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MAJORITY CATEGORIES

MICHAEL ANTON HOEFNAGEL

Abstract. We introduce the notion of a majority category — the categorical coun-
terpart of varieties of universal algebras admitting a majority term. This notion can be
thought to capture properties of the category of lattices, in a way that parallels how
Mal’tsev categories capture properties of the category of groups. Among algebraic ma-
jority categories are the categories of lattices, Boolean algebras and Heyting algebras.
Many geometric categories such as the category of topological spaces, metric spaces,
ordered sets, any topos, etc., are comajority categories (i.e. their duals are majority
categories), and we show that, under mild assumptions, the only categories which are
both majority and comajority, are the preorders. Mal’tsev majority categories provide
an alternative generalization of arithmetical categories to protoarithmetical categories in
the sense of Bourn. We show that every Mal’tsev majority category is protoarithmetical,
provide a counter-example for the converse implication, and show that in the Barr-exact
context, the converse implication also holds. We can then conclude that a category is
arithmetical if and only if it is a Barr-exact Mal’tsev majority category, recovering in
the varietal context a well known result of Pixley.

1. Introduction

A majority term in universal algebra is a ternary term p, satisfying the equations:

p(x, x, y) = x,

p(x, y, x) = x, (∗)
p(y, x, x) = x.

Such a term naturally arises from the theory of congruence distributive varieties: a congru-
ence permutable variety admits a majority term if and only if it is congruence distributive
(this result was proved by A. F. Pixley, see Theorem 2 in [19]). In the variety of lattices,
the term

p(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

is a majority term. If R is a ring satisfying the identity xn = x for some n > 2 (a finite
field for example), then the term

p(x, y, z) = x− (x− y)(x− z)n−1
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is a majority term (moreover, every variety of rings which admits a majority term is
contained in a variety of rings satisfying xn = x for some n > 2, see [9]). By Pixley’s
theorem mentioned above, the variety of implicative semi-lattices (also known as Heyting
semi-lattices) [18] possesses a majority term, since it has both distributive and permutable
congruences.

In this paper, we introduce the notion of a majority category — the categorical coun-
terpart of a variety of algebras admitting a majority term (this notion first appeared under
the name of a “Pixley category” in a talk given by Z. Janelidze [15]). These categories
provide a link between the notion of a Mal’tsev category [8] and the notion of an arith-
metical category [20, 3], and could bear as strong a relation to the category of lattices,
as Mal’tsev categories do to the category of groups. Non-varietal examples of majority
categories include the dual of any topos, the category of Von Neumann regular rings and
the category of topological lattices.

We will show, amongst other things, that a Barr exact [1] category is arithmetical
if and only if is both Mal’tsev and a majority category. This is a categorical analogue
of Pixley’s theorem for varieties of algebras mentioned above. We first show that in
the left-exact context, every (finitely complete) Mal’tsev majority category is necessarily
protoarithmetical in the sense of D. Bourn [3] (Corollary 3.5 below). This is because every
internal groupoid in a majority category is an equivalence relation (Theorem 3.4), but
also follows from the fact that any unital majority category is antilinear in the sense of
[4]. Then, in the Barr-exact context, we show that the converse of Corollary 3.5 holds: a
category is (proto)arithmetical if and only if it is both Mal’tsev and a majority category
(Theorem 3.14). We then consider the question of whether, in general, protoarithmetical
categories are the same as Mal’tsev majority categories, and answer this question in the
negative. One of the basic observations here is that Relop3 , the dual of the category of
ternary relations (sets equipped with a ternary relation), is regular, has all limits and
colimits, and is not a majority category (although, interestingly, the category of binary
relations Relop2 is). Then, the full-subcategory Mal(Relop3 ) of Mal’tsev objects (in the
sense of [21]) in Relop3 , is a Mal’tsev category in which every internal groupoid is an
equivalence relation, and is therefore protoarithmetical. However, Mal(Relop3 ) will turn
out not to be a majority category.

Surprisingly, many categories of geometric structures such as topological spaces, or-
dered sets, as well as metric spaces (with sub-contractions), tend to be comajority cate-
gories. This raises the question of whether there are categories which are simultaneously
majority and comajority categories. We show that preorders are the only such categories
among categories with finite limits and binary coproducts. This result is similar to the
fact that a category C such that C and Cop are distributive (in the sense of [5]) is a
preorder.
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2. Definition and examples

The presence of a majority term in a variety of algebras, is a condition which may be refor-
mulated for an abstract category, using the so-called “matrix method” due to Z. Janelidze
(see [11]). This method formulates the condition of a variety admitting a term satisfying
some “elementary equations”, in terms of a certain “closedness property” of internal rela-
tions in the variety, which is a categorical notion. For example: a Mal’tsev term q(x, y, z)
is a ternary term satisfying the equations

q(x1, x1, x2) = x2,

q(y2, y1, y1) = y2.

