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ON A HIGHER STRUCTURE ON OPERADIC DEFORMATION
COMPLEXES

BORIS SHOIKHET

Abstract. In this paper, we prove that there is a canonical homotopy (n+1)-algebra
structure on the shifted operadic deformation complex Def(en → P)[−n] for any operad
P and a map of operads f : en → P. This result generalizes a result of Tamarkin, who
considered the case P = EndOp(X). Another more computational proof of the same
result was recently sketched by Calaque and Willwacher.

Our method combines the one of Tamarkin, with the categorical algebra on the category
of symmetric sequences, introduced by Rezk and further developed by Kapranov-Manin
and Fresse. We define suitable deformation functors on n-coalgebras, which are consid-
ered as the “non-commutative” base of deformation, prove their representability, and
translate properties of the functors to the corresponding properties of the representing
objects. A new point, which makes the method more powerful, is to consider the argu-
ment of our deformation theory as an object of the category of symmetric sequences of
dg vector spaces, not as just a single dg vector space .

1. Introduction

1.1. In the beautiful paper [T2], Dima Tamarkin proved that, for an algebra X over
the operad en, n ≥ 2, the deformation complex Def(X)[−n] admits a natural structure
of homotopy (n + 1)-algebra. Here en = H q(En, k) is the homology operad of the n-
dimensional little discs operad En, and char k = 0. In this paper, we consider en as a
non-unitary operad, in the sense of [F2], that is, en(0) = 0.

If one considered the case n = 1 and took the operad Assoc for e1, the claim would
be the famous Deligne conjecture for Hochschild cochains; all known proofs of it use
transcendental methods such as Drinfeld associators.1) The result of [T2] is proven purely
algebraically, without any transcendental methods. Moreover if one took the Poisson
operad for e1, the method of [T2] would work as well.

Notice that the deformation complex DefO(X) of an algebra X over a Koszul op-
erad O is the same that the deformation complex of the corresponding map of operads
Def(O → EndOp(X)), where EndOp(X) is the endomorphism operad of X, EndOp(X)(n) =
Homk(X

⊗n, X).
In this paper, we provide a proof of similar statement for the case of the general
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1)See Remark 1.3 below.
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deformation complex Def(en
f−→ P), where P is an operad and f is a map of operads.

Throughout the paper, k denotes a field of characteristic 0. Denote by Vect(k) the
k-linear abelian category of (unbounded) complexes of k-vector spaces.

We prove here the following statement:

1.2. Theorem. For any operad P in V ect(k), and a morphism of operads t : en → P,
the shifted deformation complex

Def(en
t−→ P)[−n] (1.1)

admits a natural structure of a homotopy (n + 1)-algebra. Its underlying homotopy
Lie{−n}-structure is strict and is given by the operadic convolution Lie algebra.2)

For the case of deformation complex Def(en
id−→ en)[−n], the corresponding Lie bracket

of degree −n is homotopically trivial, and the complex Def(en
id−→ en)[−n] becomes a

homotopy (n+ 2)-algebra. We are going to discuss it elsewhere.

1.3. Remark. Strictly speaking, the Deligne conjecture is the statement that there is an
action of the chain operad C(E2,k) on the Hochschild cochains. For this statement, several
proofs which work over Q without any transcendental methods are known, see [MS1,2],
[BB], [BF], and [B1,2]+[T4]. On the other hand, a homotopy 2-algebra is an algebra over
the operad hoe2 which is the Koszul resolution of the operad e2. Any known construction
of quasi-isomorphism of operads hoe2 → C(E2,k) uses transcendental methods.

1.4. When the paper had almost been completed, the author found it out that the
recent paper [CW, Section 3] contains a sketch of another proof of Theorem 1.2, based on
different ideas. The proof relies on a nice construction loc. cit., Section 3.1, providing an
operadic twisting interpretation of the Kontsevich-Soibelman operad [KS, Sect. 5], what
makes it possible to define its counterpart for any Hopf cooperad. The authors re-interpret
the construction in [T2] as a map of graded operads hoen+1 → Brn+1 (in the notations of
[CW]). After that, everything reduces to a lengthy computation of the compatibility of
this map with the differentials, loc.cit. Section 3.2 and Appendix A. Unfortunately, this
computation was only sketched.

