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LEFT-INVARIANT VECTOR FIELDS ON A LIE 2-GROUP

EUGENE LERMAN

Abstract. A Lie 2-group G is a category internal to the category of Lie groups.
Consequently it is a monoidal category and a Lie groupoid. The Lie groupoid structure
on G gives rise to the Lie 2-algebra X(G) of multiplicative vector fields, see [2]. The
monoidal structure on G gives rise to a left action of the 2-group G on the Lie groupoid
G, hence to an action of G on the Lie 2-algebra X(G). As a result we get the Lie
2-algebra X(G)G of left-invariant multiplicative vector fields.

On the other hand there is a well-known construction that associates a Lie 2-algebra g
to a Lie 2-group G: apply the functor Lie : LieGp→ LieAlg to the structure maps of the
category G. We show that the Lie 2-algebra g is isomorphic to the Lie 2-algebra X(G)G

of left invariant multiplicative vector fields.

1. Introduction

Recall that a strict Lie 2-group G is a category internal to the category LieGp of Lie groups
(the notions of internal categories, functors and natural transformations are recalled in
Definition 2.3). Thus G is a category whose collection of objects is a Lie group G0, the
collection of morphisms is a Lie group G1 and all the structure maps: source s, target t,
unit 1 : G0 → G1 and composition ∗ : G1 ×s,G0,t G1 → G1 are maps of Lie groups.

There is a well-known functor Lie : LieGp→ LieAlg from the category of Lie groups to
the category of Lie algebras. The functor Lie assigns to a Lie group H its tangent space
at the identity h = TeH. The Lie bracket on h is defined by the identification of TeH with
the Lie algebra of left-invariant vector fields on the Lie group H. To a map f : H → L
of Lie groups the functor Lie assigns the differential Tef : TeH → TeL, which happens
to be a Lie algebra map. Consequently given a Lie 2-group G = {G1 ⇒ G0} we can
apply the functor Lie to all the structure maps of G and obtain a (strict) Lie 2-algebra
g = {g1 ⇒ g0}.

On the other hand, any Lie 2-group happens to be a Lie groupoid. In fact, it is an
action groupoid [1, Proposition 32] (see also Corollary 2.7 below). Hepworth in [6] pointed
out that any Lie groupoid K possesses a category X(K) of vector fields (and not just a
vector space). The objects of this category are well-known multiplicative vector fields of
Mackenzie and Xu [9]. Multiplicative vector fields on a Lie groupoid naturally form a
Lie algebra. It was shown in [2] that the space of morphisms of X(K) is a Lie algebra
as well, and moreover X(K) is a strict Lie 2-algebra (that is, a category internal to Lie
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algebras). One may expect that for a Lie 2-group G one can define the Lie 2-algebra
X(G)G of left-invariant vector fields on G and that this Lie 2-algebra is isomorphic to the
Lie 2-algebra g. But what does it mean for a Lie 2-group to act on its Lie 2-algebra? And
what does it mean to be left-invariant for such an action? We proceed by analogy with
ordinary Lie groups.

A Lie group H acts on itself by left multiplication: for any x ∈ H we have a dif-
feomorphism Lx : H → H, Lx(a) := xa. These diffeomorphisms, in turn, give rise to a
representation

λ : H → GL(X (H))

of the group H on the vector space X (H) of vector fields on the Lie group H. Namely,
for each x ∈ H, the linear map λ(x) : X (H)→ X (H) is defined by

λ(x)v := TLx ◦ v ◦ Lx−1

for all vector fields v ∈ X (H). Next recall that given a representation ρ : H → GL(V ) of
a Lie group H on a vector space V the space V H of H-fixed vectors is usually defined by

V H = {v ∈ V | ρ(x)v = v for all x ∈ H}.

The space V H has the following universal property: for any linear map f : W → V (where
W is some vector space) so that

ρ(x) ◦ f = f

for all x ∈ H, there is a unique linear map f̄ : W → V H so that the diagram

W

V H V

f̄

��

f

��
ı //

commutes. Here ı : V H ↪→ V is the inclusion map. If we view the group H as a category
BH with one object ∗ and HomBH(∗, ∗) = H, then the representation ρ : H → GL(V )
can be viewed as the functor ρ : BH → Vect (where Vect is the category of vector spaces
and linear maps) with ρ(∗) = V . From this point of view the vector space V H of H-fixed
vectors “is” the limit of the functor ρ:

V H = lim(ρ : BH → Vect).

Consequently the vector space X (H)H of left-invariant vector fields on a Lie group H is
the limit of the functor λ : BH → Vect with λ(∗) = X (H) and λ(x)v = TLx ◦ v ◦ Lx−1

for all x ∈ H, v ∈ X (H):

X (H)H = lim(λ : BH → Vect).
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Now consider a Lie 2-group G. Each object x of G gives rise to a functor Lx : G→ G
which is given on an arrow b

σ←− a of G by

Lx(b
σ←− a) = x · b 1x·σ←−− x · a.

Here · denotes both multiplications: in the group G0 and in the group G1. The symbol
1x stands for the identity arrow at the object x. For any arrow y

γ←− x of G there is a
natural transformation

Lγ : Lx ⇒ Ly.

The component of Lγ at an object a of G is defined by

Lγ(a) = y · a γ·1a←−− x · a.

The proof that Lγ is in fact a natural transformation is not completely trivial; see
Lemma 3.8.

Next recall that there is a tangent (2-)functor T : LieGpd→ LieGpd from the category
of Lie groupoids to itself. This functor is an extension of the tangent functor T : Man→
Man on the category of manifolds. On objects T assigns to a Lie groupoid K its tangent
groupoid TK. On morphisms T assigns to a functor f : K → K ′ the derivative Tf :
TK → TK ′. To a natural transformation α : f ⇒ f ′ between two functors f, f ′ : K → K ′

the functor T assigns the derivative Tα (note that a natural transformation α is, in
particular, a smooth map α : K0 → K ′1, so Tα : TK0 → TK ′1 makes sense). Note also
that the projection functors πK : TK → K assemble into a (2-)natural transformation
π : T ⇒ idLieGpd.

Given an object x of a Lie 2-group G there is a functor λ(x) : X(G)→ X(G) from the
category of vector fields on the Lie groupoid G to itself (see Lemma 3.12 and the discussion
right after it). It is defined as follows: given a multiplicative vector field v : G→ TG, the
value of λ(x) on v is given by

λ(x) (v) := TLx ◦ v ◦ Lx−1 .

The value of λ(x) on a morphism α : v ⇒ w (i.e., on a natural transformation between
the two functors) of X(G) is the composite

TG TG G G
TLxoo

Lx−1oo

w

cc

v
{{

α
��

.

That is,
λ(x) (α) := TLx αLx−1 ,

the whiskering of the natural transformation α by the functors TLx and Lx−1 . Note that
λ(x) ◦ λ(x−1) = idX(G) = λ(x−1) ◦ λ(x). And, more generally, λ(x) ◦ λ(y) = λ(x · y) for
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all objects x, y of the Lie 2-group G. For any arrow y
γ←− x in the category G we have a

natural transformation λ(γ) : λ(x)⇒ λ(y): its component

λ(γ)v : λ(x)v ⇒ λ(y)v

at a multiplicative vector field v is given by the composite

TG TG G G
voo

TLx

gg

TLy
ww

Lx−1

ee

Ly−1

yy
TLγ��

Lγ−1
��

.

We can always think of a Lie 2-algebra X(G) as a 2-vector space (i.e., a category inter-
nal to the category of vector spaces) by forgetting the Lie brackets. A 2-vector space
has a strict 2-group of automorphisms. By definition the objects of this 2-group are
strictly invertible functors internal to the category of vector spaces and the morphisms
are natural isomorphisms (also internal to the category of vector spaces). We denote the
2-group of automorphisms of X(G) by GL(X(G)). The functors λ(x) and the natural
transformations λ(γ) described above assemble into a single homomorphism of 2-groups
λ : G→ GL(X(G)) (i.e., a functor internal to the category of groups), which we can think
of as the “left regular representation” of the Lie 2-group G on its category of vector fields
X(G). The main result of the paper may now be stated as follows.

1.1. Theorem. Let G be a (strict) Lie 2-group, g its Lie 2-algebra obtained by applying
the Lie functor to its structure maps, X(G) the Lie 2-algebra of multiplicative vector fields,
and λ : G→ GL(X(G)) the representation of G on the 2-vector space X(G) of multiplica-
tive vector fields which arises from the left multiplication as described above. There is a
natural 1-morphism p : g→ X(G) of Lie 2-algebras which is fully faithful and injective on
objects. Hence the image p(g) of the functor p is a full Lie 2-subalgebra of X(G).

