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THE LOCALIC ISOTROPY GROUP OF A TOPOS

SIMON HENRY

Abstract. It has been shown by J.Funk, P.Hofstra and B.Steinberg that any Gro-
thendieck topos T is endowed with a canonical group object, called its isotropy group,
which acts functorially on every object of the topos. We show that this group is in fact
the group of points of a localic group object, called the localic isotropy group, which
also acts on every object, and in fact also on every internal locale and on every T -
topos. This new localic isotropy group has better functoriality and stability property
than the original version and sheds some light on the phenomenon of higher isotropy
observed for the ordinary isotropy group. We prove in particular using a localic version
of the isotropy quotient that any geometric morphism can be factored uniquely as a
connected atomic geometric morphism followed by a so called “essentially anisotropic”
geometric morphism, and that connected atomic morphisms are exactly the quotients by
open isotropy actions, hence providing a form of Galois theory for general (unpointed)
connected atomic geometric morphisms.

1. Introduction

In [4], J.Funk, P.Hofstra and B.Steinberg have introduced the idea of isotropy group of
a topos. They have shown that any Grothendieck topos T has a canonical group object
ZT called the isotropy group of T which acts (also canonically) on every object of T ,
and such that any morphism of T is compatible with this action. They have also been
considering the “isotropy quotient” TZ which is the full subcategory of T of objects on
which the action of ZT is trivial, it is a new Grothendieck topos (different from T if ZT
is non-trivial) endowed with a connected atomic geometric morphism T → TZ . It also
happens that in some case this topos TZ can have itself a non-trivial isotropy group and
this construction can be iterated, which has been referred to as “higher isotropy” (see [3])

It has also been observed that this isotropy group is the internal automorphism group
of the universal point of T . For example if T is a classifying topos S[T] for some geometric
theory T, then the isotropy group is the internal automorphism group of the universal
model of T in S[T]. This was first conjectured by Steve Awodey and a result of this kind
appears in the PhD thesis of his student Spencer Breiner ([1]). From there, following
some classical ideas from topos theory (see for example [2]) it is natural to look at the
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automorphism group of a point (or of a model of a theory) not as a discrete group but as
a topological or better a localic group. This suggests that the isotropy group should arise
naturally as a localic group.

The goal of this paper is to develop this idea: We introduce in section 2 the isotropy
group of an object in a general weak (2, 1)-category with pseudo-limits. The localic
isotropy group of a topos corresponds to a special case of this construction, in the category
of Grothendieck toposes. The isotropy group of an object X is an object that classifies
pairs made of a generalized element of X and an automorphisms of that element, it is
a special case of the free loop space in homotopy theory. We show that every object of
the slice category C/X has an action of this isotropy group. In the case of topos theory
this means that every topos over a fixed Grothendieck topos T has such an action by the
localic isotropy group of T . This includes in particular an action on every object of T , via
the action of the isotropy group on T/X → T . In section 3, we briefly review a well known
result of A.Joyal and M.Tierney (in [8]) that every topos is a topos of equivariant sheaves
on an open étale-complete localic groupoid, and we show how to compute explicitly the
localic isotropy group and its isotropy action from such a description. This is our main
source of example for this theory. In section 4 we introduce the notion of isotropy quotient
adapted to the localic isotropy group, i.e. the fact that the subcategory of T of objects
on which the isotropy action is trivial, is a topos TG endowed with a hyperconnected
geometric morphism T → TG. It is no longer the case in general that the quotient map
is atomic. One can also consider isotropy quotients by arbitrary localic groups endowed
with an “isotropy action” i.e. a morphism to the isotropy group.

Section 5 is the most important and technical. We focus on what happens when we
take an isotropy quotient by a localic group which is locally positive (i.e. open, or overt),
in this case one recovers that the map T → TG to the isotropy quotient is atomic and
connected, and contrary to the ordinary case one gets that the localic isotropy group of
the isotropy quotient is nicely controlled by the isotropy group of the initial topos and the
group which serves to construct the quotient, preventing in particular any kind of “higher
isotropy” phenomenon in this case.

Conversely we also prove that any connected and atomic geometric morphism can be
seen as an isotropy quotient by a locally positive isotropy group. Finally we see that any
topos admits a “maximal positive isotropy quotient” which produces for any topos T a
connected atomic geometric morphism T → TI+ where TI+ is “essentially anisotropic”
i.e. the isotropy group of TI+ has no locally positive sublocales other than 1. Applying
this to an arbitrary basis gives a unique factorization of any geometric morphism into a
connected atomic morphism followed by an essentially anisotropic morphism. However,
this does not produces an orthogonal factorization system because the class of essentially
anisotropic morphisms is not stable under composition.

Finally in section 6 we explain how the ordinary isotropy group mentioned in the
beginning of the introduction (which we call the étale isotropy group) relates to our
localic isotropy group and how the theory developed in [4] fits into ours.
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All toposes considered in this paper are Grothendieck toposes over some base elemen-
tary topos S with a natural number object. By that we mean that they are (equivalent
to) toposes of S-valued sheaves over some S-internal site, or equivalently that they are
bounded S-toposes. Morphisms of toposes are the geometric morphisms over S. The 2-
category of Grothendieck toposes and geometric morphisms over S is denoted Top (with
the convention that 2-morphisms are the natural transformation between the inverse im-
age functors).

In particular everything done in this paper can be done over an arbitrary base topos
and we will use this to obtain relative versions of results proved over S.

Also, even though Top actually is a strict to 2-category, we follow the ∞-categorical
tradition to treat it as a weak 2-category (i.e. a bi-category). In particular all limits
mentioned are by default pseudo-limits and when one says that two objects are isomorphic
(or in an abuse of language “the same”) we actually just mean that they are equivalent
(as actual isomorphism and strict limits are not the correct notion in a bicategory, for
example, they are not preserved by equivalence of bicategories).

If T is a topos, we will tend to identify internal locales in T (i.e. T -locales) with the
corresponding localic T -topos of T -valued sheaves over them. In particular, the product
in the category of T -locale is denoted ×T as it coincides with the fiber product over T
in the category Top. If L is a locale in T (or a localic T -topos) and f a geometric
morphism f : E → T we denote by f ]L the pullback of the locale L to E along f , i.e.
the E-locale corresponding to the completion of the pullback of the T -frame defining L.
It also corresponds to the pseudo-pullback in the 2-category of toposes of L → T along
f : E → T .

Finally the paper relies a lot on relatively advanced tools of topos theory and the reader
will need some familiarity with those. Section 2 takes place in an arbitrary 2-category and
uses almost no topos theory (one just needs to know that the 2-category of Grothendieck
toposes over a base has finite pseudo-limits). Section 3 exploit the groupoid representation
theorem of A.Joyal and M.Tierney ([8]), and some familiarity with it will clearly be of
help. We refer to descent theory as well (also introduced, and very nicely presented in
[8]). Section C5 of [6] also covers these topics. For Section 4 one needs to know what
are hyperconnected geometric morphisms (see [6, A.4.6]) and one of the remarks relies on
an understanding of how colimits of toposes are computed (or equivalently the existence
of colimits and the existence of the object classifier topos S[O], i.e. the classifying topos
of the theory of objects). Some understanding of how the internal logic of toposes works
will be useful at several places, but is only really necessary for section 5. Overall, section
5 is the one that really require a lot of topos theoretical material. Good knowledge of
the theory of open geometric morphisms [6, C3.1] and of atomic geometric morphisms
[6, C3.5], as well as basic descent theory (along open maps) as in [6, C5.1] (or in the
nice exposition in [8] already mentioned above). The notion of fiberwise closedness for
sublocales (from [6, C1.1], just above lemma C1.1.22) will be mentioned several time in
section 5 and 6, but these can be omitted if the reader is unfamiliar with this notion, it
is essentially just a slight modification of the notion of closed sublocale which in some
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situations is better behaved when one works over a non-boolean basis. Section 6 will
require strictly less material, it will probably be more interesting to a reader that already
knows about the classical isotropy theory of [4], but this is not completely necessary.

