, this is no longer true. Being pseudo-extranatural in a and b separately only im-
plies pseudo-extranaturality in (a, b) under the conditions of the following lemma, though
the usual converse still holds.

2.4. Lemma. Let P : Aop × Bop × A × B → C be a pseudofunctor and let X ∈ C. Sup-
pose, respectively, that for fixed a ∈ A and for fixed b ∈ B, γa− : P (a,−, a,−)

··⇒ X

and γ−b : P (−, b,−, b) ··⇒ X are pseudo-extranatural transformations such that (γa−)b =
(γ−b)a. If there is an equality of pasting diagrams

Pa′b′ab

Pa′bab Pabab

Pa′b′a′b

Pa′b′a′b′ X

Pa′ba′b

Pfgab

$$
Pa′gab

))
Pfbab //

Pa′b′fg

��

Pa′b′fb

��

Pa′b′a′g

��

γab

��

γa′b′
//

γa′b

��

Pa′ga′b
))

Pa′bfb

��

Pa′b′ab

Pab′ab Pabab

Pa′b′ab′

Pa′b′a′b′ X

Pab′ab′

Pfgab

$$
Pfb′ab

))
Pagab //

Pa′b′fg

��

Pa′b′ag

��

Pa′b′fb′

��

γab

��

γa′b′
//

γab′

��

Pfb′ab′
))

Pab′ag

��

γfb{� γag{�

γa′g{� γfb′{�

∼= ∼=

∼= ∼=

∼= ∼=

=

then these 2-cells constitute a pseudo-extranatural transformation γ : P
··⇒ X.

Proof. All of the axioms to check pseudo-extranaturality for the above 2-cells are satisfied
as a result of the corresponding axioms for the individual transformations, naturality of
coherence cells for P and of those in A and B, as well as the equality of 2-cells stated
above which is needed for axioms EP1 and EP2.

2.5. Remark. The statement labelled above as a proof might seem insufficient to be
described as such. The equality of pasting diagrams above is essentially the single ob-
struction to pseudo-extranaturality in each variable implying pseudo-extranaturality in
the pair. The manipulation of the definitions is relatively simple, though fairly cumber-
some, and one finds that, in trying to show pseudo-extranaturality in the pair, the above
equality is the only thing standing in the way of the implication.
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2.6. Lemma. Let P : Aop×Bop×A×B → C be a pseudofunctor and let X ∈ C. Suppose
that γ : P

··⇒ X is a pseudo-extranatural transformation. If a ∈ A is fixed then there is
a pseudo-extranatural transformation γa− : P (a,−a,−)

··⇒ X. Similarly, if b ∈ B is fixed

then there is a pseudo-extranatural transformation γ−b : P (−, b,−, b) ··⇒ X.

Proof. Since the pseudofunctor in the codomain is constant at the object X we need
only check that EP1, EP3, EP6, and the first part of EP5 hold. The axiom EP3 is a
consequence of the pseudofunctor axioms for P , the first part of EP5 holds for γa− via the
axiom EP5 for γ, while EP6 holds for γa− via EP6 for γ. To show that EP1 holds for γa−
is more involved but still fairly simple, resulting from instances of EP1 and EP6 for γ.
We must show that two diagrams are equal, one featuring γ1a,hg and the other featuring
both γ1a,g and γ1a,h. By EP1 for γ the diagram featuring γ1a,g and γ1a,h is equal to one
featuring γ1a1a,hg. At this point we use EP6 to show that this diagram is equal to the
diagram featuring γ1a,hg. Hence γa− is a pseudo-extranatural transformation. A similar
argument holds for γ−b.

3. Composition Lemmas

The article of [Eilenberg and Kelly, 1966a] in which extranatural transformations are de-
fined also investigates the ways in which they can be composed. We now present generali-
sations of the simplest forms of these arguments for pseudo-extranatural transformations.

In this lemma we have a pseudonatural transformation β : F ⇒ G where F,G : Aop ×
A → C, along with a pseudo-extranatural transformation γ : G

··⇒ H, for some object
H ∈ C. We define a composite which results in a pseudo-extranatural transformation
F
··⇒ H.

3.1. Lemma. Let F , G : Aop × A → C be pseudofunctors and let H ∈ C. Suppose that
β : F ⇒ G is a pseudonatural transformation and that γ : G

··⇒ H is a pseudo-extranatural
transformation. Then there is a pseudo-extranatural transformation from F to H given
by composites of the cells constituting β and γ.

Proof. The 1-cells of the pseudo-extranatural transformation are given by the composites
δa = γa · βaa. Given a 1-cell f : a → b in A, we give 2-cells δf : δa · F (f, 1) ⇒ δb · F (1, f)
by the following diagram.

F (b, a)

F (a, a)

G(a, a)

H

F (b, b)

G(b, b)

G(b, a)

F (f,1)
((

βaa

��

γavv

F (1,f)
vv

βbb

��

γb ((

βba

��

G(f,1)
((

G(1,f)
vv

βf1
w�

β−1
1f_g

γf
ks
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As per Remark 2.3, H is a constant pseudofunctor and so the other 2-cells required are
all identities.

The axioms EP2-5 are simple to check, whilst EP1 requires a sequence of involved
pasting diagrams. We will consider the initial and final pasting diagrams in the sequence
and describe the steps required to complete the proof. The left-hand diagram of axiom
EP1 is given, in this instance, by the following pasting diagram.