Moreover the inclusion p(g) ↪
i−→ X(G) is the strict conical 2-limit of the functor λ :

G → GL(X(G)). Hence the Lie 2-algebra g is isomorphic to the Lie 2-algebra X(G)G :=
lim(λ : G→ GL(X(G))) of left-invariant vector fields on the Lie 2-group G.

Related work. Higher Lie theory is a well-developed subject. The ideas go back to
the work of Quillen [11] and Sullivan [15] on rational homotopy theory. The problem of
associating a Lie 2-algebra to a strict Lie 2-group is, of course, solved by applying a Lie
functor to the Lie 2-group. In fact a much harder problem has been solved by Ševera
who introduced a Lie-like functors that go from Lie n-groups to L∞-algebras and from
Lie n-groupoids to dg-manifolds [12, 13]. In particular one can use Ševera’s method to
differentiate weak Lie 2-groups [7].

An even harder problem is that of integration. We note the work of Crainic and
Fernandes [3], Getzler [4], Henriques [5] and Ševera and Širaň [14].



608 EUGENE LERMAN

Outline of the paper.
In Section 2 we fix our notation, which unfortunately is considerable. We recall the defi-
nitions internal categories, of 2-groups, Lie 2-groups, Lie 2-algebras and 2-vector spaces.
We then recall the interaction of composition and multiplications in a Lie 2-group and
the fact that any Lie 2-group is a Lie groupoid. We discuss the category of vector fields
X(K) on a Lie groupoid K and the fact that this category is naturally a Lie 2-algebra.
In particular we discuss the origin of the Lie bracket on the space of morphisms of X(K).

In Section 3 we discuss the 2-group of automorphisms of a category. We define an
action of a 2-group on a category and express the action in terms of a 1-morphism of
2-groups. We show that the multiplication of a Lie 2-group G leads to an action L : G→
Aut(G) of the group on itself by smooth (internal) functors and natural isomorphisms.
We show that an action of a Lie 2-group G on a Lie groupoid K by smooth (internal)
functors and natural isomorphisms leads to a representation of G on the on the 2-vector
space X(K) of vector fields on K. In particular left multiplication L : G→ Aut(G) leads
to a representation λ : G→ GL(X(G)) of a Lie 2-group G on its 2-vector space of vector
fields. Various results of this section may well be known to experts. I don’t know of
suitable references.

In Section 4 for a Lie 2-group G we construct a 1-morphism of Lie 2-algebras p : g→
X(G) which is fully faithful and injective on objects. Consequently the image p(g) is a
full Lie 2-subalgebra of the Lie 2-algebra of vector fields X(G).

Finally in Section 5 we show that the inclusion i : p(g) ↪→ X(G) is a strict conical
2-limit of the left regular representation λ : G→ GL(X(G)).

Acknowledgments. The paper is part of a joint project with Dan Berwick-Evans. I
am grateful to Dan for many fruitful discussions.

I thank the referee for the careful reading of the paper and for many interesting and
helpful comments.

2. Background and notation

2.1. Notation. Given a natural transformation α : f ⇒ g between a pair of functors
f, g : A → B we denote the component of α at an object a of A either as αa or as α(a),
depending on readability.

2.2. Notation. Given a category C we denote its collection of objects by C0 and its
collection of morphisms by C1. The source and target maps of the category C are denoted
by s, t : C1 → C0, respectively. The unit map from objects to morphisms is denoted by
1 : C0 → C1. We write

∗ : C1 ×s,C0,t C1 → C1, (σ, γ) 7→ σ ∗ γ

to denote composition in the category C. Here and elsewhere

C2 := C1 ×s,C0,t C1 = {(γ2, γ1) ∈ G1 ×G1 | s(γ2) = t(γ1)}
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denotes the fiber product of the maps s : C1 → C0 and t : C1 → C0.

In this paper there are many Lie 2-algebras, compositions and multiplications. For the
reader’s convenience we summarize our notation below. Some of the notation has already
been introduced above. The explanation of the rest follows the summary.

Summary of notation.

s, t : C1 → C0 The source and target maps of a category C.

∗ : C1 ×s,C0,t C1 → C1 The composition map of a category C.

1 : C0 → C1 The unit map of a category C.

1x ∈ C1 the value of the unit map 1 : C0 → C1 on an object x of
C.

gαf the whiskering of a natural transformation α : k ⇒ h by
functors g and f :

gαf = D C B A
goo foo

h

cc

k
{{

α
��

.

G = {G1 ⇒ G0} a Lie 2-group with the Lie group G0 of objects and G1

of morphisms.

e0 ∈ G0, e1 ∈ G1 the multiplicative identities in the Lie groups G0 and G1

respectively.

g = {g1 ⇒ g0} the Lie 2-algebra of a Lie 2-group G obtained by apply-
ing the Lie functor to the objects, morphisms and the
structure maps of G: g0 = Te0G0, g1 = Te1G1.

L (G) the Lie 2-algebra of a Lie 2-group G whose objects are
the left-invariant vector fields on the Lie group G0 and
morphisms are the left-invariant vector fields on the Lie
group G1. It is isomorphic to g.

X (M) the Lie algebra of vector fields on a manifold M .

· or m the multiplication of the Lie 2-group G. We may view
m as a functor. It has components m1 : G1 ×G1 → G1

and m0 : G0 × G0 → G0. We may abbreviate m1 and
m0 as m.

• or Tm : TG× TG→ TG The derivative of the multiplication functorm : G×G→
G.
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? : TK1 ×TK0 TK1 → TK the composition in the tangent groupoid TK of a Lie
groupoid K; ? is the derivative of the composition

∗ : K1 ×K0 K1 → K1.

X(K) the Lie 2-algebra of vector fields on a Lie groupoid K or
the 2-vector space underlying the Lie 2-algebra.

Lz : Z → Z left multiplication diffeomorphism of a Lie group Z de-
fined by an element z ∈ Z: Lz(z′) = zz′ for all z′ ∈ Z.

Lx : G→ G the functor from a Lie 2-group G to itself defined by the
left multiplication by an object x of G.

Lγ : Lx ⇒ Ly the natural transformation between two left multiplica-
tion functors defined by an arrow x

γ−→ y in a Lie 2-group
G.

λ(x) : X(G)→ X(G) the 1-morphism of the 2-vector space X(G) induced by
an object x of G. It is induced by the left-multiplications
functors TLx : TG→ TG and Lx−1 : G→ G.

λ(γ) : λ(x)⇒ λ(y) the 2-morphism of the Lie 2-algebra X(G) induced by

an arrow x
γ−→ y in the Lie 2-group G.

2.3. Definition. Recall that given a category C with finite limits one can talk about
categories internal to C [10]. Namely a category C internal to the category C consists of
two objects C1, C0 of C together with a five morphisms of C) s, t : C1 → C0 (source,
target), 1 : C0 → C1 (unit) and composition/multiplication ∗ : C1 ×C0 C1 → C1 satisfying
the usual equations. Similarly, given two categories internal to C there exist internal
functors between them. Internal functors consists of pairs of morphisms of C satisfying the
appropriate equations. And given two internal functors one can talk about internal natural
transformations between the functors. The categories C of interest to us include groups,
vector spaces, Lie groups and Lie algebras. The resulting internal categories are called
2-groups (also known as cat-groups, categorical groups, gr-categories and categories with a
group structure), Baez-Crans 2-vector spaces, Lie 2-groups and Lie 2-algebras, respectively.

We note that in particular a Lie 2-group G has a Lie group G0 of objects, a Lie group
G1 of morphisms and all the structure maps: source s : G1 → G0, target t : G1 → G0,
unit 1 : G0 → G1 and composition ∗ : G1 ×s,G0,t G1 → G1 are maps of Lie groups (the
Lie group structure on G2 := G1 ×s,G0,t G1 → G1 is discussed below). We denote the
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multiplicative identity of the group G0 by e0. Since 1 : G0 → G1 is a map of Lie groups,
the multiplicative identity e1 of G1 satisfies

e1 = 1e0 .