I also want to thank a few people: first this paper might have never existed if Pieter
Hofstra and Jonathon Funk had not push me to write it after I mentioned these results
to them. The second version paper has been notably influenced by a summary of this
work written by Mike Shulman on nLab which was illuminating even to me. Finally, the
anonymous referee made some very helpful remarks about the first version and pushed
me to considerably improve several aspects of the paper, I’m also thankful for the number
of typos he corrected.

2. Isotropy group and isotropy action in a 2-category

While we are mostly concerned in this paper with the isotropy group of toposes, it appears
that the existence of such an isotropy group and isotropy action is a general fact about 2-
categories. The anonymous referee suggested that we presented this theory in its general
form. Though we haven’t really been able to find references in the literature that present
the following construction, it was clearly known before this work, and what follows is by
no means new.

In this section we work with a general weak (2, 1)-category C, i.e. a bi-category in which
every 2-cell is invertible. One writes ◦0 for horizontal composition (i.e. composition of
1-arrows, horizontal composition of 2-arrows and whiskering of a 1-arrow and a 2-arrow)
and ◦1 for vertical composition of 2-arrows.
C is assumed to have all finite pseudo-limits. As we will only consider the appropriate

2-categorical notion, we will say limits instead of pseudo-limits, when we say that an
object has a group structure, we mean that the operation G × G → G is associative up
to a 2-cell satisfying Mac Lane pentagon, and the “group-like” condition, which can be
formulated for example as the fact that the map G×G→ G×G, given by multiplication
on the first component and projection on the second component, is invertible, this can
also be encoded as the existence of an “inverse” function G→ G. Similarly, an action of
G on an object X is a map G × X with a compatibility 2-cell between the two natural
maps G × G × X ⇒ X satisfying Mac Lane pentagon. By a presheaf on C we mean a
pseudo-functor from C to the 2-category of groupoids, the Yoneda embedding from C to
the bi-category of presheaves is denoted Y . When the 2-cells necessary for any of these
structures are clear we will not mention them to keep the exposition light.

Note that the only example we have in mind is the category Top mentioned in the
introduction, i.e. the 2-category of Grothendieck S-toposes, geometric morphisms between
them and (invertible) natural transformations between their inverse image functors. Here
S is any elementary topos, with a natural number object. We will also look at the 2-
category of groupoids to give a simple example.

2.1. Definition. Fix X ∈ C one denotes by IX the presheaf on C:
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IX(T ) = {f : T → X, θ : f ⇒ f}
with the morphisms between (f, θ) and (f ′, θ′) being the η : f ⇒ f ′ such that θ′ ◦1 η =

η ◦1 θ, and functoriality along h : T ′ → T given by (f, θ) 7→ (f ◦0 h, θ ◦0 h).

2.2. Proposition. The presheaf IX is representable by the pullback:

IX X

X X ×X

Moreover, the two maps IX → X are both equivalent to the map IX → Y(X) given on
presheaves by (f, θ) 7→ f

Proof. Let IX be defined as the pullback in the proposition, Y(IX) is equivalent to the
presheaf:

Y(IX)(T ) = {f, g : T → X; θ1, θ2 : f ⇒ g}
with the natural choice of morphisms and functoriality. This presheaf is functorially

equivalent to IX via:

(f, θ) 7→ (f, f, θ, Id)
(f, θ−1

2 ◦1 θ1) ←[ (f, g, θ1, θ2)

The image by the Yoneda embedding of IX×XIX is equivalent (over X) to the presheaf:

T 7→ {f : T → X, θ1, θ2 : f ⇒ f}
And more generally, the n-fold fiber product of IX over X corresponds to the similar

presheaf with n-automorphisms θ1, . . . , θn : f ⇒ f . One can hence define a map:

IX ×X IX → IX

sending (f, θ1, θ2) to (f, θ1 ◦1 θ2) (functoriality boils down to the exchange law).

2.3. Proposition. IX is a group object in C/X , with the group structure given by com-
position of 2-cells.

Indeed, one has an isomorphism between the two maps

IX ×X IX ×X IX ⇒ IX

using the description of the n-fold product of IX over X given above, the pentagon
axiom can be checked by using the description of the 4-fold product and inverses are
obtained using the same techniques.
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2.4. Example. Let’s give an elementary examples of this. Let C be the 2-category of
groupoids. Take X = BG to be the groupoid with one object ∗ and G as its automorphism
of ∗. As any groupoid is a coproduct of such groupoids, this is not far from being the
general situation. The isotropy group of BG is the groupoid that classifies a point of BG
together with an automorphisms of this point. This groupoids has one object (∗, g) for
each element g ∈ G, and it has automorphisms given by h : (∗, g)→ (∗, g′) where h is an
element of G such that g′h = hg, the map to BG send h : (∗, g) → (∗, g′) to h : ∗ → ∗.
So it corresponds to the action groupoid of G acting on itself by conjugation, with its
canonical map to BG.

The 2-category C/BG of groupoids with a map to BG is equivalent to the 2-category of
groupoids endowed with an action of G; given a groupoid Y with a G action one attaches
to it a groupoid over BG by forming the crossed product groupoid YoG, with its canonical
map to ∗ o G = BG. Through this equivalence, the IX ∈ C/X we computed above can
be identified with G seen as a discrete groupoid (with no non-identity morphisms) and G
acting on it by conjugation. The multiplication of G: G × G → G and the inverse map
G→ G are both equivariant for the conjugation action, so G with the conjugation action
is indeed a group object in the category of groupoids with an action of G.

2.5. Proposition. Any object of the category C/X has a canonical action, in C/X , by
the group object IX , called the isotropy action. Any morphism in C/X is canonically
equivariant for this action, more generally the functor from C/X to the 2-category of objects
of C/X endowed with an action of IX endowing each object with its canonical action is
fully faithful.

The main point in the proof of this proposition is that a morphism in C/X between
two objects f : A → X and g : B → X is given by a pair of a 1-arrow h : A → B and a
2-arrow θ : f → g ◦0 h, the action of IX on an object will be on the second component
only. In particular, we emphasize that the action of IX on an object Y of C/X , as a map
IX ×X Y → Y can be non-trivial as a morphism in C/X but its image by the “forgetful”
functor C/X → C will always be trivial (i.e. the projection map).

Proof. Let f : Y → X be an object of C/X . The product IX ×X Y can be described as
the presheaf on C :

Hom(Z, IX ×X Y ) ' {v : Z → Y, θ : f ◦ v ⇒ f ◦ v}
with the obvious morphisms and functoriality. The map to X is just f ◦ π2 : (v, θ) 7→

f ◦v. One can hence define the action IX ×X Y → Y as π2 : (v, θ) 7→ v but with the 2-cell
θ, instead of the identity, to fill the triangle:

Ix ×X Y Y

X

π2

f◦π2
f
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The fact that this is an action and all the other claims are easy verify from this
description, for example, if f : Y → Z and α : g → h ◦ f is a morphism in C/X from
g : Y → X to h : Z → X, then saying that f is IX-equivariant is the data of a 2-cell in
C/X making the square:

IX ×X Y IX ×X Z

Y Z

One can take the identity as this 2-cell, the non-trivial part is to check that this is
indeed a morphism in C/X i.e. that the two different 2-cells, obtained by both sides of the
square which asserts that the map IX ×X Y → Z is a map in C/X , are equal. But on both
sides they are just the composite of α with the canonical automorphism θ of the arrow
IX → X.

2.6. Example. On the example of BG in the 2-category of groupoids (see 2.4) the
isotropy action corresponds to the fact that for any groupoid Y with an action of G, the
action map G × Y → Y is G-equivariant when the G component is endowed with the
conjugation action. Hence any object of C/X has a canonical (and functorial) action of
IX = G with the conjugation action.