An advantage of our approach, compared with loc.cit., is being more conceptual and
categorical, and not relying on computations. The author thinks that this paper, even
though being just an account on another proof, has its own right for existence.

1.5. Let us outline the methods we employ to prove Theorem 1.2. We combine the
methods of [T2] (see Section 1.6 below) with the “categorical algebra” on the category of
symmetric sequences, developed in [R], [KM], [St].

The operads are defined as monoids in the category of symmetric sequences, with
respect to the composition product. The composition product admits an inner Hom
which is right adjoint with respect to the left factor, denoted by [−,−]. In particular,

2)For the case P = EndOp(X), this bracket can be thought of as the Gerstenhaber-like bracket.



990 BORIS SHOIKHET

for any symmetric sequence X, the inner Hom [X,X] is an operad; the operad EndOp(V )
for a vector space V is recovered as [V (0), V (0)] where the symmetric sequence V (0) is
V (0)(0) = V and V (0)(n) = 0 for n 6= 0.

One can talk on left modules over an operad O in the category of symmetric sequences;
it is a symmetric sequence X with a map O ◦X → X which is associative and such that
id ∈ O(1) acts as identity on X. A conventional algebra V over O is recovered as the case
of the symmetric sequence V (0) defined just above. To give a left O-module structure on
a symmetric sequence X is the same as to give an operad maps O → [X,X].

One can as well talk on right Q-modules, where Q is an operad. In contrast with
the left Q-modules, the right Q-modules form a k-linear abelian category. For two right
Q-modules X, Y , one can define the relative internal hom [X, Y ]Q, and develop the cor-
responding “categorical algebra”. In particular, [X,X]Q becomes an operad. It is due to
[R], with subsequent development made in [KM], [F1], [St].

If a symmetric sequence X is an O−Q-bimodule, one gets a map of operads

O → [X,X]Q (1.2)

Our first goal is to extend the result of Tamarkin to a map of operad f : en → [X,X],
where X is a symmetric sequence (originally it was proven for the case when X has only
arity 0 non-zero component). It does not meet any trouble. We mention that the bar-
complex BarO(X) is defined as a symmetric sequence with a component-wise differential.

As the next step, we take a en−Q-bimodule X, and extend the Tamarkin theory [T2]
for the corresponding operad morphism en → [X,X]Q, see (1.2). To this end, we prove
the “Q-relative” version of the classical statement, expressing maps of dg coalgebras C →
BarO(X) as the Maurer-Cartan elements in the convolution Lie algebra Hom(C/k, X)[−1]
(here O is a Koszul operad such that the cooperad O¡ is biaugmented, and the O¡-
coalgebra C is pro-conilpotent, as well as for the classical case3)), see Section 4.7.4.

Then we apply it to the case X = P , considered as a right module over Q = P . A
map of operads f : O → P makes P an O−P-bimodule. One has:

[P ,P ]P = P (1.3)

as an operad, and the map (1.2)

O → [P ,P ]P = P (1.4)

is equal to f .
Thus, any map of operads appears as a case of the map (1.2), and the general statement

follows from the case of operad maps (1.2).

3)See Section 3.1 for the definitions of a bi-augmented cooperad and a pro-conilpotent coalgebra over
it
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1.6. Let us briefly outline the main ideas of [T2], referring the reader to the Introduction
to loc.cit. for a more detailed overview.

First of all, the deformation complex DefO(X) = DefO(X
id−→ X)[1], where the r.h.s. is

the deformation complex of the identity morphism of an O-algebra X. One can consider

more general deformation complexes DefO(X
f−→ Y ) of a morphism of O-algebras, what

provides a relative version of the initial deformation complex. The convention we adapt
here is that all deformation complexes we deal with are considered with the grading
making them a dg Lie algebra, that is, the underlying Lie bracket preserves the grading.

