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STRICTIFICATION TENSOR PRODUCT OF 2-CATEGORIES

BRANKO NIKOLIĆ

Abstract. Given 2-categories C and D, let LaxpC,Dq denote the 2-category of lax
functors, lax natural transformations and modifications, and rC,Dslnt its full sub-2-
category of (strict) 2-functors. We give two isomorphic constructions of a 2-category
CbD satisfying LaxpC,LaxpD, Eqq � rCbD, Eslnt, hence generalising the case of the free
distributive law 1b 1. We also discuss dual constructions.

1. Introduction

Monads (aka triples, standard constructions) are given by a category C, an endofunctor
F : C Ñ C and two natural transformations η : 1C ñ F and µ : F 2 ñ F , satisfying
unit and associativity axioms [8]. Their use is ubiquitous and the most common one is
describing a (possibly complicated) algebraic structure as Eilenberg-Moore (EM) algebras
[8] on a category of simpler ones. An EM algebra is given by a map TX Ñ X compatible
with µ and η. With algebra morphisms, they form a category EMpT q. The full subcate-
gory of EMpT q consisting of free algebras is (up to equivalence) usually denoted KLpT q.
A typical example is the Abelian group monad on the category of sets taking a set S to
the set of elements of the free Abelian group on S.

A distributive law [1] consists of two different monads on the same category satisfying
a compatibility condition. Then their composite is a new monad. A typical example is
the Abelian group monad together with the monoid monad producing the ring monad,
hence the name.

Monads are in fact definable in an arbitrary bicategory E [9], just by replacing words
“functor” with arrow and natural transformation by 2-cell. For example, in the bicategory
of spans, monads are precisely (small) categories [2]. A morphism between a monad T on

X and S on Y , consists of an arrow X
F
ÝÑ Y and a “crossing” 2-cell S �F

σ
ùñ F � T which

is compatible with unit and multiplication for both monads. A morphism between monad
morphisms F and G, consists of a 2-cell F

α
ùñ G compatible with crossing 2-cells. These

form the 2-category of monads in E , called MndpEq. Now, a distributive law in E has a
short description as a monad in MndpEq. Various duals are expressible using dualities of
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2-categories, for instance, the 2-category of comonads is defined as CmdpEq � MndpEcoqco,
mixed distributive laws as CmdpMndpEqq. Since objects of E are no longer categories, we
have no access to their elements, and cannot form an EM -category; but we can use the
2-dimensional universal property of lax limit to obtain, if exists, an EM-object EMpT q,
also denoted CT . The main topic of [6] is completion of E under these limits. Dually, lax
colimits give KLpTq, also denoted CT .

The free monad [7] is a 2-category FM which classifies monads; that is, the 2-category
of strict functors, lax natural transformations and modifications rFM, Eslnt is isomorphic
to MndpEq. It is given by the suspension of the opposite of the algebraist’s category of
simplices, ∆op

a with ordinal sum as the monoidal structure. We will use it a lot, so we
review its definition and some properties in Appendix A. The free mixed distributive law
(FMDL) was constructed by Street [12], and is a special case of the construction presented
here.

A lax functor [2] (aka morphism) between bicategories generalises the notion of a
(strict) 2-functor, by relaxing the conditions of preservation of the unit and composition
of arrows. Instead, a lax functor F : D Ñ E is equipped with comparison maps

ηD : 1FD ñ F p1Dq and µdd1 : F pd1q � F pdq ñ F pd1 � dq

for each object D of D, and composable pair pd, d1q of arrows in D. These are required
to satisfy unit and associativity laws, and µ is required to be natural in d and d1. The
special case of D � 1, that is, if D has only one 0/1/2-cell, then giving a lax functor
exactly corresponds to giving a monad in E . A lax functor from the chaotic category1

on a set X corresponds to a category enriched in E . Another example, lax functors
from Ip:� 0 Ñ 1q into Span correspond to choosing two categories and a module (aka

profunctor, distributor) between them. Lax natural transformations F
σ
ùñ G between

two such functors consist of arrows FD
σDÝÝÑ GD, for each D P D, and Gd � σD

σdÝÑ

σ1D � Fd, for each D
d
ÝÑ D1 in D, natural in d and compatible with η and µ. Finally

a modification σ
m
ÝÑ τ consists of 2-cells σD

mD
ùùñ τD, for each D, compatible with σ.

These form a 2-category LaxpD, Eq. The choice of directions gives an isomorphism of
2-categories Laxp1, Eq � MndpEq, and by the definition of (free) distributive law (FDL)
we have Laxp1,Laxp1, Eqq � rFDL, Eslnt.

Our goal is, given 2-categories C and D, to construct a 2-category CbD that is “free”,
in the sense that it strictifies the lax functors, so that

LaxpC,LaxpD, Eqq � rC bD, Eslnt. (1)

The variables C, c, γ used to describe cells in C (similarly for D, d and δ in D), have
sources and targets according to the diagram 2.

C C 1 C2

c

c̄

¯̄c

c1

c̄1

¯̄c1

γ ó

γ̄ ó

γ1 ó

γ̄1 ó

(2)

1That is, the category having exactly one arrow in each hom.
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Horizontal composition is denoted by � and vertical by 
.

2. Tensor product via computads

We begin by fully unpacking the LHS of (1), which involves familiar, but numerous axioms
- there are eighteen axioms for an object (lax functor) B, five axioms for an arrow (lax
natural transformation) b : B Ñ B1, and two axioms for a 2-cell (modification) β : bñ b̄.
Then we review the definition of computads [10] which play the same role for 2-categories
as graphs do for usual categories - they are part of a monadic adjunction. We then
proceed to construct a computad G to give a convenient generator-relation description of
the tensor product.

2.1. Unpacking. An object B of LaxpC,LaxpD, Eqq assigns to each C P C a lax functor
BC : D Ñ E , which amounts to giving the following data2 in E :

• for each D an object BCD P E

• for each d an arrow BCd : BCD Ñ BCD1

• for each δ a 2-cell BCδ : BCdñ BCd̄, functorially

BC1d � 1BCd (3)

BCpδ̄ 
 δq � BCδ̄ 
BCδ (4)

•(f1) for each D a unit comparison 2-cell ηBC1D : 1BCD ñ BC1D

•(f1) for each composable pair pd, d1q a composition comparison 2-cell µBCdd1 : pBCd1q �
pBCdq ñ pBCd1 � dq,
satisfying unit and associativity axioms,

µ 
 p1 � ηq � 1 � µ 
 pη � 1q (5)

µ 
 p1 � µq � µ 
 pµ � 1q (6)

together with a naturality condition,

µBCd̄d̄1 
 pBCδ
1 �BCδq � BCpδ1 � δq 
 µCdd1 . (7)

Also, B assigns to each c : C Ñ C 1 a lax natural transformation Bc : BC Ñ BC 1

consisting of:

• arrows BcD : BCD Ñ BC 1D

2The bullet points marked with (f1), (f2), (t1) and (t2) contain 2-cells and axioms that need to be
reversed when considering dual constructions in Proposition 2.3.
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•(t1) 2-cells σBcd : BC 1d �BcD ñ BcD1 �BCd,
with the two axioms expressing compatibility with unit and composition,

