
Theory and Applications of Categories, Vol. 34, No. 17, 2019, pp. 456–467.

COLIMITS OF MONOIDS

HANS-E. PORST

Abstract. If C is a monoidal category with reflexive coequalizers which are preserved
by tensoring from both sides, then the category MonC of monoids over C has all coequal-
izers and these are regular epimorphisms in C. This implies that MonC has all colimits
which exist in C, provided that C in addition has (regular epi, jointly monomorphic)-
factorizations of discrete cones and admits arbitrary free monoids. A further application
is a lifting theorem for adjunctions with a monoidal right adjoint whose left adjoint is
not necessarily strong to adjunctions between the respective categories of monoids.

Not much can be found in the literature about the existence of colimits in MonC.
Assuming that C is cocomplete and its tensor product ⊗ preserves colimits, it is shown
in [16] that certain pushouts exist in MonC, while [14] deals with the situation that C
is locally finitely presentable and ⊗ preserves directed colimits: Then MonC is locally
presentable and, hence, cocomplete. We believe, though, that more is known in the
categorical folklore in the case where C is cocomplete and, in addition, MonC is monadic
over C: this is summed up as Fact 3.4 below, including some arguments and references.

The main topic of this note is the existence of colimits in MonC if the category C
fails to have all colimits. In particular we will consider the case where the functor | − | is
regularly monadic in the sense of [1]. Then by a well known result on such functors the
category MonC has all colimits which exist in C. The application of this criterion however
requires more information about coequalizers and regular epimorphisms in MonC than
seems to be available up to now.

We therefore first prove, as Theorem 2.3 below, that MonC has all coequalizers and
that regular epimorphisms in MonC are regular epimorphisms in C as well, provided
that C has reflexive coequalizers and these are preserved by ⊗. This strengthens the
unpublished result [2, Proposition 2.1.6], where existence of all coequalizers and their
preservation by ⊗ is assumed. In fact, this result motivated the author to compile this
note, since he felt it very unlikely it would be found there (neither the publication [3]
with a similar title nor the actual arXiv-version contains this result) and the authors of
that preprint have no intention to publish it [7]. We would like to stress the fact that our
proof uses essentially the techniques of [2], while we add a short remark explaining the
naturality of this construction.

As a further application we prove as Theorem 3.6 below a lifting theorem for an
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adjunction with a (lax) monoidal right adjoint C R−→ D, whose left adjoint is not necessarily
strong, to an adjunction between the respective categories of monoids. Again, the crucial
assumption on C is — besides admitting free monoids — that this category has reflexive
coequalizers preserved by ⊗. This theorem generalizes a similar one (see [2, Theorem
2.2.8]) in the preprint mentioned above, while its proof uses crucial elements of that
proof. We make clear, however, that what appears to be an ad hoc construction in [2], in
fact is based on general principles for the lifting of adjunctions.

Finally, the following comments might be in place. The standard assumption used in
this note, that the monoidal category C has reflexive coequalizers and these are preserved
by ⊗, is considerably weaker then the standard assumption in [2], where C is assumed to
have all coequalizers and these are preserved by ⊗. In fact it is well known that the tensor
product of a monoidal category often preserves reflexive coequalizers but not arbitrary
ones. In view of a known argument (see [6, page 18] — with × replaced by ⊗) existence of
reflexive coequalizers and preservation of these by ⊗ in C guarantees existence of reflexive
coequalizers in MonC; thus, the novelty in Theorem 3.6 is the construction of arbitrary
coequalizers.

1. Preliminaries and notations

1.1. Some notations. A monoidal category will be denoted as (C,⊗, I) or simply as C.
MonC then denotes the category of monoids in C and |− | its forgetful functor; whenever
this functor has a left adjoint it will be denoted by T . We will often omit the functor
| − | when no confusion is possible; in particular monoids will usually be denoted as

A = (A,A⊗ A mA−−→ A, I
eA−→ A).

By a monoidal functor is meant what also is known as a lax monoidal functor. Conse-
quently, we call a monoidal functor strong if its multiplications and units are isomorphisms.