F (c, a) F (b, a) F (a, a)

G(a, a)

H

F (c, b)

F (c, c)

G(c, c)

F (b, b)

G(b, b)G(c, b)

G(b, a)

F (g,1)
//

F (f,1)
//

βaa

''

γa

��

F (1,f)

��

F (1,g)

��

βcc ''

γc
//

F (1,f)

��

F (g,1) //

βbb
''

γb

''

βcb
''

G(g,1) //

G(1,g)

��

βba
''

G(f,1) //

G(1,f)

��

∼=
βf1
{�

β−1
1f

{�

βg1{�

β−1
1g

{�
γf{�

γg{�

The right-hand diagram of EP1 is given by the following diagram.

F (c, a) F (b, a)

F (a, a)

G(a, a)

H

F (c, b)

F (c, c) G(c, c)

G(c, a)

F (g,1)
//

F (f,1)

''

βaa
��

γa

��

F (1,f)

��

F (1,g) ''

βcc
//

γc
//

βca

''

G(fg,1) //

G(1,gf)

��

F (fg,1)

,,

F (1,gf)

��

∼=

∼=

βgf,1
{�

β−1
1,gf

{�

γgf{�

The coherence cells in the top left of the first diagram allow us to use the composition
axiom PS1 for β to replace βg1∗1F (1,f) and 1F (g,1)∗β−1

1f with the corresponding components
of β and coherence cells for G on the composites G(g, 1) · G(1, f) and G(1, f) · G(g, 1).
The axiom PS2 for β, specifically on the unitors in Aop ×A, gives a new diagram where
βg,f meets its inverse, leaving appropriate coherence cells in the square adjoining γg and
γf to apply EP1 for γ. This leaves a diagram with γgf in the lower right corner, at which
point we use instances of the composition axiom for β followed by its naturality on unitors
again to yield the final diagram. The rest of the axioms are simple to check.

The following lemma is the opposite of the previous lemma, having a pseudo-extranat-
ural transformation out of a constant pseudofunctor.
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3.2. Lemma. Let F ∈ A and let G, H : Bop × B → C be pseudofunctors. Suppose that
β : F

··⇒ G is a pseudo-extranatural transformation and that γ : G⇒ H is a pseudonatural
transformation. Then there is a pseudo-extranatural transformation from F to H given
by composites of the cells constituting β and γ.

Proof. This proof is analogous to that of the previous lemma, only this time the axiom
EP2 is the involved part.

We end the section with a final composition lemma.

3.3. Lemma. Let F,H : A → B and G : A × Aop × A → B be pseudofunctors. Suppose
that for each a ∈ A

β−b : Fb
··⇒ G(−,−, b), γa− : G(a,−,−)

··⇒ Ha

are pseudo-extranatural transformations and that

βa− : F ⇒ G(a, a,−), γ−b : G(−, b, b)⇒ H

are pseudonatural transformations such that (βa−)b = (β−b)a and (γb−)a = (γ−a)b for all
a, b ∈ A. Then there is a pseudonatural transformation from F to H given by composites
of the cells constituting β and γ.

Proof. We need to construct a pseudonatural transformation from F to H. The 1-cell
components are given by δa = γaa ·βaa, whilst the 2-cell component, δf , for some f : a→ b
in A is given by the pasting diagram below.

Fa Fb

G(b, b, b)

Hb

G(a, a, a)

Ha

G(b, b, a)

G(b, a, a)

Ff
//

βbb

��

γbb

��

βaa

��

γaa

��

Hf
//

βba
%%

G(1,1,f)

%%

G(1,f,1)

��

G(f,1,1)

%%

γba

%%

βbf
{�

γfa
{�

β−1
fa

{�

γ−1
bf

{�

Similar to the proof of the previous lemmas, the proof of the composition axiom PS1
relies on a sequence of pasting diagrams. The first diagram in the sequence is given by
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the component δgf with the coherence cells for F and G applied on the top and bottom.

Fa Fc

G(c, c, c)

Hc

G(a, a, a)

Ha

G(c, c, a)

G(c, a, a)

Fb

Hb

F (gf) //

βcc

��

γcc

��

βaa

��

γaa

��

H(gf) //

βba
%%

G(1,1,gf)

%%

G(1,fg,1)

��

G(gf,1,1)

%%

γca

%%

Ff
55

Fg

))

Gf )) Gg

55

βc(gf)
{�

γ(gf)a

{�

β−1
(gf)a

{�

γ−1
c(gf)

{�

φFgf��

(φGgf )−1

��

The final diagram is given below.

Fa Fc

G(c, c, c)

Hc

G(a, a, a)

Ha

G(b, b, b)

G(b, b, a)

Fb

Hb

G(b, a, a)

G(c, c, b)

G(c, b, b)

βcc

��

γcc

��

βaa

��

γaa

��

Ff
//

Fg
//

Gf
//

Gg
//

βba
%%

G(1,1,f)

%%

G(1,f,1)

��

G(f,1,1)

%%

γba

%%

βbb

��

γbb

��

βcb
%%

G(1,1,g)

%%

G(1,g,1)

��

G(g,1,1)

%%

γcb

%%

βbf
{�

γfa
{�

β−1
fa

{�

γ−1
bf

{�

βcg{�

γgb
{�

β−1
gb

{�

γ−1
cg

{�

The first step is to use the composition axioms (PS1) for the pseudonatural components
of β and γ, replacing the components at gf with those for g and f , whilst also introducing
the composition coherence cells for G(−, a, a) and G(c, c,−). Now we can apply axioms
EP2 and EP1, respectively, for the pseudo-extranatural components of β and γ. This
gives a diagram with pseudo-extranatural components for β and γ at g and f , along
with a large number of coherence cells in the middle of the diagram. At this point many
of the coherence cells cancel out and we are then able to apply axioms EP4 and EP3,
respectively, for the mixed components of β and γ. The coherence cells introduced by the
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use of these axioms then cancel in the middle of the diagram, yielding the second diagram
pictured above.