σ 
 pη � 1q � 1 � η (8)

σ 
 pµ � 1q � p1 � µq 
 pσ � 1q 
 p1 � σq (9)

and one expressing naturality,

σBcd̄ 
 pBC
1δ � 1BcDq � p1BcD1 �BCδq 
 σBcd . (10)

Finally, B assigns (functorially) to each 2-cell γ : c Ñ c̄ a modification Bγ : Bc ñ Bc̄,
which in E means:

• 2-cells BγD : BcD ñ Bc̄D,
satisfying the modification axiom,

σBc̄d 
 p1BC1d �BγDq � pBγD1 � 1BCdq 
 σBcd (11)

and the functoriality condition

B1cD � 1BcD (12)

Bpγ̄ 
 γqD � Bγ̄D 
BγD . (13)

Being a lax functor, B has to provide the unit and composition comparison modifications
given by data:

•(f2) unit 2-cells ηB1CD : 1BCD ñ B1CD

•(f2) composition 2-cells µBcc1D : pBc1Dq � pBcDq ñ pBc1 � cDq
which, in addition to the naturality condition

µBc̄c̄1D 
 pBγ
1D �BγDq � Bpγ1 � γqD 
 µBcc1D (14)

and modification axiom,

σ 
 p1 � ηq � η � 1 (15)

σ 
 p1 � µq � pµ � 1q 
 p1 � σq 
 pσ � 1q (16)

satisfy the unit and associativity axioms (5)-(6).

An arrow b : B Ñ B1, being a lax transformation between lax functors B and B1,
assigns to each C P C a lax transformation bC : BC Ñ B1C and to each c : C Ñ C 1 a
modification σbc : B1c � bC ñ bC 1 �Bc, which means the following data in E :

• 1-cells bCD : BCD Ñ B1CD
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•(t1) 2-cells σbCd : B1Cd � bCD ñ bCD1 �BCd

•(t2) 2-cells σbcD : B1cD � bCD ñ bC 1D �BcD,
subject to naturality

σbc̄D 
 pB
1γD � 1bCDq � p1bC1D �BγDq 
 σbcD (17)

σbCd 
 pB
1Cδ � 1bCDq � p1bCD1 �BCδq 
 σbCd (18)

lax transformation

σ 
 pη � 1q � 1 � η (19)

σ 
 pµ � 1q � p1 � µq 
 pσ � 1q 
 p1 � σq (20)

and a modification

p1 � σq 
 pσ � 1q 
 p1 � σq � pσ � 1q 
 p1 � σq 
 pσ � 1q (21)

axioms.

A 2-cell β : bÑ b̄ in LaxpC,LaxpD, Eqq, being a modification, assigns to each C P C a
modification βC : bC ñ b̄C, which in E means

• 2-cells βCD : bCD ñ b̄CD, with modification axioms,

σb̄cD 
 p1B1cD � βCDq � pβC 1D � 1BcDq 
 σbcD (22)

σb̄Cd 
 p1B1Cd � βCDq � pβCD1 � 1BCdq 
 σbCd . (23)

2.2. Dual cases. Denote by pOpqLaxpopqpD, Eq the 2-category of (op)lax functors (first

op), (op)lax natural transformations (subscript op) and modifications.

2.3. Proposition. There are isomorphisms:

LaxoppD, Eq � LaxpDop, Eopqop (24)

OpLaxoppD, Eq � LaxpDco, Ecoqco (25)

LaxpC,LaxoppD, Eqq � LaxoppD,LaxpC, Eqq (26)

LaxpC,OpLaxoppD, Eqq � OpLaxoppD,LaxpC, Eqq . (27)

Proof. Data and axioms for the LHS of (24) (resp. (25)) are obtained from the beginning
of Section 2.1 until the equation (13), by ignoring the letter B in all the names, and
reversing the direction of 2-cells for data marked by (t1) (resp. (f1) or (t1)). On the
other hand, the data and axioms for the RHS of (24) (resp. (25)) have reversed sources
and targets of arrows (resp. 2-cells), compared to the diagram (2), but they also live in
Eop (resp. Eco), rather than E ; interpreted in E , they have reversed 2-cells marked by (t1)
(resp. (f1) or (t1)). A possibly easier way to see this is to draw string diagrams in Eop

(resp. Eco), and then flip them horizontally (resp. vertically).
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To prove (26), observe that the data and axioms in Section 2.1, with (t1) 2-cells
reversed (LHS), and second and third letter in all labels formally swapped, corresponds
to the same data and axioms when C (resp. c, γ) is substituted for D (resp. d, δ), and
vice versa, and then (t2) 2-cells are reversed (RHS).

Similarly, in (27) reversing (f1) and (t1) 2-cells, followed by swapping positions in
labels, leads the same result as swapping variables and then reversing 2-cells marked by
(f2) and (t2).

Once the directions for data are fixed, all axioms are determined in a unique way, and
there is no need to analyse them separately.

2.4. Corollary. There are isomorphism:

OpLaxpD, Eq � LaxpDco op, Eco opqco op (28)

OpLaxpC,LaxoppD, Eqq � LaxoppD,OpLaxpC, Eqq . (29)

2.5. Corollary. There are isomorphism:

rD, Esont � rDop, Eopsop
lnt (30)

rD, Esont � rDco, Ecosco
lnt (31)

rC, rD, Esontslnt � rD, rC, Eslntsont . (32)

2.6. Reviewing computads. The content of this part is taken from [10]. We describe
the major ideas and leave out the details.

2.7. Definition. ([10], with a technical modification3) A computad G consists of a graph
|G| (providing a set of objects |G|0 and a set of generating arrows |G|1), and for each pair
of objects G,G1 P |G|0 a graph GpG,G1q with a set nodes4 GpG,G1q0 � pF |G|qpG,G1q and
a set of edges denoted GpG,G1q1 (providing generating 2-cells).

A computad morphism assigns all the data, respecting sources and targets, forming a
category Cmp.

There is a free 2-category FG on the computad G that has the same objects as G.
Arrows between G and G1 are “paths” between G and G1; that is, elements of GpG,G1q0.
To define 2-cells, it is not enough to take the free category on GpG,G1q since it does not
take whiskering into account. Instead, consider the set of whiskered generating 2-cells

G1pG,G1q � tpp, α, p1q|p P GpG,Xq0,
α P GpX,X 1q1,

p1 P GpX 1, G1q0u .

3We take all paths between two objects to be the nodes of GpG,G1q; that is, GpG,G1q0 � pF |G|qpG,G1q.
4F |G| is the free category on a graph |G|
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Finally, to impose the middle of four interchange, take the set of whiskered pairs

G2pG,G1q � tpp, α, p1, α1, p2q|p P GpG,Xq0,
α P GpX,X 1q1,

p1 P GpX 1, X2q0

α1 P GpX2, X3q1,

p2 P GpX3, G1q0u

and form a coequalizer in Cat to obtain the hom pFGqpG,G1q

FG2pG,G1qÑ FG1pG,G1q Ñ pFGqpG,G1q (33)

where the two parallel arrows are the two obvious ways to compose whiskered α with
whiskered α1; see [10] for details and the rest of the construction.