All the above can be applied to slices of the category C itself:

2.7. Definition. If f : X → Y is a morphism in C, one denotes by IX/Y the isotropy
group of X seen as an object of C/Y .

One immediately obtains that:

• IX/Y can be defined as the pullback:

IX/Y X

X X ×Y X

• As an object of C, IX/Y represents the presheaf:

Z 7→ {v : Z → X, θ : v ⇒ v|f ◦0 θ = Idf◦0v}.

Indeed, the θ satisfying this last condition are exactly the 2-cell in C/Y .

• From the previous point it follows that there is a group morphism (over in C/X)
IX/Y → IX and the isotropy action of IX/Y on an object of C/X factors through the
action of IX and this morphism.

In terms of presheaves, this morphism just forget the condition f ◦0 θ = Idf◦0v.
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2.8. Lemma. Let f : X → Y be a morphism in C. Let f ∗IY be the pullback of the isotropy
group of Y to X, then there is a pullback square:

f ∗IY X

X ×Y X X ×X

∆

Proof. Indeed a morphism to this pullback is the data of a morphism h to X, a pair
of morphism h1,h2 to X, an isomorphism θ between f ◦ h1 and f ◦ h2 and a pair of
isomorphism h1 ' h ' h2. But this boils down to the data of a morphism h to X
together with an automorphism of f ◦h as a morphism to Y , which is exactly a morphism
to f ∗IY . This can also be reformulated in terms of pullback squares:

The two squares below are pullback, so the outer rectangle also is:

f ∗IY IY Y

X Y Y × Y

∆

f ∆

and in

f ∗IY X ×Y X Y

X X ×X Y × Y

∆

∆ f×f

the rightmost square is a pullback for formal reasons and the outer rectangle is a
pullback because of the observation above, so this proves that the leftmost square is also
a pullback.

2.9. Proposition. Let f : X → Y be a morphism in C. There is a natural comparison
map IX → f ∗IY which is a group morphism in C/X . Moreover this comparison map fits
into a pullback square:

IX f ∗IY

X X ×Y X∆

Proof. The comparison map is easily defined in terms of maps of presheaves: A morphism
to f ∗IY is the data of a morphism v to X together with an automorphism of f ◦ v. A
morphism to IX is the data of a morphism into X together with an automorphism of this
morphism. One easily associates to it a morphism to f ∗IY by simply applying f ◦0 to
the automorphism.



1326 SIMON HENRY

This comparison map can be equivalently obtained from the pullback:

IX f ∗IY Y

X X ×Y X Y × Y

∆

∆ Id×Id

Here the rightmost square is the pullback square of the lemma and the outer rectangle
is the definition of IX as a pullback, which proves the existence of this comparison map,
and moreover that this comparison map is a pullback of the diagonal map X → X×Y X.

2.10. Proposition. Let f : X → Y be a geometric morphism, then IX/Y is the kernel
of the comparison map above, i.e. the sequence:

1→ IX/Y → IX → f ∗IY

is exact.
In particular, if IY = Y then IX/Y ' IX .

Proof. This is clear on generalized points: A morphism to IX/Y is by definition a mor-
phism v to X and an automorphism φ of v such that f ◦ φ is the identity. Such a couple
(v, φ) without the last condition is the same as a morphism to IX and the last condition
exactly says that the image into f ∗IY is the constant equal to the unit element.

This can also be obtained from the pullback square of proposition 2.9, indeed the
kernel of IX → f ∗IY is the pullback of this map along the unit X → f ∗IY , but in:

IX/Y X

IX f ∗IY

X X ×Y X∆

the bottom square is the pullback square of proposition 2.9 and the outer rectangle is
the definition of IX/Y , so the top square is also a pullback.

We conclude this section by some remarks more specific to the category of toposes. We
now work in the category Top of Grothendieck S-topos for S an elementary topos (with
a natural number object), one call objects of Top just “toposes”. Equivalently, one works
in the (equivalent) 2-category of bounded geometric morphism to S. This category is seen
as a (2, 1)-category by just dropping the non-invertible 2-arrows, it has all pseudo-limits
(see [6, B4.1.1].
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The category Top/T is equivalent to the category of Grothendieck T -topos, so the
isotropy group of T is going to be a T -topos and it will act on every other T -topos.
Among the T -toposes one has in particular the ”étale” T -topos, which corresponds to
the geometric morphisms of the form T/X → T for X a sheaf over T (i.e. an object of
the topos T ). These form a full subcategory of the 2-category Top/T which is equivalent
to the 1-category of sheaves of sets over T (i.e. the category T itself), hence one recovers
in this way an action of the isotropy group on objects of T .

Another interesting subcategory of TopT is the category of localic geometric mor-
phisms to T , which is known to be equivalent to the category of T -locales, i.e. the
opposite of the category of frame objects in T . This subcategory has the advantage
of being (equivalent to) a 1-category and hence avoids all the 2-categorical difficulties.
Moreover the isotropy group of T itself belongs to this subcategory.

2.11. Proposition. For any topos T , the morphism IT → T is localic, i.e. it corre-
sponds to an internal localic group in T .

Proof. By lemma 1.2 of [7], the fact that there is an internal locale IT in T with this
property corresponds to the fact that the geometric morphism IT → T constructed above
is localic, which is the case because the map ∆ : T → T × T is localic for any topos by
[6, B3.3.8], and that the pullback of a localic morphism is again localic by [6, B3.3.6].

2.12. Definition. We define the localic isotropy group IT of a topos T as this internal
localic group object.

One also similarly defines the localic relative isotropy group IT /E when T → E is in
Top/E as its isotropy group in the 2-category Top/E .

3. The case of localic groupoids

It is a remarkable result, due to A.Joyal and M.Tierney in [8], that every Grothendieck
topos can be represented as the topos of equivariant sheaves on an open localic groupoid.
If G is a localic groupoid with G0 its space of objects and G1 its space of arrows, an
equivariant sheaf over G is a sheaf F over G0 such that the étale space of F , EtF → G0

is endowed with an action of G1:

G1 ×G0 EtF → EtF

satisfying the usual axioms for a groupoid action (see for example [8], [11], or [6,
B3.4.14(b)]) . The category of equivariant sheaves over a localic (or topological) groupoid
always forms a Grothendieck topos.

The goal of this section is essentially to explain how to get a description of the localic
isotropy group and its isotropy action in terms of such a groupoid (more precisely in
terms of a representation by an étale-complete groupoid, see below). This is the main
source of examples of easily computable isotropy groups. As any topos admits such a



1328 SIMON HENRY

representation as a localic groupoid, it could be used to give an alternative definition of
the localic isotropy group and of the isotropy action.

We start by reminding the reader of the key elements of the representation theorem
of A.Joyal and M.Tierney ([8]). It relies on the following succession of key steps:

• For any topos T , there exists an open surjection G0 � T with G0 a locale.

• Given any open surjection as above, G1 = G0 ×T G0 is a locale and the two projec-
tions G1 ⇒ G0 are open surjections.

• G1 ⇒ G0 has the structure of a localic groupoid. The source and target are the two
projections, the identity is the diagonal map G0 → G0×T G0, the inverse operation
is the exchange of components G0×T G0 → G0×T G0, and composition is obtained as
the projection forgetting the middle component in: G1×G0G1 ' G0×T G0×T G0 →
G0 ×T G0 = G1.

• The fact that open surjections are effective descent morphisms for sheaves exactly
means that sheaves over T can be identified with sheaves over G0 endowed with an
action of G1, i.e. T can be identified with the topos of equivariant sheaves on the
groupoid G1 ⇒ G0.

Now, open surjections are also of effective descent for locales, so one can also give a
description of the category of T -locales as G0-locales, which are equivalent to locales with
a map to G0, together with an action of G1 (in the sense of a map G1×G0L → L satisfying
the usual conditions). In fact, in [10], I.Moerdijk have shown that open surjections are
of effective descent for toposes themselves (in an appropriate 2-categorical sense) so that
one can even describe toposes over T as toposes over G0 with an action of G1 (again, in
an appropriate 2-categorical sense).