We denote the Lie group multiplications on G1 and G0 by m1 and m0 respectively. Since
the category of Lie groups has transverse fiber products, the fiber product G2 = G1×s,G0,t

G1 is a Lie group. We denote the multiplication on this group by m2. If we identify G2

with the Lie subgroup of G1 ×G1:

G2 = {(σ, γ) ∈ G1 ×G1 | s(σ) = t(γ)},

then the multiplication m2 is given by the formula

m2((σ2, γ2), (σ1, γ1)) = (m1(σ2, σ1),m1(γ2, γ1)).

Alternatively, using the infix notation · for the multiplications the formula above amounts
to

(σ2, γ2) · (σ1, γ1) = (σ2 · σ1, γ2 · γ1).

The following lemma is well-known to experts and is easy to prove. None the less it is
crucial for many computations in the paper.

2.4. Lemma. Let G = {G1 ⇒ G0} be a Lie 2-group with the composition ∗ : G2 =
G1 ×G0 G1 → G1 and multiplication m1 : G1 ×G1 → G1, (γ, σ) 7→ γ · σ. Then

(σ2 ∗ σ1) · (γ2 ∗ γ1) = (σ2 · γ2) ∗ (σ1 · γ1), (2.1)

for all (σ2, σ1), (γ2, γ1) ∈ G2 = G1 ×s,G0,t G1.

Proof. Since the composition ∗ : G2 → G1 is a Lie group homomorphism,

∗((σ2, σ1) · (γ2, γ1)) = (∗(σ2, σ1)) · (∗(γ2, γ1)). (2.2)

On the other hand
(σ2, σ1) · (γ2, γ1) = (σ2 · γ2, σ1 · γ1) (2.3)

while
(∗(σ2, σ1)) · (∗(γ2, γ1)) ≡ (σ2 ∗ σ1) · (γ2 ∗ γ1) (2.4)

when we switch from the prefix to infix notation. Similarly,

∗(σ2 · γ2, σ1 · γ1) ≡ (σ2 · γ2) ∗ (σ1 · γ1). (2.5)

Therefore
(σ2 · γ2) ∗ (σ1 · γ1) = (σ2 ∗ σ1) · (γ2 ∗ γ1).
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2.5. Corollary. The multiplications mi : Gi × Gi → Gi, i = 0, 1 on a Lie 2-group G
assemble into a functor m : G×G→ G.

Proof. Omitted.

Equation (2.1) also implies that the multiplication functor m : G × G → G and the
composition homomorphism ∗ : G1 ×G0 G1 → G1 in a Lie 2-group G are closely related.
In fact they determine each other [10]. For the convenience of the reader we recall a proof
that the multiplication functor m determines the composition homomorphism ∗:

2.6. Lemma. For any two composable arrows σ, γ of a Lie 2-group G with s(σ) = b = t(γ)

σ ∗ γ = γ · 1b−1 · σ.

Here as before s, t : G1 → G0 are the source and target maps, 1b−1 denotes the unit arrow
at the object b−1 of G, · stands for the multiplication m1 on the space of arrows G1 of the
Lie 2-group G and ∗ : G1 ×G0 G1 → G1 is the composition homomorphism.

Proof. We follow the proof in [10, p. 186]. Note that since 1 : G0 → G1 is a homomor-
phism, the inverse 1−1

b of 1b with respect to the multiplication m1 is 1b−1 . We compute

σ ∗ γ = ((1b · (1−1
b · σ)) ∗ (γ · (1−1

b · 1b))
= (1b ∗ γ) · ((1−1

b · σ) ∗ (1−1
b · 1b)) by (2.1)

= γ · (1−1
b ∗ 1−1

b ) · (σ ∗ 1b) by (2.1) again

= γ · 1b−1 · σ since 1x ∗ 1x = 1x for all x ∈ G0 and (1b)
−1 = 1b−1 .

Lemma 2.6 has a well-known corollary: any Lie 2-group is a Lie groupoid. In fact we
can be more precise:

2.7. Corollary. A Lie 2-group G is isomorphic, as a category internal to the category
of manifolds, to the action groupoid {K ×G0 ⇒ G0} where K is the kernel of the source
map s : G1 → G0 and the action of K on G0 is given by

k � x := t(k) · x

for all (k, x) ∈ K ×G0. As before t : G1 → G0 is the target map.

Proof Sketch of proof. The isomorphism of categories ϕ : G→ {K ×G0 → G0} is
defined to be identity on objects. On arrows ϕ is given by

ϕ1(y
γ←− x) = (γ · 1x−1 , x).
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2.8. Remark. The same argument shows that any 2-group (i.e., a category internal to
the category of groups) is an action groupoid.

We next recall the definitions of the 2-categories of Lie 2-algebras and of 2-vector
spaces.

2.9. Definition. Lie 2-algebras naturally form a strict 2-category Lie2Alg. The objects
of this 2-category are Lie 2-algebras, the 1-morphisms are functors internal to the category
LieAlg of Lie algebras and 2-morphisms are internal natural transformations.

2.10. Definition. 2-vector spaces naturally form a strict 2-category 2Vect. The objects
of this 2-category are 2-vector spaces. The 1-morphisms of 2Vect are internal functors
and 2-morphisms are internal natural transformations.

2.11. Remark. There is an evident forgetful functor U : Lie2Alg → 2Vect. We will
suppress this functor in our notation and will use the same symbol for a Lie 2-algebra
and its image under the functor U , that is, its underlying 2-vector space.

2.12. The Lie 2-algebra X(K) of multiplicative vector fields on a Lie
groupoid K.

In this subsection we recall some of the results of [2]. We start by recalling the definition
of the category of multiplicative vector fields X(K) on a Lie groupoid K, which is due to
Hepworth [6].

2.13. Definition. A multiplicative vector field on a Lie groupoid K = {K1 ⇒ K0} is a
functor v : K → TK so that πK ◦v = idK. A morphism (or an arrow) from a multiplicative
vector field v to a multiplicative vector field w is a natural transformation α : v ⇒ w so
that πK(α(x)) = 1x for any object x of the groupoid K.

Multiplicative vector fields and morphisms between them are easily seen to form a
category: the composite of two morphisms α : v ⇒ w and β : w ⇒ u is the natural trans-
formation β ◦v α, where ◦v denotes the vertical composition of natural transformations.
That is, for any object x ∈ K0

(β ◦v α)(x) = β(x) ? α(x)

where as before ? : TK1 ×TK0 TK1 → TK1 is the derivative of the composition ∗ :
K1 ×K0 K1 → K1. Since πK : TK → K is functor,

πK(β(x) ? α(x)) = πK(β(x)) ∗ πK(α(x)) = 1x ∗ 1x = 1x

for all x ∈ K0. Hence β ◦v α is a morphism from v to u.
It is not hard to see that the collection X(K)0 multiplicative vector fields form a vector

space [9]. It is a little harder to see that X(K)0 is a Lie algebra (op. cit.). However, the
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Lie bracket on X(K)0 is easy to describe. A multiplicative vector field u : K → TK is, in
particular, a pair of ordinary vector fields:

u = (u0 : K0 → TK0, u1 : K1 → TK1).

The bracket on X(K)0 is defined by

[(u0, u1), (v0, v1)] := ([u0, v0], [u1, v1]).

To see that the definition makes sense one checks that ([u0, v0], [u1, v1]) is a functor from
K to TK; see [9].

The space of arrows X(K)1 is a Lie algebra as well and the structure maps of the
category X(K) are Lie algebra maps [2]. In other words the category X(K) underlies a
Lie 2-algebra.

The bracket on the elements of X(K)1 ultimately comes from the Lie bracket on the
vector fields on the manifold K1 [2]. But the relationship is not direct since the elements
of X(K)1 are not vector fields. In more detail, write an arrow α ∈ X(K)1 as

α = (α− 1s(α)) + 1s(α),

where 1 : X(K)0 → X(K)1 is the unit map and s : X(K)1 → X(K)0 is the source map
of the category X(K). Recall that for a multiplicative vector field X, the morphism
1X : X ⇒ X is defined by

1X(x) = T1(X0(x))

for all x ∈ K0. The multiplicative vector field s(α) satisfies

(s(α))0(x) = Ts(α(x))

for all x ∈ K0, where on the right hand side s : K1 → K0 is, as before, the source map
for the Lie groupoid K. Then

Ts(α− 1s(α)) = 0,

hence α− 1s(α) is a section of the Lie algebroid AK → K0 of the Lie groupoid K.
Recall that the Lie bracket on the space of sections Γ(AK) of the Lie algebroid AK is

constructed by embedding Γ(AK) into the space of vector fields on K1 as right-invariant
vector fields. That is, one constructs a map

j : Γ(AK)→ X (K1)

by setting
j(σ) (γ) := TRγ (σ(t(γ))) (2.6)

for all γ ∈ K1. The map Rγ : s−1(t(γ)) → K1 is defined by composition with γ on the
right:

Rγ(µ) := µ ∗ γ
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for all µ ∈ K1 with s(µ) = t(γ).
We now recall the construction of a Lie algebra structure on the space X(K)1 (see [2]

where the details of the construction are phrased somewhat differently). Define

J : X(K)1 → X (K1)

by setting
J(α) := j(α− 1s(α)) + s(α)1. (2.7)

The map J is injective and its image happens to be closed under the Lie bracket. So for
α, β ∈ X(K)1 we can (and do) define the Lie bracket [α, β] to be the unique element of
X(K)1 with

J([α, β]) = [J(α), J(β)].