Given a 2-category E , the underlying computad UE has the underlying graph ob-
tained from the underlying category of E ; that is, |UE | � U |E |, and the hom graphs have
edges pUEqpE,E 1qpp, p1q � EpE,E 1qp�p, �p̄q, where �p denotes the arrow in E obtained by
composing the path p in E . Assignments F and U extend to morphisms and form an
adjunction, giving a bijection between arrows in Cmp and 2-Cat

T : G Ñ UE Ø T̂ : FG Ñ E . (34)

Intuitively, the 2-category FUE is the 2-category of pasting diagrams in E , and the
counit of the adjunction is the operation of actual pasting to obtain a (2-)cell in E .

2.8. The tensor product computad. The goal is to construct a computad G which
has data analogous to the one in Section 2.1, and then to impose further identification of
2-cells in FG, analogous to the axioms (3)-(16). Consider the computad G defined by the
following data:

• a set |G|0 � ObC �ObD of nodes, whose elements are denoted C bD

• the set |G|1ppC,Dq, pC 1, D1qq of edges consists of arrows in CpC,C 1q if D � D1,
denoted c b D, and arrows in DpD,D1q if C � C 1, denoted C b d, otherwise it is
empty. The concatenation of cbD and C 1 b d, as an arrow in the free category on

|G|, will be denoted by tC b D
cbD
ÝÝÑ C 1 bD

C1bd
ÝÝÝÑ C 1 bD1u, and the empty path

on C b D by tC b Du. When the meaning is clear from the context we omit the
tensor product character. A concise way of expressing the collection of edges is as
a disjoint union

|G|1ppC,Dq, pC 1, D1qq � CpC,C 1q � δDD1 � δCC1 �DpD,D1q, (35)

with δXY being an empty set when X � Y and singleton tXu when X � Y .

• 2-cells
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– for each object C of C and 2-cell δ : dñ d̄ in D,

C b δ : tCD
Cd
ÝÑ CD1u ñ tCD

Cd̄
ÝÑ CD1u (36)

– for each object D of D and 2-cell γ : cñ c̄ in C,

γ bD : tCD
cD
ÝÑ C 1Du ñ tCD

c̄D
ÝÑ C 1Du (37)

–(f1) for each pC,Dq P |G|0, the unit comparisons

idC1D : tCDu ñ tCD
C1DÝÝÑ CDu (38)

–(f2) for each pC,Dq P |G|0, the unit comparisons

id1CD : tCDu ñ tCD
1CDÝÝÑ CDu (39)

–(f1) for each C P C and composable pair pd, d1q in D, a composition comparison

compCdd1 : tCD
Cd
ÝÑ CD1 Cd1

ÝÝÑ CD2u ñ tCD
Cbpd1�dq
ÝÝÝÝÝÑ CD2u (40)

–(f2) for each D P D and composable pair pc, c1q in C, a composition comparison

compcc1D : tCD
cD
ÝÑ C 1D

c1D
ÝÝÑ C2Du ñ tCD

pc1�cqbD
ÝÝÝÝÝÑ C2Du (41)

–(t1) for each pair of 1-cells pc, dq,

swapcd : tCD
cD
ÝÑ C 1D

C1d
ÝÝÑ C 1D1u ñ tCD

Cd
ÝÑ CD1 cD1

ÝÝÑ C 1D1u. (42)

The 2-category C bcmp D is obtained from FG, the free 2-category on the computad
G, by imposing identifications:

• preservation of identity 2-cells

C b 1d � 1Cbd (43)

1c bD � 1cbD (44)

• distributivity of b over vertical composition

pC b δ1q 
 pC b δq � C b pδ1 
 δq (45)

pγ1 bDq 
 pγ bDq � pγ1 
 γqbD (46)

• compatibility with the composition comparison 2-cells

compCd̄d̄1 
 pC b δ1 � C b δq � C b pδ1 � δq 
 compCdd1 (47)

compc̄c̄1D 
 pγ
1
bD � γ bDq � pγ1 � γqbD 
 compcc1D (48)
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• compatibility with the swapping 2-cells

swapc̄d̄ 
 pC
1
b δ � γ bDq � pγ bD1 � C b δq 
 swapcd (49)

• unit and associativity laws

comp 
 p1 � idq � 1 & comp 
 pid � 1q � 1 (50)

comp 
 pcomp � 1q � comp 
 p1 � compq (51)

• compatibility of swapping with unit and composition

swap 
 p1 � idq � id � 1 (52)

swap 
 pid � 1q � 1 � id (53)

swap 
 p1 � compq � pcomp � 1q 
 p1 � swapq 
 pswap � 1q (54)

swap 
 pcomp � 1q � p1 � compq 
 pswap � 1q 
 p1 � swapq . (55)

2.9. Proposition. Let C, D and E be 2-categories, CbcmpD the 2-category defined above,
then there is an isomorphism

LaxpC,LaxpD, Eqq � rC bcmp D, Eslnt . (56)

Proof. The data for G and identifications when forming C bcmp D correspond exactly
to data and laws (3)-(16) for B P LaxpC,LaxpD, Eqq in the Section 2.1. So, giving B
corresponds to giving a computad map Bcmp : G Ñ UE such that the strict 2-functor

B̂cmp : FG Ñ E respects the identifications (43)-(55), which corresponds to giving a strict

2-functor B̂ : C bcmp D Ñ E .
Define ED :� rD, Esont. From (32) we get the following isomorphism

rFG, EsJlnt � rFG, EJ slnt . (57)

In particular, we have a bijection on objects, so for a free arrow J � Ip:� 0 Ñ 1q,

(resp. free 2-cell J � Dp:� 0
Ñ
ó
Ñ

1q), we get a bijection between arrows (resp. 2-cells) of

rFG, Eslnt and 2-functors FG Ñ EI (resp. FG Ñ ED).
Consider a lax natural transformation between 2-functors respecting identifications

(43)-(55) (as above)
b̂cmp : B̂cmp ñ B̂1

cmp : FG Ñ E . (58)

It corresponds to a 2-functor
b̂curry

cmp : FG Ñ E I (59)
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which corresponds to a lax natural transformation b : B ñ B1 - the correspondence goes
as follows

G bcurry
cmp
ÝÝÝÑ UE I (60)

C bD ÞÑ bCD (61)

cbD, C b d ÞÑ σbcD, σbCd (62)

γ bD, C b δ ÞÑ pBγD,B1γDq, pBCδ,B1Cδq (63)

id�, comp�, swap� ÞÑ pηB�, ηB1�q, pµB�, µB1�q, pσB�, σB1�q . (64)

The RHS of (63) (resp. (64)) being 2-cells of E I is equivalent to (17) and (18) (resp. (19),
(20) and (21)). The 2-functor b̂curry

cmp respects identifications (43)-(55) because its source
and target do, and so it also corresponds to a 2-functor

b̂curry : C bcmp D Ñ E I (65)

which is equivalently a lax natural transformation

b̂ : B̂ ñ B̂1 : C bcmp D Ñ E . (66)

Similarly, a modification

β̂cmp : b̂cmp Ñ
ˆ̄bcmp : B̂cmp ñ B̂1

cmp : FG Ñ E (67)

corresponds to a 2-functor
β̂curry

cmp : FG Ñ ED (68)

which corresponds to a modification β : bÑ b̄ via

G βcurry
cmp
ÝÝÝÑ UED (69)

C bD ÞÑ βCD (70)

cbD, C b d ÞÑ pσbcD, σb̄cDq, pσbCd, σb̄Cdq (71)

γ bD, C b δ ÞÑ pBγD,B1γDq, pBCδ,B1Cδq (72)

id�, comp�, swap� ÞÑ pηB�, ηB1�q, pµB�, µB1�q, pσB�, σB1�q . (73)

The RHS of (71) being 1-cells of ED is equivalent to modification axioms (22) and (23).
The RHS of (72) and (73) being 2-cells of ED, and β̂curry

cmp respecting identifications (43)-

(55), are just componentwise properties of b̂curry
cmp and ˆ̄bcurry

cmp .