Proving the unit axiom, PS3, is fairly straightforward. Writing out the component
δida we find that a large amount of the diagram is made of identities from the pseudo-
extranaturality axiom EP5. The remainder of the proof relies on the unit axioms for the
bicategory B. The simplest part of the proof is to show that PS2 holds. A simple chase
of 2-cells through a diagram ensures that this holds.

4. Bicodescent Objects

Descent objects, the dual notion to codescent objects, first appeared in [Street, 1976]
before being formally defined by Street in [Street, 1987]. We will base our definition of
bicodescent object upon that given in [Lack, 2002], where codescent objects are used to
study coherence for the algebras of 2-monads. Each of these treatments of codescent
objects goes on to define them as weighted colimits, whereas our weaker notion of bi-
codescent object, being a bicolimit, has no description using weights. However, one could
investigate the connection between weighted bicolimits and bicoends, following [Street,
1980], [Street, 1987]. We will go on to recast the definition of bicodescent object as a
universal object amongst pseudo-extranatural transformations allowing us to obtain a
Fubini theorem for bicodescent objects, much like the Fubini theorem for ends first given
in [Yoneda, 1960].

4.1. Definition. Let B be a bicategory. Coherence data consist of a diagram

X1 v // X2
w
oo

uoo
X3.

r
oo

qoo
p

oo

in B along with invertible 2-cells

δ : uv ⇒idX1 , γ : idX1 ⇒ wv, κ : up⇒ uq,

λ : wr ⇒ wq, ρ : ur ⇒ wp.

The bicodescent object of this coherence data consists of a 0-cell X, a 1-cell x : X1 → X,
and an invertible 2-cell χ : xu⇒ xw in B satisfying the following axioms.
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BC1 The following pasting diagrams are equal.

X3 X2

X2 X2 X1 X1

X1 X

p
//

u

""

x
||

q

||
r
""

u //

w
||

w ""

x
//

x
""

w
||

ρ{�

χ{�

λ
ks

χ
ks

X3 X2

X2 X1

X1 X

p
//

u

""

x
||

q

||

w ""

x
//

u //

κ{�

χ{�

BC2 The following pasting diagrams are equal.

X1 X2

X1

X1

X
v //

u
<<

w ""

x

""

x

<<
χ�� X1

X2

X2

X1 X

v
<<

v ""

u

""

w

<<

x //idX1
//

δ��

γ��

BC3 Given any other 0-cell Y , 1-cell y : X1 → Y , and 2-cell ψ : yu ⇒ yw which satisfy
the previous two axioms with (Y, y, ψ) in place of (X, x, χ), there exists a 1-cell
h : X → Y and an isomorphism ζ : hx⇒ y such that the following pasting diagrams
are equal.

X2 X1 X

X1 Y

u // x //

h
��

y
//

y

��
w
��

ζ

{�
ψ

{� X1

X2 X1

Y

X

u //

w

��

x

��
x //

h
��

y
��

χ{�

ζ{�
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BC4 Given a 0-cell Y , 1-cells h, k : X ⇒ Y , and a 2-cell β : h⇒ kx satisfying

X2

X1

X

X

Y

X1

u
??

x
??

h

��

w �� x

??

k

??
x

��

β��

χ��

X2

X1

X

X

YX1

u
??

x

��

h

��
w ��

x
�� k

??

x
??

χ��

β��

there exists a unique 2-cell β′ : h⇒ k such that β′ ∗ 1x = β.

Now we have defined bicodescent objects we will liken them to coends. Coends can
be described as a colimit for functors of the form F : Aop × A → C, being given as the
coequalizer ∫ a

F (a, a)
∐
a

F (a, a)
i

oo
∐
f
a→b

F (b, a)
ρ
oo

λoo

where λ and ρ act in a similar manner to u and w below. In our case, a bicodescent
object will be a bicolimit for pseudofunctors of the form P : Bop × B → C. The previous
definition only has two axioms but requires setting up a lot of data, whereas using pseudo-
extranatural transformations requires little in the specification of data with the trade-off
of checking a few more axioms.

Letting C be a bicategory with bicoproducts and given a pseudofunctor P : Bop×B → C
we describe its coherence data as follows.∐

a∈obB

P (a, a)
oo u

oo
w

∐
f

P (b, a)//v
oo
p
oo q
oo
r

∐
(g,f,θ : gf→h)

P (c, a)

The middle coproduct is indexed over 1-cells f : a→ b while the last coproduct is indexed
over 2-cells θ : gf → h for 1-cells f : a→ b, g : b→ c, and h : a→ c.