One checks that the category X(K) of multiplicative vector fields with the Lie algebra
structures on the spaces of objects and morphisms does form a Lie 2-algebra; see [2].

3. Actions and representations of Lie 2-groups

The goal of this section is to construct a representation λ : G → GL(X(G)) of a Lie
group G on its 2-vector space X(G) of vector fields induced by the action of G on itself by
left multiplication. This is the representation briefly described in the introduction. We
start by recalling some well-known material about actions of Lie 2-groups. Recall that a
2-group is a category internal to the category of groups and a homomorphism of 2-groups
is a functor internal to the category of groups (cf. Definition 2.3).

3.1. Definition. [the 2-group Aut(K)] Let K be a Lie groupoid. The 2-group Aut(K)
of automorphisms of K is defined as follows.

The group of objects Aut(K)0 consists of strictly invertible smooth (i.e., internal)
functors f : K → K. The group operation on Aut(K)0 is the composition of functors. The
group of morphisms Aut(K)1 is the group of (smooth) natural isomorphisms under vertical
composition. The composition homomorphism ∗ : Aut(K)1×Aut(K)0 Aut(K)1 → Aut(K)1

is the horizontal composition of natural isomorphisms. There are also evident source,
target and unit maps:

s(f
α⇒ g) = f, t(f

α⇒ g) = g, 1(f) = (f
idf⇒ f).

Note that the component of idf at an object x ∈ K0 is

idf (x) = 1f(x),

the unit arrow on the object f(x) of K.
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3.2. Definition. A (strict left) action of a Lie 2-group G on a Lie groupoid K is a
functor a : G×K → K so that the two diagrams

G×G×K G×K

G×K K

idG×a //

m×idK

��

a

��

a
//

and

G×K K

K

a //

e×idK

OO

(3.1)

commute. Here as before m : G × G → G is the multiplication functor. The functor
e× idK is defined by (e× idK) (σ) = (e1, σ) for all arrows σ of K, where as before e1 ∈ G1

is the multiplicative identity.

3.3. Notation. Given an action a : G×K → K a Lie 2-group G on a Lie groupoid K
it will be convenient at times to abbreviate a(x, b) as x · b for any two objects x of G and
b of K. Similarly we abbreviate a(γ, σ) as γ · σ for arrows γ of G and σ of K.

3.4. Remark. In the notation above the fact that a : G×K → K preserves the compo-
sition of arrows translates into

(γ2 ∗ γ1) · (σ2 ∗ σ1) = (γ2 · σ2) ∗ (γ1 · σ1) (3.2)

for any two pairs of composable arrows (γ2, γ1) ∈ G1 ×G0 G1 and (σ2, σ1) ∈ K1 ×K0 K1.

3.5. Lemma. An action a : G ×K → K of a Lie 2-group G on a Lie groupoid K gives
rise to a homomorphism of 2-groups

â : G→ Aut(K). (3.3)

In particular for each object x ∈ G0 there is a functor â(x) : K → K satisfying

â(x) (b
σ←− a) := x · b 1x·σ←−− x · a

for all arrows b
σ←− a of the groupoid K. And for each arrow y

γ←− y of G there is a natural
transformation â(γ) : â(x)⇒ â(y) satisfying

â(γ)(b) = γ · 1b

for all objects b of K.

3.6. Remark. The functor (3.3) is a homomorphism of 2-groups if and only if

1. â(e0
e1←− e0) = (idK

1idK⇐ idK) and

2. â(γ2 · γ1) = â(γ2) ◦hor â(γ1) for any pairs of arrows γ2, γ1 of G. (Here as before ·
denotes the multiplication in the Lie group G1.)
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3.7. Remark. Recall that given four functors and two natural transformations as below

C B A

k

gg

n

ww

g

hh

h

vv
α
��

β
��

the component (β ◦hor α)(a) of the horizontal composition of β and α at an object a ∈ A0

is given by
(β ◦hor α)(a) = βg(a) ∗ n(αa)

where ∗ : C1 ×C0 C1 → C1 is the composition in the category C.

Proof of Lemma 3.5. Since a : G × K → K is a functor, for any two composable
arrows σ2, σ1 in K and for any object x of G

a(1x, σ2 ∗ σ1) = a((1x, σ2) ∗ (1x, σ1)) = a(1x, σ2) ∗ a(1x, σ1).

We also have a(1x, σ2 ∗ σ1) = a((1x, σ2) ∗ (1x, σ1)) and a(1x, σ2) ∗ a(1x, σ1) = â(x)(σ2) ∗
â(x)(σ1). Hence

â(x)(σ2 ∗ σ1) = â(x)(σ2) ∗ â(x)(σ1).

We conclude that â(x) is a functor for all objects x of the 2-group G.

To check that for an arrow x
γ−→ y in G, â(γ) is a natural transformation from the

functor â(x) to the functor â(y) we need to check that for any arrow b
σ←− a in K

â(γ)(b) ∗ â(x)(σ) = â(y)(σ) ∗ â(γ)(b). (3.4)

Now

â(γ)(b) ∗ â(x)(σ) = (γ · 1b) ∗ (1x · σ)

= (γ ∗ 1x) · (1b ∗ σ) (since a is a functor)

= γ · σ.
Similarly

â(y)(σ) ∗ â(γ)(b) = γ · σ
as well. Hence (3.4) holds and â(γ) is a natural transformation. Since K is a groupoid
â(γ) is a natural isomorphism.

It is easy to see that â(e0) is the identity functor idK and that â(e1) is the identity
natural isomorphism 1idK .

To prove that â is a homomorphism of 2-groups it remains to check that

â(γ2 · γ1) = â(γ2) ◦hor â(γ1) (3.5)

for all arrows γ2, γ1 of G. This is a computation. Fix an object a of K. Then

â(γ2) ◦hor â(γ1) = â(γ2)(â(γ1)a) ∗ (â(x2) (â(γ1)a) (by Remark 3.7)

= (γ2 · 1y2·a) ∗ (1x2 · (γ1 · 1a)) (by definition of â)

= γ2 · (γ1 · 1a) = (γ2·]γ1) · 1a (since the left diagram in (3.1) commutes)

= â(γ2 · γ1)(a).
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3.8. Corollary. For any Lie 2-group G there is a homomorphism of 2-groups

L : G→ Aut(G), (x
γ−→ y) 7→ (Lx

Lγ⇒ Ly) (3.6)

where the smooth functors Lx : G→ G are defined by

Lx(σ) = 1x · σ

and the natural isomorphisms Lγ : Lx ⇒ Ly are defined by

Lγ(a) = γ · 1a

for all objects a of G. Here · denotes the multiplication in the group G0 and in the group
G1.

Proof. The multiplication functor m : G×G→ G is an action of the Lie 2-group G on
the Lie groupoid G. Now apply Lemma 3.5.

3.9. Lemma. Let G be a 2-group and K a Lie groupoid. A homomorphism ρ : G →
Aut(K) induces a homomorphism

Tρ : G→ Aut(TK), Tρ(x
γ−→ y) = Tρ(x)

Tρ(γ)⇒ Tρ(y).

Proof. The homomorphism Tρ is obtained by composing the functor ρ with the tangent
2-functor T : LieGpd→ LieGpd.

3.10. Notation. We denote the 2-vector space underlying the Lie 2-algebra of vector
fields on a Lie groupoid K by the same symbol X(K).