Note that, as mentioned above, for any localic groupoid G1 ⇒ G0, one can form a
topos T of equivariant sheaves over it. If the groupoid is open (i.e. the two maps G1 ⇒ G0

are open) the map G0 → T corresponding to the functor forgetting the action of G1 is an
open surjection, but G1 does not necessarily coincide with G0 ×T G0. One hence needs
the following definition, which as far as we know was first introduced by I.Moerdijk in [9]:

3.1. Definition. One says that an open localic groupoid G1 ⇒ G0 is étale-complete if
it is equivalent to the groupoids G0 ×T G0 ⇒ G0 for some open surjection G0 � T .

Of course, in this definition, T is always the topos of equivariant sheaves on G1 ⇒ G0.
The results of this section will only apply to étale-complete groupoids, otherwise it is not
possible to describe T -locales in terms of the groupoids.

3.2. Proposition. Given an open étale-complete localic groupoid G : (G1 ⇒ G0) the
isotropy group of the topos T of equivariant sheaves over G, and its isotropy action can
be described as follow:
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• As a locale over G0, it is the pullback of G1 along the diagonal of G0. I.e. in terms
of generalized points (in the category of locales), it is the locale of pairs (x, θ) where
x ∈ G0 and θ is an automorphism of x in G.

• The group structure of IT over G0 is the restriction of the composition operation and
inverse operation of groupoid structure on G1 ⇒ G0. I.e. in terms of the generalized
points description above, it is the composition and inverse of automorphisms in the
θ-component.

• The action of G1 on IT (making it a locale in T ) is the conjugation action. I.e. in
terms of generalized points it attaches to a (x, θ) ∈ IT and a g : x → y in G1, the
element (y, gθg−1) ∈ IT .

• Given any locale L over G0 with an action of G1, seen as a T -locale, the isotropy
action of IT on L is simply the restriction of the action of G1 on L to IT .

Proof. We call f the map G0 → T . One will check all four points in terms of gener-
alized points. The first point of the proposition is about describing the pullback of the
isotropy group of T along f . i.e. the object which classifies the pairs (x, θ) where x is
a (generalized) point of G0 and θ is an automorphism of f(x) as a point of T . On the
other hand, by its definition as a pullback, G1 classifies pairs of points x, y in G0 together
with an isomorphism between their images in T , so the pullback of G1 along the diagonal
map G0 → G0 × G0 indeed classifies the data of a point x ∈ G0 and θ : f(x) → f(x) an
automorphism of points of T and hence is isomorphic to the pullback of IT to G0. The
second point is immediate from this description in terms of generalized points.

The third point is a little harder: One first needs to translate the action of G1 on a
pullback to G0 of an object living over T in terms of generalized points. If g : X → T
is a localic morphisms over T , then the pullback f ]X of X to G0 classifies (up to unique
equivalence) the triples of p ∈ G0, x ∈ X and α : f(p)

∼→ g(x) an isomorphism between
their images in T . The pullback G1 ×G0 f

]X classifies (again up to equivalence) data of
q, p ∈ G0, θ : f(q)

∼→ f(p), x ∈ X and α : f(p)
∼→ g(x), such a generalized point can be

sent (functorially) to q,x and α ◦ θ in f ]X defining a map G1 ×G0 f
]X → f ]X and this

corresponds to this action.
Our description of the pullback f ]IT as classifying pairs of p ∈ G0 and θ : f(p)

∼→ f(p)
is not in the form of a triple (p, x, α) as above. Such a description gives us instead the data
of p ∈ G0, t ∈ T , θ′ : t

∼→ t and α : f(p)
∼→ t, the equivalence between the two description

is given by (p, t, θ′, α) 7→ (p, α−1tα) in one direction and (p, θ) 7→ (p, f(p), θ, Id) in the
other direction. Combining the description of the action the previous paragraph with
these two equivalences immediately gives the conjugation action as claimed.

The fourth point is very similar. One takes g : X → T an arbitrary localic morphism.
Its pullback f ]X toG0 can be represented as the object whose generalized points are triples
y ∈ G0, x ∈ X and θ : f(y)

∼⇒ g(x). If (y, α) ∈ f ]IT is a generalized point, (i.e. y is a
generalized point of G0 and θ is an automorphism of f(y)), then essentially by definition
of the isotropy action it acts on the pullback f ]X by composing the automorphisms θ
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by α, but this indeed exactly corresponds to the restriction of the action of G1 described
above restricted to automorphisms.

This proposition allows to give a description of the localic isotropy group on a lot of
examples. In fact as any topos admit such a description as a localic groupoid it can be
virtually applied to any topos, though in some case the localic groupoid description may
be very hard to find explicitly, for example for a presheaf topos. We mention the following
very specific case:

3.3. Remark. A localic group1 is said to be étale-complete if it is étale-complete when
seen as a localic groupoid whose G0 is the terminal locale. This happens for example if
G is a discrete group, or if G is a pro-discrete localic group, or G is the localic automor-
phism group of some algebraic structure (for example if G is the localic group Aut(N),
which happen to be a topological group assuming the axiom of choice). In this case, the
associated topos BG is the topos of sets endowed with a continuous action of G, Internal
locales are locale with a G-action and the localic isotropy group is G with its action on
itself by conjugation. It acts on every G-Sets (or G-locales) by the canonical action of G.
Exactly as in the case of the category of groupoids treated in 2.4 and 2.6, one has that
given a group G acting on some object X, the action map G×X → X is G-equivariant
when G is endowed with its conjugation action.

4. Isotropy quotient

4.1. Definition. If G is any localic group over T endowed with an isotropy action, i.e.
a morphism to IT , we define TG to be the full subcategory of T of objects on which the
isotropy action of G is trivial. TG is called the isotropy quotient of T by G.

4.2. Proposition. TG is a topos, and the inclusion of TG in T is the inverse image
functor of a hyperconnected geometric morphism p : T → TG.

See [6, A4.6] for the definition and basic properties of hyperconnected geometric mor-
phisms.

Proof. TG is a full subcategory of T by definition, and because the action of G is
equivariant on all morphisms, it is stable under (S-indexed) colimits, finite limits, sub-
objects and quotients. This is enough to imply the proposition.

Note that the isotropy quotient can be defined in a general 2-category as the following
colimit (if it exists). If G is a group object of CX endowed with an isotropy action G→ IX ,
the isotropy action of G is determined by a certain 2-cell θ : f ⇒ f where f is the map
G→ X. One can then define the isotropy quotient of X by G as the object XG which is
universal for having a morphism v : X → XG such that v ◦0 θ = Id.

1If one does not assume the law of excluded middle, one might also want to assume that the map
G → ∗ is open. One can also work assuming that the group is compact instead, but we will not discuss
this here.
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Indeed this can be described as a type of pseudo-co-limits (it is a co-equifier), all such
colimits exists in the category of toposes. Objects of the topos XG (defined as this colimit)
can be described as morphism from XG to the topos S[O] which classifies objects, but the
universal property of XG shows that those are exactly the morphisms from X to S[O] on
which the isotropy action is trivial, so this indeed corresponds to the topos TG mentioned
above. Now, very little can be said about this construction in a general 2-category and we
will only use it in the case of toposes, where the first presentation given is considerably
more useful.

4.3. Proposition. Let f : E → T be a geometric morphism, let G be a localic group
over E endowed with a morphism v : G→ IE . The following conditions are equivalent:

• The composite G→ IE → f ]IT is equal to 1.

• The morphism v admits a (unique) factorization G→ IE/T → IE .

• The isotropy action of G is trivial on every object of the form f ∗(X) for X an object
of T .

• The geometric morphism f factors as E → EG → T

Proof. The equivalence of the first two points is exactly proposition 2.10. The equiva-
lence of the second and the third points follows immediately from the universal property
of IE/T , and the equivalence between the last two points follows immediately from the
definition of EG.

The proposition above has an important corollary:

4.4. Corollary. Let E → T be an isotropy quotient of a topos E, I.e. T = EG for some
localic group G with an isotropy action G→ IE , then T = EIE/T .