In the following, the 1-cells Ia and Jf are coproduct inclusions. The 1-cell u is deter-
mined by the 1-cells

P (b, a)
Pf1−→ P (a, a)

Ia−→
∐
a

P (a, a),

the 1-cell w is determined by the 1-cells

P (b, a)
Pbf−→ P (b, b)

Ib−→
∐
a

P (a, a),

and the 1-cell v is determined by the inclusion on identities. The 1-cell p is characterised
by the 1-cells

P (c, a)
Pga−→ P (b, a)

Jf−→
∐

f : a→b

P (b, a),
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the 1-cell q is determined by the 1-cells

P (c, a)
Jh−→

∐
f : a→b

P (b, a),

and the 1-cell r is characterised by the 1-cells

P (c, a)
Pcf−→ P (c, b)

Jg−→
∐

f : a→b

P (b, a).

We now use the corresponding cells for P in order to determine the coherence data for
the bicodescent object of P . We will omit certain indices on the pseudofunctor coherence
cells for P when it is obvious. The 2-cell δ : uv ⇒ id is determined by the 2-cells

P (a, a) P (a, a)

P (ida,ida)

''

idP (a,a)

77
φPaa��

Similarly the 2-cell γ : id⇒ wv is characterised by the inverses of those that give δ. The
2-cell κ : up⇒ uq is characterised by the 2-cells

P (c, a) P (a, a)

P (b, a)
P (g,1) 88 P (f,1)

��P (fg,11) ++

P (h,1)
33

φP��

P (θ,r1)��

and the 2-cell λ : wr ⇒ wq is characterised by the 2-cells

P (c, a) P (c, c).

P (c, b)
P (1,f) 88 P (1,g)

��P (11,gf) ++

P (1,h)
33

(φP ) ��

P (l1,θ) ��

The remaining 2-cell, ρ : ur ⇒ wp, is characterised by the 2-cells

P (c, a) P (b, b).

P (c, b)

P (b, a)

P (1,f)
77

P (g,1)

��

P (g,1) '' P (1,f)

II

P (g1,1f)

##

P (1g,f1)

;;
P (g,f) //

φP��

P (r,l)��

P (l,r)−1
��

(φP )−1
��
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The following results will characterise bicodescent objects as objects which are univer-
sal amongst pseudo-extranatural transformations. By this we mean that the morphisms

ia : P (a, a)→ CodP

are part of the data for a pseudo-extranatural transformation, satisfying universal prop-
erties as in Definition 4.3.

4.2. Lemma. In the notation of 4.1, applied to the coherence data of a pseudofunctor P ,
let there be given a triple (Y, y : X1 → Y, ψ : yu → yw). Then, this triple satisfies the
conditions BC1 and BC2 of 4.1 (with (Y, y, ψ) in place of (X, x, χ)) if and only if the
corresponding family of data

(Y, ya : P (a, a)→ Y, ψf : a→b : (yu)f ⇒ (yw)f : P (b, a)→ Y )

constitutes a pseudo-extranatural transformation.

Proof. First, we show that the pseudo-extranaturality implies the conditions of BC1 and
BC2. Collectively the (Y, ya, ψf ) give a triple (Y, y, ψ). The axiom BC1 then follows from
the axioms EP1, to change a ψgf into a composite of ψg and ψf , and EP6 to mediate
between ψgf and ψh. The corresponding diagrams are then as below where the 2-cells κ,
λ, and ρ are defined as before.

P (c, a) P (b, a)

P (c, a) P (c, b) P (b, b) P (a, a)

P (c, c) Y

Pg1
//

Pf1

""

ya
||

id

||
P1f
""

Pg1 //

P1f
||

P1h ""

yc
//

yb
""

P1g
||

ρ{�

ψg{�

λ
ks

ψf
ks

P (c, a) P (b, a)

P (c, a) P (a, a)

P (c, c) Y

Pg1
//

Pf1

""

ya
||

id

||

P1h ""

yc
//

Ph1 //

κ{�

ψh
{�

For BC2 we see that one side of the pasting diagram corresponds to ψida = idya·Paa by
EP5, whilst the other side is a composite of δ and γ = δ−1, giving the identity required.

Now we will show the converse, that the conditions BC1 and BC2 imply pseudo-
extranaturality. This will require us to show that the 1-cells

yb : P (b, b)→ Y
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along with 2-cells, to be described, constitute a pseudo-extranatural transformation. As P
is a pseudofunctor out of Bop×B then we require pseudonatural transformations between
the pseudofunctor

∆P (b,b) : 1 −→ C
· 7−→ P (b, b)

1· 7−→ P (1b, 1b)

11· 7−→ idP (1b,1b)

and the constant pseudofunctor ∆Y . The 2-cell components at the identity are given by

P (b, b) P (b, b)

Y Y

P (1b,1b)

$$

id
//

yb

��

yb

��

id
//

yb

""

φbb��

ryb
w�

l−1
yb

w�

which we will denote by jb. Using the fact that in any bicategory the left and right
unitors at the identity are equal, along with the naturality of many of the coherence cells
we can see that this constitutes a pseudonatural transformation. The first collection of
pseudo-extranatural 2-cells are given by

P (b, a) P (a, a)

P (b, b) Y

P (f,1)
//

ya

��

P (1,f)

��

yb
//

ψf
{�

where ψ is the 2-cell given in the triple. The second collection of pseudo-extranatural
2-cells is given by the identity on the 1-cell idY · yb.

The axiom EP1 holds by an instance of BC1 using the identity 2-cell id : g · f ⇒ gf ,
whilst EP2 holds trivially. The third axiom, EP3, requires an equality of the following
two pasting diagrams.