There is the following conceptual way to think on the deformation complex DefO(X
f−→

Y ). One associates with a morphism f : X → Y of algebras over a Koszul operad O a
functor F f

X,Y on coaugmented cocommutative coalgebras with values in sets:

F f
X,Y (a) = {φ ∈ HomCoalg(O¡)(a⊗ BarO(X),BarO(Y )), φ ◦ (η ⊗ idBarO) = Bar(f)} (1.5)

where η : k → a is the coaugmentation map. The bar-complexes are coalgebras over the
(shifted) Koszul dual cooperadO¡, and Hom is taken in the category ofO¡-coalgebras. The
map f defines a map Bar(f) : BarO(X) → BarO(Y ) of O¡-coalgebras, and one considers
the maps φ : a ⊗ BarO(X) → BarO(Y ) of O¡-coalgebras, equal to Bar(f) on the “special
(co)fiber”. Notice that, if one worked with the Schlessinger framework of deformation
theory, one would consider the functor (on artinian coalgebras), defined as a 7→ {t ∈
HomAlg(O)(Homk(a,X), Y ), t◦η = f}. The functor F f

X,Y should be considered as a derived
version of the latter functor; working with the Deligne-Drinfeld framework of deformation
theory (which describes the deformations via the Maurer-Cartan elements in a dg Lie
algebra), one should replace the functors themselves with their “derived versions”.

If one restricts ourselves with a full subcategory of the category of cocommutative
coalgebras called pro-conilpotent (aka connected in [Q], aka pro-artinian in [T2]), and
assumes that the cooperad O¡ is biaugmented, the functor F f

X,Y becomes representable:

F f
X,Y (a) = HomCoalg(a, arep(f))

for some pro-conilpotent cocommutative coalgebra arep(f), where Coalg stands for the
category of pro-conilpotent cocommutative coalgebras over k. Tamarkin shows that

arep(f) = CCE(DefO(X
f−→ Y ),k)

where CCE(−) stands for the Chevalley-Eilenberg chain complex of a dg Lie algebra. It

defines the dg Lie algebra DefO(X
f−→ Y ) up to a quasi-isomorphism. The Lie bracket is

the algebra-convolution Lie bracket, see Section 2.13.1.
Then the composition property of the functor F f

X,Y , saying that, for two maps

X
f−→ Y

g−→ Z

one has a (functorial) map

F g
Y,Z(a′)× F f

X,Y (a)→ F gf
X,Z(a′ ⊗ a) (1.6)
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is translated to the corresponding property of the representing coalgebras:

arep(f)⊗ arep(g)→ arep(gf) (1.7)

It is associative, for a chain of 3 morphisms. It follows that, for f = id : X → X, one has
a monoid structure

arep(X)⊗ arep(X)→ arep(X)

where arep(X) = arep(idX).

The conclusion is that arep(X) = CCE(DefO(X
id−→ X)) becomes a cocommutative dg

bialgebra (whose underlying cocommutative coalgebra is cofree pro-conilpotent). Then
the Milnor-Moore theorem applied to the underlying bialgebra arep(X) (with forgotten

differential) implies that the convolution Lie bracket on DefO(X
id−→ X) vanishes, and the

shifted complex DefO(X
id−→ X)[1] gets a Lie bracket.

Indeed, the Milnor-Moore theorem says that arep(X) is the pro-conilpotent universal
enveloping (co)algebra U(g), where g is the graded space of primitive elements in the

coalgebra arep(X). One easily identifies g with DefO(X
id−→ X)[1]. The quadratic compo-

nent of the Chevalley-Eilenberg differential on g vanishes by definition. Now the Leibniz

rule for the dg bialgebra CCE(DefO(X
id−→ X)) shows that the quadratic component of the

Chevalley-Eilenberg differential vanishes on the entire complex, therefore, the convolution

Lie bracket on DefO(X
id−→ X) vanishes. On the other hand, g = DefO(X

id−→ X)[1] gets
a new Lie bracket, [a, b] = a ∗ b − (−1)|a||b|b ∗ a, where a, b are primitive, and − ∗ − is
the product on arep(X) (given by the monoid structure on arep(idX), as above). This

Lie bracket is clearly compatible with the differential on DefO(X
id−→ X)[1], because the

product − ∗ − is.
It is the Lie bracket of Gerstenhaber type4).

Note that for f 6= id, the algebra convolution Lie bracket on DefO(X
f−→ Y ) is not 0.

