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WELL-CLOSED SUBSCHEMES OF NONCOMMUTATIVE SCHEMES

D. ROGALSKI

Abstract. Van den Bergh has defined the blowup of a noncommutative surface at a
point lying on a commutative divisor [VdB]. We study one aspect of the construction,
with an eventual aim of defining more general kinds of noncommutative blowups. Our
basic object of study is a quasi-scheme X (a Grothendieck category). Given a closed
subcategory Z, in order to define a blowup of X along Z one first needs to have a functor
FZ which is an analog of tensoring with the defining ideal of Z. Following Van den Bergh,
a closed subcategory Z which has such a functor is called well-closed. We show that
well-closedness can be characterized by the existence of certain projective effacements
for each object of X, and that the needed functor FZ has an explicit description in terms
of such effacements. As an application, we prove that closed points are well-closed in
quite general quasi-schemes.

1. Introduction

This paper is the first part of a bigger project to study further the method of noncom-
mutative blowing up developed by Van den Bergh in the monograph [VdB]. Van den
Bergh gives a description of the blowup of a noncommutative surface at a point lying on
a commutative divisor on the surface, and shows that this construction has many good
properties, similar to those of a usual commutative blowup. Our overall aim is both to
make some aspects of Van den Bergh’s procedure more explicit, as well as to show that
the same ideas apply in a broader setting, which would allow one to define blowups of
more general subschemes of noncommutative schemes. In this paper, we focus primarily
on a categorical notion which is a fundamental building block for Van den Bergh’s blowing
up machinery: the well-closedness of a closed subscheme of a noncommutative scheme.
Roughly speaking, this is a condition that one has a right exact functor which is an analog
of “tensoring with the ideal sheaf defining the closed subscheme”.

Following [VdB], we take as our main object of study in noncommutative geometry a
quasi-scheme, in other words a Grothendieck category X. A Grothendieck category is an
abelian category with exact direct limits and a generator. We review some background
on such categories in Section 2. We often assume in addition that X is locally noetherian,
in other words that X has a set of noetherian generators. Let k be a field. Important
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examples of quasi-schemes include X = Mod-A, the category of right modules over a
noetherian k-algebra A, and X = QcohY , the category of quasi-coherent sheaves on
a noetherian (commutative) k-scheme Y . We are especially interested in applications to
noncommutative projective geometry. The most fundamental kind of quasi-scheme in this
setting is X = Qgr-A, the quotient category of right Z-graded modules over a connected
N-graded finitely generated noetherian k-algebra A, modulo the subcategory of modules
which are direct limits of finite-dimensional modules. We call such anX a noncommutative
projective scheme. By a result of Serre, when A is commutative and generated by its
degree 1 elements, then Qgr-A is equivalent to the category of quasi-coherent sheaves on
the scheme ProjA. Many important constructions in commutative algebraic geometry can
be understood purely in terms of the category of quasi-coherent sheaves, and this justifies
the study of Grothendieck categories as a replacement for schemes in the noncommutative
case, where constructions involving actual spaces and sheaves on them are often not
available.

For example, it is straightforward to find a reasonable definition of a closed subscheme
Z of a quasi-scheme X. This is the notion of a closed subcategory, namely, a full abelian
subcategory Z of X such that the inclusion functor i : Z → X has both a left and right
adjoint. In most cases, this is equivalent to Z being closed under subquotients, direct
sums, and products. As evidence that this is the right definition, the closed subcategories
of an affine quasi-scheme X = Mod-A are precisely the categories Mod-A/I for 2-sided
ideals I of A [Ros2, Proposition 6.4.1], and the closed subcategories of a category QcohY
of quasi-coherent sheaves on a quasi-projective k-scheme Y are the categories QcohW for
closed subschemes W of Y [Sm1, Theorem 4.1]. Smith works out many basic properties
of closed subcategories of quasi-schemes in [Sm1]. In particular, he defines the analogs of
closed points in quasi-schemes X: a closed point is a closed subcategory Z of X which is
equivalent to Mod-D for some division ring D. Assuming that X is locally noetherian,
this has a more intrinsic description as follows. A simple object P in a locally noetherian
quasi-scheme X is called tiny if HomX(M,P ) is a finitely generated EndX(P )-module for
all noetherian objects M . When P is tiny, the subcategory Z consisting of all direct sums
of P is a closed point, where Z ' Mod-D for D = EndX(P ). Conversely, all closed points
are of this form [Sm1, Theorem 5.5].

Since blowing up is such an important construction in commutative algebraic geometry,
it is essential to have some analog of this in the noncommutative case. Recall that if Y
is a commutative scheme with closed subscheme W defined by a sheaf of ideals I, then
the blowup of Y along W is defined to be the relative Proj of a sheaf of graded algebras,
namely BlW Y = Proj(OY ⊕ I ⊕ I2 ⊕ . . . ). Trying to mimic this definition for more
general quasi-schemes X, one runs into immediate problems. Though we know what a
closed subscheme of X should be, finding replacements for the defining ideal sheaf of Z,
what it means to take the powers of this ideal sheaf in order to define the Rees ring, and
what the analog of the relative Proj construction should be, are major difficulties.

Van den Bergh’s elegant solution is to work in a category of functors. Let Z be a
closed subcategory of a quasi-scheme X. While in general there is no object of X that
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plays the role of an ideal sheaf defining Z, in nice cases one can find a right exact functor
which plays the role of tensoring with the ideal sheaf. In more detail, there is a left
exact functor oZ : X → X which takes an object M to the largest subobject of M in Z.
Because Grothendieck categories have enough injectives, one can show that the category
L(X,X) of left exact functors X → X is an abelian category, and so there is some
left exact functor GZ : X → X which fits into an exact sequence of left exact functors
0→ oZ → oX → GZ → 0, where oX : X → X is the identity functor. For example, when
X = Mod-A for a ring A, then GZ = Hom(I,−), where Z = Mod-A/I. Thus in general,
we think of GZ as “Hom from the ideal defining Z”. Now suppose that GZ has a left
adjoint FZ : X → X. For example, if X = Mod-A, then FZ = −⊗ I. Thus in general we
think of FZ (when it exists) as the required analog of “tensoring with the ideal defining
Z”. Following Van den Bergh, we say that Z is a well-closed subcategory of X if it is a
closed subcategory and the functor GZ defined above has a left adjoint FZ .

Showing that Z is well-closed is the first step in trying to define a blowup of a quasi-
scheme X along a closed subscheme Z. There are already a lot of interesting and nontrivial
questions about this step. Thus in this paper, our main goal is to study the property of
well-closedness of subcategories Z of quasi-schemes and the properties of the functors
FZ , in order to lay groundwork for a more general theory of blowing up. The two main
questions we address in this paper are the following. First, if Z is well-closed, does the
functor FZ have a more explicit description, other than just being the adjoint of GZ?
Second, which closed subcategories Z of quasi-schemes are well-closed? To give more
context to the first question, in [VdB], when Van den Bergh shows that certain categories
are well-closed, the argument relies ultimately on Freyd’s adjoint functor theorem, which
gives a criterion for when a left exact functor has a left adjoint. The adjoint functor
theorem is very abstract, and it seems difficult to see from its proof what the left adjoint
it finds actually does to objects and morphisms.

We will give an answer to the first question above that works in wide generality.
We first show in Lemma 3.5 below that the left exact functor GZ can be given the
following explicit description. If i : Z → X is the inclusion functor, its respective right
and left adjoints i! : X → Z and i∗ : X → Z are given explicitly as follows: i!(N) is
the unique largest subobject of N which is in Z, and i∗(N) is the unique largest factor
object of N which is in Z. Now given an object M ∈ X, GZ(M) = M/i!(M), where
M/M = i!(E(M)/M) for an injective hull E(M) of M . Thus GZ first extends M by the
largest possible essential extension by an object in Z, and then mods out by the largest
subobject in Z. The action of GZ on morphisms can be defined similarly; any morphism
M → N extends (non-uniquely) to a morphism M → N , which induces a morphism of
the factor objects GZ(M)→ GZ(N) (which does not depend on the choice of extension).

The left adjoint FZ of GZ , when it exists, can be described in a roughly dual way to the
explicit description of GZ just given, even though X does not have enough projectives in
general, much less projective covers. Given a collection S of objects in X, an S-projective
effacement of an object M is an epimorphism π : M →M satisfying the following lifting
property: given any epimorphism f : P → M with kernel in S, there exists g : M → P
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such that fg = π. We now give our first main result.

1.1. Theorem. (Theorem 5.1.) Let X be a locally noetherian Grothendieck category, let
Z be a closed subcategory of X, and let S be the collection of all objects in Z which are
injective in the category Z. Let 0 → oZ → oX → GZ → 0 be the exact sequence in the
category L(X,X) as above. Then the following are equivalent:

1. GZ has a left adjoint FZ; that is, Z is well-closed in X.

2. The natural map Ext1(M,
∏

αNα) →
∏

α Ext1(M,Nα) is an isomorphism, for all
small collections {Nα} of objects in S and for all M ∈ X.

3. Every object M in X has an S-projective effacement.

Moreover, when the conditions in the theorem hold, then FZ can be explicitly constructed.
On objects, FZ(M) = KZ(M), where M →M is a fixed S-projective effacement of M and
KZ is the functor which takes an object N to its unique smallest subobject N ′ such that
N/N ′ ∈ Z. To define the action of FZ on morphisms, given a morphism M → N , it lifts
(non-uniquely) to a morphism M → N , which restricts to a morphism GZ(M)→ GZ(N)
(which does not depend on the choice of lift).

Van den Bergh also defines a stronger condition on a closed subcategory Z called very
well-closed, which is equivalent to Z being well-closed and the category Z having exact
direct products [VdB, Corollary 3.4.11]. Only very special closed subcategories should
be expected to satisfy this stronger condition, but it is quite useful when it holds. Our
second main result is a characterization of very well-closedness similar to Theorem 1.1.