3.11. Definition. [the 2-group GL(V )] Let V be a 2-vector space. We define the 2-
group GL(V ) of automorphisms of a 2-vector space V as follows. The group of objects
GL(V )0 consists of strictly invertible linear (i.e., internal) functors f : V → V . The
group operation on GL(V )0 is the composition of functors. The group of morphisms
GL(V )1 is the group of internal natural isomorphisms under vertical composition. The
composition homomorphism ∗ : GL1 ×GL0 GL1 → GL1 is the horizontal composition of
natural isomorphisms. There are also evident source, target and unit maps:

s(f
α⇒ g) = f, t(f

α⇒ g) = g, 1(f) = (f
idf⇒ f).

3.12. Lemma. Let G be a Lie 2-group and K a Lie groupoid. A homomorphism ϕ :
G→ Aut(K) of 2-groups (i.e., a functor internal to the category of groups) gives rise to
a homomorphism of 2-groups

Φ : G→ GL(X(K)),

a representation of the 2-group G on the 2-vector space of vector fields on the Lie groupoid
K.
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Proof. As a first step given an object x of G we would like to define a functor Φ(x) :
X(K)→ X(K) by setting

Φ(x)(v
α⇒ w) = TK TK K G

Tϕ(x)oo ϕ(x−1)oo

w

cc

v
{{

α
��

.

for all arrows v
α⇒ w in the 2-vector space X(K). An object of X(K) is a functor

v : K → TK with π ◦ v = idK . Since ϕ(x−1) and Tϕ(x) are functors,

Φ(x)v := Tϕ(x) ◦ v ◦ ϕ(x−1)

is a functor. Moreover

π ◦ (Φ(x)v) = π ◦ Tϕ(x) ◦ v ◦ ϕ(x−1)

= ϕ(x) ◦ π ◦ v ◦ ϕ(x−1) since π ◦ Tϕ = ϕ ◦ π
= ϕ(x) ◦ idK ◦ ϕ(x−1) = idK .

Hence Φ(x)v is an object of X(K) for all x ∈ G0 and all v ∈ X(K)0.
An arrow in X(K) from an object v to an object w is a natural transformation α :

v ⇒ w with πα = 1idK . Now since Φ(x)α is obtained from a natural transformation
α by whiskering with functors (namely Φ(x)α = Tϕ(x)αϕ(x−1)), Φ(x)α is a natural
transformation from Φ(x)v to Φ(x)w. Additionally

π(Φ(x)α) = πTϕ(x)αϕ(x−1)

= ϕ(x)παϕ(x−1)

= ϕ(x)1idKϕ(x−1) = 1idK .

Hence Φ(x)α is an arrow in the 2-vector space X(K). Finally the purported functor
Φ(x) preserves composition of arrows because whiskering by functors commutes with the
vertical composition of natural transformations. We conclude that Φ(x) : X(K)→ X(K)
is a well-defined functor.

Since the components Tϕ(x)0 : TK0 → TK0 and Tϕ1 : TK1 → TK1 are fiberwise
linear, for any scalars c, d ∈ R and any two multiplicative vector fields v, w : K → TK

Φ(x)(cv + dw) = cΦ(x)v + dΦ(x)w.

Similarly for any two arrows α1 : v1 ⇒ w1, α2 : v2 ⇒ w2, any two scalars c1, c2 ∈ R and
any object a of K

Φ(x)(c1α1 + c2α2) (a) = Tϕ(x)(c1α1(ϕ(x−1)(a) + c2α2(ϕ(x−1)(a))

= c1(Tϕ(x)α1ϕ(x−1))(a) + c2(Tϕ(x)α2ϕ(x−1))(a)

= (c1Φ(x)α1 + c2Φ(x)α2)(a).
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We conclude that Φ(x) is a 1-morphism of 2-vector spaces.

Given an arrow x
γ←− y in G we would like to define a natural transformation Φ(γ) :

Φ(x)⇒ Φ(y) by setting

Φ(γ)v := TK TK K K
voo

Tϕ(x)

hh

Tϕ(y)
vv

ϕ(x−1)

gg

ϕ(y−1)

ww
Tϕ(γ)
��

ϕ(γ−1)
��

for all multiplicative vector fields v : K → TK. By construction Φ(γ)v is a natural
transformation from Tϕ(x)◦ v ◦ϕ(x−1) = Φ(x)v to Tϕ(y)◦ v ◦ϕ(y−1) = Φ(y)v. Moreover

π(Φ(γ)v) = πTϕ(γ)vϕ(γ−1)

= ϕ(γ)(π ◦ v)ϕ(γ−1)

= ϕ(γ) ◦vert 1idK ◦vert ϕ(γ−1)

= 1idK ( since ϕ is a homomorphism).

We conclude that for any multiplicative vector field v the natural transformation Φ(γ)v
is an arrow in the 2-vector space X(K).

It is easy to check that Φ(γ) : X(K)0 → X(K)1 is linear. We now check that Φ(γ) is
an actual natural transformation from Φ(x) to Φ(y). That is, we check that for any arrow
v

α⇒ w in X(K) the diagram

Φ(x)w Φ(x)v

Φ(y)w Φ(y)v

Φ(x)α
ks

Φ(γ)w

��

Φ(γ)v

��Φ(y)αks

commutes in the category X(K). By definition the composition of the arrows Φ(γ)w and
Φ(x)α is the vertical composition of the diagrams

TK TK K G
Tϕ(x)oo ϕ(x−1)oo

w

cc

v
{{

α
��

and

TK TK K K
woo

Tϕ(x)

hh

Tϕ(y)
vv

ϕ(x−1)

gg

ϕ(y−1)

ww
Tϕ(γ)
��

ϕ(γ−1)
��

which is
Tϕ(γ) ◦hor α ◦hor ϕ(γ−1).
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Similarly
Φ(y)α ◦vert Φ(γ)α = Tϕ(γ) ◦hor α ◦hor ϕ(γ−1)

as well. Therefore Φ(γ) : Φ(x)⇒ Φ(y) is a 2-morphism of 2-vector spaces.

We finish the proof by checking that Φ is a homomorphism of 2-groups. Clearly
Φ(e0) = idX(K) and Φ(1e0) = 1idX(K)

. For any two objects x2, x1 of G ϕ(x2 · x1) =
ϕ(x2) ◦ ϕ(x1) and Tϕ(x2 · x1) = Tϕ(x2) ◦ Tϕ(x1) Consequently for any multiplicative
vector field v

Φ(x2 · x1)v = T (ϕ(x2 · x1) ◦ v ◦ ϕ((x2 · x1)−1)

= Tϕ(x2) ◦ Tϕ(x1) ◦ v ◦ ϕ(x−1
2 ) ◦ ϕ(x−1

1 )

= Φ(x2)(Φ(x1)v).

Checking that Φ(γ2 · γ1) = Φ(γ2) ◦hor Φ(γ1) is a bit more involved. Note first that

ϕ(γ2 · γ1) = ϕ(γ2) ◦hor ϕ(γ1)

since ϕ is a homomorphism (1-morphism) of 2-groups. Similarly

Tϕ(γ2 · γ1) = Tϕ(γ2) ◦hor Tϕ(γ1).

Recall that the arrows in the category GL(X(K)) are natural isomorphisms, and that the
composition of arrows in GL(X(K)) is the vertical composition. Hence by Remark 3.7 for
any object u of X(K),

(Φ(γ2) ◦hor Φ(γ1))(u) = (Φ(γ2)(Φ(y1)u)) ◦vert (Φ(x2)(Φ(γ1)u)) .

Since

(Φ(x2)(Φ(γ1)u) = TK TK TK K K K
Tϕ(x2)oo uoo

Tϕ(x1)

hh

Tϕ(y1)
vv

ϕ(x−1
1 )

gg

ϕ(y−1
1 )

ww ϕ(x−1
2 )

ooTϕ(γ1)
��

ϕ(γ−1
1 )

��

and

Φ(γ2)(Φ(y1)u) = TK TK TK K K K
Tϕ(y1)oo uoo

Tϕ(x2)

vv

Tϕ(y2)

hh

ϕ(x−1
2 )

gg

ϕ(y−1
2 )

wwϕ(y−1
1 )

ooTϕ(γ2)
��

ϕ(γ−1
2 )

��
,

(Φ(γ2)(Φ(y1)u)) ◦vert (Φ(x2)(Φ(γ1)u)) = (Tϕ(γ2) ◦hor Tϕ(γ1))u
(
ϕ(γ−1

1 ) ◦hor ϕ(γ−1
2 )

)
= (Tϕ)(γ2 · γ1)uϕ((γ2 · γ1)−1)

= Φ(γ2 · γ1)u.