These equations canonically determine an extended matrix of terms in the sense of [11]:

M =

(
x1 x1 x2 x2
y2 y1 y1 y2

)
Recall that in a category C, an internal binary relation R between objects X and Y
is a triple (R0, r1, r2), where r1 : R0 → X and r2 : R0 → Y are jointly monomorphic
morphisms. If x : S → X and y : S → Y are any morphisms, we say that the pair (x, y) is
R-related if there exists a morphism f : S → R0 such that r1f = x and r2f = y. Then R
is said to be (strictly) M -closed if for any morphisms x1, x2 : S → X and y1, y2 : S → Y ,
if (x1, y2), (x1, y1) and (x2, y1) are R-related, then (x2, y2) is R-related. If R satisfies this
property, then R is said to be difunctional. A finitely complete category C where every
internal relation is difunctional is a Mal’tsev category in the sense of [10] (see also [8] for
the original notion). In this paper we follow [16] and call a category C (not necessarily
finitely complete) Mal’tsev, when every internal relation in C is difunctional.

The general theory of closedness properties of internal relations (the “matrix method”),
provides a unified way in which to establish general theorems of categories defined by such
a matrix condition. In this setting, there is a general Bourn-localization theorem (see [12]),
which generalizes, for example, the fact that a finitely complete category C is Mal’tsev if
and only if the fibres PtI(C) of the fibration of points, are unital (see [2] and Example 2.15
below). Examples of structures defined by such a matrix condition include subtractive
[14], unital, strongly unital [2], and of course, Mal’tsev categories (see [11, 12, 13]). The
definition of a majority category adds to this list, by applying the matrix method to the
majority term equations (∗) given on the first page.

A ternary relation between objects A,B and C is a quadruple R = (R0, r1, r2, r3)
where r1 : R0 → A, r2 : R0 → B and r3 : R0 → C are jointly monomorphic morphisms.
If a : S → A, b : S → B and c : S → C are any morphisms in C, then we shall say that
the triple (a, b, c) is R-related if there exists a morphism f : S → R0 such that r1f = a,
r2f = b and r3f = c.
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2.1. Definition. A category C is a majority category when every internal relation in C
is strictly M-closed (in the sense of [11]) with:

M =

a1 a1 a2 a1
b1 b2 b1 b1
c2 c1 c1 c1

 .

That is to say C satisfies the following condition:

(M) For any ternary relation R = (R0, r1, r2, r3) in C and arbitrary morphisms a1, a2 :
S → A, b1, b2 : S → B and c1, c2 : S → C in C, if (a1, b1, c2), (a1, b2, c1) and
(a2, b1, c1) are R-related, then (a1, b1, c1) is R-related.

In a category with binary products, the condition (M) simply states that a necessary and
sufficient condition for a morphism (a1, b1, c1) : S → A × B × C to factor through R is
that there exist a2 : S → A,b2 : S → B and c2 : S → C, such that (a1, b1, c2), (a1, b2, c1)
and (a2, b1, c1) factor through R.

2.2. Definition. An object S in a category C is a majority object if for any ternary
relation R = (R0, r1, r2, r3) in C, and any morphisms a1, a2 : S → A, b1, b2 : S → B and
c1, c2 : S → C in C, if (a1, b1, c2), (a1, b2, c1) and (a2, b1, c1) are R-related, then (a1, b1, c1)
is R-related. Thus a category C is a majority category if and only if each of its objects is
a majority object.

2.3. Remark. The notion of a majority object is a straightforward adaptation of the
notion of a Mal’tsev object which can be found in [21].

2.4. Examples of Majority Categories. We shall say that a category C has image
factorizations if every morphism f : X → Y in C factors as f = me where m is a
monomorphism and e a strong epimorphism. Then the factorization f = me is called an
image factorization of f .

X

f

77
e // • m // Y

We say that a category C has co-image factorizations if Cop has image factorizations.
The following theorem characterizes majority objects in a category which has image

factorizations. It is a straightforward adaptation of a result in [21] (Proposition 2.3),
which will be used to determine some of the examples of majority categories that follow.

2.5. Proposition. Let C be a category with binary products, binary coproducts and image
factorizations. Then for an object S the following are equivalent:

(1) S is a majority object.
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(2) There exists a morphism f : S → R making the diagram

3S
e

""
M=


ι1 ι1 ι2
ι1 ι2 ι1
ι2 ι1 ι1


��

R||

r||
(2S)3 S

(ι1,ι1,ι1)
oo

f
^^

commute, where M = re is an image factorization.