1.2. Theorem. (Theorem 5.3.) Let X be a locally noetherian Grothendieck category and
let Z be a closed subcategory of X. Then the following are equivalent:

1. Z is well-closed in X and the category Z has exact direct products; that is, Z is very
well-closed in X.

2. The natural map Ext1(M,
∏

αNα) →
∏

α Ext1(M,Nα) is an isomorphism, for all
small collections {Nα} of objects in Z and for all M ∈ X.

3. Every object M in X has a Z-projective effacement.

Our description of the functors FZ using projective effacements is helpful in giving
a partial answer to the second question, concerning which closed subcategories are well-
closed, in the important special case of closed points.

1.3. Theorem. (Theorem 6.6.) Let X be a locally noetherian Grothendieck k-category.
Suppose that Z is a closed point in X, that is, Z is the category of direct sums of a tiny
simple object P in X. Suppose further that dimk Ext1X(M,P ) < ∞ for all noetherian
objects M ∈ X. Then Z is very well-closed in X.

The necessary hypothesis that dimk Ext1X(M,P ) < ∞ for noetherian objects M is auto-
matic in many cases of interest, in particular for nice noncommutative projective schemes.
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For example, if A is a connected graded noetherian algebra satisfying the Artin-Zhang
χ1 condition, A is generated in degree 1 as an algebra, and M is a point module for A,
then P = π(M) ∈ X = Qgr-A is a tiny simple satisfying the hypothesis above, so the
corresponding closed point Z is very well-closed in X. See Section 6 for more details.

The structure of the paper is as follows. In Section 2 we review the basic theory
of Grothendieck categories and their closed subcategories. In Section 3, we work in a
general abelian category and study S-projective effacements, as well as the dual concept
of T -injective effacements, and show how they may be used to define adjoint pairs of
functors. Then in Section 4 we specialize to a Grothendieck category, and prove some
results about projective effacements in that particular setting. Section 5 contains the
proofs of Theorem 1.1 and Theorem 1.2. Finally, in Section 6 we show how the theory
of the paper works out in specific examples of quasi-schemes, especially noncommutative
projective schemes, and give the proof of Theorem 1.3.

The work of this paper leads in several interesting additional directions. It would
be helpful to understand in more detail the structure of closed subcategories of a non-
commutative projective scheme Qgr-A; this would hopefully allow one to prove that more
general closed subcategories of noncommutative projective schemes Qgr-A are well-closed.
It would be interesting to define the blowup of a quasi-scheme along a well-closed subcate-
gory in general, and study some of its properties. Ideally, such a blowup should generalize
both Van den Bergh’s blowups of surfaces at points on commutative divisors, as well as
the näıve blowups defined by Keeler, Stafford, and the author. It would also be interest-
ing to compare this with Rosenberg’s general monadic definition of blowing up in [Ros1,
Section VII.4]. Even the case of the blowup of a point on a noncommutative threefold has
not been studied in detail. An obvious such example worth considering is the blowup at a
point of the noncommutative P3 given by Qgr-S, for the 4-dimensional Sklyanin algebra
S.
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2. Categorical preliminaries

In this section we review some of the basic category theory we need in this paper. The
reader looking for more extensive background about the foundations of abelian categories
may consult [Mac]. Many of the standard facts about Grothendieck categories can be
found in [Ga] and [Po], and basic material on closed subcategories is given in [Sm1].

We adopt standard set-theoretic foundations for categories X in terms of Grothendieck
universes. See, for example, [Mac, Section I.6]. We assume a large enough universe U (a
set of sets), where the sets in U are called small, and assume that HomX(M,N) is a small
set for any objects M,N ∈ X. Direct sums and products are indexed only over small
sets. The universe U is chosen so that given a union T =

⋃
α∈A Sα, where the index set
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A is small and each set Sα is small, then T is small. Also, the power set of a set in U
is again in U . The set of all objects in the category X is not small in general, however.
We say that X is well-powered if the set of subobjects of any given object in X is small.
Occasionally we will wish to assume that X is a k-category for some field k: this means
that all Hom-sets HomX(M,N) are k-vector spaces, and that composition is k-bilinear.

While our main results are proved in the setting of Grothendieck categories, as we
define shortly, some of our results work in the setting of more general abelian categories
X. We will always assume at least that X is an abelian category satisfying Grothendieck’s
axioms (AB3) and (AB3*), that is, that X is cocomplete (coproducts of small-indexed
families of objects exist in X) and complete (products of small-indexed families of objects
exist in X), respectively. We use the notation

⊕
αMα and

∏
αMα for the respective co-

product and product of a small set of objects Mα, and we also typically refer to coproducts
as direct sums.

Let Z be a full subcategory of a complete, cocomplete, and well-powered abelian
category X, and let iZ = i∗ : Z → X be the inclusion functor. We say that Z is closed
under subquotients if every subobject and quotient object of an object in Z is also in
Z. Following Smith [Sm1, Definition 2.4], we say that Z is weakly closed if Z is closed
under subquotients and iZ has a right adjoint i!Z = i! : X → Z, and we say that Z is
closed if Z is closed under subquotients and iZ has both a right adjoint i!Z and a left
adjoint i∗Z = i∗ : X → Z. (Van den Bergh uses different terminology in [VdB], referring
to weakly closed subcategories as closed (following Gabriel), and closed subcategories as
biclosed.) It is elementary to see that if Z is closed under subquotients, then Z is weakly
closed if and only if Z is closed under direct sums, and Z is closed if and only if Z is
closed under both direct sums and products [VdB, Proposition 3.4.3]. Moreover, if Z
is weakly closed, then the right adjoint i! : X → Z can be described as follows: given
M ∈ X, the object i!(M) is the unique largest subobject of X which is in Z, and i! acts on
morphisms by restriction. Similarly, if Z is closed, then the left adjoint i∗ acts on objects
as i∗(M) = M/N , where N is the unique smallest subobject of M such that M/N ∈ Z,
and i∗ sends a morphism to the induced morphism of quotient objects. By adjointness, i!

is left exact and i∗ is right exact.
Recall that a small set of objects {Oα} is a set of generators for X if for all objects

N,P ∈ X and morphisms f1, f2 ∈ HomX(N,P ) with f1 6= f2, there exists a generator Oα

and a map g : Oα → N such that f1g 6= f2g. If the set of generators consists of a single
object O then it is called a generator for X. Assuming X is cocomplete, it is standard
that {Oα} is a set of generators for X if and only if O =

⊕
αOα is a generator. It is also

easy to see when X is cocomplete that {Oα} is a set of generators if and only if for every
M ∈ X, there is a epimorphism from some direct sum of copies of objects in the set of
generators to M [Po, Proposition 2.8.2]. Additionally, it is a standard fact that if X has
a generator then X is well-powered [Ga, Proposition I.5].

An abelian category X is a Grothendieck category if it satisfies Grothendieck’s axiom
(AB5) (that is, it is cocomplete and direct limits of exact sequences are exact), and
X has a generator (or equivalently, a set of generators). A Grothendieck category X
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automatically has a number of useful other properties: it satisfies Grothendieck’s axiom
(AB4) that direct sums of exact sequences are exact (since this is known to be a general
consequence of (AB5) [Po, Corollary 2.8.9]), it is well-powered (since it has a generator),
and it is complete (Grothendieck’s (AB3*) [Po, Corollary 3.7.10]). Also, every object
has an injective hull; in particular, the category has enough injectives [Po, Theorem
3.10.10]. However, X need not have enough projectives, and products of exact sequences
need not be exact, that is, the category need not satisfy Grothendieck’s axiom (AB4*).
An important example of a locally noetherian Grothendieck category is the category
QcohY of quasi-coherent sheaves on a quasi-projective scheme Y , which typically does
not have enough projectives or exact direct products. We are especially interested in
noncommutative projective schemes, as mentioned in the introduction; in the last section
of the paper we will show how the theory we develop applies to these and other more
specific examples.

As usual, an object in an abelian category is noetherian if it has the ascending chain
condition on subobjects. The category X is locally noetherian if X has a (small) set of
noetherian generators. We will assume in our main theorems later that X is a locally
noetherian Grothendieck category. Here are some other important properties of such
categories.

2.1. Lemma. Let X be a locally noetherian Grothendieck category with small set of noethe-
rian generators {Oα}.

1. Direct limits and direct sums of injective objects in X are injective, and every in-
jective object is a direct sum of indecomposable injective objects.

2. Every indecomposable injective of X is isomorphic to an injective hull of some epi-
morphic image of a generator Oα; in particular, the set of isomorphism classes of
indecomposable injectives in X is small.

3. If Z is a closed subcategory of X with inclusion functor i∗ : Z → X, then Z is a
locally noetherian Grothendieck category in its own right, with small set of noetherian
generators {i∗(Oα)}.

Proof. (1). See [Po, Theorem 5.8.7, Theorem 5.8.11].
(2). Suppose that I is indecomposable injective. We may choose a nonzero map

f : Oα → I for some generator Oα. Let 0 6= M ⊆ I be the image of f . Since I is
indecomposable injective, I = E(M) must be an injective hull of M . The last statement
follows, since by well-poweredness the set of factor objects of a given object is small, and
a small union of small sets is small.

(3). The category Z is clearly abelian since by definition it is closed under subquo-
tients. Since Z is closed under direct sums and thus also under direct limits, it is clear
that any direct limit in X of objects in Z is also a direct limit in the category Z. Then
since X satisfies (AB5), so does Z. Recall that i∗(Oα) is the unique largest factor object
of Oα in Z. Given an object M in Z and a map f : Oα → M , the map factors through
i∗(Oα), and the statement about generators follows.
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Recall from the introduction that a closed point of a locally noetherian Grothendieck
category X is a closed subcategory Z which is equivalent to Mod-D for some division
ring D. We say that the locally noetherian Grothendieck category X is locally finite if
X has a set of generators which are both noetherian and artinian. A closed point Z is a
locally finite Grothendieck category. One way to get more locally finite categories is to
join together closed points with the following construction.

2.2. Definition. Given a list of full subcategories Z1, Z2, . . . , Zn of an abelian category
X, the Gabriel product is the full subcategory Z = Z1 · Z2 · . . . · Zn consisting of objects
M with filtrations 0 = Mn+1 ⊆ Mn ⊆ · · · ⊆ M1 = M such that Mi/Mi+1 ∈ Zi for all
1 ≤ i ≤ n.