Proof. One has a factorization into E → EIE/T → T corresponding to the relative isotropy
quotient of E over T .

And as E → EG factor through T one has that G → IE factor through IE/T by
proposition 4.3, and hence a second factorization E → T → EIE/T , corresponding to the
fact that T is an isotropy quotient by a “smaller” isotropy action.

In both cases the inverse image functors are inclusions of full subcategories so the
existence of these two factorizations implies the result.

The corollary above implies that one has a “Galois theory” classifying the isotropy
quotient of a given topos E in terms of certain subgroups of its isotropy group: those
that arise as IE/T for some isotropy quotient f : E → T . It is also not hard to see that
any subgroup that appears as IE/T for f : E → T a general geometric morphism also
appears as IE/T ′ for T ′ the isotropy quotient EIE/T . Unfortunately we are lacking of a
good characterization of those.
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4.5. Open problem. What are the subgroups of IT that appear as relative isotropy group
IT /E of a geometric morphism f : T → E ?

The description of the isotropy group of a topos represented by an étale-complete
localic groupoid given in proposition 3.2 also produces a nice description of the isotropy
quotient of such toposes:

4.6. Proposition. If T is the topos of equivariant sheaves on an open étale-complete
localic groupoid G = (G1 ⇒ G0) then the maximal isotropy quotient of T is the topos of
equivariant sheaves on G on which the action of G1 restricted to the subspace of “auto-
morphisms” I ⊂ G1 is trivial.

By the subspace of automorphisms we mean the pullback:

I G1

G0 G0 ×G0
∆

The proposition follows immediately from the fact (proposition 3.2) that I → G0 above
is (up to descent along G0 → T ) the isotropy group of the topos and that the isotropy
action is obtained by restricting the action of G1 to I along the inclusion I ↪→ G1.

The more general isotropy quotient of such toposes also have a similar description:
They are isotropy quotient by subgroups N ⊂ I (over G0) which are stable under the
conjugation action of G1 (which we would like to call “Normal subgroup”) and the corre-
sponding isotropy quotient are the sheaves on which the action of N is trivial.

An easy special case of this is that if G is an étale-complete open localic group,
any normal subgroup N ⊂ G define an isotropy action, and the corresponding isotropy
quotient is the subcategory of objects of BG on which the action of N is trivial, i.e. it
corresponds to the topos of G/N -sets. It is unclear to us though under what condition
G/N is again étale-complete, its étale-completion could in general be a quotient of G by
a larger normal subgroup N ⊂ N ⊂ G. This being said we conjecture that in this specific
case this does not happen (at least assuming excluded middle, otherwise some assumption
of local positivity might be needed).

4.7. Example. Finally, it is important to note that without any assumptions on G it is
hard to say more about the map T → TG. Here is an interesting example where this map
is relatively general:

Let T be the classifying topos of the theory of inhabited objects, i.e. the theory with
one sort O, with no terms and with only one axiom: ∃x ∈ O.

Equivalently, T is the category of functors from the category of finite inhabited sets
to the category of sets. One takes G be the full isotropy group of T , and we will see that
the isotropy quotient TG is just the terminal topos, i.e. the category of sets.
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Indeed, for any finite inhabited set X, the functor F 7→ F (X) from T to Sets cor-
responds to a point of T , and its automorphisms are exactly the automorphisms of X,
in particular, this shows that for F in TG the action of the isomorphisms of X on F (X)
should be trivial, as those can be factored into the isotropy action.

But one can easily see that a presheaf satisfying this condition is automatically con-
stant, and hence that TG is the category of sets.

Note that in this case, T does not “look like a category of group actions” at all and
that the diagonal map T → T ×TG T is not a stable epimorphism (i.e. an epimorphism
whose pullbacks are also epimorphisms) which is what we would need to apply the same
kind of techniques as in the locally positive case treated in the next section.

5. Locally positive isotropy

In this section we will restrict our attention to the special case of an isotropy quotient TG
by a localic group G→ IT such that G is “locally positive”, i.e. such that the map G→ T
is open. It appears that in this case one has considerably more control on the isotropy
quotient: one recovers that as in [4] the map T → TG is connected atomic (proposition
5.4) and moreover one has a very precise control of the isotropy group of TG (proposition
5.5). We will show that any connected atomic map can be obtained as such an isotropy
quotient (proposition 5.9). We will show that any topos has a maximal locally positive
isotropy group and that the corresponding isotropy quotient has no such locally positive
isotropy action (proposition 5.8). In particular, this will produce (proposition 5.10) a
unique factorization of any morphism into a connected atomic morphism followed by an
“essentially anisotropic morphism”, i.e. a morphism that has no relative locally positive
isotropy action. This however does not exactly constitute an orthogonal factorization
system (see remark 5.11).

We start by some recall on local positivity and open maps:

5.1. Definition. An open subspace U of a locale X is said to be positive if whenever U
is written as a union of open subspaces:

U =
⋃
i∈I

Ui

the indexing set is always inhabited: ∃i ∈ I.
A locale is said to be locally positive if every open subspace can be covered by positive

open subspaces.

If one uses classical logic, this notion is vacuous: “positive” is just equivalent to non-
empty and every locale is locally positive, simply because any non-empty open subspace
is the union of just itself and the empty open subspace is the union of the empty family.
But within the internal logic of a topos it is a non-trivial notion:
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5.2. Proposition. A locale L internal to a topos T is internally locally positive, if and
only if the geometric morphism:

shT (L)→ T
is open. It is an open surjection if and only if L is internally positive and locally

positive.

Proof. This is [6, C3.1.17]

So for a locale, locally positive is synonymous with “open” or “overt”. We prefer the
terminology “locally positive” to avoid the annoying double meaning of “open sublocales”.

Note that in a locally positive locale L if U =
⋃
Ui then one also has:

U =
⋃

i s.t. Ui is positive.

Ui.

Indeed, each Ui is a union of positive open subspaces hence U is the union of all the
positive open subspaces which are included in one of the Ui, but each such open subspace
is automatically included in a positive Ui, and hence U is the union of the positive Ui.

5.3. Lemma. Let G be a localic group over T with a morphism θ : G → IT . Assume
that the map from G to T is an open geometric morphism, then the geometric morphism
p : T → TG is essential i.e. the inclusion functor p∗ has a left adjoint.

Proof. Let X be an object of T , and let θX : G ×X → X be the isotropy action of G
on X. We will define an equivalence relation on X by the following internal formula:

x ∼ y := the open subspace {g ∈ G|gx = y} is positive

One can see that (working internally in T and using that internally G is locally posi-
tive) it is an equivalence relation. Let XG be the quotient of X by this relation. Then:

• The action of G on XG is trivial, i.e. XG ∈ TG:

Indeed, as any map in T the quotient surjection X → XG is G-equivariant. In-
ternally, let x ∈ X and G be the union for y ∈ X of the open subspace Gx,y =
{g|gx = y}. As G is locally positive, one can also write G as the union of those Gx,y

restricted to the y such that Gx,y is positive. In particular, all those y are equivalent
to x and hence the action of G on x factors into the equivalence class of x and hence
is constant in XG. This shows that XG is an object of TG.

• Every map from X to an object of TG factors through XG:

Let f : X → Y be any morphism, with Y ∈ TG. Internally in T , let x, y ∈ X such
that x ∼ y, we will show that f(x) = f(y). If one works internally in (the topos
of sheaves over) Gx,y (see the remark just below the proof), one has a point g of G
such that y = gx, hence as Y has a trivial G action and f is G-invariant, one can
prove internally in Gx,y that f(x) = f(y). But by assumption Gx,y is positive in T ,
hence this implies that f(x) = f(y) internally in T .
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This shows that X 7→ XG is a left adjoint to the inclusion functor p∗ : TG → T and
hence concludes the proof.