Therefore, the above construction can be thought of as a sort of “quasi-classical limit”.
Notice that what makes all these constructions possible, is the fact that, for any

cooperad C and a C-coalgebra B, the tensor product a⊗B with a cocommutative coalgebra
a is again a C-coalgebra. On the language of operads, it follows from existence of a map
of cooperads Comm∗⊗C → C (which holds as Comm∗ = Comm is the unit for the product
⊗ in symmetric sequences, so Comm∗ ⊗ C = C).

A new fundamental idea in [T2] was to take for a higher structured algebraic objects
than cocommutative coalgebras. That is, D.Tamarkin considers “deformations with non-
commutative base”. Namely, he considers the case when C = O¡ = e∗n, the dual cooperad
to the operad en. The operad en is a Hopf operad, that is, there is an operad map

en → en ⊗ en (1.8)

4)Here we mean that the Lie bracket is defined similarly with the Gerstenhaber bracket on Hochschild
cochain complex
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and thus, for the dual cooperad one has

e∗n ⊗ e∗n → e∗n (1.9)

(we call it Hopf cooperad). (In fact, the coproduct like (1.8) exists for any operad in
graded vector spaces defined as the homology operad of a topological operad. Indeed,
for the topological spaces there is the arity-wise diagonal map. Passing to homology, it
indices a coproduct).

It follows from (1.8) that the tensor product of two en-algebras is again a en-algebra,
and it follows from (1.9) that the tensor product of two e∗n-coalgebras is again a e∗n-
coalgebra.

The case C = O¡ = e∗n is corresponded to O = en{n} (by O{1} is denoted the operadic
shift, see Section 2.8.1).

It follows that for O = en{n} one can upgrade the functor F f
X,Y to another functor

Gf
X,Y defined exactly as (1.5), but with a a e∗n-coalgebra. So Gf

X,Y is a functor from the
category Coalgn of pro-conilpotent n-coalgebras to the category Sets.

The functor Gf
X,Y is also representable, and the representing object is

Arep(f) = Baren{n}(Def(X
f−→ Y )[1])

where Def(X
f−→ Y )[1] is endowed with a en{n}-algebra structure. It has the property

similar to (1.6), translated to a map (1.7) of n-coalgebras. It implies that Arep(X) :=
Arep(idX) is a monoid object in the category of n-coalgebras. Note that X may be a
en{k}-algebra for any k, as, by an operadic shift, a map of en{k}-algebras can be made a
map of en{n} algebras, as the construction requires.

Moreover, there is an imbedding i : Coalg → Coalgn, and the restriction of the functor
Gf
X,Y along it is equal to F f

X,Y . The functor i admits right adjoint, what makes possible
to link the representing objects arep(X) and Arep(X), along with their monoid structures.

These constructions provide us with some higher structure on the deformation complex

Def(X
id−→ X), where X is an en-algebra. Having unwound this structure, D.Tamarkin

derived a homotopy (n+ 1)-algebra structure on Defen(X)[−n].
To be more precise, to get a homotopy en+1 algebra structure on Defen(X)[−n], one

uses solely the deformation functor Gf
X,Y , corresponded to the deformation theory with

en coalgebra base, and the monoid structure on the en{n} coalgebra Arep(X), see Section

6.1. The comparison of the two deformation theories, given by the functors F f
X,Y and

Gf
X,Y , via the right adjoint R to the functor i : Coalg → Coalgn, is employed to get

an explicit description of the underlying homotopy Lie bracket on Defen(X) of the en+1

algebra structure on Defen(X)[−n]. Namely, this bracket is identified with the operadic
convolution (strict) Lie bracket. The functor i is (colax-)monoidal, therefore, its right
adjoint is lax monoidal. As such, it sends monoids to monoids. The key point is to show
that the right adjoint functor R sends Arep(X) to arep(X) with their monoid structures,
see Section 6.2.
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1.7. Organisation of the paper. The paper is organized as follows.
In Section 2 we recall some facts on operads which will be used in the paper. Nothing

here is new.
In Section 3 we recall the bar-cobar duality, for algebras X over a Koszul operad O.