Proof. Composing e with each of the canonical inclusions S → 3S, and applying the
fact that S is a majority object, we have (1) implies (2). We show (2) implies (1): let C
be a category with image factorizations and binary products and binary coproducts. Let
A,B,C be any objects in C and r′ : R′� A×B ×C any ternary relation. Suppose that
a1, a2 ∈ hom(S,A), b1, b2 ∈ hom(S,B), c1, c2 ∈ hom(S,C) and f1, f2, f3 ∈ hom(S,R′) are
such that

R′

r′

��

R′

r′

��

R′

r′

��
S

f3

99

(a1,b1,c2)
// A×B × C S

f2

99

(a1,b2,c1)
// A×B × C S

f1

99

(a2,b1,c1)
// A×B × C

commute. This implies that the dotted arrow f exists, making the diagram

3S

M

��

f

##


a1 b1 c2
a1 b2 c1
a2 b1 c1



��

e
��
R
��

r
��

R′ %%
r′

%%
(2S)3a1

a2

×
b1
b2

×
c1
c2


// A×B × C

commute. By assumption, we have that (ι1, ι1, ι1) : S → (2S)3 factors through R (α in
the diagram below), and also by the fact that M = re is an image-factorization, there
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exists β : R→ R′ making the diagram

3S
f

##


a1 b1 c2
a1 b2 c1
a2 b1 c1



��

e
��
R

β
//

��
r
��

R′ %%
r′

%%
S

α

77

(ι1,ι1,ι1)
// (2S)3a1

a2

×
b1
b2

×
c1
c2


// A×B × C

commute. Then r′(βα) is a factorization of (a1, b1, c1) through R′.

By the dual of the Proposition above, to verify that Cop is a majority category, where
Cop has image factorizations, binary products and binary coproducts, it suffices to show
the existence of the morphism f : R→ S making the diagram

S3

R

e

aa

f

��
3S2


π1 π1 π2
π1 π2 π1
π2 π1 π1



OO

r
== ==


π1
π1
π1


// S

in C commute, where re is a co-image factorization of the vertical morphism, and S is
any object in C. This will be done to establish the three examples that follow.

2.6. Example. Topop has image factorizations (since it is a regular category). In the
above diagram, we may take R to be the set-theoretic image of the vertical morphism
equipped with the subspace topology on S3. Then R is given by

R = {(x, x, y) | x, y ∈ S} ∪ {(x, y, x) | x, y ∈ S} ∪ {(y, x, x) | x, y ∈ S}.

The morphism e is the canonical inclusion of R into S3, and r is the projection onto the
image of the vertical morphism. If f exists, it must satisfy

f(x, x, y) = f(x, y, x) = f(y, x, x) = x,

since the bottom triangle commutes. Therefore, Topop is a comajority category if and
only if f above is continuous for any space S: given an open set U ⊆ S, we have that

f−1(U) = R ∩
(
(U × U × S) ∪ (U × S × U) ∪ (S × U × U)

)
- which is an open set in R. Therefore f is a continuous function.
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2.7. Example. The category Rel2 has as its objects pairs (X, ρX), where X is a set and
ρX is a binary relation on X. A morphism f : (X, ρX) → (Y, ρY ) is simply a function
f : X → Y for which:

xρXy =⇒ f(x)ρY f(y)

— such functions are called monotone. Similarly as in Example 2.6, for any object S in
Rel2, the map f : R→ S defined by

f(x, x, y) = f(x, y, x) = f(y, x, x) = x

is monotone, where

R = {(x, x, y) | x, y ∈ S} ∪ {(x, y, x) | x, y ∈ S} ∪ {(y, x, x) | x, y ∈ S},

equipped with the restriction of ρS3 . This is easily verified.

2.8. Remark. Although the category Rel2 of sets equipped with binary relations is a
comajority category, the category of sets equipped with ternary relations Rel3 (where
morphisms preserve the ternary relation) is not a comajority category (see Section 3).

2.9. Example. As shown in [21], the category of (extended) metric spaces Met∞ is
coregular, and has products and coproducts. The co-image factorization of a morphism is
given by the projection onto the closure of the set-theoretic image f(X) followed by the
inclusion into Y:

X → f(X)→ Y.

Given an (extended) metric space S, the image of the vertical morphism in the diagram
above is given by

R = {(x, x, y) | x, y ∈ S} ∪ {(x, y, x) | x, y ∈ S} ∪ {(y, x, x) | x, y ∈ S},

which may be checked to be a closed subset of S3. Therefore, it again suffices to show
that f : R→ S defined by

f(x, x, y) = f(x, y, x) = f(y, x, x) = x,

is a subcontraction — which is easily verified. Thus Met∞ is a comajority category. Using
similar arguments as in Theorem 4.3 in [21], it will follow that Met is too a comajority
category.

2.10. Example. By Corollary 3.14, any arithmetical category in the sense of [20, 3] is
a majority category, so that in particular the dual of every topos, the category of Von
Neumann regular rings, Heyting algebras, etc, are all majority categories.