2.10. Dual strictifications. Notice that all the data and identifications for Gp�:
GCDlax q, apart from those involving swap, are invariant (up to relabelling) with respect
to exchanging C and D. However, if we exchange C and D and consider oplax natural
transformations at the same time, we arrive at an isomorphic computad GDC

oplax � GCDlax ,
the isomorphism consisting of exchanging the two positions in all the labels. All the
identifications are isomorphic as well. This directly leads us to observe
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2.11. Corollary. There is an isomorphism

C bD � pDop
b Copqop . (74)

Proof. The computad GDC
oplax, with its identifications, generates a 2-category strictifying

LaxoppD,LaxoppC, Eqq. On the other hand,

LaxoppD,LaxoppC, Eqq
p24q
� LaxpDop,LaxpCop, Eopqqop (75)

p56q
� rDop

b Cop, Eopsop
lnt (76)

p30q
� rpDop

b Copqop, Esont . (77)

2.12. Corollary. Given 2-categories C and D there are isomorphisms

LaxoppC,LaxoppD, Eqq � rD b C, Esont (78)

OpLaxoppC,OpLaxoppD, Eqq � rpCco
bDcoqco, Esont (79)

OpLaxpC,OpLaxpD, Eqq � rpDco
b Ccoqco, Eslnt . (80)

When C � D � 1, we get free distributive laws between monads with opmorphisms
(opfunctors in [9]), between comonads with opmorphisms and between comonads with
morphisms, respectively.

Now we consider strictification for the case when one of the homs has oplax functors
- LaxpC,OpLaxpD, Eqq. Consider a computad Gm, obtained from G by reversing 2-cells
marked by (f1) and changing identifications accordingly. It generates a mixed tensor prod-
uct C bm

cmpD, which analogously to Proposition 2.9 and Corollary 2.11 satisfies Corollary
2.13.

2.13. Corollary. There are isomorphisms:

LaxpC,OpLaxpD, Eqq � rC bm
cmp D, Eslnt (81)

C bm
cmp D � pDco

b
m
cmp Ccoqco . (82)

The cases based on this one are:

OpLaxoppC,LaxoppD, Eqq � rD bm
cmp C, Esont (83)

LaxoppC,OpLaxoppD, Eqq � rpCop
b

m
cmp Dopqop, Esont (84)

OpLaxpC,LaxpD, Eqq � rpDop
b

m
cmp Copqop, Eslnt . (85)

Finally, when the two homs have different choice for the direction of natural trans-
formations, there is no strictification tensor product, mainly because we have to choose
a type of natural transformation for the strict hom. For example, note that the objects
B P LaxpC,LaxoppD, Eqq correspond to the objects B P rD b C, Esplqpoqnt but crossings in
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the former allow5 c�b�dñ d�b�c while crossings of the latter allow c�d�bñ b�d�c for lax
and b � c � dñ d � c � b for oplax natural transformations, suggesting that this case cannot
be strictified. In a similar way, LaxpC,OpLaxoppD, Eqq does not permit strictifications.

3. Simplicial approach

3.1. Bénabou construction of the 2-category of paths. Let C be a 2-category
and C: the 2-category of “paths” in C, consisting of the same objects as C, and arrows
between C and C 1 are strict 2-functors p representing paths in C between C and C 1; that
is,

rns
p
ÝÑ C, pp0q � C, ppnq � C 1, (86)

where rns is an object of ∆KJ, for details see Appendix A. Denote by6 ppqi the ith

component in the path
ppqi � p ppi� 1q Ñ iq . (87)

The identity is a path of zero length on C:

r0s
0CÝÑ C (88)

0 ÞÑ C (89)

and composition is given by “concatenation”,

pn1, p1q � pn, pq � pn� n1, p� p1q (90)

where pp � p1qi � ppqi if i ¤ n and pp � p1qi � pp1qi�n otherwise. This composition is
strictly associative and unital.

Finally, 2-cells between pn, pq and pn̄, p̄q, are pairs pξ, αq where ξ : rn̄s Ñ rns is a
morphism in ∆KJ and α is an identity on components, oplax-natural transformation,
shortly icon, introduced in [5]:

α : p � ξ ñ p̄, . (91)

with 2-cell components on identity arrows restricted to α1i � 11p̄piq , which is true for
general (op)lax transformations between normal lax functors. So, α is determined by n̄
components on non-identity arrows:

αi :� αpi�1qÑi : pp � ξq ppi� 1q Ñ iq ñ pp̄qi . (92)

Note that if ξpiq � ξpi � 1q then the source of the corresponding component of α is the
identity; that is, αi : 1pξpiq ñ pp̄qi. The identity 2-cells is given by 1pn,pq � p1rns, 1pq. The

5which is a shorter notation for B1cD1 � bCD1 �BCd ñ B1C 1d � bC 1D �BcD
6We reserve pi, without brackets, to mean the length of the image as in (177).
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vertical composite of pξ, αq and pξ̄, ᾱq is obtained by pasting, as in the diagram (93).

rns

rn̄s

r¯̄ns

C

p

p̄

¯̄p

ξ

ξ̄

α ó

ᾱ ó
(93)

The horizontal composition is concatenation, analogous to the one for path (1-cells),
pξ1, α1q � pξ, αq � pξ � ξ1, α � α1q, where pα � α1qi � αi if i ¤ n, and pα � α1qi � α1i�n
otherwise.

3.2. Tensor product simplicially. We proceed to describe our main result: a model
C bsim D for the strictification tensor product and then show that it is isomorphic to
C bcmp D.

Objects of C bsim D are pairs pC;Dq with C P C and D P D.
An arrow in CbsimD is a sextuple pn, p, r;m, q, sq. It consists of a path in C of length

n, a path in D of length m

p : rns Ñ C, q : rms Ñ D (94)

and a way to combine them into a string of length n�m; that is, a shuffle

rns
r
ÐÝ rn�ms

s
ÝÑ rms (95)

where r and s satisfy a compatibility condition (191) saying that one increases if and only
if the other one does not.

The identity (empty path) on pC;Dq is defined by taking m � n � 0, r � s � 1r0s,
and p and q pick the objects C and D. Composition is defined by path concatenation,
formally expressed as tensor product of shuffles.