By the phrase ⊗ preserves colimits (of some type) in the monoidal category C we mean
that, for each C in C, the functors C ⊗− and −⊗C preserve these colimits. Similarly, ⊗
preserves regular epimorphisms means that all functors C ⊗− and −⊗C preserve those.

1.2. Regular factorizations. With respect to regular factorizations we use the ter-
minology of [1]. In particular a category C is said to have regular factorizations or to be
a regular category if it has (regular epi, jointly monomorphic)-factorizations of (possibly
class indexed) discrete cones. Every regular category has coequalizers.

A functor D U−→ C is regularly monadic if it is monadic, C is regular, and U or, equiv-
alently, the respective monad functor preserves regular epimorphisms. Every regularly
monadic functor U detects colimits, that is, a diagram D : I −→ D has a colimit, provided
the diagram U ◦D has a colimit in C (see [1, Chapter 23]).

1.3. Bimodules. Given a monoidal category C and a monoid A in C there are the cate-

gories AC of left A-modules (C,A⊗C l−→ C), CA of right A-modules (C,C⊗A r−→ C)(called
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left and right A-actions in [10]) and ACA of A-bimodules (C,A ⊗ C l−→ C,C ⊗ A r−→ C).
The monoid A is a left (right, bi)module by means of its multiplication.

The obvious forgetful functors from these categories into C have left adjoints. In
particular, the left adjoint C −→ ACA assigns to a C-object X the bimodule

(A⊗X ⊗A,A⊗A⊗X ⊗A mA⊗X⊗A−−−−−−→ A⊗X ⊗A,A⊗X ⊗A⊗A A⊗X⊗mA−−−−−−→ A⊗X ⊗A)

and the bimodule structure on A described above is the free A-bimodule on I.
The unit of this adjunction is the C-morphism X ' I ⊗ X ⊗ I eA⊗X⊗eA−−−−−→ A ⊗ X ⊗ A

and the homomorphic extension of C-morphism X
α−→ A is the morphism

Λα := A⊗X ⊗ A A⊗α⊗A−−−−→ A⊗ A⊗ A mA⊗A−−−→ A⊗ A mA−−→ A. (1)

The following observations will be of use later, where the first two are immediate
consequences of Λα being the homomorphic extension of α.

1. For every C-morphism X
β−→ A

τ ◦ Λα = τ ◦ Λβ ⇐⇒ τ ◦ α = τ ◦ β (2)

2. For every monoid morphism A
γ−→ B

γ ◦ Λα = Λγ◦α ◦ (γ ⊗X ⊗ γ)

3. The C-morphism Λα has the C-morphism s = A ' I ⊗ I ⊗ A eA⊗eX⊗A−−−−−→ A ⊗X ⊗ A
as a section, provided that X

α−→ A is monoid morphism.

Being a ACA-morphism it makes the following diagrams commute:

A⊗ A⊗X ⊗ A A⊗Λα //

mA⊗X⊗A
��

A⊗ A
mA

��
A⊗X ⊗ A Λα // A

A⊗X ⊗ A⊗ A Λα⊗A //

A⊗X⊗mA

��

A⊗ A
mA

��
A⊗X ⊗ A Λα // A

(3)

Note that for C = Ab, the monoidal category of abelian groups, monoids A are rings
and (two-sided) ideals in A are A-bimodules. If X

ι−→ A is the embedding of a subgroup
X of the additive group of the ring A, then the ideal generated by X is imΛι, the image
of the free A-bimodule over X under the map Λι, considered as a subgroup of A,
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2. Coequalizers in MonC
Somewhat surprisingly, coequalizers in MonC for an arbitrary monoidal category C can
be constructed the same way as in the special case of the category of unital rings, that is,
as in Ring = MonAb where Ab denotes the monoidal category of abelian groups, provided
that C shares with Ab the property that ⊗ preserves reflexive coequalizers. We therefore
recall this simple construction as follows: If

B
α //

β
// A π // Q

is a coequalizer diagram in Ring, then Q = A/Iα,β, where Iα,β is the two-sided ideal
generated by the image im(α − β) in Ab. In other words, Iα,β is, considered as a group,
the subgroup X := imΛα−β = im(Λα − Λβ) of A, such that

A⊗X ⊗ A
Λα //

Λβ
// A

π // Q

is a coequalizer diagram in Ab.
We show next how this can be generalized to an arbitrary monoidal category C.