P (b, a)

P (b, a)

P (a, a)

Y

P (b, b)

Y

P (b, b)

P (1,1)
((

P (f,1)

��

javv

P (1,f)
vv

jb

��

idY ((

P (1,f)
vv

jb

��

P (1,1)
((

∼=

jf_g

jb
w�

P (b, a)

P (b, a)

P (a, a)

Y

P (b, b)

Y

P (a, a)

P (1,1)
((

P (f,1)

��

javv

P (1,f)
vv

jb

��

idY ((

P (f,1)

��

P (1,1)
((

ja
vv

∼=
jf_g

ja

ks
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Written out as a commutative diagram of 2-cells, including all coherence cells, this can
plainly be seen to hold as a result of naturality of various coherence 2-cells, unit axioms
for P , and triangle identities in C. The fourth axiom, EP4, follows by a similar, though
simpler, argument, whilst EP5 holds immediately due to δ and γ being inverse to each
other, giving

χida = idja·P (1a,1a).

Clearly axiom EP7 holds since we are considering a constant pseudofunctor ∆Y . It remains
then to check EP6 which requires, for each θ : g ⇒ g′ between g, g′ : a→ b in B, an equality
of pasting diagrams as follows.

P (b, a) P (a, a)

P (b, b) Y

P (g′,1)
//

P (1,g)

��

ya

��

yb
//

P (g,1)

!!

ψg′
{�

P (θ,1)��
P (a, b) P (a, a)

P (b, b) Y

P (g,1)
//

P (1,g)





ya

��

yb
//

P (1,g′)

""
ψg{�

P (1,θ)ks

This is slightly tricky to prove but really relies on making a suitable choice of 2-cell in B
when considering BC1. First we can check that EP6 holds for the 2-cell rg : g · ida ⇒ g,
this relies on the fact that many of the pseudofunctor coherence cells for P , and the
image of some unitors, can be cancelled in the resulting diagrams. If we then have a 2-cell
θ : g ⇒ g′ then choosing the 2-cell γ · rg

a

a

b

ida

77

g

��g
++

g′

;;

rg��

θ��

in an instance of BC1 proves that EP6 holds in all cases.

We now describe the bicoend of P as the universal pseudo-extranatural transformation
out of P , which we will later use as our definition of bicodescent object.

4.3. Definition. Let P : Bop×B → C be a pseudofunctor. The bicoend of P is given by
i : P

··⇒
∫ b
P (b, b) satisfying the following universal properties:

• EB1 Given another object X with a pseudo-extranatural transformation j : P
··⇒ X,

there is a 1-cell j̃ :
∫ b
P (b, b) → X and isomorphisms Ja : j̃ · ia ∼= ja such that the
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following equality of pasting diagrams holds.

Pba Paa
∫ b
P (b, b)

Pbb Y

Pf1
//

ia//

j̃
��

jb
//

ja

��
P1f ��

Ja
��

jf
�� Pbb

Pba Paa

Y

∫ b
P (b, b)

Pf1
//

P1f

��

ia
��

ib //

j̃~~jb   

if
{�

Jb
{�

• EB2 Given two 1-cells h, k :
∫ b
P (b, b)→ Y and 2-cells Γa : h · ia ⇒ k · ia satisfying

Pba

Paa

∫ b
P (b, b)

∫ b
P (b, b)

Y

Pbb

Pf1
??

ia ?? h

��

P1f �� ib

??

k

??

ia ��

Γa��

if��

Pba

Paa

∫ b
P (b, b)

∫ b
P (b, b)

YPbb

Pf1
??

ia
��

h

��P1f ��

ib �� k

??

ib
??

if��

Γb��

there is a unique 2-cell γ : h⇒ k such that Γa = γ ∗ 1ia for all a ∈ A.

4.4. Lemma. Let P : Bop×B → C be a pseudofunctor and suppose that i : P
··⇒
∫ b
P (b, b)

exists. Let j : P
··⇒ X be another pseudo-extranatural transformation which also satisfies

the axioms EB1 and EB2. Then there is an adjoint equivalence between
∫ b
P (b, b) and X.

Proof. Given two such objects as described it is simple to see that there are appropriate
unit and counit isomorphisms ĩ · j̃ ∼= 1∫ b P (b,b)

and j̃ · ĩ ∼= 1X induced by axiom EB2 above

by reliance on the conditions in axiom EB1. Since the induced 2-cells are unique it is then
a simple check to see that the triangle inequalities hold and there is an adjoint equivalence
between CodP and X.

In the sense of the above lemma we can consider bicodescent objects to be essentially
unique.

4.5. Proposition. Let P : Bop × B → C be a pseudofunctor. The bicodescent object
corresponding to the coherence data for P is equivalent to the bicoend of P .

Proof. By Lemma 4.2 the triple of a bicodescent object for P , (CodP, x, χ), provides a

pseudo-extranatural transformation x : P
··⇒ CodP . It is clear that CodP satisfies the

same universal properties as
∫ b
P (b, b). Similarly the pseudo-extranatural transformation

i from P to ∆∫ b P (b,b)
satisfies all of the axioms of a bicodescent object for P , including

the universal properties. We will describe how to show that these objects are equivalent.
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The bicoend has invertible 2-cells if : ia · Pfa ⇒ ib · Pbf , where f : a → b is a 1-cell in
B. Collectively this family of 2-cells corresponds to a 2-cell i.∐

f Pba
∐

a Paa

∐
a Paa

∫ b
Pbb

u //

j

��

w

��

j
//

i{�

Each of the 1-cells in the above diagram are induced using the universal properties of the
displayed coproducts. The conditions in BC3 are met which induces a 2-cell as below.