Below is an example of a 1-cell tc1, d1, c2, c3, d2u : pC1, D1q Ñ pC4, D3q in C bsim D.
Here, n � 3, m � 2, r : r5s Ñ r3s and s : r5s Ñ r2s give the coordinates of the
corresponding node in the path, and p : r3s Ñ C and q : r2s Ñ D are the obvious functors
producing the paths tciu

3
i�1 and tdiu

2
i�1 in C and D.

C1 C2 C3 C4

c1 c2 c3

D1

D2

D3

d1

d2

C1D1 C2D1

C2D2 C3D2 C4D2

C4D3

c1

d1
c2 c3

d2

(96)
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A 2-cell

pξ, α; ρ, βq : pn, p, r;m, q, sq Ñ pn̄, p̄, r̄; m̄, q̄, s̄q (97)

consists of:

• a shuffle morphism, that is functors ξ : rn̄s Ñ rns, ρ : rm̄s Ñ rms preserving the first
and the last element and satisfying, for all ī ¤ n̄� m̄,

min r�1pξr̄īq ¤ max s�1pρs̄̄iq (98)

a condition ensuring that there are no swaps of arrows from C and D in the wrong
direction. The condition (98) is an explicitly written condition for the existence of
the natural transformation (194)

• path 2-cells, that is, icons α : p � ξ ñ p̄ and β : q � ρñ q̄, as defined in section 3.1.

Below is an example of a 2-cell.

C1D1 C2D1 C2D2 C3D2 C4D2 C4D3c1 d1
c2 c3 d2

C1D1 C2D1 C2D3 C2D3 C4D3

c̄1 d̄1 c̄2 c̄3

(99)

The above diagram represents two 1-cells and data of ξ and ρ, and what remains is
to specify icon components α1 : c1 ñ c̄1, α2 : 1C2 ñ c̄2, α3 : c3 � c2 ñ c̄3 in C and
β1 : d2 � d1 ñ d̄1 in D.

Vertical composition and whiskerings are defined componentwise as in Shuff , C: and
D:.

3.3. As a limit. The category C bsim D is a limit of the following diagram in 2-Cat.

C: Ñ Σ∆KJ Ð FDL Ñ Σ∆KJ Ð D:

C ÞÑ � Ð [ � ÞÑ � Ð [ D
pn, pq ÞÑ rns Ð[ pn,m, s, rq ÞÑ rms Ð[ pm, qq
pξ, αq ÞÑ ξ Ð [ pξ, ρ, γq ÞÑ ρ Ð [ pρ, βq

3.4. Isomorphism between two constructions. This part is about proving the
following proposition.

3.5. Theorem. There is an isomorphism

C bsim D � C bcmp D . (100)

We shall define a computad morphism T : G Ñ UpC bsim Dq, show that the induced
strict 2-functor T̂ : FG Ñ C bsim D respects the identifications (43)-(55), and that any
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other 2-functor V̂ : FG Ñ E respecting them factors uniquely through T̂ . Then, from the
universal property of C bcmp D it will follow that C bcmp D � C bsim D.

The computad morphism T : G Ñ UpC bsim Dq is defined on nodes by

T pC bDq � pC;Dq , (101)

on edges by

T pC b dq � p0, tCu, σ1
0; 1, tD

d
ÝÑ D1u, 1r1sq (102)

T pcbDq � p1, tC
c
ÝÑ C 1u, 1r1s; 0, tDu, σ1

0q , (103)

on 2-cells inherited from C and D by

T pC b δq � p1r0s, tu; 1r1s, tδuq : p0, tCu, σ1
0; 1, tD

d
ÝÑ D1u, 1r1sq

ñ p0, tCu, σ1
0; 1, tD

d̄
ÝÑ D1u, 1r1sq (104)

T pγ bDq � p1r1s, tγu; 1r0s, tuq : p1, tC
c
ÝÑ C 1u, 1r1s; 0, tDu, σ1

0q

ñ p1, tC
c̄
ÝÑ C 1u, 1r1s; 0, tDu, σ1

0q (105)

and on the comparison and swapping 2-cells by

T pid1CDq � pσ1
0, t11Cu; 1r0s, tuq : p0, tCu, 1r0s; 0, tDu, 1r0sq

ñ p1, tC
1CÝÑ Cu, 1r1s; 0, tDu, σ1

0q (106)

T pidC1Dq � p1r0s, tu;σ
1
0, t11Duq : p0, tCu, 1r0s; 0, tDu, 1r0sq

ñ p0, tCu, σ1
0; 1, tD

1DÝÑ Du, 1r1sq (107)

T pcompc,c1,Dq �pB
2
1, t1c1�cu; 1r0s, tuq :

p2, tC
c
ÝÑ C 1 c1

ÝÑ C2u, 1r2s; 0, tDu, !r2sÑr0sq

ñ p1, tC
c1�c
ÝÝÑ C2u, 1r2s; 0, tDu, σ1

0q (108)

T pcompC,d,d1q �p1r0s, tu; B
2
1, t1d1�duq :

p0, tCu, !r2sÑr0s; 2, tD
d
ÝÑ D1 d1

ÝÑ D2u, 1r2sq

ñ p0, tCu, σ1
0; 1, tD

d1�d
ÝÝÑ D2u, 1r1sq (109)

T pswapc,dq �p1r1s, α � t1cu; 1r1s, β � t1duq :

p1, tC
c
ÝÑ C 1u, σ2

1; 1, tD
d
ÝÑ D1u, σ2

0q

ñ p1, tC
c
ÝÑ C 1u, σ2

0; 1, tD
d
ÝÑ D1u, σ2

1q . (110)
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To check that the last 2-cell is the valid one, write equation (194) as

Lσ2
1 � 1 � σ2

0 � B2
2 � σ

2
0 ñ B2

0 � σ
2
1 � Rσ2

0 � 1 � σ2
1 . (111)

The cells on the RHS of (104)-(110) will be called elementary 2-cells.
To see that the induced strict 2-functor respects identifications (43)-(55), note that

T pidq, T pcompq, and T pswapq have trivial icon components, while the definition of T on
other parts of the computad have trivial components in Shuff , and that the composition
of 2-cells in C bsim D is done independently in each of the components.

Given a computad map V : G Ñ UE , such that V̂ : FG Ñ E respects the identifications
(43)-(55), form the following assignments W : C bsim D Ñ E on objects

W pC;Dq � V pC bDq (112)

and on elementary arrows

W p0, tCu, σ1
0; 1, tD

d
ÝÑ D1u, 1r1sq � W pT pC b dqq � V pC b dq (113)

W p1, tC
c
ÝÑ C 1u, 1r1s; 0, tDu, σ1

0q � W pT pcbDqq � V pcbDq . (114)

Since every shuffle can be written uniquely as a sum of shuffles of unit length, the above
assignment determines assignment on all 1-cells; given pn, p, r;m, q, sq, assign to it the
composite given by (115).