2.3. Lemma. Let X be complete, cocomplete, and well-powered. If Z1, . . . , Zn are closed
subcategories of X, then Z = Z1 · Z2 · . . . · Zn is also closed.

Proof. See [VdB, Proposition 3.3.6].

2.4. Example. Let Z1, Z2, . . . , Zn be a list of closed points, possibly with repeats, in the
locally noetherian Grothendieck category X. Then the category Z = Z1 ·Z2 · . . . ·Zn closed
subcategory of X by the previous lemma. If {Oα} is a set of noetherian generators for
X, then {i∗(Oα)} is a set of generators for Z, by Lemma 2.1. It is clear that a noetherian
object in Z has finite length, so each i∗(Oα) has finite length and Z is a locally finite
category.

Conversely, if X is a locally noetherian Grothendieck category X, with a locally finite
closed subcategory Z which is generated by finitely many objects of finite length whose
composition factors are all tiny simples, then it is easy to see that Z is a full subcategory
of some Gabriel product Z1 · Z2 · . . . · Zn for some closed points Zi.

In any Grothendieck category X, since X has enough injectives, one has Ext groups
Exti(M,N) for objects M,N ∈ X and all i ≥ 0, calculated using an injective resolution
of N . Since we assume that Hom sets are small, it is clear that Exti(M,N) is a small
set for all M,N and all i ≥ 0. There is also the usual correspondence between elements
of Ext1(M,N) and equivalence classes of short exact sequences 0 → N → P → M → 0.
In the next result, we study how Ext interacts with directs sums and products in a
Grothendieck category X. Given a small index set I, let

∏
I X be the category consisting

of I-tuples of objects in X, and let
∏

:
∏

I X → X be the functor given by (Mα)α∈I 7→∏
α∈IMα. The functor

∏
is only left exact in general. Since X has enough injectives, so

does
∏

I X, and thus we can define right derived functors Ri
∏

of the product functor.

2.5. Lemma. Let X be a Grothendieck category.

1. Given M and a family of objects {Nα}α∈I in X, the natural map

Ext1(M,
∏

Nα)
j→
∏

Ext1(M,Nα)

is an isomorphism if R1
∏

(Nα) = 0.



WELL-CLOSED SUBSCHEMES OF NONCOMMUTATIVE SCHEMES 383

2. Assume that X is locally noetherian. Given a noetherian object M and a directed
system of objects {Nα}α∈I in X, for each i ≥ 0 the natural map

lim−→ Exti(M,Nα)→ Exti(M, lim−→ Nα)

is an isomorphism. Similarly, direct sums pull out of the second coordinate of Ext.

3. Given a family of objects {Mα}α∈I and N in X, for each i ≥ 0 there is an isomor-
phism

Exti(
⊕

Mα, N)→
∏

Exti(Mα, N).

Proof. (1) Note that the natural map arises as follows: For each β there is a projec-
tion πβ :

∏
αNα → Nβ and thus by functoriality of Ext a map fβ : Ext1(M,

∏
Nα) →

Ext1(M,Nβ). By the universal property of the product, there is a map Ext1(M,
∏
Nα)→∏

Ext1(M,Nα) given by the fβ as required.
There is a Grothendieck spectral sequence

Ep,q
2 = ExtpX(M,Rq

∏
αNα) =⇒

∏
α Extp+qX (M,Nα)

associated to the composition of the product functor
∏

:
∏

I X → X and the functor
HomX(M,−) [Roos, Equation (1.2)]. The associated exact sequence of low degree terms
begins

0 // Ext1(M,
∏

αNα)
j //
∏

α Ext1(M,Nα) // Hom(M,R1
∏
Nα) // . . . (2.1)

We claim that the map j in this sequence is the same as the natural map. For fixed β,
apply naturality of the exact sequence (2.1) to the morphism h : (Nα)→ (Mα) in

∏
I X,

where Mβ = Nβ, Mα = 0 for α 6= β, and hβ is the identity map. Since
∏

αMα
∼= Nβ, one

obtains a diagram

0 // Ext1(M,
∏

αNα)
j //

f
��

∏
α Ext1(M,Nα) //

g

��

. . .

0 // Ext1(M,Nβ) 1 // Ext1(M,Nβ) // . . .

where f is the map on Ext induced by the projection
∏

αNα → Nβ, and g is the projection
onto the βth coordinate. The commutation of this diagram for all β implies that the map
j is the same as the natural map as claimed. Now the result follows immediately from
(2.1).

(2) For each α, let 0 → Nα → E0
α → E1

α → . . . be an injective resolution of Nα.
Since direct limits of injectives are injective in X by Lemma 2.1(1), and direct limits
are exact in a Grothendieck category, 0 → lim−→ Nα → lim−→ E0

α → lim−→ E1
α → . . . is an

injective resolution of lim−→ Nα. Then Exti(M, lim−→ Nα) is the ith homology of the sequence
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0 → Hom(M, lim−→ E0
α) → Hom(M, lim−→ E1

α) → . . . . Since M is noetherian, the natural

map lim−→ Hom(M,Pα) → Hom(M, lim−→ Pα) is an isomorphism for any directed system

{Pα} [Po, Proposition 3.5.10, Exercise 5.8.2]. Thus we can take the ith homology of
the sequence 0 → lim−→ Hom(M,E0

α) → lim−→ Hom(M,E1
α) → . . . . This is the same as

lim−→ Exti(M,Nα) since direct limits are exact in the category of abelian groups. Thus

Exti(M, lim−→ Nα) ∼= lim−→ Exti(M,Nα) for all i.

The proof that Exti(M,
⊕

Nα) ∼=
⊕

Exti(M,Nα) is analogous, since direct sums are
exact, and direct sums of injectives are also injective by Lemma 2.1(1).

(3) This is an easy argument using the isomorphism Hom(
⊕

Mα, N)→
∏

Hom(Mα, N)
and the fact that products are exact in the category of abelian groups.

3. Defining functors via effacements

In this and the next section we define and study some categorical constructions which
form the technical heart of the paper. While our primary interest is in Grothendieck
categories, it is more natural to first present the results in the context of general abelian
categories. Then beginning in Section 4, we will specialize to the case of Grothendieck
categories X and study the more special features of that setting.

Let X be an abelian category which is cocomplete, complete, and well-powered. Let Z
be a closed subcategory of X, and let i∗ : Z → X be the inclusion functor. Recall that this
means that i∗ has right adjoint i! : X → Z, where i!(M) is the unique largest subobject
of X which is in Z, and left adjoint i∗ : X → Z, where i∗(M) is the unique largest factor
object M/N in X such that M/N ∈ Z. Let oZ = i∗i

∗ : X → X and oZ = i∗i
! : X → X.

In particular, oX = oX : X → X is notation for the identity functor on X.
It is standard that if C is any category, then since X is abelian, the category Fun(C, X)

of functors from C to X, with morphisms being natural transformations, is also an abelian
category, with “pointwise” operations. (There is a minor set-theoretic issue that the Hom-
sets in Fun(C, X) are not necessarily small, unless C is a small category, that is, the set
of objects in C is small. We will allow functor categories to have Hom-sets in a larger
universe than the one we use for our categories X of main interest.) When C is an
additive category, then the subcategory Add(C, X) consisting of additive functors from
C → X is an abelian subcategory of Fun(C, X), again with pointwise operations. There
is a morphism η : oX → oZ in Add(X,X), where ηM : M → i∗i

∗(M) = M/N is the
natural quotient map for each M . Then η is an epimorphism in Add(X,X), and we
let K be its kernel. Thus K is an additive functor such that K(M) = N , where N is
the unique smallest subobject of M such that M/N ∈ Z, and K acts on morphisms by
restriction. Let R(X,X) be the category of right exact functors from X → X. In general
R(X,X) is not abelian, and although oX and oZ are right exact, K need not be right

exact. More specifically, if 0 → N
f→ M

g→ P → 0 is a short exact sequence in X, then
it is easy to check that K(f) remains a monomorphism and K(g) an epimorphism, but
0 → K(N) → K(M) → K(P ) → 0 need not be exact in the middle, having homology
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(K(M) ∩ f(N))/f(K(N)) there.
Dually, there is a monomorphism ρ : oZ → oX in Add(X,X) where ρM : i∗i

!(M)→M
is the natural inclusion, identifying i!(M) with the largest subobject of M which is in Z.
Let C be the cokernel of ρ in Add(X,X), so C acts on objects by C(M) = M/i!(M).
Similarly, the category of left exact functors L(X,X) is not necessarily abelian, and the
functor C preserves monomorphisms and epimorphisms but need not belong to L(X,X),
even though oX and oZ do. Our aim is to define and study “corrected” versions of the
functors K and C which have better exactness properties and in some circumstances form
an adjoint pair.

3.1. Definition. Let S be any collection of objects in an abelian category X. An epi-
morphism π : M → M is an S-projective effacement of M if given any epimorphism
f : P →M with kernel in S, there exists g : M → P such that fg = π. If every object M
in X has an S-projective effacement, then we say that X has S-projective effacements.
Dually, an S-injective effacement of M is an injection ι : M → M such that given any
monomorphism h : M → Q with cokernel in S, there is j : Q→ M such that jh = ι; we
say that X has S-injective effacements if every object in X has an S-injective effacement.

In this definition, we have anglicized the terms “effacement projectif/injectif” which we
believe were originally due to Grothendieck. We have also added the dependence on S
(usually effacements are defined in the case S = X).

Note that the kernel of an S-projective effacement of M (or the cokernel of an S-
injective effacement) is not required to be in S, though in the applications it will be
convenient to have this additional property. We have the following easy observation in
the important special case that S consists of objects in a closed subcategory Z of X.

3.2. Lemma. Let Z be a closed subcategory of the abelian category X, and let S be some
collection of objects in Z. If M ∈ X has an S-projective effacement, then M has an
S-projective effacement πM : M → M such that kerπM ∈ Z. Similarly, if M has a
S-injective effacement then M has a S-injective effacement with cokernel in Z.