It was pointed out to us that “working internally in the topos Gx,y”, when x and y
are already themselves variable of the internal language, is confusing. The following is
intended to clarify what is meant by that:

• The “high level” way to make sense of it, is simply that proving an external result
using some internal reasoning as done here is a constructively valid form a reasoning.
So it can itself be used inside an internal proof, and hence have as input variable
of the internal language. This is in this sense that I initially intended this proof to
work.

• This being said, the proof can be rephrased as follow to avoid this. One consider a
map f : X → Y where the isotropy action on Y is trivial. In order to show that
f factor in XG one needs to show that the map f equalize the two maps R ⇒ X,
where R is the object representing the equivalence relation ∼. The sentence “let
x, y ∈ X such that x ∼ y” can be replaced by “we work in T/R”, indeed, internally in
T/R one has two canonical elements of X which we call x and y, which corresponds
to the two maps R ⇒ X, and these two elements satisfies x ∼ y, moreover proving
internally in T/R that f(x) = f(y) is exactly the claim that f : X → Y equalize
R ⇒ X. Now the locale “Gx,y” does makes external sense as a localic morphism
G•,• → T/R: one first form the pullback (of locales over T ):

G•,• X

X ×G×X X ×X

∆

θX×IdX

The map G•,• → X × G × X is open (it is a pullback of ∆ : X → X × X which
is étale, hence open), and G→ T is open by assumption, so the composite G•,• →
X×G×X (π1,π3)→ X×X with the projection is also open. R→ X×X is by definition
the image of this map (which is an open subspace of X × X as the map is open,
hence a subobject of X × X in T ). So one obtains an open surjection G•,• � R.
The end of the above proof (after the parenthesis) is then a proof, using the internal
logic of G•,•, that the composites G•,• � R ⇒ X → Y are indeed equals, which
proves that the composites R ⇒ X → Y are equal as G� R is an open surjection.

In fact this last part of the proof is simple enough so that it can be done without
internal logic at all:

One can form a commutative cube (where the front and back faces are pullbacks):
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G•,• X

G′•,• Y

X ×G×X X ×X

Y ×G× Y Y × Y

∆

f

∆

(f,Id,f)

θX×IdX

f×f

θY ×IdX

Now the action map θY : Y ×G→ Y is be assumption just the projection to Y . So
the total map of this cube is:

G•,• → X ×G×X → Y ×G× Y → Y × Y

is given by the pair of maps:

G•,• → R ⇒ X → Y.

But on the other hand, by commutativity of the cube it can also be computed as:

G•,• → X → Y
δ→ Y × Y

so the two map above are indeed equal as claimed.

The proof using internal logic is definitely shorter, and it is our opinion that it is also
more intuitive and easier to understand than this second proof, but we have to admit that
it also requires more trust in the correct use of a very subtle tool. We leave the question
of which proof is better to the opinion of the reader.

5.4. Proposition. If G is a locally positive localic group in T endowed with an isotropy
action (i.e. in particular f : G → T is an open geometric morphism), then the natural
map from T → TG is atomic connected in the sense of [6, C3.5].

Proof. We will prove that the inclusion functor2 f ∗ : sh(TG)→ sh(T ) is a logical functor,
i.e. that it preserves the power object. This will prove that the morphism is atomic, and
it is connected because we already know that it is hyperconnected.

2“Sh(T )” is just our notation to distinguish a “topos” from its underlying category, in the same ways
one usually distinguish between a locale X from its underlying frame O(X) in order to avoid confusion
on the direction of arrows.
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Let X ∈ TG, let P(X) be its power object in T , in order to see that P(X) is also a
power object in TG we just have to show that its isotropy G-action is trivial.

Let Y be any object of T , and let V ⊂ X × Y be any sub-object.
V is in particular stable under the action of G. In particular if, internally, x, y ∈ Y

are equivalent under the equivalence relation constructed in the proof of lemma 5.3 and
if (v, x) ∈ V then (v, y) ∈ V as well. Hence V is the pullback of a subobject of X × YG.

This proves that any morphism from Y to P(X) can be factored into a morphism
from YG to P(X) and hence that P(X) is in TG as claimed.

Note that the conclusion of proposition 5.4 can fail without the local positivity as-
sumption, in fact proposition 5.9 below shows that an isotropy quotient f : T → E is
atomic and connected only if it can be written as an isotropy quotient by a locally positive
localic groups (although it may happen that a given isotropy quotient is both a quotient
by a locally positive group and by a non locally positive group). The example given in 4.7
also provides an explicit example where the map to the isotropy quotient is not atomic.

5.5. Proposition. Let f : E → T be a connected atomic geometric morphism. Then the
comparison map:

IE → f ]IT

is an open surjection.

So, in the case of a connected atomic morphism one has a “short exact” sequence of
localic groups:

1→ IE/T → IE → f ]IT → 1,

where we just mean by that, that the map IE → f ]IT is an open surjection with kernel
IE/T . But, as open surjections of locales are regular epimorphisms ([6, C.3.1.12]), this
implies that f ]IT is the quotient of IE by its localic normal subgroup IE/T . Moreover as
f is an effective descent morphism of locales one can really think about IT as being the
quotient of IE by IE/T , in the sense that IT can be recovered from f ]IT by descent. This is
the proposition that allows us to have some control on the isotropy group of the isotropy
quotient in the case where the isotropy quotient is by a locally positive localic group. See
proposition 5.8 below for a typical examples of this sort of idea.

Proof. By proposition 2.9 the comparison map is a pullback of the diagonal map E →
E ×T E . As open surjections are stable under pullback (see [6, C3.1.11]), it is enough
to show that the diagonal of a connected atomic topos is an open surjection. It is open
because of [6, C3.5.14], and it is a surjection by [6, C3.5.6] because it is a section of the
morphism π1 : E ×T E → E which is (hyper)connected and atomic by [6, C3.5.12].
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We now want to show that among the locally positive localic groups with an isotropy
action there is a terminal object I+

T which defines a maximal connected atomic isotropy
quotient. The idea is that thanks to the following proposition every locale (in particular
IT ) has a maximal locally positive sublocale. In particular, the following proposition is
specifically meant to be interpreted internally in a topos.

5.6. Proposition. Let L be any locale, then:

• There is a maximal locally positive sublocale L+ ⊂ L.

• Any map from a locally positive locale to L factor through the inclusion L+ ⊂ L.

• L+ ⊂ L is fiberwise closed (or weakly closed, see [6] just before C1.1.22) inside L.

• If G is a localic group then G+ is a localic subgroup

Proof. The existence of L+ follows from the fact that a co-product of a small family
of locally positive locales is again locally positive and that if X is locally positive and
f : X → L is a morphism then the (regular) image of X in L is also locally positive (this
follows from [6, C3.1.4(ii)] though the proof might actually be simpler than the translation
of this lemma). This also implies the second point. The third point follows from the fact
that the fiberwise closure of L+ in L is itself locally positive by [6, C3.1.14(ii)]. As for the
last point: the terminal locale is locally positive, hence the unit of G lies in G+, and G+

and G+ × G+ are both locally positive, hence the inversion and the multiplication map
restrict as maps G+ → G+ and G+ ×G+ → G+, both because of the second point of the
proposition. This shows that G+ is a subgroup of G.

5.7. Definition. One says that a geometric morphism f : E → T is completely anisotropic
if IE/T = {1} and essentially anisotropic if I+

E/T = {1}.

5.8. Proposition. Let f : E → T be a geometric morphism, let G be (IE/T )+ endowed
with its natural inclusion map to IE/T , then the geometric morphism EG → T is essentially
anisotropic.

Proof. To simplify notation, we work with T as our base topos, in particular all the
isotropy groups mentioned below are considered over T . Let p be the map E → EG. It is
connected and atomic by proposition 5.5 because G is locally positive.