W pn, p, r;m, q, sq � �1
i�n�m

#
V pppqi b qsiq, if si � 0

V pprib pqqiq, if ri � 0
(115)

When n � m � 0 we get that W preserves identities; that is,

W p1pC;Dqq � 1W pC;Dq . (116)

Also, W preserves composition

W pn1, p1, r1;m1, q1, s1q �W pn, p, r;m, q, sq �

�1
i1�n1�m1

#
V ppp1qi1 b q1s1i1q, if s1i1 � 0

V pp1r1i1 b pq1qi1q, if r1i1 � 0
�1
i�n�m

#
V pppqi b qsiq, if si � 0

V pprib pqqiq, if ri � 0
(117)

� �1
i�n1�m1�n�m

$'''&
'''%
V ppp1qi b q1s1iq, if s1i � 0, and i ¡ n�m

V pp1r1ib pq1qiq, if r1i � 0, and i ¡ n�m

V pppqi b qsiq, if si � 0, and i ¤ n�m

V pprib pqqiq, if ri � 0, and i ¤ n�m

(118)

� W pn1 � n, p1 � p, r1 � r;m1 �m, q1 � q, s1 � sq (119)

� W ppn1, p1, r1;m1, q1, s1q � pn, p, r;m, q, sqq . (120)
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Hence, it is a functor on the underlying categories.
The requirement that WT � V determines the assignment on identities

T p1gq � 1Tg (121)

on elementary 2-cells Tπ
W pTπq � V pπq (122)

and similarly on whiskered elementary 2-cells

W pTg2 � Tπ � Tgq :� V g2 � V π � V g � V pg2 � π � gq (123)

where Tπ is an elementary 2-cell and Tg and Tg1 are 1-cells.
Given any 2-cell pξ, α; ρ, βq, as in (97), choose a decomposition into whiskered elemen-

tary 2-cells in the following order, starting from the target 1-cell,

• elementary β, j � m̄, .., 1

Jj � 1 � T pp̄r̄j b βjq � 1 (124)

� p1rn̄s, t1p1 , .., 1pn̄u; 1rm̄s, t1q1 , .., βj, .., 1qn̄uq (125)

• elementary α, i � n̄, .., 1

Ii � 1 � T pαi b q̄s̄iq � 1 (126)

� p1rn̄s, t1p1 , .., αi, .., 1pn̄u; 1rm̄s, t1q1 , .., 1qn̄uq (127)

• comparisons in D, j � m̄, .., 1

– if ρ̄j � 0 then

Lj,1 � 1 � T pidq � 1 �: L
pidq
j (128)

– if ρ̄j ¥ 2, k � ρ̄j � 1, ..., 1

Lj,k � 1 � T pcompq � 1 �: L
pcompq
j,k (129)

This order corresponds to left bracketing.

– if ρ̄j � 1 then Lj,1 � 1, and can be ignored.

• comparisons in C, i � n̄, .., 1

– if ξ̄i � 0 then
Ki,1 � 1 � T pidq � 1 �: K

pidq
j (130)

– if ξ̄j ¥ 2, k � ξ̄j � 1, ..., 1

Ki,k � 1 � T pcompq � 1 �: K
pcompq
j,k (131)

This order corresponds to left bracketing.
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– if ξ̄j � 1 then Kj,1 � 1, and can be ignored.

• crossings - the remaining 2-cell to decompose has trivial icon components as well as
trivial ξ and ρ. In the relation tables - which define the two shuffles - elementary
crossings correspond to switching ones to zeros, or, going backwards, switching zeros
to ones. Let px, yq be the coordinates of the corresponding crossings, order them by
x�y and then (if the x�y value is the same) by x�y. Our backward decomposition
starts with the last crossing in the table. Denote them by Si.

Now, define

W pξ, α; ρ, βq � �iW pJiq �iW pIiq �i,j W pLi,jq �i,j W pKi,jq �iW pSiq (132)

Given a composable pair of 2-cells, the composite of their images under W , W pξ̄, ᾱ; ρ̄, β̄q�
W pξ, α; ρ, βq, is equal to

�iW pJ̄iq �iW pĪiq �i,j W pL̄i,jq �i,j W pK̄i,jq �iW pS̄iq

�iW pJiq �iW pIiq �i,j W pLi,jq �i,j W pKi,jq �iW pSiq (133)

which need not be in the canonical form. The assignment on the composite 2-cell

pξ � ξ̄, ᾱ 
 pα � ξ̄q; ρ � ρ̄, β̄ 
 pβ � ρ̄qq (134)

is in the canonical form, and the two are equal which we show by “bubble-sorting” the
decomposition (133). In each step one of two cases can happen:

• the output (target of the elementary part) of the first 2-cell does not overlap with
the input (source of the elementary part) of the second 2-cell. Then we can write
the vertical composite of their images as

W pTg5 � T ḡ4 � Tg3 � Tπ2 � Tg1q


W pTg5 � Tπ1 � Tg3 � Tg2 � Tg1q

� V pg5 � π1 � g3 � π2 � g1q �

W pTg5 � Tπ1 � Tg3 � T ḡ2 � Tg1q


W pTg5 � Tg4 � Tg3 � Tπ2 � Tg1q (135)

meaning that we can change the order of their composition after suitably changing
the whiskering 1-cells.

• the output of the first 2-cell overlaps with the input of the second 2-cell. Depending
on which elementary 2-cells meet, do an operation according to the following table.
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1stz2nd J̄ Ī L̄pidq L̄pcompq K̄pidq K̄pcompq S̄

J p45q K K p47q K K K{p49q

I K p46q K K K p48q p49q{K

Lpidq R K K p50q K K K{p53q

Lpcompq R K K R{p51q K K K{p55q

Kpidq K R K K K p50q p52q{K

Kpcompq K R K K K R{p51q p54q{K

S K{RR{K K K{K{R K R{K{K R{K{K

(136)

If the first 2-cell has n outputs and the second 2-cell has m inputs, there are n�m�1
ways to match them. When different, these cases are separated by “{”. The symbol
K denotes that matching is not possible for that case, and R denotes that the
matching is possible, but the order is already correct (lower triangle). Finally, an
equation number tells us to apply T̂ to both sides, and substitute the LHS, which
appears in the composition, with the RHS. Each step changes the decomposition of
the 2-cell, and the fact that V̂ preserves relations ensures that the composite in E
does not change.

This proves that W is functorial on homs.
A 2-cell in C b D, obtained by whiskering, has the same elementary 2-cells in its

decomposition as the original 2-cell. Hence, the two different composites

pWTḡ1 �W pξ, α; ρ, βqq 
 pW pξ1, α1; ρ1, β1q �WTgq (137)

and
pW pξ1, α1; ρ1, β1q �WTḡq 
 pWTg1 �W pξ, α; ρ, βqq (138)

necessarily bubble-sort to W ppξ1, α1; ρ1, β1q � pξ, α; ρ, βqq. This completes the proof that W
is a 2-functor.

The functor T̂ is bijective on objects and arrows, and surjective on 2-cells, so W is the
unique 2-functor satisfying V̂ � WT̂ .