2.11. Example. If C is a category with products, then the category M(C) of internal
majority algebras is a majority category. Therefore, the category M(Pos) of internal
majority algebras in the category of partially ordered sets is a majority category. In fact,
it can be shown that this is an example of a majority category that is not regular.
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2.12. Remark. A partial order is said to be dually-directed if every pair of elements has a
lower and upper bound. Interestingly, if we consider the category DPos of dually-directed
partial orders, then M(DPos) ' Lat — the variety of lattices.

2.13. Example. It is easy to see that any preorder is a majority category.

Examples of categories which are neither majority nor comajority categories include
Cat the category of all small categories, and also the category of monoids Mon or groups
Grp. The next theorem is a special case of Theorem 3.2 in [12].

2.14. Proposition. Suppose that C and D are finitely complete categories, and let F :
D → C be a pullback-preserving functor which reflects isomorphisms. Then, if C is a
majority category, then so is D.

As a consequence of this proposition, if C is a finitely complete majority category
and X any object in C, then both comma categories (X ↓ C) and (C ↓ X) are majority
categories. This is because the forgetful functors (X ↓ C) → C and (C ↓ X) → C
preserve pullbacks and reflect isomorphisms. Also, if C and D are categories, with C a
finitely complete majority category, then CD is a majority category.

2.15. Example. Given a category C and an object I in C, the category of points PtI(C)
over I has as its objects pairs (p, s) where p : X → I is a split epimorphisms with a chosen
splitting s. A morphism f : (p, s)→ (q, t) in PtI(C) is a morphism in C such that qf = p
and fs = t (see [2] and [7] for details). If C has finite limits then so does PtI(C), and the
domain functor PtI(C)→ C which takes (p, s) to the domain of p, satisfies the conditions
of Proposition 2.14. Thus if C is a finitely complete majority category, then PtI(C) is a
pointed finitely complete majority category for any object I in C.

3. Relation to arithmetical, protoarithmetical and antilinear categories

The notion of an arithmetical category was first introduced by M. C. Pedicchio in [20],
as a Barr-exact Mal’tsev category with coequalizers, which is congruence distributive. It
was proved in [20] that an equivalent definition is obtained if one replaces congruence
distributivity by the requirement that every internal groupoid be an equivalence relation.
Examples of arithmetical categories are the dual of any topos, as well as the categories
of Boolean algebras and of Heyting algebras. In [3], the author introduces the notion of
a protoarithmetical category, which is the same as a finitely complete Mal’tsev category
in which every internal groupoid is an equivalence relation. In the Barr-exact context,
protoarithmetical categories are characterized as congruence distributive Mal’tsev cate-
gories. Thus in [3], an arithmetical category is a Barr-exact Mal’tsev category which is
congruence distributive (dropping coequalizers from the original definition), which is what
we will mean by arithmetical category. This section shows that in the Barr-exact context,
arithmetical categories are precisely Mal’tsev majority categories. And that in general, a
protoarithmetical category need not be a majority category.
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3.1. Definition. A protoarithmetical category is a finitely complete Mal’tsev category in
which every internal groupoid is an equivalence relation.

3.2. Remark. The original definition of a protoarithmetical category, which is equivalent
to Definition 3.1, is that of a finitely complete category C where the category of points
PtI(C) above any object I is unital [2], and such that every internal group in PtI(C) is
trivial.

One of the main results of [3] is the following Theorem.

3.3. Theorem. [3] A Barr exact category C is protoarithmetical if and only if it is
Mal’tsev and congruence distributive (i.e. it is arithmetical)

3.4. Theorem. Every internal groupoid in a majority category is an equivalence relation.

Proof. Suppose that the diagram

G2
m // G1

σ

��
d1
%%

d0

99G0soo

is an internal groupoid in a majority category C, then we show that d1 and d2 are jointly
monomorphic. Let p1 : G2 → G1 and p2 : G2 → G1 be the canonical pullback projec-
tions. Then R = (G2, p1, p2,m) is a ternary relation in C, since p1 and p2 are jointly-
monomorphic. Suppose that f, g : S → G1 are morphisms with d1f = d1g and d0f = d0g,
then (g, σg, sd1g) and (f, σg,m(f, σg)) and (f, σf, sd1f) are all R-related, and hence so
is (f, σg, sd1g) so that m(f, σg) = sd1g, which implies f = g.

3.5. Corollary. Every finitely complete Mal’tsev majority category is protoarithmetical.

3.6. Definition. [4] Let C be a pointed category with binary products, and let f : X → Z
and g : Y → Z be morphisms in C. A morphism φ : X × Y → Z making the diagram

X

f ##

ιX // X × Y
φ
��

Y
ιYoo

g
{{

Z

commute, is called a cooperator for f and g. If g = 1Z in the diagram above, then f is
said to be central when such a φ exists.