2.1. Lemma. [2] Let A be a monoid in C and α, β : X −→ A be C-morphisms. Assume
that

A⊗X ⊗ A
Λα //

Λβ
// A

π // Q (4)

is a coequalizer diagram in C which is preserved by ⊗. Then Q carries a unique monoid
structure such that π is a monoid morphism.

If α′, β′ : X ′ −→ A is another such pair, then the coequalizers of (Λα,Λβ) and (Λα′ ,Λβ′)

coincide provided that, for every monoid morphism A
τ−→ C,

τ ◦ α = τ ◦ β ⇐⇒ τ ◦ α′ = τ ◦ β′. (5)

Proof. Consider the diagram

A⊗X ⊗ A⊗ A
Λα⊗A //
Λβ⊗A

//

A⊗X⊗A⊗π

��

A⊗ A mA //

A⊗π

��

A

π

��
A⊗X ⊗ A⊗Q

Λα⊗Q //
Λβ⊗Q

// A⊗Q m
//

π⊗Q
$$

Q

Q⊗Q

mQ

OO

The left hand rectangle commutes serially since π coequalizes (Λα,Λβ). By assumption

A ⊗ A A⊗π−−→ A ⊗ Q is a coequalizer of A ⊗ Λα and A ⊗ Λβ, such that one obtains, using
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the first diagram of (3), a unique C-morphism A⊗Q m−→ Q making the right hand square
commute.

Since A⊗X⊗A⊗π is a (regular) epimorphism and A⊗Q π⊗Q−−→ Q⊗Q is the coequalizer

of Λα ⊗ Q and Λβ ⊗ Q by assumption, there exists a unique C-morphism Q ⊗ Q
mQ−−→ Q

satisfying mQ ◦ (π ⊗Q) = m.
Using the facts that A is a monoid and π is a regular epimorphism (hence ⊗nπ an

epimorphism for each n) one shows easily that Q = (Q,mQ, π ◦ eQ) is a monoid and π a
monoid morphism.

Concerning the second statement assume that A
π−→ E and A

π′−→ E ′ are coequalizers of
(Λα,Λβ) and (Λα′ ,Λβ′), respectively. Since π and π′ are monoid morphisms by the above,
one obtains by the equivalences (2) and (5) the equivalences

π ◦ Λα = π ◦ Λβ ⇐⇒ π ◦ α = π ◦ β ⇐⇒ π′ ◦ α′ = π′ ◦ β′ ⇐⇒ π′ ◦ Λα′ = π′ ◦ Λβ′ ,

which implies the claim.

2.2. Remark. If the forgetful functor of MonC has a left adjoint T , the equivalence (5)
holds in particular, if α′ and β′ are the homomorphic extensions TX → A of α and β.

The following strengthens a result of [2], where preservation of all coequalizers is
required.

2.3. Theorem. Let C be a monoidal category with �reflexive coequalizers preserved by ⊗.
Consider, for any pair of monoid morphisms α, β : X −→ A, the following coequalizer dia-
gram in C.

A⊗X ⊗ A
Λα //

Λβ
// A

π // Q (6)

Then Q carries a (unique) monoid structure such that π becomes a monoid morphism and

X
α //

β
// A π // Q

is a coequalizer diagram in MonC.
In particular the category MonC has coequalizers and the forgetful functor MonC −→ C

preserves regular epimorphisms.