We conclude that Φ(γ2 · γ1) = Φ(γ2) ◦hor Φ(γ1) for all arrows γ2, γ1 of the Lie 2-group G.
It now follows that Φ : G→ GL(X(K)) is a homomorphism of 2-groups.
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We are now in position to construct the representation λ : G → GL(X(G)) of a Lie
2-group G on its 2-vector space X(G) of vector fields coming from the multiplication on
the left.

3.13. Lemma. Left multiplication on a Lie 2-group G induces a homomorphism of 2-
groups

λ : G→ GL(X(G))

from G to the 2-group GL(X(G)) of automorphisms of the 2-vector space of vector fields
on the Lie groupoid G. For each object x of G, λ(x) : X(G) → X(G) is a linear functor
with

λ(x) (v
α⇒ w) = TG TG G G

TLxoo
Lx−1oo

w

cc

v
{{

α
��

for each arrow v
α⇒ w of G. Here as before L : G → Aut(G) is the homomorphism of

2-groups induced by multiplication on the left. For each arrow x
γ−→ y of G, λ(γ) : λ(x)→

λ(y) is a natural isomorphism with

λ(γ)v = TG TG G G
voo

TLx

gg

TLy
ww

Lx−1

ee

Ly−1

yy
TLγ��

Lγ−1
��

for all objects v of the 2-vector space X(G).

Proof. by Corollary 3.8 multiplication on G gives rise to a homomorphism of 2-groups
L : G→ Aut(G). By Lemma 3.12 the homomorphism L gives rise to the homomorphism
λ : G→ GL(X(G)).

4. A map of Lie 2-algebras p : g→ X(G)

Recall that to a Lie 2-group G = {G1 ⇒ G0} one can associate a Lie 2-algebra g =
{g1 ⇒ g0} by applying the Lie functor to the Lie group G0 of objects, the Lie group G1

of morphisms and to the structure maps of G. That is, g0 = Te0G0, g1 = Te1G1 and so
on. In this section we prove:

4.1. Theorem. Let G be a Lie 2-group and g the associated Lie 2-algebra There is a
morphism of Lie 2-algebras p : g→ X(G) from the Lie 2-algebra g to the Lie 2-algebra of
multiplicative vector fields X(G). Moreover the functor p is injective on objects and fully
faithful.

The theorem has an immediate corollary:

4.2. Corollary. The image p(g) of the functor p : g→ X(G) is a full Lie 2-subalgebra
of the Lie 2-algebra of vector fields X(G). This 2-subalgebra p(g) is isomorphic to g.

We construct p as a composite of two of functors.
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4.3. A Lie 2-algebra L (G) associated to a Lie 2-group G.
Recall that to define a Lie bracket on the tangent space at the identity TeH of a Lie group
H one identifies TeH with the space of left-invariant vector fields X (H)H on H.

Similarly given a Lie 2-group G we define the Lie 2-algebra L (G) as follows. We
define the Lie algebra of objects L (G)0 of L (G) to be the Lie algebra of left-invariant
vector fields X (G0)G0 on the Lie group G0. We define the Lie algebra of morphisms
L (G)1 to be the Lie algebra X (G1)G1 of left-invariant vector fields on the Lie group G1.
The source map s : L (G)1 → L (G)0 is defined by setting the source of a vector field
α ∈ L (G)1 to be the unique left-invariant vector field v ∈ L (G)0 which is s : G1 → G0

related to α. The target map t : L (G)1 → L (G)0 is defined similarly. The unit map
1 : L (G)0 → L (G)1 is defined by setting 1u to be the unique left-invariant vector field
on G1 which is 1 : G0 → G1 related to u ∈ L (G)0. The composition

~ : L (G)1 ×L (G)0 L (G)1 → L (G)1

is defined pointwise; it is induced by the composition

? : TG1 ×TG0 TG1 → TG1

in the tangent groupoid TG (recall that ? = T∗, where ∗ : G1 ×G0 G1 → G1 is the
composition in G). Thus ~ is defined by

(α~ β) (γ) := α(γ) ? β(γ)

for all arrows γ ∈ G1. Routine computations establish that L (G) is indeed a Lie 2-
algebra.

There is an evident functor

` : g = {Te1G1 ⇒ Te0G0} → L (G).

which sends a vector v ∈ g0 = Te0G0 to the corresponding left-invariant vector field `(v)
on the Lie group G0 and an arrow α : v → w ∈ g1 = Te1G1 to the corresponding left-
invariant vector field `(α) on the Lie group G1. By definition of the Lie brackets on g0

and on g1 the maps ` : g0 → L (G)0, ` : g1 → L (G)1 are Lie algebra maps. On the other
hand ` is also an isomorphism of categories — its inverse is given by evaluation at the
identities:

`−1(β : u→ u′) = β(e1) : u(e0)→ u′(e0).

We next construct a functor q : L (G) → X(G). Given a left-invariant vector field u
on the Lie group G0 we define a multiplicative vector field q(u) as follows. We take the
object part q(u)0 : G0 → TG0 to be u:

q(u)0 := u. (4.1)
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We define q(u)1 : G1 → TG1 by setting

q(u)1(γ) = (TLγ ◦ T1) (u(e0)) (4.2)

for all γ ∈ G1. Here and elsewhere in the paper Lγ : G1 → G1 is the left multiplication
by γ and TLγ : TG1 → TG1 is its derivative. It is clear that both q(u)0 and q(u)1 are
vector fields. It is less clear that q(u) : G→ TG is a functor.

4.4. Lemma. For any vector u ∈ Te0G0 the vector field q(u)1 : G1 → TG1 defined by
(4.4) preserves composition of arrows:

q(u)1(γ2 ∗ γ1) = (q(u)1(γ2)) ? (q(u)1(γ1)) . (4.3)

for all composable arrows (γ2, γ1) ∈ G1×G0 G1. Here as before ∗ is the composition in the
Lie groupoid G and ? is the composition in the tangent groupoid TG.

4.5. Remark. For a manifold M and a point q ∈ M we write (q,X) for the tangent
vector X ∈ TqM . With this notation it is easy to see that

TLγ(σ,X) = Tm((γ, 0), (σ,X))

for all γ, σ ∈ G1, X ∈ TσG1. Note also that since the composition ? = T∗ : T (G1 ×G0

G1)→ TG1 is fiberwise linear,

(γ2, 0) ? (γ1, 0) = (γ2 ∗ γ1, 0).

Proof of Lemma 4.4. Recall that the tangent functor T : Man → Man extends to a
2-functor T : LieGpd → LieGpd on the 2-category of Lie groupoids. As a special case
(any Lie group is a Lie groupoid with one object) the functor T induces a functor on the
category LieGp of Lie groups. Consequently for a Lie 2-group G its tangent groupoid TG
is a Lie 2-group as well. The unit map of the groupoid TG is the derivative T1 of the
unit map 1 : G0 → G1. The interchange law (see Lemma 2.4) in the case of TG reads:

Tm((µ2 ? µ1), (ν2 ? ν1)) = Tm(µ2, ν2) ? Tm(µ1, ν1)) (4.4)

for all composable pairs (µ2, µ1), (ν2, ν1) ∈ TG1×TG0 TG1. Now take ν2 = ν1 = T1(u(e0))
which we abbreviate as 1. Then (4.4) reads:

Tm((µ2 ? µ1), (1 ? 1)) = (Tm(µ2,1)) ? (Tm(µ1,1)). (4.5)

Then by definition of q(u)1, for any γ ∈ G1

q(u)1(γ) = TLγ 1 = Tm((γ, 0),1).
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Therefore

q(u)1 (γ2 ∗ γ1) = TLγ2∗γ1(1)

= Tm((γ2 ∗ γ1, 0),1)

= Tm((γ2, 0) ? (γ1, 0),1 ? 1)

= Tm((γ2, 0),1) ? Tm((γ1, 0),1) by (4.5)

= TLγ2(1) ? TLγ1(1)

= (q(u)1(γ2)) ? (q(u)1(γ1)) .

It is easy to see that Ts◦q(u)1 = q(u)0◦s, Tt◦q(u)1 = q(u)0◦t and q(u)1◦1 = T1◦q(u)0.
We conclude that q(u) = (q(u)0, q(u)1) : G → TG is a multiplicative vector field for any
left-invariant vector field u on the Lie group G0. We thus have constructed the functor q
on objects.