Proof. Let M ′ →M be an S-projective effacement, and let 0→ L→M ′ →M → 0 be
the corresponding exact sequence. Now if i∗(L) = L/J is the largest factor object of L in
Z, the sequence

0→ K = L/J →M = M ′/J →M → 0

is exact, and M → M is easily seen to be an S-projective effacement, whose kernel K is
now in Z. The statement for injective effacements is proved dually.

Given epimorphisms πM : M → M ′ and πN : N → N ′, we say that a morphism
f : M → N lifts the morphism g : M ′ → N ′ if g ◦ πM = πN ◦ f . Dually, given
monomorphisms ιM : M ′ → M and ιN : N ′ → N , we say that a morphism f : M → N
extends the morphism g : M ′ → N ′ if f ◦ ιM = ιN ◦ g. Projective effacements have a
general morphism lifting property (and injective effacements have a morphism extending
property) which we give in the next result.
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3.3. Lemma.

1. Let πM : M → M be an S-projective effacement, and let πN : N ′ → N be any epi-
morphism with kernel in S. Given any morphism f : M → N , there is a morphism
f ′ : M → N ′ lifting f .

2. Let ιN : N → N be a T -injective effacement, and let ιM : M →M ′ be any monomor-
phism with cokernel in T . Given any morphism g : M → N , there is a morphism
g′ : M ′ → N extending g.

Proof. We prove only the first statement, since the second is proved dually. We construct
the commutative diagram

M
πM //

g

��

M

=
��

0 // L //

=
��

P //

h
��

M
q //

f
��

0

0 // L // N ′
πN // N // 0

as follows. The bottom row is given, with L = ker πN ∈ S by assumption. The second
row is formed by letting P be the pullback of the maps f and πN ; see [Rot, Lemma 7.29].
The map g exists since πM is an S-projective effacement. Then hg = f ′ is the required
lift of f .

We now show how to use projective and injective effacements to construct some im-
portant functors related to a closed subcategory of X.

3.4. Proposition. Let X be a cocomplete, complete, and well-powered abelian category.
Let Z be a closed subcategory of X, and let the functors i!, i∗, C,K : X → X be defined
as above with respect to Z.

1. Let S be any collection of objects of Z. For each M ∈ X, assume that there exists
an S-projective effacement πM : M →M with kernel in S, and fix one such. Define
F (M) = K(M). For any morphism f : M → N in X, by Lemma 3.3 there
exists a morphism f : M → N lifting f . Fix any such f , and apply K to give
F (f) = K(f) : F (M)→ F (N). Then F : X → X is a functor which is independent
up to natural isomorphism of the choices of projective effacements and lifts. There
is a canonical morphism of functors ν : F → oX .

2. Let T be any collection of objects of Z. For each M ∈ X, assume that there exists
an T -injective effacement ιM : M → M which has cokernel in T , and fix one such.
Define G(M) = C(M). For any morphism f : M → N in X, by Lemma 3.3 there
exists a morphism f : M → N extending f . Fix any such f , and apply C to give
G(f) = C(f) : G(M)→ G(N). Then G : X → X is a functor which is independent
up to natural isomorphism of the choices of injective effacements and extensions.
There is a canonical morphism of functors µ : oX → G.
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3. Suppose that both parts (1) and (2) apply, and that for each M ∈ X we have
i!(M) ∈ S and i∗(M) ∈ T . Then the functors (F,G) form an adjoint pair. In
particular, this holds if S and T are both equal to all objects in Z.

Proof. (1) First we show that F (f) does not depend on the choice of lift f . Suppose
that we have two different lifts g1, g2 : M → N of f . Then πN ◦ (g1 − g2) = 0, and so in
particular Im(g1−g2) ∼= M/ ker(g1−g2) ∈ Z. Since F (M) is the smallest subobject M ′ of
M such that M/M ′ ∈ Z, we see that F (M) ⊆ ker(g1 − g2), and g1

∣∣
F (M)

= g2
∣∣
F (M)

. Thus

K(g1) = K(g2), and so F (f) is independent of the choice of lift. The independence of the
choice of lifts also easily implies that F is a functor: given f : M → N and h : N → P ,
we first choose lifts f : M → N and h : N → P , and then we may choose h ◦ f : M → P
as our lift of h ◦ f , from which follows

F (h ◦ f) = K(h ◦ f) = K(h) ◦K(f) = F (h) ◦ F (f),

since K is a functor. Similarly, choosing the identity map 1M : M →M as our lift of the
identity map 1M : M →M implies that F (1M) = K(1M) = 1F (M).

Next we show that the definition of F is independent (up to natural isomorphism)
of the arbitrary choices of projective effacements. Suppose that for each object M we
choose an S-projective effacement π′M : M ′ → M (also with kernel in S), and use these
to define a functor F ′ in the same way. By Lemma 3.3, there are maps g : M → M ′ and
h : M ′ →M which lift the identity map 1M . Then g ◦h : M ′ →M ′ is a lift of the identity
map 1M ′ ; since the identity map 1M ′ : M ′ → M ′ is also a lift, by the independence of
lifts proved above, K(g) ◦K(h) = K(g ◦ h) = K(1M ′) = 1F ′(M) is the identity. Similarly,
K(h) ◦ K(g) = K(h ◦ g) = K(1M) = 1F (M). Thus ηM = K(g) : F (M) → F ′(M) is an
isomorphism for each M . To see that η is natural, if f : M → N is a morphism, choose
lifts f : M → N and f ′ : M ′ → N ′ of f by Lemma 3.3. Choose g1 : M → M ′ lifting 1M
and g2 : N → N ′ lifting 1N as above. Then f ′ ◦ g1 and g2 ◦ f : M → N ′ both lift f . By
the independence of lifts,

F ′(f) ◦ ηM = K(f ′) ◦K(g1) = K(f ′ ◦ g1) = K(g2 ◦ f) = K(g2) ◦K(f) = ηN ◦ F (f),

as required. Thus η : F → F ′ is a natural isomorphism of functors.
Finally, for each object M there is a morphism νM : F (M) → M given by νM =

πM
∣∣
K(M)

. The maps νM are natural, since if f : M → N then we have f ◦ πM = πN ◦ f
by construction, and K is a functor. Thus we have a morphism of functors ν : F → oX .

(2) This is completely dual to part (1), so the proof is omitted.
(3) For any fixed objects M,N ∈ X consider the diagram

Hom(FM,N) Hom(M,N)
φoo ψ // Hom(M,GN),

where the maps φ and ψ are defined as follows. Given h ∈ Hom(M,N), applying K gives
a map K(h) : F (M) = K(M)→ K(N). Use the injection ιN : N → N to identify N with
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a subobject of N . Since N/N ∈ Z, we have K(N) ⊆ N because K(N) is the smallest such
subobject. Thus im(K(h)) ⊆ N and so K(h) defines a morphism φ(h) : F (M) → N .
Similarly, applying C to h gives C(h) : C(M) → C(N) = G(N). Since the kernel of
πM : M → M is in Z, there is an epimorphism M → C(M) and C(h) induces a map
ψ(h) : M → G(N).

There is an epimorphism N → G(N) whose kernel i!(N) is in S by hypothesis. Thus
by Lemma 3.3, given g ∈ Hom(M,GN), there is g ∈ Hom(M,N) lifting g. This is
equivalent to ψ(g) = g. Thus ψ is surjective. A dual argument using the assumption that
i∗(M) ∈ T shows that φ is surjective.

Now suppose that h ∈ ker(φ). This means that h(F (M)) = 0, and in particular, Im(h)
is isomorphic to a factor object of M/F (M). Thus Im(h) ∈ Z. Conversely, if Im(h) ∈ Z,
then M/ ker(h) ∈ Z and so F (M) ⊆ ker(h) since F (M) is the smallest such subobject. In
conclusion, ker(φ) consists of those h whose image is in Z. A similar argument shows that
ker(ψ) has the same description, so ker(φ) = ker(ψ). Thus there are induced bijections

φ̃ : Hom(M,N)/(kerφ) → Hom(FM,N) and ψ̃ : Hom(M,N)/(kerψ) → Hom(M,GN)

and ηM,N : ψ̃ ◦ φ̃−1 : Hom(FM,N)→ Hom(M,GN) is a bijection.
A diagram chase similar to the arguments already given shows that these isomorphisms

ηM,N are natural in M and N , so (F,G) is an adjoint pair as claimed.

When the categoryX has enough injectives, the constructions above involving injective
effacements can be described in a much simpler way; dually, if the category has enough
projectives then all of the results above using projective effacements become simplified.
We make this precise in the next results.

Recall that L(X,X) denotes the category of left exact functors X → X, with mor-
phisms given by natural transformations. Suppose that X has enough injectives. Then
it is standard that L(X,X) is an abelian category, in the following way. There is an
equivalence of categories γ : Add(Inj(X), X)→ L(X,X) where Inj(X) is the full subcat-
egory of X consisting of injective objects [VdB, Proposition 3.1.1(3)]. Explicitly, given an
additive functor G′ : Inj(X)→ X, for each M ∈ X one takes the beginning of an injective
resolution M → E0 → E1 → . . . in X and defines G(M) = ker(G′(E0)→ G′(E1)). Also,
a morphism f : M → N induces a morphism G(M) → G(N) by taking any lift of f to
a morphism of the injective resolutions, applying G′, and taking the induced map of the
kernels. It is straightforward to check that this defines a left exact functor G which is
independent up to natural isomorphism of the choices involved. As we noted in the pre-
vious section, Add(Inj(X), X) is automatically abelian by taking objectwise kernels and
cokernels. Thus L(X,X) is also an abelian category via the equivalence γ. It is easy to
see that in the category L(X,X), kernels are still computed objectwise, but cokernels are
not, in general. Analogously, if X has enough projectives, the category R(X,X) of right
exact functors X → X is abelian, since it is equivalent to the category Add(Pro(X), X);
cokernels in R(X,X) are computed objectwise, but not kernels in general.