Proof. Let α, β : D −→ A be monoid morphisms and A
π−→ Q the coequalizer of Λα and

Λβ in C. By Lemma 2.1 Q carries a unique monoid structure such that π is a monoid
morphism, since Diagram (6) displays a reflexive coequalizer by item 3 of Section 1.3.
If A

τ−→ C is a monoid morphism such that τ ◦ α = τ ◦ β, then τ ◦ Λα = τ ◦ Λβ by the

equivalence (2), such that there exists a unique C-morphism Q
σ−→ C with σ ◦ π = τ . It

remains to prove that σ is a monoid morphism. But this is clear since π is a regular
epimorphism and, hence, π ⊗ π is an epimorphism.
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2.4. Remark. Given two parallel pairs of morphisms in a category with coequalizers

X1

f1 //
g1

// A X2

f2 //
g2

// A

one obtains a multiple coequalizer of the morphisms f1, g1, f2, g2 as follows: Form the
coequalizer A

q1−→ Q1 of f1, g1 and then the coequalizer Q1
q2−→ Q of q1 ◦ f2, q1 ◦ g2; then

A
q1−→ Q1

q2−→ Q is the required multiple coequalizer.
In particular, every category with coequalizers has such multiple coequalizers and any

such is a composite of ordinary ones.

3. Applications

Monadicity. Applying the result above we first provide two similar criteria for the
forgetful functor | − | : MonC −→ C to be regularly monadic. For this we use the following
fact which follows by the Beck-Paré-Theorem (the argument given in [11] for the case of
semigroups applies by replacing × by ⊗).

3.1. Fact. | − | : MonC −→ C is monadic provided that it has a left adjoint.

3.2. Proposition. Let C be a monoidal category with regular factorizations. Then the
forgetful functor | − | : MonC −→ C is regularly monadic, provided that either of the fol-
lowing conditions is satisfied.

1. C has denumerable coproducts and these as well as regular epimorphisms are pre-
served by ⊗.

2. | − | : MonC −→ C has a left adjoint and ⊗ preserves reflexive coequalizers.

Proof. Monadicity is clear both cases.
In the first case the respective monad T acts on a morphism f by Tf =

∐
n⊗nf ,

hence, maps regular epimorphisms to regular epimorphisms by assumption, which proves
this claim. In the second case | − | preserves regular epimorphisms by Theorem 2.3.

3.3. Remarks. There are monoidal categories with regular factorizations where ⊗ pre-
serves regular epimorphisms but not coequalizers and which admit free monoids, which
cannot be constructed canonically. The monoidal categories Unif and Unif? of uniform
spaces with its cartesian structure and the (non symmetric monoidal right closed) struc-
ture given by the semi-uniform product, respectively, are examples.

General Colimits in MonC. As far as we know, not much about the existence of
colimits in MonC appears in the published literature, though probably quite a bit is
known in categorical folklore. The only published results we are aware of are
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• If C is cocomplete and ⊗ preserves colimits, then the category MonC has all
pushouts of the form

FC
Ff //

��

FD

��
X // P

where C
f−→ D is a morphism in C and F : C −→ MonC is the free monoid functor

(see [16]).

• If C admits a monoidal topological functor U : C −→ Set, then the induced functor
Ū : MonC −→ Mon into the category of (algebraic) monoids is topological again (the
argument used in [12] for a strict monoidal functor generalizes). In particular MonC
is cocomplete (see [1, Proposition 21.15]).

• If C is locally λ-presentable and ⊗ preserves λ-directed colimits, then MonC is
locally presentable and, hence, cocomplete in particular (see [14]).

The first of these results is a special instance of the following fact which be believe to
be part of the categorical folklore; it is a consequence of the familiar fact that a monadic
category over a cocomplete category is cocomplete if it has reflexive coequalizers (see e.g.
[4, Theorem 4.3.4]), where existence of those follows from Johnstone’s observation [6, page
18] (with × replaced by ⊗) — but clearly from Theorem 2.3 as well.

3.4. Fact. If the forgetful functor | − | : MonC −→ C has a left adjoint and the category
C is cocomplete with reflexive coequalizers preserved by ⊗ then MonC is cocomplete.

Without the requirement of cocompleteness of C we obtain the following.

3.5. Theorem. In the situation of Proposition 3.2 MonC has coequalizers and all other
colimits which exist in C.

Proof. Every category with regular factorizations has coequalizers (see [1, Proposition
20.33]); hence, the result follows from [1, Theorem 23.11], since every regularly monadic
functor is essentially algebraic.