An arrow v
α−→ u in L (G) is a vector field α : G1 → TG1 which is source map s related

to v and target map t related to u. Define q(α) : G0 → TG1 by

q(α) = α ◦ 1, (4.6)

where as before 1 : G0 → G1 is the unit map. We need to check that q(α) is an arrow
in the category X(G) from q(v) to q(u). That is, we need to check that q(α) is a natural
transformation from q(v) to q(u) with

πG(q(α) (x)) = 1x (4.7)

for all x ∈ G0.
Checking that (4.7) holds is easy. Since α is a vector field on G1,

πG1(α(γ)) = γ

for all γ ∈ G1. In particular πG1(α(1x)) = 1x for all x ∈ G0, which implies (4.7).
We now check that q(α) is in fact a natural transformation from the functor q(v) to

the functor q(u). Since α is s-related to v

Ts(q(α) (x)) = Ts(α(1x)) = v0(s(1x)) = v0(x)

for all x ∈ G0. Since q(v)0 = v0 it follows that the source of the putative natural
transformation q(α) : G0 → TG1 is q(v). Similarly the target of q(α) is q(u). It remains

to check that q(α) is actually a natural transformation: that is, for any arrow x
γ−→ y in

G, the diagram

q(v)(x) q(v)(y)

q(u)(x) q(u)(y)

q(v)(γ) //

q(α)(x)

��

q(α)(y)

��

q(u)(γ)
//
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commutes in the category TG, i.e.,

q(α)(y) ? q(v)(γ) = q(y)(γ) ? q(α)(x). (4.8)

By definition of q(α),
q(α)(y) = α(1y).

Since α is left-invariant

α(1y) = TL1y(α(e1)) = Tm((1y, 0), (1e0 , α(1e0))).

Similarly
q(α)(x) = Tm((1x, 0), (1e0 , α(1e0))).

On the other hand,

q(v)(γ) = TLγ(1v0(e0)) = Tm((γ, 0), (1e0 ,1v0(e0))).

Similarly,
q(u)(γ) = Tm((γ, 0), (1e0 ,1u0(e0))).

Now

q(α)(y) ? p(v)(γ) = Tm((1y, 0), (1e0 , α(1e0))) ? Tm((γ, 0), ((1e0 , v1(1e0)))

= Tm((1y, 0) ? (γ, 0), (1e0 , α(1e0)) ? (1e0 ,1v0(e0)))

= Tm((1y ∗ γ, 0), (1e0 , α(1e0)))

= Tm((γ, 0), (1e0 , α(1e0))).

Similarly,

q(u)(γ) ? q(α)(x) = Tm((γ, 0), (1e0 ,1u(1e0 ))) • Tm((1x, 0), (1e0 , α(1e0)))

= Tm((γ, 0) ? (1x, 0), (1e0 ,1u(1e0 ))) ? (1e0 , α(1e0))

= Tm((γ, 0), (1e0 , α(1e0))).

It follows that (4.8) holds. Hence q(α) is an arrow in X(G) from q(v) to q(u).
It is not hard to check that the map q : L (G)→ X(G) constructed above is in fact a

functor. We need to check that q is a map of Lie 2-algebras. For this it suffices to check
that q0 : L (G)0 → X(G)0 and q1 : L (G)1 → X(G)1 are Lie algebra maps.

Recall that the Lie bracket of two multiplicative vector fields X = (X0, X1) and
Y = (Y0, Y1) is given by

[X, Y ] := ([X0, Y0], [X1, Y1]).

It follow from the definition of the functor q on objects that for any two vector fields
u, v ∈ L (G)0

(i) [q(u)0, q(v)0] = q([u, v])0 and
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(ii) q([u, v])1 is the unique left-invariant vector field on G1 which is 1-related to [u, v].
Hence

q([u, v])1 = [q(u)1, q(v)1].

We conclude that
q : L (G)0 → X(G)0

is a map of Lie algebras.
We next check that q : L (G)1 → X(G)1 is also a map of Lie algebras. Recall the

construction of a Lie algebra structure on the space X(G)1 starts with the injective linear
map j : Γ(AG) → X (K1) that maps the section of the Lie algebroid AG → G0 to the
corresponding right-invariant vector field (see (2.6)). We then embed X(G)1 into the space
of vector fields X (G1) by the map J (see (2.7)) and give X(G)1 the induced Lie algebra
structure: for α, β ∈ X(G)1 their bracket [α, β] is the unique element of the vector space
X(G)1 with

J([α, β]) = [J(α), J(β)].

4.6. Lemma. (We use the notation developed above.) For any left-invariant vector field
α ∈ L (G) ≡ X (G1)G1

J(q(α)) = α.

Hence q : L (G)1 → X(G)1 is a Lie algebra map.

Proof. Since G is a Lie 2-group, for any (σ, γ) ∈ G1 ×G0 G1

Rγ(σ) = σ ∗ γ = γ · (1t(γ))
−1 · σ

by Lemma 2.6. Therefore for any curve σ(τ) in G1 lying entirely in a fiber of the source
map s : G1 → G0 with σ(0) = 1y for some y ∈ G0

TRγ(σ̇(0)) =
d

dτ

∣∣∣∣
0

σ(τ) ∗ γ =
d

dt

∣∣∣∣
0

γ · (1y)−1 · σ(τ) = TLγ·(1y)−1(σ̇(0)).

It follows that for any section ζ ∈ Γ(AG) of the algebroid, j(ζ) ∈ X (G1) is given by

j(ζ) (γ) = TLγ·(1t(γ))−1(ζ(t(γ))). (4.9)

Now, for any arrow α : u→ v in L (G)1,

q(α) = α ◦ 1 : q(u)⇒ q(v).

Hence for any arrow y
γ−→ x in the Lie groupoid G

J(q(α)) (γ) = j(q(α)− 1q(u)) + q(u)1(γ)

= TLγ·(1y)−1(α(1y)− T1(u(y))) + TLγ(q(u)1(e1))

( by (4.9) and left-invariance of q(u)1)

= α(γ · (1y)−1 · 1y)− (TLγ·(1y)−1 ◦ T1 ◦ TLy)u(e0) + TLγ(T1(u(e0))).
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Now for any z ∈ G0

(Lγ·(1y)−1 ◦ 1 ◦ Ly) (z) = γ · (1y)−1 · 1yz = γ · (1y)−1 · 1y · 1z,

where the last equality holds since 1 : G0 → G1 is a homomorphism. Hence

Lγ·(1y)−1 ◦ 1 ◦ Ly = Lγ ◦ 1.

and consequently
TLγ·(1y)−1 ◦ T1 ◦ TLy = TLγ ◦ T1.

It follows that
J(q(α)) (γ) = α(γ)

for all γ ∈ G1 and all α ∈ L (G)1.
Now by definition of the bracket on the vector space X(G)1, for any α, β ∈ L (G)1 the

bracket [q(α), q(β)] is the unique element of X(G)1 such that

J([q(α), q(β)]) = [J(q(α)), J(q(β))].

On the other hand
J(q[α, β])) = [α, β] = [J(q(α)), J(q(β))]

as well. Hence,
q([α, β]) = [q(α), q(β)]

for all α, β ∈ L(G)1.

We conclude that the functor

q : L (G)→ X(G)

from the category L (G) of left-invariant vector fields on the Lie 2-group G to the category
X(G) of multiplicative vector fields on the Lie groupoid G is a 1-morphism of Lie 2-
algebras. By construction q is fully faithful and is injective on objects. We now define
p : g→ X(G) to be the composite

p := q ◦ `.

By construction p is fully faithful and injective on objects.

5. Universal properties of the inclusion i : p(g) ↪→ X(G)

As before G denotes a Lie 2-group and X(G) the Lie 2-algebra of multiplicative vector
fields on the Lie groupoid G.
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5.1. Lemma. A multiplicative vector field u = (u0, u1) : G → TG on a Lie 2-group G
satisfies

λ(γ)(u) = 1u (5.1)

for an arrow γ of G if and only if for all z ∈ G0

u1(1z) = TLγ(u1(Lγ−1(1z))). (5.2)

As before Lσ : G1 → G1 denotes the multiplication on the left by σ ∈ G1 and λ :
G → GL(X(G)) is the action of G on its vector fields induced by left multiplication (see
Lemma 3.13).