3.5. Lemma. Let X be an abelian category which is complete, cocomplete, and well-
powered. Let Z be a closed subcategory of X. Suppose that X has enough injectives;
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in particular X automatically has Z-injective effacements, and for each M ∈ X we can
fix such an effacement M → M with cokernel in Z, by Lemma 3.2. Let G = GZ be
the functor defined by Proposition 3.4(2) with T = Z, and let µ = µZ : oX → G be the
corresponding morphism. Then there is an exact sequence

0→ oZ
θ→ oX

µ→ G→ 0

in L(X,X), where θ : oZ → oX is the natural morphism.

Proof. The natural transformation θ is a monomorphism in L(X,X) because θM :
oZ(M) → oX(M) is a monomorphism in X for all objects M . Let µ′ : oX → G′ be
the cokernel of θ in L(X,X). By the constructions outlined above, a left exact functor
is uniquely determined by its restriction to the full subcategory of injective objects. For
an injective I we have G′(I) = coker(i!(I)→ I) = I/i!(I). Since I is injective, it is clear
that the identity map 1I : I → I is a Z-projective effacement of I. Thus by the definition
of the functor G, we have G(I) = C(I) = G′(I), where C is defined as in the previous
section, and by construction the morphism µ : oX → G defined in Proposition 3.4(2) is
also given on I by the natural map I → I/i!(I). Thus µ = µ′, and µ is a cokernel of θ as
required.

The previous result shows that if X has enough injectives, to construct the functor GZ

for any closed subcategory Z we can simply take a cokernel of θZ : oZ → oX in L(X,X).
It is not necessarily to use injective effacements at all.

For completeness, we state without proof the dual result we get when the category X
has enough projectives.

3.6. Lemma. Let X be an abelian category which is complete, cocomplete, and well-
powered. Let Z be a closed subcategory of X. Suppose that X has enough projectives;
in particular X automatically has Z-projective effacements, and for each M ∈ X we can
fix such an effacement M → M with cokernel in Z, by Lemma 3.2. Let F = FZ be the
functor defined by Proposition 3.4(2), and let ν = νZ : F → oX be the corresponding
morphism. Then there is an exact sequence

0→ F
ν→ oX

ρ→ oZ → 0

in R(X,X), where ρ : oX → oZ is the natural morphism.

4. Effacements in Grothendieck categories

We now specialize the theory of the previous section to a Grothendieck category X with a
closed subcategory Z. As usual, let i∗ : Z → X be the inclusion functor and i! : X → Z,
i∗ : X → Z its respective right and left adjoints, and let oZ = i∗i

!, oZ = i∗i
∗ : X → X.

A Grothendieck category X has injective hulls, and an injective hull M → E(M) is
a T -injective effacement for any collection of objects T . Thus the constructions using
injective effacements in the previous sections can be described in the simple way provided
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by Lemma 3.5. In particular, there is a left exact functor GZ defined by Proposition 3.4(2)
with T = Z, and GZ is also the cokernel of the natural map θ : oZ → oX in the abelian
category L(X,X) of left exact functors. It is important to know when GZ has a left
adjoint. Since many Grothendieck categories of interest do not have enough projectives,
the idea is to use Proposition 3.4 to construct a left adjoint FZ to the functor GZ . For
this, we need X to have S-projective effacements for a suitable collection of objects S in
Z.

First, we will need to study some more general properties of S-projective effacements.
We have the following alternative characterization of an S-projective effacement of M .

4.1. Lemma. Let X be a Grothendieck category, and let S be any collection of objects in
X. The following are equivalent for an object M ∈ X and a surjection π : M →M :

(i) The morphism π is an S-projective effacement.

(ii) For every N ∈ S, the map π∗ : Ext1X(M,N)→ Ext1X(M,N) induced by π is 0.

Proof. This is an immediate generalization of [Roos, Corollary 1.4], which proves the
result in case S = X.

Next, we see that in certain cases, to show that X has S-projective effacements it
suffices to check the definition for only some objects in X or only some objects in S.

4.2. Lemma. Fix a collection S of objects in the Grothendieck category X.

1. If M ∈ X has an S-projective effacement, then so does any epimorphic image of
M .

2. If {Mα} is a set of objects, each of which has an S-projective effacement πα : Mα →
Mα, then the direct sum ⊕πα :

⊕
αMα →

⊕
αMα is an S-projective effacement of⊕

αMα.

3. If {Oα} is a (small) set of generators for X, then X has S-projective effacements if
and only if every Oα has an S-projective effacement.

4. Suppose that X is locally noetherian. Let S ′ be a collection of objects such that every
object in S is a direct sum or a direct limit of objects in S ′. If π : M →M is a S ′-
projective effacement for a noetherian object M ∈ X, then π is also an S-projective
effacement.

Proof. (1) Let f : M → N be an epimorphism, and suppose that π : M → M is an
S-projective effacement of M . If p : Q → N is an epimorphism with kernel in S, then
Lemma 3.3 shows that there is a map f̃ : M → Q covering f , in other words such that
pf̃ = fπ. This shows that fπ : M → N is an S-projective effacement of N .
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(2) Use Lemma 4.1 and the following commutative diagram, in which the vertical
maps are isomorphisms by Lemma 2.5(3):∏

α Ext1(Mα, N) //

∼=
��

∏
α Ext1(Mα, N)

∼=
��

Ext1(
⊕

αMα, N) // Ext1(
⊕

αMα, N).

(3) This follows from (1) and (2), since every object in X is an epimorphic image of a
direct sum of generators.

(4) Consider the following commutative diagram for an arbitrary direct sum
⊕

Nα

with each Nα ∈ S ′: ⊕
α Ext1(M,Nα) 0 //

∼=
��

⊕
α Ext1(M,Nα)

��

Ext1(M,
⊕

αNα) // Ext1(M,
⊕

αNα).

The top arrow is 0 since M → M is an S ′-projective effacement. The left vertical arrow
is an isomorphism since M is a noetherian object, using Lemma 2.5(2). It follows that
the bottom arrow is also 0. Given a directed system {Nα} instead, the same argument
works to show that the map Ext1X(M, lim−→ Nα) → Ext1(M, lim−→ Nα) is zero, again using

Lemma 2.5(2). Since every object in S is a direct sum or direct limit of objects in S ′, we
conclude that M →M is an S-projective effacement by Lemma 4.1.

When applying Proposition 3.4 to construct a functor using S-projective effacements,
it is necessary to have effacements whose kernels are actually in S. This is easy when S
is equal to all objects in the closed subcategory Z, by Lemma 3.2. The following lemma
gives another important case where we can guarantee this.

4.3. Lemma. Let Z be a closed subcategory of the Grothendieck category X. Let S be
the collection of objects in Z which are injective in the category Z. If M ∈ X has an
S-projective effacement, then there is an S-projective effacement πM : M →M such that
kerπM ∈ S.

Proof. By Lemma 3.2, since M has an S-projective effacement, we can find an S-
projective effacement t : M ′ → M with K = ker t ∈ Z. Now let g : K → E = EZ(K)
be an injective hull in the category Z. If P is the pushout of the maps f : K → M ′ and
g, we obtain an exact sequence 0 → E → P → M → 0, giving the first two rows of the
commutative diagram below [Rot, Lemma 7.28].

We claim that π : P →M is an S-projective effacement; then we will be done since its
kernel E is apparently in S. Now if 0 → F

r→ Q
s→ M → 0 is any short exact sequence
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with F ∈ S, consider the following commutative diagram:

0 // E
b // P

π //M // 0

0 // K

h′

��

g

OO

f //M ′

i

OO

h
��

t //M

=

OO

=

��

// 0

0 // F r // Q s //M // 0.

Here, the map h exists completing the bottom right square since t : M ′ → M is an S-
projective effacement, and the map h′ is induced by h. Since F is in S and so is injective
in Z, there is d : E → F such that dg = h′. Since rdg = rh′ = hf , by the universal
property of the pushout there is a morphism j : P → Q such that h = ji and rd = jb.
Then πi = t = sh = sji, and so (π − sj)i = 0. Now by construction of the pushout, one
has Im(i) + Im(b) = P . We have seen that Im(i) ⊆ ker(π − sj). We also have πb = 0
and sjb = srd = 0, and then (π − sj)b = πb − sjb = 0, so that Im(b) ⊆ ker(π − sj).
Thus P ⊆ ker(π − sj) and π = sj, which shows that π is an S-projective effacement as
required.

Recall that since X has Z-injective effacements, for each M ∈ X we can choose a
Z-injective effacement with cokernel in Z, by Lemma 3.2. Following the proof of that
lemma, we see in fact that for each M we have a canonical (up to isomorphism) Z-
injective effacement j : M →M , with M/M = i!(E(M)/M), where E(M) is the injective
hull of M . In other words, M is the maximal essential extension of M by an object in Z.
These canonical Z-injective effacements have the following property.

4.4. Lemma. Let Z be a closed subcategory of the Grothendieck category X. For M ∈ X,
let j : M → M be the canonical Z-injective effacement discussed above. Then applying
the functor i! yields an injection i!(j) : i!(M)→ i!(M), which is an injective hull of i!(M)
in the category Z.

Proof. Let N = i!(M), in other words the largest subobject of M in Z. Let N ⊆ I be an
injective hull in the category Z. Then N ⊆ I is essential in the category X as well, and
so we can choose an injective hull E(N) of N in X with N ⊆ I ⊆ E(N). Since N ⊆ M ,
we can choose an injective hull E(M) of M in X so that E(N) ⊆ E(M).

Working in E(M), I +M/M ∼= I/(I ∩M) is in Z, and thus I +M ⊆M since M/M
is the largest subobject of E(M)/M in Z. In particular, I ⊆M and thus I ⊆ i!(M). On
the other hand, if 0 6= P ⊆ i!(M), then P ∩M 6= 0 as M ⊆M is essential. Since P ∈ Z,
0 6= P ∩M ⊆ i!(M) and this proves that i!(j) : i!(M)→ i!(M) is essential (in X or in Z).
This forces i!(M) = I since I is a maximal essential extension in Z.