Lifting adjunctions. Let R : C → D be a monoidal functor. It is well known that R
induces a functor R̄ : MonC →MonD such that the diagram

MonC R̄ //

��

MonD

��
C

R
// D

commutes, where the vertical arrows denote the respective forgetful functors (denoted by
| − | if necessary). It is of quite some interest (see e.g. [8], [15]) to know under which
conditions the functor R̄ has a left adjoint if R has one.
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The answer to this question is rather trivial and well known in case that the left adjoint
L of R is strong: then L also lifts to a functor L̄ : MonD → MonC, and this is a left
adjoint of R̄ (see e.g. [14]); this applies in particular for monoidal adjunctions L a R.

A standard approach to the general case of this problem would be to apply Dubuc’s
Adjoint Triangle Theorem, which would require both forgetful functors to have left ad-
joints and MonC to have coequalizers of reflexive pairs. Tambara [17] claimed without
a proof that it suffices to assume that C is cocomplete and that ⊗ preserves all colimits.
A proof of this claim is contained in [2]. The following is a generalization of this result
in that we do not assume the free monoids over C to be given by MacLane’s standard
construction and only require preservation of reflexive coequalizers by ⊗.

3.6. Theorem. Let R : C → D be a monoidal functor with left adjoint L. Assume
that C has reflexive coequalizers which are preserved by ⊗ and that the forgetful func-

tor MonC |−|C−−→ C has left adjoint T . Then the functor R̄ : MonC → MonD has a left
adjoint.

Proof. We use the following notations.

1. Unit and counit of the adjunction T a | − |C are denoted by ξ and ζ, respectively.
For every C in BC mTC and eTC are the multiplication and unit, respectively, of
the free monoid TC.

2. Φ denotes the multiplication and φ the unit of the monoidal structure of R; Ψ and
ψ denote the opmonoidal structure of L. κ : id ⇒ RL and λ : LR ⇒ id denote the
unit and counit, respectively, of the adjunction L a R.

3. Unit and counit of the adjunction F1 := TL a R| − |C =: P1 are denoted by η and
ε, respectively. In particular, for any D-object D,

ηD = D
κD−→ RLD

RξLD−−−→ R|TLD|C (7)

Following the analysis of adjoint triangles in [18] one should try to obtain the left
adjoint of R̄ as follows:

1. Find in MonC, for each D-monoid D := (D,mD, eD), a suitable morphism

F1D = TLD
πD−→ LD.

2. Find in MonD a morphism D
γD−→ R̄LD with

|γD|D = D
ηD−→ P1F1D

R|πD|−−−→ |R̄LD|D.

γD so defined has the potential of being R̄-universal for D, hence the family γ = (γD)D to
be the unit of the desired adjunction.
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Now πD has to be an epimorphism since the forgetful functor MonD |−|D−−→ D is faithful
(see [18]). A natural choice of πD, thus, would be to consider a (multiple) coequalizer of
MonC-morphisms which in some way reflect the monoid structure of D = (D,mD, eD) and
the monoidal structure of R (equivalently, the opmonoidal structure of L). We therefore
use the following morphisms.

1. αD
1 = LID

ψ−→ IC
eTLD−−−→ |TLD|

βD
1 = LID

LeD−−→ LD
ξLD−−→ |TLD|

2. αD
2 = L(D ⊗D)

ΨD,D−−−→ LD ⊗ LD ξLD⊗LD−−−−−→ |TLD| ⊗ |TLD| mTLD−−−→ |TLD|
βD

2 = L(D ⊗D)
LmD−−→ LD

ξLD−−→ |TLD|
and consider the homomorphic extensions of these maps, that is, the monoid morphisms

3. ᾱD
1 , β̄

D
1 : TLID −→ TLD with ᾱD

1 ◦ ξLID = αD
1 and β̄D

1 ◦ ξLID = βD1

4. ᾱD
2 , β̄

D
2 : TL(D ⊗D) −→ TLD with ᾱD

2 ◦ ξL(D⊗D) = αD
2 and β̄D

2 ◦ ξL(D⊗D) = βD2 .