3.6. Mixed tensor product. The case covering the free mixed distributive law, stric-
tifying LaxpC,OpLaxpD, Eqq, produces C bm

sim D that has the same objects and arrows as
C b D, and 2-cells differ by changing the direction of ρ : rms Ñ rm̄s to accommodate
comultiplication and counit, change in icon β : q ñ q̄ρ : rms Ñ D, with the restriction
for crossings taking a slightly different form

Lr � ξ � r̄ ñ Rs �Rρ � s̄ . (139)

With a proof following the same steps as the non-mixed case, we state the following
proposition.
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3.7. Proposition. There is an isomorphism

C bm
sim D � C bm

cmp D . (140)

4. Some properties and an example

4.1. Lax monoidal structure. In this section we will recall the universal property
of the lax Gray tensor product [4], and use it together with the Bénabou construction of
paths from Section 3.1 to describe a lax monoidal structure on the category of 2-categories
and lax functors.

Let L2-Cat denote the category of (small) 2-categories and lax functors, while 2-Cat
denotes denote the subcategory of L2-Cat consisting of strict 2-functors. The inclusion
i0 : 2-Cat ãÑ L2-Cat has a left adjoint:

• There is an assignment on objects p�q: : L2-Cat ãÑ 2-Cat (the Bénabou strictifica-
tion construction, Section 3.1)

• For each C there is an universal L2-Cat arrow (lax functor) ηC : C Ñ C:, meaning,
each lax functor F : C Ñ D gives rise to a unique strict functor

s0F : C: Ñ D (141)

satisfying s0F � ηC � F .

In fact, one could define a computad presentation of p�q: and analogously to proofs of
Proposition 2.9 and Theorem 3.5 show that

LaxpC, Eq � rC:, Eslnt . (142)

The lax Gray tensor product, bl : 2-Cat� 2-Cat Ñ 2-Cat, is a tensor product for the
internal hom r�,�slnt, that is

rC, rD, Eslntslnt � rC bl D, Eslnt . (143)

The left hand side of Eq. (1) can be transformed

LaxpC,LaxpD, Eqq
p142q
� rC:, rD:, Eslntslnt (144)

p143q
� rC: bl D:, Eslnt (145)

leading to the third description of the tensor product7

C bD � C: bl D: . (146)

From 2-monadic point of view, the bl is a pseudo algebra on 2-Cat for the monoidal
category 2-monad on CAT. The adjunction p�q: % i0 induces a lax algebra structure on
L2-Cat given by

bnpC1, . . . , Cnq :� C:1 bl . . .bl C:n . (147)

7The lax Gray product bl is defined via its universal property, and the explicit description involves
relations and quotienting. Our direct description, explained in Section 3, involves no quotienting.
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4.2. Generalization of the composite monad. There is an obvious 2-functor L :
C bD Ñ C �D that forgets shuffles and composes paths. It has a right adjoint R in the
2-category of 2-categories, lax functors and icons:

C �D R
ÝÑ C bD (148)

pC,Dq ÞÑ C bD (149)

pc, dq ÞÑ CD
Cd
ÝÑ CD1 cD1

ÝÝÑ C 1D1 (150)

pγ, δq ÞÑ pγ bD1q � pC b δq (151)

with identity and composition comparison maps

! : 1CbD ñ CD
C1DÝÝÑ CD

1CDÝÝÑ CD (152)

pB2
1, 1; B2

1, 1q : CD
Cd
ÝÑ CD1 cD1

ÝÝÑ C 1D1 C1d1
ÝÝÑ C 1D2 c1D2

ÝÝÑ C2D2 (153)

ñ CD
Cpd1�dq
ÝÝÝÝÑ CD2 pc1�cqD2

ÝÝÝÝÝÑ C2D2 . (154)

The composite L �R is just the identity functor 1C�D, while the unit of the adjunction is
an icon

η : 1CbD ñ R � L (155)

assigning to each arrow pn, p, r;m, q, sq in C bD a 2-cell

p!r1sÑrns, 1�p; !r1sÑrms, 1�qq : pn, p, r;m, q, sq ñ p1, �p, σ2
0; 1, �q, σ2

1q . (156)

Whiskering η on the left (resp. right) by L (resp. R) gives the identity on L (resp. R),
proving the adjunction axioms.

Any strict functor B̂ : C bD Ñ E can be precomposed with R to give a lax functor

B̂ �R : C �D Ñ E . (157)

This generalizes the notion of a composite monad induced by a distributive law.

4.3. Parametrizing parametrization of categories. Take C and D to be just
categories (seen as locally discrete 2-categories), and8 E � Span.

The bicategory of spans is equivalent to the bicategory of matrices, which is in turn
a full subcategory of9 Mod. Each strict functor B̂ : C b D Ñ Span is, in particular, a
normal lax functor, so we can use the Bénabou construction [11] (after forgetting 2-cells)
to obtain a category B̃nerve parametrised over C b D. Explicitly, B̃nerve has objects over
C bD given by the set BCD. Arrows over C b d and cbD are elements of spans BCd
and BcD respectively, and they generate arrows over arbitrary paths, which are, due to
composition in Span, composable tuples.

8Instead of Span one can take a strict version with objects sets X,Y... and arrows cocontinuous functors
Set{X Ñ Set{Y which are determined by the assignment of singletons.

9Consisting of categories and modules (aka profunctors or distributors)
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The 2-cells that we have temporarily forgotten are mapped to span morphisms. In
particular, the images B̂ηp of the unit of the adjunction (155) give a unique way of
“composing” arbitrary arrows in B̃nerve, resulting in an arrow over a path in C bD of the

form CD
Cd
ÝÑ CD1 cD

ÝÑ C 1D1. The image of this assignment forms a category B̃ whose
composition is concatenation in B̃nerve followed by applying (the unique) appropriate Bη.
Uniqueness guarantees the identity and associativity laws.

Explicitly, B̃ with the same objects as B̃nerve, and arrows between X P BpC bDq and

X 1 P BpC 1bD1q are elements of BpCD
Cd
ÝÑ CD1 cD

ÝÑ C 1D1q, denoted by pairs pg, fq,. The
identity is

1X � p1DX , 1
C
Xq, with (158)

1DX :� pBidC1DqpXq (159)

1CX :� pBid1CDqpXq (160)

and composition is given by

pg1, f 1q � pg, fq � Bppcomp � compq 
 p1 � swap � 1qqpg1, f 1, g, fq . (161)

For each object D P D we get a subcategory πDB̃ parametrized by C - an object X over
C is an element of BCD, and arrow f : X Ñ X 1 over c is an element of BcD, which can
be identified with an arrow p1DX , fq of B̃. Similarly, each object C P C gives a subcategory
πCB̃, parametrized by D. Furthermore, each arrow pg, fq in B̃ can be decomposed as

p1D1 , fq � pg, 1Cq (162)

or as
pg, 1C1q � p1D, fq . (163)

A. Simplices, intervals and shuffles

The algebraist’s delta, denoted by ∆a, is the full subcategory of Cat consisting of cate-
gories xny whose objects are numbers 0, ..., n� 1 and 1-cells are unique iÑ j when i ¤ j.
The empty category is denoted x0y. Arrows between xny and xn1y are functors; that is,
order preserving functions, generated by face and degeneracy maps

σni : xn� 1y Ñ xny, i � 0, . . . , n� 1 (164)

Bni : xny Ñ xn� 1y, i � 0, . . . , n (165)

which can be presented in a diagram

x0y x1y x2y x3y . . .B0
0

B1
1

σ1
0

B1
0

B2
2

σ2
1

B2
1

σ2
0

B2
0

(166)
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A natural transformation between f and f̄ , if one exists, is unique and witnesses that
fi ¤ f̄ i for all i, turning ∆arxny, xn

1ys into a poset. The 2-category ∆a is equipped with
a strict monoidal structure, the ordinal sum `.