We extend the classical statement to the case when X is a symmetric sequence, that is,
is a left module over O. The bar and cobar complexes become symmetric sequences with
component-wise differentials, equivariant with respect to the action of the symmetric
groups. In Section 3.5 we consider the situation when X is a O−Q-bimodule, for an
operad Q. Then the bar-complex is at once a coalgebra over the cooperad O¡ and a right
module over the operad Q. We prove a fragment of the corresponding bar-cobar duality
statement, for this setting.

Section 4 contains the deformation theory with cocommutative cobase. We start with
the case when the target operad P of the map f : en → P , we consider the deformations
of, is [X,X], for a symmetric sequence X. Then we consider the case P = [X,X]Q, for
X a en−Q-bimodule. As we have shown above, this case covers an arbitrary P .

In Section 5, we consider the deformation theory with en-coalgebra as the cobase. We
extend the results of Section 4 to this context.

Finally, Section 6 contains a derivation of Theorem 1.2 from the previous results. This
part is very similar to [T2, Section 5], though we tried to clarify some points.

.

Acknowledgements. The author is thankful to Michael Batanin, Anton Gerasimov,
and Dima Tamarkin, for valuable discussions. The author is thankful to the two anony-
mous referees for their careful reading of the paper and many remarks and corrections,
which have undoubtedly made this published version more readable.

The work was partially supported by the FWO Research Project Nr. G060118N and
by the Russian Academic Excellence Project ‘5-100’.

2. Preliminaries

Throughout the paper, k is a field of characteristic 0. We denote by Vect(k) the symmetric
monoidal category of (Z-graded) dg vector spaces over k. We use the cohomological
grading, so all differentials are of degree +1. For a (dg) vector space V with an action of
a group G, we denote by V G the subspace of invariants, and by VG the quotient-space of
coinvariants.

2.1. Operads.

2.1.1. Symmetric sequences. A (symmetric) operad P in Vect(k) is a collection of
Σn-representations P(n), n ≥ 0, with the operadic composition operation

Υ: P(k)⊗ P(n1)⊗ · · · ⊗ P(nk)→ P(n1 + · · ·+ nk) (2.1)
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and an element id ∈ P(1), such that the operadic composition is compatible with the
actions of symmetric groups and is associative (in some natural sense), and id is a two-
sided unit for the operadic composition.

Alternatively, one can define an operad a monoid in the monoidal category of sym-
metric sequences, with respect to the composition product.

By definition, a symmetric sequence in a category C is a collection of objects {P(n) ∈
C}n≥0 with an action of symmetric group Σn on P(n). A morphism φ : P → Q of
symmetric sequences is a collection of Σn-equivariant maps {P(n)→ Q(n)}n≥0:

HomΣ(P ,Q) =
∏
n≥0

Homk(P(n),Q(n))Σn (2.2)

We denote the category of symmetric sequences in C with the morphisms HomΣ(−,−) by
CΣ.

2.2. Definition. A dg symmetric sequence is a symmetric sequence P in Vect(k)Σ (that
is, each P(n) is a complex of k-vector spaces), such that the differential on P(n) commutes
with the action of Σn on it, for each n = 0, 1, 2, . . . .

It is a monoidal category, with the monoidal product P ◦ Q defined as

(P ◦ Q)(n) =
⊕
k≥0

P(k)⊗Σk
Q�k(n) (2.3)

where
Q�k(n) = ⊕n1+···+nk=nIndΣn

Σn1×···×Σnk
(Q(n1)⊗ · · · ⊗ Q(nk)) (2.4)

This product on the category of symmetric sequences is called the composition product, it
is associative:

(P ◦ Q) ◦ R = P ◦ (Q ◦R) (2.5)

Its unit is the symmetric sequence I, defined as I(1) = k, I(n) = 0 for n 6= 1.

2.3. Remark. Note that for a group G and two G-modules V and W , the tensor product
V ⊗G W means the space of coinvariants (V ⊗k W )G. That is, in (2.3) one takes the
coinvariants with respect to the group Σk action.