CodP
∐

a Paa

∫ a
Paa

xoo

s

��

j

||

∼=

Similarly the bicodescent object CodP is a pseudo-extranatural transformation, as
previously described, satisfying the appropriate axioms. Since

∫ a
Paa is the universal

such transformation there is an induced 1-cell t :
∫ a
Paa → CodP satisfying the properties

described in the previous definition. Our claim now is that s and t form an equivalence
in B.

It is simple to check this claim. In analogous 1-dimensional cases this would be im-
mediate following from the uniqueness inherent in the 1-dimensional universal property.
Since the 1-dimensional properties now no longer contain a uniqueness statement, we do
not find that s and t are inverses but that we instead obtain isomorphisms 1 ∼= st and
ts ∼= 1, as in the diagrams below.

CodP

∫ a
Paa

CodP

∐
a∈B Paa

x

bb

joo

x

||

s

��

t

��

id

##

∼=

∼=

∼=
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CodP

∫ a
Paa

∫ a
Paa

∐
a∈B Paa

ia

bb

xaoo

ia
||

t

��

s

��

id

""

∼=

∼=

∼=

These isomorphisms can then be used to show that the two objects CodP and
∫ a
Paa are

equivalent in B.

We will now use the bicoend notation i : P
··⇒
∫ b
P (b, b) to refer to the bicodescent

object corresponding to a pseudofunctor P .

4.6. Lemma. Let P : A×Bop×B → C be a pseudofunctor. Assume that, for each a ∈ A,
the bicodescent object

ja : P (a,−,−)
··⇒
∫ b

P (a, b, b)

exists in C. Then

a 7−→
∫ b

P (a, b, b)

is the object part of a pseudofunctor∫ b

P (−, b, b) : A → C.

Proof. Each f : a→ a′ in A gives a pseudonatural transformation

Pf−− : Pa−− ⇒ Pa′−−.

By Lemma 3.1 there is then a pseudo-extranatural transformation

ja
′ · Pf−− : Pa−−

··⇒
∫ b

Pabb,

inducing the following invertible 2-cells.

Pabb Pa′bb

∫ b
Pabb

∫ b
Pa′bb

Pfbb
//

ja
′
b

��

jab

��

∫ b Pfbb //
jfb
{�
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The coherence cells of P along with these jfb induce coherence cells for these new 1-cells.
This can be seen more clearly in the remarks following the proof. The uniqueness in
the 2-dimensional universal property of each

∫ b
Pabb shows that each of the axioms for

a pseudofunctor are satisfied. Furthermore, the above 2-cells constitute pseudonatural
transformations jb : P−bb ⇒

∫ b
P−bb.

For reference, we will describe the properties of the coherence cells for the pseudofunc-
tors

∫ b
P−bb : A → C. The inverse of the invertible 2-cell

∫ b
Pabb

∫ b
Pa′bb

∫ b
Pa′′bb

∫ b Pfbb 55
∫ b Pf ′bb
��

∫ b P(f ′f)bb

//

φf ′,f��

induced by the 2-dimensional universal property of
∫ b
Pabb, upon being whiskered by jab ,

yields the invertible pasting diagram below.

Pabb
∫ b
Pabb

∫ b
Pa′′bb

∫ b
Pabb

∫ b
Pa′bb

Pa′bb Pa′′bb

jab //

∫ b
(f ′f)bb

��

jab

��

∫ b Pfbb // ∫ b Pf ′bb //

P(f ′f)bb

&&

Pfbb

��

Pf ′bb //

ja
′
b

��

ja
′′
b

��

jf
′f
b

{�

jfb
{�

jf
′
b

{�

∼=

The unlabeled isomorphism is the composite coherence cell for P−bb consisting of P (1f ′f , l1, l1)
and φPf ′bb,fbb. Similarly, the inverse of the invertible 2-cell

∫ b
Pabb

∫ b
Pabb

∫ b Pabb
!!

id

==
φ

∫ b P−bb
a��
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when whiskered by jab , gives the invertible pasting diagram

Pabb
∫ b
Pabb

∫ b
Pabb

∫ b
Pabb

Pabb

∼=

jidab
{�

jab //

id

��

jab

��

∫ b Pabb //

Pabb
""

jab ""

where the unlabeled isomorphism is the composite coherence cell consisting of ljab ,
(
rjab
)−1

,

and φ
P−bb
a .

4.7. Lemma. Let A be a bicategory. There is a pseudofunctor

I =

∫ a

−(a)×A(−, a) : Bicat(Aop,Cat)→ Bicat(Aop,Cat).

Proof. Since Cat is bicocomplete the bicodescent object

I(F ) =

∫ a

F (a)×A(−, a)

exists for each pseudofunctor F : Aop → Cat. Given a pseudonatural transformation
γ : F ⇒ G, we can define another pseudonatural transformation

γ × 1A(−,−) : F ×A(−,−)⇒ G×A(−,−).