3.7. Definition. [4] A unital category C is said to be antilinear if the only central mor-
phisms are the null morphisms.
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3.8. Proposition. Let C be a pointed finitely complete majority category, and let f :
X → Z and g : Y → Z be morphisms in C. If f and g admit a cooperator, then the
square

ker(f)× ker(g)

p1
��

p2 // Y

g

��
X

f
// Z

is a pullback, where p1 and p2 are the canonical product projections composed with the
canonical inclusions.

In particular, every unital majority category is antilinear in the sense of Definition 3.7,
as the next corollary shows.

3.9. Corollary. If C is a pointed finitely complete majority category, then f : X → Y
is central if and only if f = 0.

Proof. By Definition 3.6, if f is central, it cooperates with the identity on Y , so that by
Proposition 3.8 the pullback of 1Y along f is given by ker(f) × ker(1Y ) ' ker(f). This
implies that the identity morphism 1X is the kernel of f , so that f = 0.

Proof of Proposition 3.8. Suppose that φ is a cooperator between f and g, then it
suffices to show that for any commutative square

A

α
��

β // Y

g
��

X
f
// Z

we have gβ = 0 = fα. Consider the ternary relation r : R → X × Y × Z defined by the
equalizer:

R r // X × Y × Z
π3

//
φ(π1,π2) // Z

Then since we have φ(α, 0) = fα and φ(0, β) = gβ, by the universal property of the
equalizer it follows that (α, 0, fα) : A→ X × Y ×Z and (0, β, gβ) : A→ X × Y ×Z and
(0, 0, 0) : A → X × Y × Z are all R-related. Since fα = gβ, we have that (0, 0, fα) is
R-related, which implies that fα = 0 = gβ.

3.10. Remark. Corollary 3.9 gives another way to see that every finitely complete
Mal’tsev majority category is protoarithmetical. If C is a Mal’tsev majority category,
then the category PtI(C) of points above any object I in C is unital (see [2]), and a
pointed majority category (see Example 2.15). Thus PtI(C) is antilinear, and therefore
internal monoids in PtI(C) are trivial. By Remark 3.2, C is protoarithmetical.
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3.11. Relations in regular categories. Recall that if C is a regular category, then
we can define compositions of relations as follows. Let (r1, r2) : R� X × Y and (s1, s2) :
Y × Z be relations in C, and suppose that (P, p1, p2) is the pullback of s1 along r2:

P
p1

��

p2

��
R

r2

��

r1

~~

S
s1

��

s2

��
X Y Z

The composite r ◦ s : R ◦ S � X × Z is a relation obtained by taking the regular image
of (r1p1, r2p2) : P → X × Z as in the diagram:

P

(r1p1,r2p2)

44
// // R ◦ S //r◦s // X × Z

We have the following lemma for this relation composition.

3.12. Lemma. If (x, z) : P → X ×Z is any morphism which factors through R ◦ S, then
there exists a regular epimorphism α : Q → P and a y : Q → Y such that (xα, y) : Q →
X × Y factors through R and (y, zα) : Q → Y × Z factors through S.

3.13. Theorem. If C is a regular Mal’tsev category such that the lattice of equivalence
relations on each object is a distributive lattice, then C is a majority category.

Proof. Let C be a regular Mal’tsev category, such that the lattice of equivalence relations
on any object in C is distributive. Recall that in a regular Mal’tsev category, the join of
two equivalence relations is given by their composition. Let

R

rB
��

rC

��

rA

��
A B C

be any internal ternary relation in C, and let a1, a2 : S → A, b1, b2 : S → B, c1, c2 : S → C
and a, b, c : S → R be any morphisms in C such that the diagrams:

R

��

R

��

R

��
S

a

99

(a1,b1,c2)
// A×B × C S

b

99

(a1,b2,c1)
// A×B × C S

c

99

(a2,b1,c1)
// A×B × C

commute. Consider the kernel equivalence relations KA, KB, KC on R formed from taking
the kernel pairs of rA, rB, rC respectively. Then (a, c) : S → R × R factors through
KB ∩ (KA ◦KC) which implies that (a, c) factors through (KB ∩KA) ◦ (KB ∩KC). By
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Lemma 3.12, there exists a regular epimorphism α : Q → S and a morphism b : Q → R
such that (aα, b) factors through (KB ∩ KA) and (b, cα) factors through (KB ∩ KC).
This implies that a1α = rAb and b1α = rBb and c1α = rCb, and therefore we have the
commutative diagram

Q
b //

α

��

R

(rA,rB ,rC)

��
S
(a1,b1,c1)

//

f

99

A×B × C

where f exists, since α is a regular epimorphism.

3.14. Corollary. For a Barr exact category C the following are equivalent:

(1) C is arithmetical (i.e. Mal’tsev and congruence distributive);

(2) C is Mal’tsev and a majority category.