One defines version(s) of (2.3) for invariants instead of coinvariants:

(P ◦1 Q)(n) =
⊕
k≥0

(
P(k)⊗Q�k(n)

)Σk

(2.6)

(P◦̂1Q)(n) =
∏
k≥0

(
P(k)⊗Q�k(n)

)Σk

(2.7)

These products are monoidal products in Vect(k)Σ, with the same unit I.
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One re-interprets the concept of operad saying that an operad is a monoid in the
category of symmetric sequences, with respect to the composition product. That is, a
symmetric sequence P is an operad, if there are maps

Υ: P ◦ P → P , i : I → P (2.8)

satisfying the axioms of a monoid in a monoidal category. An operad P such that P(n) = 0
unless n = 1, P(1) = A is the same as an associative algebra. More generally, consider
the functor

i : Vect(k)→ Vect(k)Σ, V 7→ XV = (0, V
n=1

, 0, 0, . . . )

It is a strict monoidal functor

i : (Vect(k),⊗)→ (Vect(k)Σ, ◦)

A cooperad in Vect(k) is a comonoid in Vect(k)Σ with respect to the monoidal product
−◦̂1−. That is, a cooperad is a symmetric sequence C with maps

Θ: C → C◦̂1C, ε : C → I (2.9)

satisfying the usual comonoid axioms.
A cooperad is called finite if the structure map (2.9) factors as

C → C◦1C → C◦̂1C (2.10)

The composition product − ◦ − admits an inner hom, defined as

[P ,Q](n) = HomΣ(P�n,Q) (2.11)

It is right adjoint to − ◦ −:

HomΣ(P ◦ Q,R) = HomΣ(P , [Q,R]) (2.12)

For any symmetric sequence X, [X,X] is a monoid with respect to ◦, thus an operad.
An important particular case is when X(n) = 0 unless n = 0, X(0) = W . Then

[X,X](n) = Homk(W
⊗n,W ). It is an operad with the operadic composition defined by

plugging the arguments. We denote this operad by EndOp(X).
For any group G and a G-module M , there is a map from invariants to coinvariants:

can : MG →MG (2.13)

In particular, for any two symmetric sequences X, Y , one has a canonical map

canX,Y : X ◦1 Y → X ◦ Y (2.14)

If the group G is finite, and the order ]G is invertible in k, the map (2.13) is an isomor-
phism, with the inverse given by the norm:

N : MG →MG
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m 7→ 1

]G

∑
g∈G

g ◦m (2.15)

In this paper, char k = 0, and the map (2.14) is always an isomorphism.
We often identify the products − ◦ − and − ◦1 −, assuming these isomorphisms.

2.3.1. Along with the composition monoidal product on the category Vect(k)Σ, we will
consider the level-wise monoidal product −⊗lev −, defined as:

(X ⊗lev Y )(n) = X(n)⊗ Y (n) (2.16)

with the diagonal action of the symmetric group Σn. It is called the Hadamard product
and is denoted by −⊗H − in [LV].

The unit for this product is the symmetric sequence Comm, defined as

Comm(n) = k, n ≥ 0 (2.17)

This product admits the internal Hom defined as

Homlev(X, Y ) = {Homk(X(n), Y (n))}n≥0 (2.18)

with the symmetric group acting as (σ∗f)(x) = σ(f(σ−1x)). It is right adjoint to −⊗lev−:

HomΣ(X ⊗lev Y, Z) = HomΣ(X,Homlev(Y, Z)) (2.19)

In fact, one has a stronger adjunction:

Homlev(X ⊗lev Y, Z) = Homlev(X,Homlev(Y, Z)) (2.20)

2.4. Lemma. Let X, Y,X1, Y1 be symmetric sequences in Vect(k). One has the following
4-functorial maps:

(i)
ηX1X2Y1Y2 : (X1 ⊗lev X2) ◦ (Y1 ⊗lev Y2)→ (X1 ◦ Y1)⊗lev (X2 ◦ Y2) (2.21)

(ii)
µX1X2Y1Y2 : (X1 ◦1 Y1)⊗lev (X2 ◦1 Y2)→ (X1 ⊗lev X2) ◦1 (Y1 ⊗lev Y2) (2.22)

Proof. We use the fact that for a group G and two G-modules there are maps

V G ⊗WG → (V ⊗W )G and (V ⊗W )G → VG ⊗WG (2.23)

making the invariants functor a lax-monoidal functor, and the coinvariants functor a
colax-monoidal functor.