Since I(F ) and I(G) are bicodescent object then we also have pseudo-extranatural trans-

formations iF : F ×A(−,−)
··⇒ I(F ), iG : G×A(−,−)

··⇒ I(G), and so the composite of
iG and γ× 1A(−,−), in the manner of Lemma 3.1, induces a pseudonatural transformation
I(γ) : I(F )⇒ I(G) via the universal property of iF . This also means there are invertible
modifications

Fa×A(−, a) I(F )

Ga×A(−, a) I(G)

iFa +3

I(γ)

��

γa×1A(−,a)

��

iGa

+3

Γaw�

satisfying the pasting axiom EB1 of Definition 4.3.
The action of I on 2-cells is described as follows. If Σ: γ V δ is a modification then

for each a ∈ A there is a natural transformation Σa : γa ⇒ δa, giving rise to a modification
Σa×1: γa×1⇒ δa×1. (Note that in the following diagram we switch the style of arrow.)
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The composite modification

Fa×A(−, a) I(F )

I(F ) I(G)

Ga×A(−, a)

iFa
--

I(γ)

��

iFa

��

I(δ)
//

γa×1A(−,a)

��δa×1A(−,a)
))

iGa

""

Γa{�

∆−1
a

{�

Σa×1
{�

satisfies the requirements of axiom EB2, yielding a unique 2-cell I(∆): I(γ) V I(δ).
The action of I on 2-cells preserves the strict composition of modifications due to the
uniqueness property inherent in the universal property. It remains to describe the data
for the pseudofunctor on 1-cell composition and check the appropriate axioms, however
this clearly follows from arguments similar to the above.

5. Fubini for codescent objects

This section makes use of the previous definitions and technical lemmas in order to prove
a bicategorical analogue of the Fubini theorem for coends, before which we will construct
various maps needed for the result. Similar results have been established via a different
approach [Nunes, 2016].

Throughout the following section, P : Aop×Bop×A×B → C will be a pseudofunctor.
We start by finding a comparison map

σ :

∫ a ∫ b

P (a, b, a, b)→
∫ a,b

P (a, b, a, b),

on the assumption that all of the following bicodescent objects exist, where (a′, a) ∈
Aop ×A.

i : P
··⇒
∫ a,b

P (a, b, a, b)

ja
′a : P (a′,−, a,−)

··⇒
∫ b

P (a′, b, a, b)

k :

∫ b

P (−, b,−, b) ··⇒
∫ a ∫ b

P (a, b, a, b)

By Lemma 2.6, fixing an object a ∈ A results in a pseudo-extranatural transformation
ia− : Pa−a−

··⇒
∫ a,b

Pabab yielding a family of 1-cells φa :
∫ b
Pabab →

∫ a,b
Pabab along with
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corresponding families of invertible 2-cells

Pabab ∫ a,b
Pabab

∫ b
Pabab

iab
''

jaab 77

φa

��

Φab��

in C, satisfying the usual axioms. To induce the 1-cell σ we now need find invertible 2-cells

∫ b
Pa′bab

∫ b
Pabab

∫ b
Pa′ba′b

∫ a,b
Pabab

∫ b Pfbab
//

φa

��

∫ b Pa′bfb
��

φa
′
//

φf
{�

and show that there is a pseudo-extranatural transformation φ− :
∫ b
P−b−b

··⇒
∫ a,b

Pabab.
To find the φf we will use the 2-dimensional universal properties of the bicodescent

objects
∫ b
Pa′bab. For each b ∈ B we have an invertible 2-cell

Pa′bab

∫ b
Pa′bab

∫ b
Pabab

∫ a,b
Pabab

∫ b
Pa′bab

∫ b
Pa′ba′b

Pabab

Pa′ba′b

ja
′a
b

<<

∫ b Pfbab
//

φa

""

ja
′a
b ""

∫ b Pa′bfb//
φa
′

<<

Pfbab

22

Pa′bfb
,,

jaab

??

ja
′a′
b ��

iab ,,

ia′b
22

(jfab )
−1

��

ja
′f
b��

ifb��

Φab��

(
Φa
′
b

)−1

��

which satisfies the pasting conditions of axiom EB2. This is seen by pasting these 2-
cells with ja

′a
g for some g : b → b′ in B and using properties of the jfab , properties of the

Φa
b , axiom EP1, and axiom EP6, before using similar applications of these in the reverse

order. Hence there is a unique 2-cell φf as required, which satisfies appropriate pasting
conditions, namely that the whiskering of φf by ja

′a
b yields the composite 2-cell displayed

above.
We must now check that these φf satisfy the axioms of a pseudo-extranatural trans-

formation. As the codomain of the 1-cells is an object of C then some of the axioms again
become redundant, namely EP2-4, and EP7. For EP1 we whisker each of the diagrams by
ja
′′a
b . On one side we get an instance of the above 2-cell for f ′f , while on the other we have

to use the properties of the coherence cells of
∫ b
P−b−b, in the manner described following
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Lemma 2.6. To equate the two pasting diagrams is a case of using the pseudonaturality of
jb, pseudo-extranaturality of i, and instances of the above composite 2-cell for both f and
f ′. The uniqueness in the 2-dimensional universal property of

∫ b
Pa′′bab is used to show

that EP1 then holds. For EP5, most of the 2-cells in φida ∗ 1jaab are identities, leaving Φa
b

to cancel with itself, before again using axiom EB2 to show the equality. Axiom EP6 is
simple to check.

Since φ :
∫ b
P−b−b

··⇒
∫ a,b

Pabab is then a pseudo-extranatural transformation there
exists an invertible 2-cell

∫ b
Pabab ∫ a,b

Pabab

∫ a ∫ b
Pabab

φa
))

ka 55

σ

��

Σa��

for each a ∈ A, from which we infer the existence of the desired 1-cell σ.

5.1. Lemma. For each fixed b ∈ B, considering jb as a pseudonatural transformation
j : P−b−b ⇒

∫ b
P−b−b, the composite of k and j, as in Lemma 3.1, satisfies the compatibility

condition of Lemma 2.4.