We want to prove that I+
EG = {1}, i.e. that any morphism from a locally positive

EG-locale X to IEG is constant equal to the unit element. In the rest of the proof we will
show instead that any morphism from a locally positive E-locale to p]IEG is constant equal
to the unit element. This is sufficient to conclude because if f : X → IEG is as above then
the pullback p]X → p]IEG is a map from a locally positive E-locale to p]IEG hence, by
the claim above is constant, and as p is of effective descent for locale, p] is in particular
faithful, so this implies that f : X → IEG is constant equal to 1.

We fix such a map X → p]IEG with X a locally positive E-locale. As the comparison
map from IE to p]IEG is an open surjection (by 5.5), if one forms the pullback Y =
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X ×p]IEG IE then the projection Y → X is also an open surjection, hence Y is locally

positive, and hence the second projection Y → IE factor into I+
E = G.

But G is in the kernel of the comparison map IE → p]IEG hence, as Y → X is an
open surjection, this implies that the map from X to IEG is constant equal to 1 and hence
proves the result.

We are now ready to prove that conversely any connected atomic map is canonically
an isotropy quotient by a locally positive isotropy group:

5.9. Proposition. Let f : E → T be a connected atomic morphism, then:

• The relative isotropy group IE/T is locally positive in E.

• The topos E ×T E is equivalent to the topos of objects of E endowed with a IE/T -
action. Under this identification, ∆∗ is the functor that forget the action, π∗1 is
the functor that endows an object with the trivial action and π∗2 is the functor that
endows an object with its canonical IT /E-action.

• The natural map EIE/T → T is an equivalence of toposes.

For the proof of this proposition we will need to use some results from descent theory.
We refer the reader to [6, C5.1] for an introduction to descent theory which contains
already a lot more than what we need.

Proof. One has a pullback square:

IE/T E

E E ×T E

∆

∆

but as f is atomic, the arrow E → E ×T E is open (see [6, C3.5.14]), hence IE/T → E
also is, which proves the first point.

The map π1 : E ×T E → E corresponds internally in E to a connected atomic topos
which has a point given by ∆ : E → E ×T E hence by [6, C5.2.13] it can be identified with
the topos of objects of E endowed with an action of the localic automorphism group of
∆, but this is (by definition) the isotropy group IE/T . Following the construction of the
isotropy action shows that π∗2 indeed corresponds to endowing any object with its isotropy
action.

Moreover, f (as any hyperconnected morphism) is an effective descent morphism for
objects. Hence T is equivalent to the category of objects of E endowed with descent data
relative to p. Once we replace E ×T E by the topos of objects of E endowed with an action
of IE/T , this descent data is described as an isomorphism between an object X with the
trivial isotropy action and X with the canonical isotropy action which is the identity on
X. Hence the category of such objects endowed with a descent data is just the category
of objects whose isotropy action is trivial, which proves the third point.
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The exact same proof, together with the fact that hyperconnected morphisms are also
effective descent morphisms for locales, actually proves a stronger result: the category of
locales over T is equivalent to the full subcategory of locales over E which have a trivial
isotropy action.

In fact, using I.Moerdijk’s result from [10] that open surjections (in particular hyper-
connected morphisms) are effective descent morphisms in the 2-category of toposes, one
can even deduce that the category Top/T is equivalent to the category of toposes over E
endowed with a trivialization over E of their isotropy action.

5.10. Proposition. Any geometric morphism f : E → T has a unique factorization
(up to unique isomorphisms) as a connected atomic morphism followed by an essentially
anisotropic morphism given by:

E → EI+E/T
→ T

Proof. The factorization given in the proposition is clearly a factorization as an atomic
connected morphism (by proposition 5.8) followed by an essentially anisotropic morphism
(by proposition 5.5). We will now prove the uniqueness of the factorization.

Let E p→ F a→ T be any such factorization. Let G = IE/F . By proposition 5.9, G is
locally positive and F is canonically isomorphic to EG, and by propositions 2.10 and 5.5
applied with T as a base one has:

1→ G→ IE/T � p]IF/T → 1

G → IE/T factor through I+
E/T because G is locally positive. Over F , as p is an open

map, the topos I+
E/T → E → F is open, and hence its map to IF/T has to factor into I+

F/T
which is {1} because one has assumed that F → T is essentially anisotropic. Hence the
map I+

E/T → p]IF/T is constant, and hence G = I+
E/T which concludes the proof.

One does not get an orthogonal factorization system or the unique lifting property
because essentially anisotropic map are not stable under composition, as the following
example will show:

5.11. Example. Let T be the topos of sheaves over the real interval [−1, 1] equivariant
for the natural multiplication action of {1,−1} on [−1, 1] by multiplication, and let E be
the topos of sets endowed with an action of {−1, 1}. There is a geometric morphism from
E to T whose inverse image functor is the germ at 0 with the induced action of {−1, 1}.

The topos T is essentially anisotropic: T is attached to an étale localic groupoid (hence
open and étale-complete), so its localic isotropy group can be computed using proposition
3.2. By construction, this isotropy is trivial over every point, except over 0 where it is
{−1, 1}, with −1 being isolated. As the map p : [−1, 1] → T is étale, one can compute
the maximal positive subgroup of the isotropy group at the level of [−1, 1], but any map
L → p]I → [−1, 1] such that the composite is open have to avoid the element −1 in the
fiber over 0 ∈ [−1, 1] as it is an isolated point. So the maximal positive subgroup of I is
reduced to 1, i.e. T is essentially anisotropic. The morphism from E to T is an inclusion:
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its pullback along the map p : [−1, 1]→ T is simply the inclusion {0} → [−1, 1], hence it
is completely anisotropic (in particular, essentially anisotropic) but the composite E → ∗
is not essentially anisotropic as E has {−1, 1} as isotropy group.

On the other hand, completely anisotropic maps are stable under composition because
of proposition 2.10 applied relatively to the target of the composition, but it is not clear
at all that this produces a factorization system as general isotropy quotient by non locally
positive group can be relatively wild and we do not know if for example the isotropy
quotient by the full isotropy group is always completely anisotropic or not.

6. Comparison to the “étale isotropy group” of J.Funk, P.Hofstra and
B.Steinberg

In this section we relate the localic isotropy group IT of a topos as introduced in the present
paper to the isotropy group ZT of T introduced by J.Funk, P.Hofstra and B.Steinberg in
[4], and we explain how the two notions of isotropy quotient relate. The isotropy group
of Funk, Hofstra and Steinberg will be called the “étale isotropy group” to distinguish
it from the localic isotropy group. We refer to [4] for its definition. Though it is not
necessary to have any knowledge of this previous work to follow this section: one can take
the following proposition as the definition the étale isotropy group ZT and then all the
results of [4] that we might need can be seen as special case of the results of the present
paper.

6.1. Proposition. The étale isotropy group ZT of T , as defined in [4], is the group of
points of IT , endowed with its natural isotropy action ZT → IT .

Proof. Let ZT be the group of points of IT . For any object X of T , the morphisms
from X to ZT are the same as the morphisms of toposes over T from T/X to IT , hence
they are the same as automorphisms of the morphism from T/X to T , which is exactly the
universal property of the isotropy group defined in [4] (the compatibility with the group
structure and the functoriality are immediately checked in same way).

Note that, as it is étale, the étale isotropy group is always locally positive, so the
isotropy quotient constructed in [4] fits into the theory of quotients by locally positive
isotropy groups of the previous section.

This localic picture can be used to understand the higher isotropy phenomenon of [3]:
We start with a topos T , and I its localic isotropy group. Taking the isotropy quotient

in the sense of [4] amount to taking the isotropy quotient by Z → I. And we want to
understand the isotropy group of TZ and whether it has a non-trivial étale isotropy group
or not.

A quotient by an étale isotropy group give rise to a connected atomic morphisms
T → TZ (either by the results of [4] or by proposition 5.4), hence proposition 5.5 allows
to have some control on the isotropy group of TZ : Let Z be the relative isotropy group
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IT /TZ , It is a fiberwise closed subgroup of I which contains Z and such that the isotropy
quotient by Z and Z are the same, we conjecture that Z is always exactly the fiberwise
closure of Z, but this is not known at this point. Then the quotient I/Z has unique
descent data for the morphism T → TZ (simply because Z acts trivially on it), and the
isotropy group of TZ is obtained from this descent data. Because of lemma [6, 3.5.5(ii)],
points of the isotropy group of TZ are also obtained by descent from the points of this
quotient I/Z. So the topos TZ will have a non-trivial étale isotropy if and only if I/Z
have points.