A.1. Intervals - free monoid. Denote by ∆KJ the subcategory of ∆a, called the
category of intervals, consisting of relabelled objects

rns :� xn� 1y, n � 0, 1, ... (167)

and 1-cells that preserve the first and the last element; it is generated by the arrows from
the inside of the diagram (166), represented by the bold part of

� r0s r1s r2s . . .σ1
0

σ2
1

B2
1

σ2
0

(168)

It is clear that suspension (moving nodes to the left) gives an isomorphism

∆op
KJ � ∆a (169)

rns � xn� 1y ÞÑ xny (170)

σni ÞÑ Bn�1
i , i � 0, . . . , n� 1 (171)

Bni ÞÑ σn�1
i�1 , i � 1, . . . , n� 1 (172)

The tensor product on ∆KJ is inherited from the ordinal sum under the isomorphism
(169), and has the interpretation of path concatenation;

ξ : rns Ñ rms (173)

ξ1 : rn1s Ñ rm1s (174)

concatenate to

ξ � ξ1 : rn� n1s Ñ rm�m1s (175)

i ÞÑ

#
ξpiq, if i ¤ n

ξ1pi� nq, otherwise.
(176)

In particular, every such 1-cell ξ can be decomposed

ξ �
ņ

i�1

! : r1s Ñ rξis, with
ņ

i�1

ξi � m. (177)

The image of ξ under the isomorphism is an order preserving function that takes ξi points
in xmy to i P xny. An example of the isomorphism, for n � 2 and m � 3 can be visualized
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as
r3s

r2s

ξ

x3y

x2y

ξ̃

0 1 2 3

0 1 2

(178)

The embedding ∆KJ ãÑ ∆a is a monoidal functor with comparison maps representing

x0y
B0
0ÝÑ x1y � r0s (179)

rns ` rn1s � xn� n1 � 2y
zn,n1 :�σ

n�n1�1
n

ÝÝÝÝÝÝÝÝÝÑ xn� n1 � 1y � rns � rn1s (180)

There is a functor

∆op
KJ

L
ÝÑ ∆a (181)

rns � xn� 1y ÞÑ xn� 1y (182)

σni ÞÑ Bni�1, i � 0, . . . , n� 1 (183)

Bni ÞÑ σni , i � 1, . . . , n� 1 (184)

assigning to each 1-cell in ∆KJ its left adjoint (Galois connection) in ∆a. Explicitly, for
ξ : rns Ñ rms,

Lpξq : xm� 1y Ñ xn� 1y (185)

i ÞÑ mintj|i ¤ ξpjqu. (186)

The functor L is oplax monoidal, with the same comparison maps (179)-(180), but the
naturality holds up to a 2-cell

Lpξ � ξ1q � zm,m1 ñ zn,n1 � pLξ ` Lξ1q. (187)

Dually, there is a lax monoidal functor ∆op
KJ

R
ÝÑ ∆a assigning right adjoints, with a 2-cell

Rpξ � ξ1q � zm,m1 ð zn,n1 � pRξ `Rξ1q. (188)

The free 2-category containing a monad [7] is obtained as the suspension of the
monoidal category of intervals,

FM :� Σ∆KJ. (189)

A.2. Shuffles - free distributive law. A shuffle of xny and xmy in ∆a is defined to
be a pair of complement embeddings xny Ñ xn�my Ð xmy. Shuffles in ∆KJ are inherited
via the isomorphism (169) and have the following explicit description:

rns
r
ÐÝ rn�ms

s
ÝÑ rms (190)
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with the constraint
ri � si � 1 . (191)

The numbers ri and si are lengths (either 0 or 1 in this case) of the image of the ith

subinterval of rn�ms, as in (177). The condition (191) states that each subinterval maps
to an interval of length 1 either in rns or in rms.

An equivalent description of a shuffle is given by a relation of “appearing before in the
shuffle”

xmyop � xny
l
ÝÑ x2y . (192)

The same relation can be interpreted as a shuffle of segments rns and rms, for example

r2szr3s 0 1 2 3

0

1

2

0 1 1

0 0 0

(193)

A shuffle morphism pξ, ρq : pn,m, s, rq Ñ pn̄, m̄, s̄, r̄q consists of 1-cells ξ : rn̄s Ñ rns
and ρ : rm̄s Ñ rms in ∆KJ, such that the following 2-cell in ∆a exists

Lr � ξ � r̄ ñ Rs � ρ � s̄ . (194)

When ξ � 1rns and ρ � 1rms, the condition (194) is equivalent to the fact that the induced
relations l, l̄ : xmyop�xny ÝÑ x2y satisfy l ¤ l̄, or that the l̄ path in the table (193) appears
to the down-left of the l path.

Shuffles and their morphisms form a category Shuff with the identity morphism
p1rns, 1rmsq and composition pξ � ξ̄, ρ � ρ̄q for which the condition (194) is obtained by
pasting

r¯̄n� ¯̄ms rn̄� m̄s rn�ms

r¯̄ns rn̄s rn̄s rns

r ¯̄ms rm̄s rm̄s rms

¯̄r

¯̄s

ξ̄

ρ̄

Lr̄

Rs̄

1

1

r̄

s̄

ξ

ρ

Lr

Rs

ó ó

η ó

ε ó

(195)
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Shuff inherits a tensor product from ∆KJ which (algebraically) follows from

Lpr � r1q � pξ � ξ1q � pr̄ � r̄1q � z
p180q
� Lpr � r1q � z � pξ ` ξ1q � pr̄ ` r̄1q (196)

p187q
ñ z � pLr ` Lr1q � pξ ` ξ1q � pr̄ ` r̄1q (197)

p194q
ñ z � pRs`Rs1q � pρ` ρ1q � ps̄` s̄1q (198)

p188q
ñ Rps� s1q � z � pρ` ρ1q � ps̄` s̄1q (199)

p180q
� Rps� s1q � pρ� ρ1q � ps̄� s̄1q � z (200)

but can also be seen as “direct summing”10 the relation tables, for example the shuffle

(193) can be interpreted as pr2s
σ3

1ÐÝ r3s
σ2

0�σ
3
2ÝÝÝÑ r1sq � pr1s

σ2
1ÐÝ r2s

σ2
0ÝÑ r1sq.

The free 2-category containing a distributive law is obtained as the suspension of the
monoidal category of shuffles,

FDL :� ΣShuff. (201)

A.3. Mixed shuffle morphisms - free mixed distributive law. The category of
mixed shuffles MShuff can be obtained by slightly modifying the construction of Shuff;
the ρ component of the mixed shuffle morphism has the opposite direction ρ : rms Ñ rm̄s,
and the existence condition (194) becomes

Lr � ξ � r̄ ñ Rs �Rρ � s̄. (202)

The 2-category containing a free mixed distributive law (FMDL) is obtained as the
suspension of the monoidal category of mixed shuffles,

FMDL :� ΣMShuff. (203)
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