Proof. The proof relies on the equality of certain pasting diagrams, as in Lemma 2.4.
The easiest way to prove this equality is to show that one of the pasting diagrams acts as
an inverse for the other. The steps required depend on how the jb interact with the ja

′a,
as specified by Lemma 4.6.

We will now look to find a comparison map

θ :

∫ a,b

P (a, b, a, b)→
∫ a ∫ b

P (a, b, a, b).

By Lemma 3.1, the composite of j and k is pseudo-extranatural in a. This composite is
also pseudo-extranatural in b, following from the pseudo-extranaturality of j, simply by
whiskering diagrams with the 1-cells of k. By the previous lemma, the composite of j and
k is then pseudo-extranatural in (a, b), so there exists an invertible 2-cell

Pabab
∫ a,b

Pabab

∫ b
Pabab

∫ a ∫ b
Pabab

iab //

jaab

��

ka
//

θ

��

Θab��

for each (a, b) ∈ A× B, from which we infer the existence of the 1-cell θ.
The desirability of constructing the 1-cells σ and θ lies in the fact that they form

an equivalence between bicodescent objects. We now provide details of this equivalence
before showing that it is in fact an adjoint equivalence.
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5.2. Theorem. The 1-cells σ and θ form an equivalence∫ a,b

P (a, b, a, b) '
∫ a ∫ b

P (a, b, a, b).

Proof. The equivalence is provided by the 1-cells and invertible 2-cells constructed pre-
viously. We require isomorphisms

σ · θ ∼= id, θ · σ ∼= id

before showing that they satisfy appropriate axioms. For the first isomorphism, we can
show that the invertible 2-cells

Pabab

∫ a,b
Pabab

∫ a ∫ b
Pabab

∫ a,b
Pabab

∫ a,b
Pabab

∫ b
Pabab

iab
55

θ //

σ



iab %%

id
//

jaab
//

ka

??

φa

��

iab

**

Θab
�#

Σa��

Φab��
l−1
iab��

satisfy the requirements of axiom EB2, giving a unique invertible 2-cell κ : σ · θ ⇒ id such
that κ ∗ 1iab is the pasting diagram above.

The second isomorphism requires two steps. The first uses invertible 2-cells

Pabab

∫ b
Pabab

∫ a,b
Pabab

∫ a,b
Pabab

∫ b
Pabab

∫ a,b
Pabab

jaab

<<

φa
//

θ

""

jaab
""

ka
//

id

<<

ka

22

iab

::

Φab��

l−1
ika��

Θab
�#

satisfying the requirements of axiom EB2 to give unique invertible 2-cells Ωa : θ·φa ⇒ id·ka
such that Ωa ∗ 1jaab is the pasting diagram above. The second step uses invertible 2-cells

∫ b
Pabab

∫ a ∫ b
Pabab

∫ a,b
Pabab

∫ a ∫ b
Pabab

∫ a ∫ b
Pabab

ka
99

σ //

θ

��ka ��

id
//

φa

==

Σa��

Ωa
�#
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which again satisfy the requirements of axiom EB2, in order to give unique invertible
2-cells λ : θ · σ ⇒ id such that λ ∗ 1ka is the pasting diagram above. To apply EB2 in
this instance requires that, for some f : a → a′, the pasting of the two instances of the
previous diagram, for a and a′, with kf are equal. We show that they are equal by using

the universal property of
∫ b
Pabab, whiskering the diagrams with ja

′a
b gives an equality of

pasting diagrams and by uniqueness the original diagrams are equal.

5.3. Proposition. The equivalence provided by the 1-cells σ and θ is an adjoint equiv-
alence.

Proof. Checking that the previous equivalence is then an adjoint equivalence relies again
on the axiom EB2. The check here is somewhat simpler than the previous calculations.
For each pair (a, b) ∈ A× B we have invertible 2-cells

Pabab
∫ a,b

Pabab
∫ a ∫ b

Pabab

∫ a ∫ b
Pabab

∫ a,b
Pabab

iab //

θ

��

θ

EE

θ
44

id **

id ** θ
44

σ

��

l−1
θ��

rθ��

κ�� λ−1��

which plainly satisfy the requirements of EB2. We also note that this whiskered pasting
diagram is equal to the identity on θ · iab and so by uniqueness we find that the composite
2-cell, when not whiskered by iab, is the identity on θ. A similar argument shows that the
other triangle identity also holds, hence the equivalence is in fact an adjoint equivalence.

5.4. Corollary. Let P : Aop × Bop × A × B → C be a pseudofunctor and assume that
the bicodescent objects

ja
′a : P (a′,−, a,−)

··⇒
∫ b

P (a′, b, a, b)

and

lb
′b : P (−, b′,−, b) ··⇒

∫ a

P (a, b′, a, b)

exist, where (a′, a) ∈ Aop ×A and (b′, b) ∈ Bop × B. Then there is an adjoint equivalence∫ a ∫ b

P (a, b, a, b) '
∫ b ∫ a

P (a, b, a, b).
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It is simple to see that an object satisfying the axioms of a codescent object [Lack,
2002], [Street, 1987] also satisfies those of a bicodescent object. A bicodescent object only
requires existence of an induced 1-cell in the 1-dimensional property whereas a codescent
object requires this to also be unique. Hence our Fubini result applies to codescent objects
as well as bicodescent objects.
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