Now let TLD
πD−→ LD be the multiple coequalizer (which exists by assumption — see

Remark 2.4) of the morphisms ᾱD
1 , β̄D

1 , ᾱD
2 , β̄D

2 in MonC.
According to step 2. we check that the following D-morphism is a morphism of D-

monoids D
γD−→ R̄LD.

γD := D
ηD−→ |R̄TLD|D

RπD−−→ |R̄LD|D = D
ηD−→ R|TLD|C

RπD−−→ R|LD|C
Compatibility with the multiplications is equivalent to commutativity of the outer frame
of the following diagram (where we omit in the right hand cells the underlying functors
| − |C and | − |D), which is clear by standard arguments for monoidal functors and the
fact that πD coequalizes ᾱD

2 and β̄D
2 , i.e., |πD| coequalizes αD

2 and βD
2 (see Remark 2.2) so

that R|πD| coequalizes the two paths around the pentagon appearing in the diagram.

D ⊗D

ηD⊗ηD
))

κD⊗D

��

κD⊗κD
//

mD

��

RLD ⊗RLD

ΦLD,LD

��

RξLD⊗RξLD
// RTLD ⊗RTLD

ΦTLD,TLD

��

RπD⊗RπD
// RLD ⊗RLD

ΦLD,LD

��
R(LD ⊗ LD)

R(ξLD⊗ξLD)
// R(TLD ⊗ TLD)

RmTLD

��

R(πD⊗πD)
// R(LD ⊗ LD)

RmLD

��

RL(D ⊗D)

RLmD

��

RΨD,D

OO

D
κD //

ηD

55RLD
RξLD // RTLD

RπD // RLD
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Preservation of units follows by a similar argument.
It remains to prove that γD is R̄-universal for D. Here we again use elements of the

proof given in [2]. First define, for a C-monoid A, a morphism LR̄A
σA−→ A in MonC. This

will in fact be the counit of the desired adjunction. By the easily checked identities

εA ◦ αR̄A
1 = εA ◦ βR̄A

1 and εA ◦ αR̄A
2 = εA ◦ βR̄A

2 .

one obtains, using the equivalence (2) and the universal property of πR̄A, a unique monoid

morphism LR̄A
σA−→ A making the following diagram commute

LR̄A
σA // A

TLRA

εA

<<

πR̄A

OO

(8)

Next one checks, for any morphism D
h−→ C in MonD, the identities

TLh ◦ αD
1 = αC

1 TLh ◦ βD
1 = βC

1

TLh ◦ αD
2 = αC

2 ◦ L(h⊗ h) TLh ◦ βD
2 = βC

2 ◦ L(h⊗ h)

These imply

(πC ◦ TLh) ◦ αD
1 = πC ◦ αC

1 = πC ◦ βC
1

= (πC ◦ TLh) ◦ βD
1

(πC ◦ TLh) ◦ αD
2 = πC ◦ αC

2 ◦ L(h⊗ h) = πC ◦ βC
2 ◦ L(h⊗ h)

= (πC ◦ TLh) ◦ βD
2

Hence, πC ◦ TLh coequalizes simultaneously the C-morphisms α1, α2, β1, β2 and, thus,
by Remark 2.2 the monoid morphisms ᾱ1, ᾱ2, β̄1, β̄2. Consequently there exist a unique

monoid morphism LD
Lh−→ LC making the following diagram commute

LD
Lh // LC

TLD

πD

OO

TLh
// TLC

πC

OO

(9)

Then, for every morphism D
d−→ R̄A in MonD, the following diagram obviously com-

mutes (in D) and illustrates the required one-to-one correspondence between morphisms

D
d−→ R̄A in MonD and morphisms LD

σA◦Ld−−−→ A in MonC.
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D

γD

((
ηD

++

d

//

κD
// RLD

RξLD
//

RLd

##

RTLD

RTLd

��

RπD
// RLD

RLd

��
RTLRA

RπR̄A //

RεA

��

RLR̄A

RσA
yy

RA
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