Proof. (1) ⇒ (2) is immediate by Theorem 3.13. For (2) ⇒ (1) suppose that C is a
Mal’tsev majority category, then by Theorem 3.5 we have that C is protoarithmetical,
and thus C is arithmetical by Theorem 3.3.

3.15. Remark. This result was actually first announced in [15], as a Barr exact analogue
of Pixley’s result for varieties [19].

The above corollary motivates the question of whether protoarithmetical categories are,
in general, the same as Mal’tsev majority categories. Or if there are naturally weaker
conditions (than Barr exactness) under which “Malt’sev + majority = arithmetical”.
The rest of this section is dedicated to answering this question in the negative. We will
construct a regular protoarithmetical category, with all limits and colimits, which is not
a majority category.

Consider the category of ternary relations Rel3 mentioned in Example 2.8. This
category has as its objects pairs X = (UX , RX) where UX is a set and RX is a ternary
relation on UX . A morphism f : X → Y in Rel3 is a function f : UX → UY for which
(x, y, z) ∈ RX =⇒ (f(x), f(y), f(z)) ∈ RY . The limit/colimit of a diagram D in Rel3 has
as its underlying set UL the set-theoretic limit/colimit of the underlying diagram is Set,
equipped with the largest/smallest relation making the canonical projections/inclusions
homomorphisms. A monomorphism m : A → X in Rel3 is a regular monomorphism if
and only if m is relation-reflecting, which is to say m satisfies

(m(x),m(y),m(z)) ∈ RX =⇒ (x, y, z) ∈ RA

for any x, y, z ∈ UA. It may be checked that regular monomorphisms are stable under
pushout, which is an easy consequence of the fact that pushouts along monomorphisms
in Set are pullbacks. Therefore we have the following lemma:

3.16. Lemma. The category Relop3 is a complete and cocomplete regular category.
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3.17. Remark. For any morphism f : X → Y in Rel3 denote f(X) for the subrelation
of Y restricted to the set-theoretic image of f . Then the coimage factorization of f is
given by f = me where e : X → f(X) is the canonical projection, and m : f(X)→ Y is
the canonical inclusion.

3.18. Definition. [21] Let S be an object in a category C, then S is a Mal’tsev object
in C if for any binary relation r : R→ X × Y , the induced relation on sets

hom(S,R)� hom(S,X)× hom(S, Y )

is difunctional.

In what follows we will be concerned with Mal’tsev objects in Relop3 .

3.19. Lemma. Let S be any object in Rel3, and let M = (UM , RM) be the subrelation of
S × S × S where

UM = {(x, x, y) | x, y ∈ S} ∪ {(y, x, x) | x, y ∈ S}

and RM is the restriction of RS3 to UM . Then S is a Mal’tsev object in Relop3 if and only
if the map f : UM → US defined by

f(x, x, y) = y = f(y, x, x)

preserves the relation structure (is a morphism in Rel3).

Proof Sketch. By Proposition 2.3 in [21], an object S in Relop3 is a Mal’tsev object if
and only if there exists f : M → S making the diagram

S3

M

m

aa

f

  
2S2

π2 π2 π1
π1 π2 π2


OO

e

==

π1
π1


// S

in Rel3 commute, where me is an image-factorization of the vertical morphism. Now by
Remark 3.17, M can be taken to be the set-theoretic image of the vertical morphism,
together with the restriction of RS3 . Then

UM = {(x, x, y) | x, y ∈ S} ∪ {(y, x, x) | x, y ∈ S},

and if f exists it must be defined by

f(x, x, y) = y = f(y, x, x).



262 MICHAEL ANTON HOEFNAGEL

The lemma below has a similar proof as Lemma 3.19, and follows from application of
Proposition 2.5.

3.20. Lemma. A ternary relation S is a majority object in Relop3 if and only if the map
f : UN → US defined by f(x, x, y) = f(x, y, x) = f(y, x, x) = x is a morphism in Rel3
where

UN = {(x, x, y) | x, y ∈ S} ∪ {(x, y, x) | x, y ∈ S} ∪ {(y, x, x) | x, y ∈ S}

and RN is the restriction of RS3 to UN .

The full subcategory of Mal’tsev objects in a category C is denoted by Mal(C), and
has the following properties (see [21]):

(i) Mal(C) is closed under colimits and regular quotients in C. So that in particular if
C is cocomplete, then so is Mal(C).

(ii) If C is a regular well-powered category admitting coproducts, then Mal(C) is a
coreflective subcategory of C.

(iii) If C is a regular category with binary coproducts, such that every morphism in
Mal(C) which is a regular epimorphism in C is a regular epimorphism in Mal(C),
then Mal(C) is the largest full subcategory of C which is Mal’tsev, and, closed under
binary coproducts and regular quotients in C.