Considering the definition, an S-projective effacement of an object M is some object
which, speaking loosely, ought to be formed by sticking objects in S to the bottom of
M in all possible nontrivial ways. This naive description can actually be made formal in
some cases, as we see in the proof of the following result.
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4.5. Proposition. Let X be a locally noetherian Grothendieck category, and let S be a
collection of objects in X with a small subcollection S ′ ⊆ S such that every element of S
is either a direct sum or a direct limit of objects in S ′.

Fix a noetherian object M ∈ X, and suppose that for any small-indexed family of
objects (Nα) with each Nα ∈ S ′, the natural map

Ext1X(M,
∏
α

Nα)→
∏
α

Ext1X(M,Nα) (4.1)

is an isomorphism. Then M has an S-projective effacement.

Proof. We prove this first in the special case that X is a k-category for a field k. In
this case we can construct a smaller projective effacement, which is useful in applications.
Afterward we indicate the easy changes necessary to remove the assumption that X is a
k-category.

Let M be a noetherian object satisfying (4.1) for all small-indexed families of ob-
jects in S ′. For each N ∈ S ′, the underlying set of Ext1X(M,N) is small, so the union⋃
N∈S′ Ext1X(M,N) is a small union of small sets and is thus small. For each N ∈ S ′, pick

a k-basis βN for Ext1X(M,N), and let β =
⋃
N∈S′ βN be the disjoint union of these bases,

which is again a small set. For each v ∈ β, let Nv be a copy of the object N such that
v ∈ βN .

Now we have an isomorphism

φ : Ext1X(M,
∏
v∈β

Nv)→
∏
v∈β

Ext1X(M,Nv) (4.2)

by hypothesis. Note that there is a special element of the right hand side given by
θ =

∏
v∈β v. The element θ′ = φ−1(θ) of the left hand side represents some extension

0→
∏
v∈β

Nv
i→M

π→M → 0

and we claim that π is a S ′-projective effacement of M .

Consider an extension 0 → N → P
f→ M → 0 with N ∈ S ′ and the corresponding

element ρ ∈ Ext1X(M,N). We may write ρ =
∑m

i=1 aivi with ai ∈ k and vi ∈ βN ⊆ β for
all i. There is a morphism

j :
∏
v∈β

Nv
q→

m∏
i=1

Nvi
∼=

m⊕
i=1

N
p→ N

where q is the natural projection map, and p is given by the formula
∑m

i=1 ai1N . Since
finite direct sums pull out of the second coordinate of Ext (for instance, by Lemma 2.5(2)),
the morphism j induces a corresponding map of Ext groups

ĵ : Ext1X(M,
∏
v∈β

Nv)→ Ext1X(M,
m∏
i=1

Nvi)
∼=

m⊕
i=1

Ext1X(M,N)
p̂→ Ext1X(M,N)
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where p̂ is given by the formula (w1, . . . , wm) 7→
∑m

i=1 aiwi. By construction, ĵ(θ′) = ρ.
This means that there is a commutative diagram

0 //
∏

v∈β Nv
i //

j

��

M
π //

h
��

M //

=

��

0

0 // N // P
f //M // 0

,

where P is a pushout of i and j [Rot, Formula II, p. 429]. Then h : M → P satisfies
fh = π, proving the claim that π is a S ′-projective effacement.

Now by Lemma 4.2(4), since M is noetherian and π : M → M is a S ′-projective
effacement, it is also an S-projective effacement.

When X is not necessarily a k-category, essentially the same proof works, with the
following changes. First, one replaces βN with the entire set Ext1X(M,N) instead, so that
β =

⋃
N∈S′ Ext1X(M,N), which is still small. Again one writes Nv for a copy of the N such

that v ∈ Ext1X(M,N). Given an extension ρ ∈ Ext1X(M,N) ⊆ β, one replaces the map j
above simply with the projection onto the single ρth coordinate: j :

∏
v∈β Nv → Nρ = N .

The rest of the proof is the same.

4.6. Remark. We note that only the single instance (4.2) of the hypothesis (4.1) of the
proposition is used in the proof. Thus in practice one only needs to verify the single
equation (4.2) in order for the result to hold.

5. Well-closed and very well-closed subcategories

We are now ready to prove our main theorems.

5.1. Theorem. Let X be a locally noetherian Grothendieck category, let Z be a closed
subcategory of X, and let S be the collection of all objects in Z which are injective in the
category Z. Let 0→ oZ → oX → G→ 0 be the exact sequence in L(X,X) of Lemma 3.5.

Then the following are equivalent:

1. G has a left adjoint F .

2. The functor G commutes with products of objects in X.

3. [R1
∏

](Nα) = 0 for all small families {Nα} of objects in S.

4. The natural map Ext1(M,
∏

αNα) →
∏

α Ext1(M,Nα) is an isomorphism, for all
small families {Nα} of objects in S and for all M ∈ X.

5. The category X has S-projective effacements.



WELL-CLOSED SUBSCHEMES OF NONCOMMUTATIVE SCHEMES 395

Proof. Van den Bergh studies condition (3) and shows that (1)⇐⇒ (3) [VdB, Proposi-
tion 3.4.7]. Also, the equivalence (1)⇐⇒ (2) follows from Freyd’s adjoint functor theorem
[VdB, Theorem 2.1(1)].

Lemma 2.5(1) shows that (3) =⇒ (4).
Now suppose that condition (4) holds. Let S ′ be the set of isomorphism classes of

indecomposable injective objects in the category Z. By Lemma 2.1, Z is also a locally
noetherian Grothendieck category, every injective object in Z is a direct sum of inde-
composable injectives in Z, and the set S ′ is small. Thus by Proposition 4.5, if M is a
noetherian object in X, then M has an S-projective effacement. Since X has a set of
noetherian generators, it follows that every M ∈ X has an S-projective effacement by
Lemma 4.2(3). So (4) =⇒ (5).

Now assuming (5), then in fact every M ∈ X has an S-projective effacement πM :
M →M with kerπM ∈ S, by Lemma 4.3. Thus Proposition 3.4(1) applies and constructs
a functor F . Let T be the class of all objects in Z. We already have the canonical
T -injective effacement ιN : N → N with cokernel in T , where N/N = i!(E(N)/N), as
described before Lemma 4.4, and Proposition 3.4(2) constructs a functor which is the
same as G up to natural isomorphism, by Lemma 3.5. we have i∗(M) ∈ T trivially, and
i!(N) ∈ S holds for all N ∈ X by Lemma 4.4. So Proposition 3.4(3) applies and shows
that (F,G) form an adjoint pair. Thus (5) =⇒ (1).

5.2. Definition. Let Z be a closed subcategory of a locally noetherian Grothendieck
category X. We say that Z is well-closed in X if any of the equivalent conditions of
Theorem 5.1 holds. The definition follows Van den Bergh, who uses this term for condition
(3) in the theorem [VdB, Definition 3.4.6].

We expect well-closedness to be a very general condition. In fact, we do not know any
example of a closed subset of a locally noetherian Grothendieck category that is not well-
closed. For some applications it is useful to study a more special condition on closed
subcategories than well-closedness. We have the following variant of Theorem 5.1.

5.3. Theorem. Let X be a locally noetherian Grothendieck category and let Z be a closed
subcategory of X. Then the following are equivalent:

1. [R1
∏

](Nα) = 0 for all small families {Nα} of objects in Z.

2. Z is well-closed in X and the category Z has exact direct products.

3. The natural map Ext1(M,
∏

αNα) →
∏

α Ext1(M,Nα) is an isomorphism, for all
small families {Nα} of objects in Z and for all M ∈ X.

4. Every object M in X has a Z-projective effacement.

Proof. Van den Bergh proves that (1)⇐⇒ (2) [VdB, Corollary 3.4.11].
Lemma 2.5(1) shows that (1) =⇒ (3).
Assume now that (3) holds. Let S = Z and let S ′ be the collection of isomorphism

classes of noetherian objects in Z. The category Z is itself Grothendieck, and so has a
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generator O. It is easy to see that any noetherian object in Z is an epimorphic image
of O⊕n for some n. By well-poweredness, the set S ′ is a countable union of small sets
and is thus small. Because Z is locally noetherian, every object in Z is a direct limit of
noetherian objects [Po, Proposition 8.6]. Since every object in S is a direct limit of objects
in S ′, Proposition 4.5 shows that every noetherian object M in X has an S-projective
effacement. Then every object in X has an S-projective effacement by Lemma 4.2(3).
Thus (3) =⇒ (4).

Finally, assume that (4) holds. Then in particular, every M ∈ X has an S-projective
effacement, where S is the collection of objects which are injective in the category Z.
Thus Z is well-closed in X by Theorem 5.1. Suppose that M ∈ Z, and that p : M ′ →M
is a Z-projective effacement of M in X. We can assume that ker p ∈ Z by Lemma 3.2,
but a priori, M ′ need not be in Z. Let M = i∗(M ′) = M ′/N be the largest factor object
of M ′ which is in Z. Since M ∈ Z, N ⊆ ker p and so there is an induced epimorphism
π : M →M .

Suppose that 0 → K → L
f→ M → 0 is a short exact sequence in the category Z.

There is h : M ′ → L such that fh = p, by the definition of Z-projective effacement.
Since L ∈ Z, Imh ∈ Z and so N ⊆ kerh. In other words, h factors through M .
Thus π : M → M is a Z-projective effacement in the category Z. We conclude that
the Grothendieck category Z has Z-projective effacements. By a result of Roos [Roos,
Theorem 1.3], this implies that Z is an (AB4*) category, that is, that Z has exact products.
Thus (4) =⇒ (2).