As Z contains all the points of I, one can indeed expect that it will often be the case
that the quotient have no points, but it does not have to be true in general: a localic
quotient of a localic group I can have points that do not lift to points of I. Constructing
localic groups that have no points, or not enough point in the topos of set is a hard task,
but fortunately it is considerably easier to do so internally in a topos and one can easily
find examples where the situation we just described happen, here is such an example:

6.2. Example. Consider the localic group G = Q∗ oQp where Qp is the formal locale3

of p-adic numbers, as an additive group, and Q∗ is discrete and acts by multiplication on
Qp.

Let T be the topos of sets endowed with a continuous (smooth) action of G. G is
locally profinite, so is indeed an étale-complete group, hence because of 3.3 the localic
isotropy group of T is G endowed with its conjugation action. A point of this isotropy
group in T is a point of G which is “smooth” for the conjugation action (i.e. has an open
stabilizer for the conjugation action). These correspond exactly to the normal subgroups
Qp ⊂ G: indeed elements of Qp are stabilised by Qp which is an open neighborhood of the
unit, while no elements having a non-trivial component in the Q∗ direction are stabilized
by elements in Qp and the neighbourhood of the unit all intersect with Qp. Hence the
étale isotropy group of T is Qp endowed with the discrete topology (a group for addition)
and with the action of G by multiplication by the Q∗ component.

So TZ is the subcategory of T of objects on which the Qp component acts trivially, i.e.
it identifies with the topos BQ∗ of sets with an action Q∗. The relative isotropy group
Z = IT /TZ is Qp, this time as a localic group (still with the action by multiplication by the
Qp component), i.e. it is indeed (at least in this case) the closure of Z in I. Finally, the
quotient of I/Z is Q∗ with trivial action, hence is already étale (and has a lot of points
that don’t lift to points of I).

It can of course happen that this second isotropy quotient again has non-trivial isotropy
and so one, and this corresponds to the sequence of isotropy quotients studied in [3]. By
the construction above, this sequence can be understood at the level of the localic isotropy
group of the first topos: At each step one quotients the remaining group by the normal
subgroup of all its points (the quotient having potentially new points so that the process

3In order to avoid to explain what that means, lets assume the axiom of choice and simply take Qp to
be the locally compact topological group of p-adic numbers, which is also a localic group because of local
compactness. For an interested reader, the constructive definition of this locales have been sketched on
mathoverflow at [5]
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can keep going) and the successive higher isotropy quotients of the topos corresponds to
the sequence of isotropy quotients by the increasing kernel of this sequence of quotients.

Unfortunately, reproducing the other examples of higher isotropy given in [3] seem
difficult at this point: these mainly consist in presheaves toposes, and describing the
localic isotropy group of a presheaf topos is difficult. I believe it might be possible to do
it in full generality (more precisely, I believe it is possible to describe the positive part
of the isotropy group of a general presheaf topos), but this would requires some work, in
particular on the description of locales internal to a presheaf topos, and this is out of the
scope of the present paper. We hope to come back to that question in a future work.

Finally, there is one case where the two theories agrees:

6.3. Proposition. If the unit map T → I+
T is open, then I+

T is discrete and is the étale
isotropy group ZT . This happens if T is locally essentially anisotropic, or for example if
it is an étendu.

By “locally essentially anisotropic” one just means that T admits an étale cover T/X �
T with T/X essentially anisotropic. An étendu is a topos of equivariant sheaves over an
étale localic groupoid. These are characterized by the fact that they are “locally localic”
i.e. in particular locally anisotropic.

Proof. If the unit map of a localic group is open, then the diagonal map G → G × G
of the group is also open, because it is the pullback of the unit map along the map
(x, y)→ xy−1. The group of points always factors through I+

T , but under the assumption
of the proposition I+

T ends up being locally positive with an open diagonal. But [6,
C3.1.15] exactly says that for any locale if X → {∗} and X → X ×X are open then X
is discrete, hence I+

T is discrete, and as it contains all points of IT it is exactly the group
of points, i.e. ZT .

We now show that when T is locally essentially anisotropic then this condition is
satisfied:

For any slice T/X of T the comparison map:

IT/X → X ×T IT
is an open inclusion because it is a pullback of the diagonal map T/X → T/X ×T T/X ,

which is an open inclusion.
Note that if L is a locale over T/X then L+ is the same whether one see L as a locale

in T/X or as a locale in T with a map to X, and it corresponds (internally in T ) to apply
+ to every fibers of this map to X. In particular one has that

(IT ×X)+ = I+
T ×X,

and I+
T/X = (IT ×T X)+ ∩ IT/X .

Hence if X is such that I+
T/X = {1}, or more precisely I+

T/X = X as X is the terminal

object of T/X , as we mentioned above the map IT/X → X ×T IT is open, hence X →
X ×T I+

T is open. Assuming X is inhabited, this implies that the map 1→ I+
T is open.



1344 SIMON HENRY

6.4. Remark. Even for an étendu, the localic group IT does not have to be discrete. The
example mentioned in 5.11 of the topos of equivariant sheaves over [−1, 1] with the action
of {−1,+1} by multiplication, is an étendu with non-trivial isotropy group (because the
point corresponding to 0 has a non-trivial automorphism) but the étale isotropy group
and the positive isotropy group (isomorphic because of the proposition above) are trivial
as mentioned earlier.

Finally, while the localic theory explains and somehow solve4 the higher isotropy phe-
nomenon observed in [4] and [3], it is not clear that it does not produce a new sort of
“higher isotropy”. More precisely, we have very little control on the isotropy quotient by
an isotropy group which is not locally positive5, and we do not know the answer to the
following question:

6.5. Open problem. Given T a topos and G its full localic isotropy group can the
isotropy quotient TG have a non-trivial localic isotropy group ?

The description of the full isotropy quotient of a topos T in terms of presentation by
an étale-complete localic groupoid G given in 4.6, gives a localic groupoid presentation
of the isotropy action as the quotient of G by all its isomorphisms groups. We mean by
that the localic groupoid G ′ which has the same space of objects as G and is universal for
having a groupoid morphism from G sending all automorphisms to identities. It seems
reasonable to expect (although not completely clear either) that this groupoid G ′ is always
without automorphisms, which seems to suggest that the isotropy quotient should have
no automorphisms. But the main problem is that this new groupoid G ′ is apparently in
general not6 étale-complete itself, and so this presentation of the isotropy quotient cannot
be used to compute its isotropy group (with proposition 3.2). I don’t see any reason
either for the “étale-completion” of a localic groupoid with no automorphisms to also be
without automorphisms.

Note that however these two types of “Higher isotropy” are very different from one
other. The étale higher isotropy comes from the fact the étale isotropy group is “unnatu-
ral”, in the technical sense that is not compatible to pullback, and also in the sense that it
is sometimes regarded as unnatural from the point of view of topos theory to look at the
set of points of locales, but there can of course be situations where this is a natural object
to look at. On the other hand, the localic higher isotropy, if it exists, would be related to
the fact that taking an isotropy quotient by a non locally positive isotropy group is a very
poorly behaved operation, while in the étale case it fits into the case of isotropy quotient
by locally positive groups treated in section 5 and so it is a very well behaved operation.

4In the sense that one has been able to obtain a factorization of geometric morphisms in connected
atomic followed by essentially anisotropic by taking the isotropy quotient by the maximal positive isotropy
group.

5One can probably also develop a similar theory to control isotropy quotient by compact localic groups,
with no local positivity assumption, using descent along proper maps instead of open maps.

6It seems that this happen for example with the example 4.7.
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