By Lemma 3.16 and (ii) above, Mal(Relop3 ) is a coreflective subcategory of Relop3 . Explic-
itly, this coreflection r : Relop3 → Mal(Relop3 ) acts on objects as follows: if X is an object
of Relop3 , then define Ur(X) = UX , and define Rr(X) as the smallest ternary relation R on
UX such that RX ⊆ R and (UX , R) is a Mal’tsev object in Relop3 . Then it can be checked
that r(X) is indeed a Mal’tsev object in Relop3 . If f : X → Y is a morphism in Relop3
then we define r(f) = f . To summarize, we have the following lemma:

3.21. Lemma. The functor r : Relop3 → Mal(Relop3 ) is right adjoint to the inclusion
functor ι : Mal(Relop3 )→ Relop3 , and for any object X in Relop3 we have Ur(X) = UX .

The above lemma implies that Mal(Relop3 ) has limits, and that the limit of any diagram
D in Mal(Relop3 ) has the same underlying set as the corresponding limit of D in Relop3
— which itself has the same underlying set as the corresponding limit in Setop. This is
to say that the forgetful functor U : Mal(Relop3 ) → Setop preserves limits. Since every
codiscrete relation (X is codiscrete if RX = UX × UX × UX) is an object of Mal(Relop3 ),
it will follow that a morphism in Mal(Relop3 ) is a monomorphism if and only if it is a
monomorphism in Relop3 . This implies that the forgetful functor Mal(Relop3 ) → Setop

reflects monos. Thus we have the following lemma:

3.22. Lemma. The forgetful functor U : Mal(Relop3 )→ Setop preserves limits and reflects
monos.
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3.23. Proposition. The category Mal(Relop3 ) is a complete and cocomplete regular pro-
toarithmetical category.

Proof. Again, since Mal(Relop3 ) contains all codiscrete relations, it will follow that ev-
ery morphism in Mal(Relop3 ) which is a regular epimorphism in Relop3 is also a regular
epimorphism in Mal(Relop3 ). Moreover, since Mal(Relop3 ) is coreflective, it follows that a
morphism in Mal(Relop3 ) is a regular epi if and only if it is a regular epi in Relop3 . Therefore,
since Relop3 is regular, so is Mal(Relop3 ). Also, by (iii) above, it follows that Mal(Relop3 )
is a Mal’tsev category, and by (i) it is cocomplete. By Lemma 3.21, Mal(Relop3 ) inherits
its completeness from Relop3 . Next, we show that any internal groupoid in Mal(Relop3 )
is an equivalence relation. Suppose that G is an internal groupoid in Mal(Relop3 ), where
G1 is the object of arrows and d0, d1 : G1 → G0 the domain and codomain morphisms
respectively. By Lemma 3.22, the forgetful functor U : Mal(Relop3 ) → Setop preserves
limits, so that UG is an internal groupoid in Setop — which is a majority category. Thus,
U(d0, d1) is a monomorphism by Theorem 3.4, and thus (d0, d1) is a monomorphism since
U reflects monos.

The full subcategory Maj(C) behaves analogously to Mal(C), and in particular, we
have the proposition below. The proof is left out, as it is a straightforward adaptation of
the proof of Corollary 2.4 in [21].

3.24. Proposition. Let C be a regular category admitting binary coproducts. If D is a
full subcategory of C which is a majority category, and closed under binary coproducts and
regular quotients in C, then D ⊆ Maj(C).

3.25. Proposition. Mal(Relop3 ) is not a majority category.

Proof Sketch. Since Mal(Relop3 ) is closed under binary products and regular quo-
tients in C, if Mal(Relop3 ) were a majority category, then we would have Mal(Relop3 ) ⊆
Maj(Relop3 ) by the proposition above. Thus to show that Mal(Relop3 ) is not a major-
ity category, it suffices to produce a Mal’tsev object S which is not a majority object.
Consider the ternary relation S where US = {0, 1} and

RS = {(1, 1, 0), (0, 1, 1), (0, 0, 0)}.

Then it is routine to verify that S satisfies the conditions of Lemma 3.19, and is thus an
object of Mal(Relop3 ). If the f in the statement of Lemma 3.20 above were a morphism
in Rel3, then we would have

((1, 0, 0), (1, 1, 0), (0, 1, 0)) ∈ RS3 =⇒ (f(1, 0, 0), f(1, 1, 0), f(0, 1, 0)) = (0, 1, 0) ∈ RS

so that Mal(Relop3 ) is not a majority category.
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4. Comajority excludes majority

In Section 2.4 we saw that many categories of a geometric nature, such as topological
spaces, metric spaces, any topos, etc., form comajority categories. This raises the question
of whether there are categories which are simultaneously majority and comajority. This
section proves that the only finitely complete categories C with binary coproducts, such
that C and Cop are majority categories are the preorders having finite meets and joins.
This result is similar to the result that if a category C is such that both C and Cop are
distributive categories, then C is a preorder.