5.4. Remark. Roos leaves the proof of the just-cited part of [Roos, Theorem 1.3] to the
reader. The proof was not obvious to us, so we indicate here a possible argument that
if a Grothendieck category Z has Z-projective effacements, then it has exact products.
Given the Z-projective effacement πM : M → M and a collection {Nα} of objects in Z,
recall the Grothendieck spectral sequence

Ep,q
2 = ExtpZ(M,Rq

∏
αNα) =⇒

∏
α Extp+qZ (M,Nα)

which was used in Lemma 2.5, now applied in the category Z, so that Rq
∏

is the qth right
derived functor of the product functor in Z. By naturality of the exact sequences of low
degree terms, applied to the morphism πM , we get the following commutative diagram:

Ext1Z(M,
∏

αNα) �
� d1 //

g0
��

∏
α Ext1Z(M,Nα)

d2 //

g1
��

HomZ(M,R1
∏
Nα)

d3 //

g2

��

Ext2Z(M,
∏

αNα)

g3
��

Ext1Z(M,
∏

αNα) �
� d′1 //

∏
α Ext1Z(M,Nα)

d′2 // HomZ(M,R1
∏
Nα)

d′3 // Ext2Z(M,
∏

αNα)

Since π : M → M is a Z-projective effacement, g0 = g1 = 0 by Lemma 4.1. By left
exactness of Hom, g2 is a monomorphism. Since g2d2 = d′2g1 = 0, we see that d2 = 0.
Thus the natural map Ext1Z(M,

∏
αNα) →

∏
α Ext1Z(M,Nα) is an isomorphism. Since

M was an arbitrary object in Z, this fact also applies to the object M , which shows
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that d′2 = 0. Thus d′3 is a monomorphism and hence so is d′3g2. Now let E be an
injective hull of

∏
αNα in Z and consider the short exact sequence 0 →

∏
αNα → E →

C → 0. Then Ext2Z(M,
∏

αNα) ∼= Ext1Z(M,C) for all objects M ; since the natural map
Ext1Z(M,C) → Ext1(M,C) = 0 because π is a Z-projective effacement, we get g3 = 0.
Now d′3g2 = g3d3 = 0, but we already saw that d′3g2 is a monomorphism. This forces
HomZ(M,R1

∏
Nα) = 0. Since this holds for all objects M ∈ Z, R1

∏
Nα = 0. This

holds for all small families {Nα} of objects in Z, so Z has exact products.

5.5. Remark. Theorem 5.3 also gives an alternative proof of the other (harder) direction
of [Roos, Theorem 1.3], that if a Grothendieck category Z has exact direct products, then
it has Z-projective effacements, but only in the special case that Z is locally noetherian.
This follows from the proof that (4) =⇒ (2) in Theorem 5.3, in the case X = Z (note
that Z is trivially well-closed in Z).

5.6. Definition. Let Z be a closed subcategory of a locally noetherian Grothendieck
category X. We say that Z is very well-closed in X if any of the equivalent conditions in
Theorem 5.3 holds (Van den Bergh uses this term for condition (1)).

Very well-closedness is clearly a much more special condition than well-closedness. One
of its advantages is that it is stable under Gabriel product.

5.7. Lemma. Let X be a locally noetherian Grothendieck category with closed subcate-
gories Z1, Z2. If Z1 and Z2 are very-well-closed in X, then so is Z3 = Z1 · Z2.

Proof. This is [VdB, Proposition 3.5.12]. It is also easy to see why this is true in terms
of projective effacements, as follows. For each M ∈ X fix a Z1-projective effacement
πM : M → M and a Z2-projective effacement ρM : M

::
→ M . We can assume that

kerπM ∈ Z1 and ker ρM ∈ Z2, by Lemma 3.2. Then θM = πM ◦ ρM : M
::
→ M is a

Z3 = Z1 · Z2-projective effacement of M , as is easy to check.

There is no obvious reason, on the other hand, for the Gabriel product of well-closed
subcategories to be well-closed, as Van den Bergh has also noted. We do not know a
counterexample, however.

One easy way to ensure (very) well-closedness, which often occurs in applications, is
the following.

5.8. Definition. Let Z be a closed subcategory of a locally noetherian Grothendieck
category X, and let S be a collection of objects in the category Z. We say that an object
M ∈ X is S-projective self-effacing if the identity map M → M is an S-projective
effacement. We say that X has a set of S-projective self-effacing generators if there is a
small set of generators {Oα} for X, where each Oα is S-projective self-effacing.

5.9. Proposition. Let X be a Grothendieck category with closed subcategory Z, and let
S be a collection of objects in the category Z. Let {Oα} be a small set of generators for
X.
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1. If Ext1(Oα, N) = 0 for all Oα and all N ∈ S, then {Oα} is a set of S-self-effacing
generators for X.

2. If {Oα} is a set of S-self-effacing generators for X, then X has S-projective efface-
ments.

Proof. (1) Given any short exact sequence 0 → N → P → Oα → 0 where N ∈ S, the
sequence must be split since Ext1(Oα, N) = 0. Then it is clear that the identity map
Oα → Oα is already an S-projective effacement, so each Oα is S-projective self-effacing.

(2) In particular, the hypothesis implies that each generator has an S-projective ef-
facement. Then X has S-projective effacements, by Lemma 4.2(3).

For example, let X be a locally noetherian Grothendieck category with noetherian gener-
ators {Oα}, let Z be a closed subcategory, and let S be the set of injective objects in the
category Z. If Ext1(Oα, E) = 0 for all E ∈ S and all α, then the previous result implies
that Z is well-closed in X. We note that in this case we not only get that the functor
F = FZ exists, but also that it can be described in a way similar to its description if X
were to have enough projectives, as given in Lemma 3.6. Namely, let M ∈ X. Then there
is a “partial resolution”

P1 → P0 →M → 0

where P1, P0 are direct sums of generators. The Pi here are of course not projective, in
general. Still, we may apply F to this sequence to obtain an exact sequence F (P1) →
F (P0) → F (M) → 0, since F is right exact. Since the Oα are S-projective self-effacing,
the same is true for each P , by Lemma 2.5(3). Thus by the construction of the functor
F given in Proposition 3.4, we have F (Pi) = K(Pi), where recall that K is the functor
that sends an object N to its smallest subobject N ′ such that N/N ′ ∈ Z. Thus K(P1)→
K(P0) → F (M) → 0 is exact. We see that F (M) may be defined by taking such a
resolution P1 → P0 of M by self-effacing objects, applying K, and taking the cokernel.
This is the same description as we would get if X had enough projectives, where we
would take a partial projective resolution instead. However, defining the action of F on
morphisms is more awkward, as one lacks a comparison lemma for these resolutions by
self-effacing objects.

6. Examples

We close the paper with some examples of how the theory works out for some important
kinds of Grothendieck categories.

6.1. Example. The prototypical example of a Grothendieck category is the category
Mod-R of right modules over a ring R. The closed subcategories of Mod-R are exactly
the subcategories of the form Mod-R/I for (two-sided) ideals I in R, by a result of
Rosenberg [Ros2, Proposition 6.4.1]. The category has the generator R and if R is right
noetherian, then Mod-R is locally noetherian.
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The category X has enough projectives and exact products, so it is obvious that
every closed subcategory Z = Mod-R/I is very well-closed. In fact G = GZ has the
explicit description G = HomR(I,−) and the functor F = FZ has the explicit description
F = −⊗R I. Also, {R} is a projective generator, so it is S-projective self-effacing for any
collection of objects S.

6.2. Example. A somewhat less trivial example is the category X = QcohY of quasi-
coherent sheaves on a k-scheme Y . For simplicity, suppose that Y is projective over k in
this example. Then it is well-known that X is a Grothendieck category. If L is an ample
invertible sheaf on Y , then {L⊗n|n ∈ Z} is a set of noetherian generators for X, so X
is certainly locally noetherian. Smith has shown that the closed subcategories of X are
those of the form Z = QcohW for closed subschemes W of Y [Sm1, Theorem 4.1]. The
category X has enough injectives, but not enough projectives, in general, and will seldom
have exact products. In fact, Ryo Kanda has shown recently that a quasi-projective k-
scheme S such that QcohS has exact products must be an affine scheme [Kan2, Theorem
1.1].

If I is the ideal sheaf defining the closed subscheme W , then the functor GZ has
the explicit description GZ = HomOX

(I,−), and this has the obvious left adjoint FZ =
(−) ⊗OX

I. Thus every closed subcategory Z is well-closed, but need not be very well-
closed (since this is equivalent to Z having exact products).

Suppose that E is an injective object in the category Z = QcohW . Then E is flasque
on W , so it is also flasque (but not injective in general) when considered as a sheaf on
Y . This is enough to conclude that H1(Y, E) = Ext1X(OX , E) = 0 [Ha, Proposition 2.5].
Similarly, Ext1(L⊗n, E) ∼= Ext1(OX , E ⊗ L⊗−n) = 0 since E ⊗ L⊗−n is still flasque. In
particular, X has a set of S-projective self-effacing generators, where S is the class of
injective objects in Z.

We assumed projectivity of Y in the previous example for convenience only. Ryo Kanda
has proved that for any locally noetherian scheme Y , the closed subcategories of QcohY
are still exactly the categories QcohW for closed subschemes W of Y [Kan1, Theorem
11.11].

6.3. Example. let H be a group and let R =
⊕

h∈H Rh be an H-graded k-algebra. Let
X = Gr-R be the category of H-graded right R-modules. Then X is a Grothendieck cat-
egory. For any h ∈ H and M ∈ X we have the shifted module M(h) with M(h)g = Mhg.
Then {R(h)|h ∈ H} is a set of generators for X, and so if R is graded right noetherian,
then X is a locally noetherian category. In fact the R(h) are projective generators, so
X has enough projectives. The category X also clearly has exact products. Because of
this, every closed subcategory Z of X must be well-closed, using the characterization in
Theorem 5.1(3). Also, Z clearly inherits the property of having exact direct products, so
in fact Z is very well-closed. Since the R(h) are projective, they are in fact S-projective
self-effacing generators for X, for any collection S of objects.

If I is a graded ideal of R, then Z = Gr-R/I is closed in X, and we have the explicit
descriptions of the functors GZ = HomR(I,−) and FZ = −⊗RI as usual. However, closed
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subcategories of Gr-R need not be defined by two-sided ideals in this way. For example,
consider any N-graded algebra R and let Z be the subcategory of Gr-R consisting of
Z-graded modules M with M = M≥0, in other words, the subcategory of nonnegatively
graded modules. It is clear that Z is closed under subquotients, direct sums, and products,
so that Z is a closed subcategory. However, Z is clearly not equal to Gr-R/I for a graded
ideal I of R, since any such subcategory defined by an ideal is closed under shift, while
Z is not.