Proof. The proof is a computation.
Recall that for an arrow x

γ−→ y ∈ G1 the u-component of the natural transformation
λ(γ) : λ(x)⇒ λ(y) is defined to be the composite

TG TG G

TLy

hh

TLx
vv

uLy−1

hh

uLx−1

vv
uLγ
��

TLγ
��

Hence for any object z ∈ G0

(λ(γ)(u)) (z) = ((TLγ) ◦hor (uLγ−1)) (z)

= (TLγ) ((u0 ◦ Ly−1)(z)]) ? (TLx)(u1(Lγ−1(z)) (by Remark 3.7)

where ? is the composition in the Lie groupoid TG. For any tangent vector ȧ ∈ TaG0

TLγ(a, ȧ) = Tm((γ, 0), (1a, T1(ȧ)))

Hence
(TLγ) ((u0 ◦ Ly−1)(z)) = Tm((γ, 0), (1y−1z, T1u1(1y−1z))).

For any tangent vector σ̇ ∈ TσG1

TLx(σ, σ̇) = Tm((1x, 0), (σ, σ̇)).

Hence
(TLx)(u1(Lγ−1(z)) = Tm((1x, 0), (γ−11z, u1γ

−11z)).

Recall that since Tm : TG × TG → TG is a functor, for any two pairs of composable
arrows ((σ2, σ̇2), (σ1, σ̇1)), ((σ4, σ̇4), (σ3, σ̇3)) ∈ TG1 ×TG0 TG1

Tm((σ2, σ̇2)?(σ1, σ̇1)), ((σ4, σ̇4)?(σ3, σ̇3)) = Tm((σ2, σ̇2), (σ4, σ̇4))?Tm((σ1, σ̇1))?(σ3, σ̇3))
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Hence

(λ(γ)(u)) (z) = (TLγ) ((u0 ◦ Ly−1)(z)]) ? (TLx)(u1(Lγ−1(z))

= Tm((γ, 0), (1y−1z, T1u1(1y−1z))) ? Tm((1x, 0), (σ, σ̇))

= Tm((γ, 0) ? (1x, 0), (1y−1z, u1(1y−1z)) ? (γ−11x, u1(γ−11x)))

= Tm((γ ∗ 1x, 0), (1y−1z ∗ (γ−11x), T1(u0(y−1z)) ? u1(γ−11− x)))

= Tm((γ, 0), (γ−11z, u1(γ−11z)).

Now, for any σ̇ ∈ TσG1,
TLγ(σ, σ̇) = Tm((γ, 0), (σ, σ̇)),

where, as before Lγ : G1 → G1 is the left multiplication by γ and TLγ : TG1 → TG1 is
its derivative. Therefore

(λ(γ)(u)) (z) = TLγ(u1(Lγ−11z)).

Since the z component of 1u : u⇒ u is T1(u0(z)) and since T1(u0(z)) = u1(1z) (because
u : G→ TG is a functor), the result now follows:

TLγ(u1(Lγ−11z)) = u1(1z).

5.2. Theorem. Let G be a Lie 2-group, g the associated tangent Lie 2-algebra, p : g →
X(G) is the map of 2-vector spaces constructed in Theorem 4.1, i : p(g) ↪→ X(G) the
inclusion of 2-vector spaces and λ : G → Aut(X(G)) is the action of the Lie 2-group G
on its Lie 2-algebra of multiplicative vector fields by left multiplication (see Lemma 3.13).

1. The diagram

p(g)

X(G) X(G)

i

��

i

��

λ(y)

ii

λ(x)
uu

λ(γ)��

(5.3)

commutes for any choice of arrow x
γ−→ y ∈ G1. That is,

λ(x) ◦ i = i

for all x ∈ G0 and
λ(γ)i = 1i

for all γ ∈ G1 (here λ(γ)i is the whiskering of the natural transformation λ(γ) by
the functor i).
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2. For any map ψ : h→ X(G) of 2-vector spaces such that the diagram

h

X(G) X(G)

ψ

��

ψ

��

λ(y)

ii

λ(x)
uu

λ(γ)��

(5.4)

commutes for all choices of arrows x
γ−→ y ∈ G1 there exists a unique map of 2-vector

spaces ψ̄ : h→ p(g) so that
ψ = i ◦ ψ̄.

In other words i : p(g)→ X(G) is a (strict conical) limit of the functor λ : G→ GL(X(G)).

5.3. Remark. In the course of the proof we realize the limit of the functor λ : G →
GL(X(G)) explicitly as a sub 2-vector space of the 2-vector space X(G) cut out by equa-
tions.

Proof. We argue first

(i) For any multiplicative vector field u = (u0, u1) : G→ TG

λ(x)u = u for all x ∈ G0 and λ(γ)u = 1u for all γ ∈ G1 (5.5)

if and only if
u = p(u(e0)). (5.6)

(ii) For any morphism α : u⇒ v in the category X(G)

λ(x)(α) = α for all x ∈ G0 (5.7)

if and only if
α = p(α(e0)). (5.8)

Proof Proof of (i). By Lemma 5.1 λ(γ))(u) = 1u if and only if (5.2) holds for all
z ∈ G0. It is easy to see that (5.2) is equivalent to the vector field u1 on the Lie group
G1 being left-invariant.

On the other hand λ(x)u = u for all x ∈ G0 translates into

TLx ◦ u0 ◦ Lx−1 = u0

and

TL1x ◦ u1 ◦ L1−1
x

= u1.

Thus (5.5) implies that u0 and u1 are both left-invariant. Moreover, since u is multiplica-
tive and e1 = 1(e0), u1(e1) = T1u0(e0). Hence (5.5) implies (5.6).
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Conversely, suppose (u0, u1) = p(a) for some a ∈ g0. By construction of the functor p,
a = u0(e0). Moreover u1 is a left-invariant vector field on G1 with u1(e1) = T1(u0(e0)).
Hence equation (5.2) hold for all z ∈ G0 and all γ ∈ G1, which implies that λ(γ)u = 1u
for all γ ∈ G1. It also implies that

TL1x ◦ u1 ◦ L1x−1 = u1 (5.9)

for all x ∈ G1. On the other hand, by construction of the functor p the vector field u0 on
G0 is left-invariant. Hence

TLx ◦ u0 ◦ Lx−1 = u0 (5.10)

for all x ∈ G0. Therefore λ(x)u = u for all x ∈ G0. We conclude that if u = p(a) then
(5.5) holds. This finishes our proof of (i).

Proof Proof of (ii). By definition of the functor λ(x),

(λ(x)α)(z) = TLx(α(x−1z))

for all z ∈ G0. By definition of the functor Lx on arrows,

TLx(α(x−1z)) = TL1z(α(x−1z)

where as before L1z is left multiplication by 1z ∈ G1. Thus if λ(x)α = α then

α(x) = TL1x(α(e0))

Hence (5.7) implies (5.8).
Conversely, if α = p(b) for some b ∈ g1 then α(x) = TL1xb for all x ∈ G0 and

α(e0) = TL1e0
b = b. This finishes our proof of (ii).

The proof of part (1) of the theorem is now easy. By (i), for any object a ∈ g0, and
any object x ∈ G0,

λ(x)(p(a)) = p(a).

By (ii), for any object b ∈ g1 and any arrow γ ∈ G1

λ(γ)(p(b)) = p(b).

Hence (5.3) commutes.
Now suppose ψ : h → X(G) is a map of 2-vector spaces making the diagram (5.4)

commute. Then for any object X of h

λ(x)ψ(X) = ψ(X) for all x ∈ G0 and λ(γ)ψ(X) = 1ψ(X) for all γ ∈ G1

Consequently by (i)
ψ(X) = p(ψ(X)(e0)).

The commutativity of (5.4) also implies that

λ(x)(ψ(Y )) = ψ(Y ) for all x ∈ G0

for any arrow Y in h. Then by (ii)

ψ(Y ) = p(ψ(Y ) (e0)).

We conclude that the image of ψ : h→ X(G) is contained in p(g) and the result follows.
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We are now in position to prove our main result by putting together all the work we
have already done.

Proof of Theorem 1.1. By Lemma 3.13 the action of the Lie 2-group G on itself by
multiplication on the left gives rise to a homomorphism of 2-groups λ : G → GL(X(G)).
By Theorem 4.1 we have a 1-morphism of Lie 2-algebras p : g → X(G) which is fully
faithful and injective on objects. In particular p : g → p(g) is an isomorphism of Lie
2-algebras.

On the other hand by Theorem 5.2, the 2-vector space p(g) underlying the Lie 2-
algebra p(g) is a limit of the functor λ : G→ GL(X(G)). Hence it makes sense to say that
p(g) is the 2-vector space X(G)G of left-invariant vector fields. As we remarked previously
p(g) is also a Lie 2-subalgebra of X(G) which is isomorphic to the Lie 2-algebra g.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
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