In what follows, by a majority algebra we mean a set X equipped with a majority
operation pX : X3 → X. A homomorphism of majority algebras f : (X, pX)→ (Y, pY ) is
a function f : X → Y satisfying pY (f(x), f(y), f(z)) = f(pX(x, y, z)). A majority algebra
is said to be commutative if the majority operation is a homomorphism.

4.1. Lemma. Let C be a finitely complete majority category and A any object in C, then
the morphisms

A3 (π1,π1,π3) // A3 A3(π1,π2,π2)oo

A3

(π3,π2,π3)

OO

are jointly strongly epimorphic.

Proof. Suppose r is a monomorphism, such that each of the morphisms above factor
through R:

R

r
��

R

r
��

R

r
��

A3

m1

==

(π1,π1,π3)
// A3 A3

m2

==

(π1,π2,π2)
// A3 A3

m3

==

(π3,π2,π3)
// A3

Then there exists m : A3 //R making the diagram

R

��
A3

m

==

(π1,π2,π3)
// A3

commute, so that r is a split epimorphism, and hence an isomorphism.

4.2. Lemma. Let C be a finitely complete majority category with binary coproducts. If C
and Cop are majority categories, then every hom-set can be equipped with a commutative
majority operation.

Proof. Let A be any object of C, then by Lemma 4.1 the morphism

3A3

MA=


π1 π1 π3
π1 π2 π2
π3 π2 π3


// A3
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is an epimorphism. In particular, A3 together with MA is a ternary corelation on A3 (a
ternary relation in Cop). Composing MA with each of the projections πi : A3 → A, we
have the following commutative diagrams:

3A3


π1
π1
π3


""

MA // // A3

π1
��

3A3


π1
π2
π2


""

MA // // A3

π2
����

3A3


π3
π2
π3


""

MA // // A3

π3
��

A A A

Since C is a comajority category, there exists a morphism pA : A3 → Amaking the diagram

3A3 MA // //


π1
π2
π3

 ''

A3

pA
��
A

commute. Thus we have constructed an internal majority operation pA on A, for each
object A in C. Next, to see that every morphism in C is a homomorphism with respect
to the internal majority operation constructed above, let f : A→ B be any morphism in
C, then the commutativity of the diagram below follows from the commutativity of the
top and outer rectangles, and the fact that MA is an epimorphism.

3A3

MA����

3f3 // 3B3

MB����
A3

pA
��

f3 // B3

pB
��

A
f // B

The commutativity of the bottom square is precisely the statement that f is a homomor-
phism with respect to the internal majority operations pA and pB. Therefore, for any
objects S and A the composite

hom(S,A)3 ' hom(S,A3)
hom(S,pA)−−−−−−→ hom(S,A)

is a commutative majority operation.

4.3. Lemma. Let (X, pX) be a commutative majority algebra, then X has at most one
element.
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Proof. Let x, y ∈ X be any two elements, then

x = pX(x, x, y)

= pX(pX(x, x, y), pX(x, y, x), pX(y, y, y))

= pX(pX3((x, x, y), (x, y, y), (y, x, y)))

= pX(pX(x, x, y), pX(x, y, y), pX(y, x, y))

= pX(x, y, y) = y

As an immediate corollary of Lemma 4.2 and Lemma 4.3, we have:

4.4. Theorem. If C has finite limits and binary coproducts, and C and Cop are majority
categories, then C is a preorder.

4.5. Remark. It is possible to prove the theorem above under different limit and colimit
assumptions, but it is impossible without at least some limit and colimit assumptions.
This is because the category consisting of just two parallel arrows is both majority and
comajority.

4.6. Remark. The proof above depends on the fact that the morphisms in the statement
of Lemma 4.1 are epimorphic. In a unital category, they are jointly strongly epimorphic.
Therefore, by the proof above we may also conclude that a unital category C with binary
coproducts such that C is comajority is equivalent to the terminal category 1.

In [12], the author asks: for a general term matrix M , how the following conditions on a
category C are related to each other:

(a) C is enriched in the variety of commutative M -algebras.

(b) C and Cop are M -closed.

For the matrices corresponding to unital, subtractive and Mal’tsev categories(
x 0 x
0 x x

)
,

(
x x 0
x 0 x

)
,

(
x x y y
u v v u

)
,

(a) and (b) are equivalent under suitable conditions on the base category C [13, 11].
For instance, if C is a pointed category with binary products and coproducts, epi-mono
factorizations of its morphisms, such that (b) holds for

M =

(
x x 0
x 0 x

)
,

then C is enriched in the category of abelian groups (which are the same as commutative
subtraction algebras). For the matrix corresponding to majority categories, we also have
(a) equivalent to (b), and the results of this section show this equivalence.
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