Sierra studied the group of autoequivalences of the category of graded modules over
the Weyl algebra [Si]. It seems interesting to note that the nontrivial autoequivalences in
her work arise as functors FZ as defined in this paper.

6.4. Example. let k be an algebraically closed field of characteristic 0. Let R be the first
Weyl algebra R = k〈x, y〉/(yx − xy − 1), which is Z-graded with deg x = 1, deg y = −1.
The simple objects in Gr-R are parameterized by the affine line over k with its integer
points doubled. More specifically, there is a simple module Mλ for each λ ∈ k \ {Z} and
2 simple modules X(n), Y (n) for each n ∈ Z [Si, Lemma 4.1]. Sierra proves that any
autoequivalence of Gr-R is determined by its action on the simple modules [Si, Corollary
5.6], and for each n she constructs an interesting autoequivalence F that switches X(n)
and Y (n) and fixes all other simple modules [Si, Proposition 5.7]. This F can be defined
as follows: for each graded rank one projective module P , HomGr-R(P,X(n)⊕Y (n)) = k;
thus P surjects onto exactly one of the modules X(n), Y (n). Let F (P ) be the kernel
of this surjection. This action extends to a unique exact right exact functor F on the
whole category, since Gr-A has enough projectives, similarly as in our discussion after
Proposition 3.4.

The graded simple modulesM satisfy dimkMn ≤ 1 for all n ∈ Z and HomGr-R(M,M) =
k, from which one may easily see that all graded simple modules are tiny in the category
Gr-R. Now for fixed n let Z be the full subcategory of Gr-R consisting of all direct sums of
X(n) and Y (n), which is closed since these simples are tiny. Let FZ be the corresponding
functor constructed by Proposition 3.4(1) with S = Z. Then since every projective is
Z-self-effacing, we see that for a rank one projective P , the object FZ(P ) is the smallest
subobject Q of P such P/Q ∈ Z. Since HomGr-R(P,X(n) ⊕ Y (n)) = k, it is easy to see
that FZ is the same as the functor F described above.

Finally, we discuss our main motivating example: noncommutative projective schemes.
Let A be an N-graded k-algebra which is connected (A0 = k), finitely generated, and
noetherian. Let Tors-A be the full subcategory of Gr-A consisting of modules M such
that for all m ∈ M , mA≥n = 0 for some n ≥ 0. Then one may define the quotient
category Qgr-A = Gr-A/Tors-A. This category has the same objects as Gr-A, but for
M ∈ Gr-A we write its image in Qgr-A as πM . The morphisms are given by

HomQgr-A(πM, πN) = lim−→ HomGr-A(Mα, N/Nβ),

where the limit ranges over those graded submodules Mα ⊆ M such that M/Mα ∈
Tors-A and those graded submodules Nβ ⊆ N such that Nβ ∈ Tors-A. The functor
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π : Gr-A→ Qgr-A is exact, and has a left adjoint ω : Qgr-A→ Gr-A which can be given
explicitly as ω(πM) = lim

n→∞

⊕
m HomGr-A(A≥n,M(m)). The category Qgr-A is called a

noncommutative projective scheme. For more details, see [AZ].
The algebra A is said to satisfy the χi condition if dimk ExtjA(k,M) <∞ for all j ≤ i,

for all noetherian modules M ∈ Gr-A, where k = A/A≥1 is the trivial module. Most well-
behaved graded algebras satisfy χi for all i ≥ 0, in which case we say that A satisfies χ.
In this case the category Qgr-A is Ext-finite in the sense that dimk ExtiQgr-A(M,N) <∞
for all noetherian objects M,N ∈ Qgr-A [AZ, Corollary 7.3(3)].

6.5. Example. Let X = Qgr-A for a connected, finitely generated N-graded noetherian
k-algebra A satisfying χ, and maintain the notation above. Since Gr-A is a Grothendieck
category, so is its quotient category X = Qgr-A [Po, Corollary 4.6.2]. As in the case
of categories of quasi-coherent sheaves on commutative schemes, the category X usually
does not have enough projectives or exact products.

Since {A(n)|n ∈ Z} generates Gr-A, {πA(n)|n ∈ Z} generates Qgr-A, and so X is
locally noetherian. Write O = πA. Artin and Zhang defined a cohomology theory for
X as follows: for N ∈ X, let H i(X,N) = ExtiX(O, N). The shift autoequivalence (1) of
Gr-A induces an autoequivalence of Qgr-A we also write as (1), so O(n) = πA(n). Then
H i(X,N(n)) = ExtiX(O, N(n)) = ExtiX(O(−n), N).

Suppose that I is a graded ideal of A. Then Z = Qgr-A/I is a closed subcategory
of X = Qgr-A. The non-trivial proof was given by Smith [Sm2, Theorem 3.2], [Sm3,
Theorem 1.2]. In this case, Artin and Zhang showed that cohomology restricts nicely to
such a closed subcategory. Let OZ = π(A/I). Then if N ∈ Z, we have H i(Z,N) =
ExtiZ(OZ , N) = ExtiX(OX , N) = H i(X,N) [AZ, Theorem 8.3(3)], similarly as in the
commutative case (cf. [Ha, Lemma 2.10]). Thus if E is an injective object in the category
Z, since Z is closed under the shift autoequivalence (1), E(−n) is also injective in Z,
and we will have ExtiX(O(n), E) = ExtiX(OX , E(−n)) = ExtiZ(OZ , E(−n)) = 0. Hence
{O(n)|n ∈ Z} is a set of S-projective self-effacing generators, for S the class of injective
objects in Z. In particular, X has S-projective effacements by Proposition 5.9, and Z
is well-closed in X. As for categories of commutative sheaves, Z will not generally have
exact products, and so Z is not generally very well-closed.

However, similarly as for the category Gr-A, closed subcategories Z of Qgr-A need
not be defined by two sided ideals of A, even when Z is a closed point. For example,
suppose that A is generated by A1 as a k-algebra. A point module for A is a graded right
module M which is generated in degree 0 and satisfies dimkMn = 1 for all n ≥ 0. For any
point module M , π(M) is a tiny simple object in Qgr-A [Sm1, Proposition 5.8], and thus
the category of small direct sums of π(M) is a closed point Z in Qgr-A. But generally
M ∼= A/I for a right but not 2-sided ideal I of A, and so Z is not typically defined by a
2-sided ideal of A.

To close the paper, we show that our theory applies to prove that closed points, and the
locally finite categories built out of them using the Gabriel product, are very well-closed
in quite general circumstances.
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6.6. Theorem. X be a locally noetherian Grothendieck k-category.

1. Suppose that Z is a closed point in X, that is, Z is the category of direct sums
of a tiny simple object P in X. Suppose that dimk EndX(P ) < ∞ and that for
all noetherian objects M ∈ X, dimk Ext1X(M,P ) < ∞. Then X has Z-projective
effacements; that is, Z is very well-closed in X.

2. Let Z1, Z2, . . . Zn be closed points in X (possibly with repeats), each of which satis-
fies the hypothesis of (1). Then any closed subcategory Z contained in the Gabriel
product Z1 · Z2 · . . . · Zn has Z-projective effacements; i.e. Z is very well-closed in
X.

Proof. (1) We would like to apply Proposition 4.5 with T = {P}. For this, as noted
in Remark 4.6, it is enough to show that for a noetherian object M , then (4.2) holds,
namely

φ : Ext1X(M,
∏
v∈β

Nv)→
∏
v∈β

Ext1X(M,Nv) (6.1)

is an isomorphism, where β is a k-basis of Ext1X(M,P ).
By assumption, Ext1X(M,P ) is finite dimensional over k, so β is finite. Thus (6.1) holds

because finite direct products and direct sums coincide, and Ext1(M,−) commutes with
direct sums when M is noetherian, by Lemma 2.5(2). Thus the proof of Proposition 4.5
goes through to show that any noetherian object M has a Z-projective effacement, since
every object in Z is a direct sum of copies of objects in T . Then X has Z-projective
effacements by Lemma 4.2(3).

(2). This is immediate from part (1) and the fact that being very well-closed is stable
under the Gabriel product (by Lemma 5.7) and under taking subcategories.

6.7. Corollary. Let A be a connected N-graded finitely generated noetherian k-algebra
satisfying χ, and let X = Qgr-A. Then any closed subcategory of a finite Gabriel product
of closed points is very well-closed in X.

Proof. The χ condition implies that X is Ext-finite, as already noted. Since a simple
object P is noetherian, dimk EndX(P ) < ∞ and dimk Ext1X(M,P ) < ∞ holds for all
noetherian objects M , so the hypothesis of Theorem 6.6 is satisfied.

The property of Ext-finiteness should be thought of as a kind of properness assumption
for noncommutative schemes. Thus Theorem 6.6 can be interpreted to say that closed
points (or more generally, finite length subschemes) of proper noncommutative schemes
ought to be well-closed. This may be useful for iterating Van den Bergh’s blowing up
procedure, which does not seem to preserve projectivity in general.

6.8. Remark. When Theorem 6.6(1) applies, Proposition 4.5 constructs a Z-projective
effacement of a noetherian object M quite explicitly, by adding n = dimk Ext1(M,P )
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copies of P to the bottom of M in the n different ways given by a basis of Ext1X(M,P ).
More exactly, the effacement is given by the exact sequence

0→ Ext1(M,P )⊗k P →M →M → 0,

corresponding under the correspondence between Ext1 and extensions to a diagonal ele-
ment

θ =
n∑
i=1

vi ⊗ vi ∈ Ext1(M,P )⊗k Ext1(M,P ) ∼= Ext1(M,Ext1(M,P )⊗k P )

where {vi} is a k-basis of Ext1(M,P ).
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Gabriella Böhm, Wigner Research Centre for Physics: bohm.gabriella (at) wigner.mta.hu

Valeria de Paiva: Nuance Communications Inc: valeria.depaiva@gmail.com
Richard Garner, Macquarie University: richard.garner@mq.edu.au
Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Dirk Hoffman, Universidade de Aveiro: dirk@ua.pt
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