Denote
(P ?Q)(n) =

⊕
k≥0

P(k)⊗k Q�k(n) (2.24)
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and consider the r.h.s. as a Σk-module.
There are maps (the imbedding i and the projection p):

i : (X1 ⊗lev X2) ? (Y1 ⊗lev Y2)→ (X1 ? Y1)⊗lev (X2 ? Y2) (2.25)

p : (X1 ? Y1)⊗lev (X2 ? Y2)→ (X1 ⊗lev X2) ? (Y1 ⊗lev Y2) (2.26)

Both are maps of Σk-modules. The statement follows from (2.23).

2.5. Corollary. The level-wise tensor product of two operads is an operad. The level-
wise tensor product of two finite cooperads is a (finite) cooperad.

Another important fact is

2.6. Proposition. For any four symmetric sequences X, Y,X1, Y1 in Vect(k), there are
4-functorial maps

Homlev(X, Y ) ◦ Homlev(X1, Y1)→ Homlev(X ◦X1, Y ◦ Y ) (2.27)

and
Homlev(X ◦X1, Y ◦ Y )→ Homlev(X, Y ) ◦ Homlev(X1, Y1) (2.28)

2.7. Corollary. Let P be an operad and let C be a finite cooperad in Vect(k), char k =
0. Then

Homlev(C,P)

is naturally an operad, and
Homlev(P , C)

is naturally a finite cooperad.

2.7.1. Left and right modules, bimodules. A left (resp., right) module over an
operad P is a symmetric sequence M with a map P ◦M → M (resp., M ◦ P → M)
satisfying the usual module axioms.

Let us stress an essential difference between the left and the right modules over an
operad P : the right modules over P always form a k-linear abelian category (in the dg
situation, we upgrade it to the corresponding dg category over k), whereas the category
of left P-modules is even non-additive.

An algebra X over an operad P is a symmetric sequence X ∈ Vect(k)Σ equipped with
a map of operads P → [X,X]. Alternatively, it is the same that a left P-module structure
on X:

m : P ◦X → X (2.29)

We see from the adjunction (2.12) that X is an algebra over an operad P iff it is a left
module over P .

When X(n) = 0 unless n 6= 0, X(0) = X0 ∈ Vect(k), we call X0 a conventional algebra
over the operad P .
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For an operad P and A ∈ Vect(k)Σ consider

P〈A〉 = P ◦ A (2.30)

It follows from the associativity (2.5) that P〈A〉 is an algebra over P . The functor
A P〈A〉 is left adjoint to the forgetful functor from algebras over P to Vect(k)Σ.

Let X be a symmetric sequence with a left action of the operad P . Then X ◦ k(0) =
X〈k〉 is an algebra over P . One has explicitly:

X ◦ k(0) =
⊕
n≥0

X(n)Σn (2.31)

Let P1,P2 be operads. A (P1,P2)-bimodule is a symmetric sequence M, with a left
module structure over P1 and a right module structure over P2 which commute.

2.7.2. Relative composition product and the relative inner Hom. Here we
outline some categorical algebra in the category Vect(k)Σ. We refer the reader to [R],
[KM], [St] for more detail.

Let P be an operad in Vect(k). Then right P-modules form a dg category over k,
denoted by Mod−P . We denote by HomΣ,Mod−P(M,N) the k-vector space of morphisms
of symmetric sequences respecting the right P-module structure.

For X ∈ Vect(k)Σ, Y ∈ Mod−P , the composition product X ◦ Y is a right P-module.
Define the relative inner hom functor

[−,−]P : (Mod−P)op ×Mod−P → Vect(k)Σ

as follows. The symmetric sequence [M,N ]P is defined as the equalizer

[M,N ]P → [M,N ]
u

⇒
v

[M ◦ P , N ] (2.32)

where, for f ∈ [M,N ], u(f) = µN(f ◦ P), and v(f) = fµ�nM , so that

[M,N ]P(n) = HomΣ,Mod−P(M�n, N)

There is a natural isomorphism

HomΣ,Mod−P(X ◦M,N) = HomΣ(X, [M,N ]P) (2.33)

In this way, the category Mod−P becomes a monoidal category tensored and enriched
over the monoidal category (Vect(k)Σ, ◦, I), cf. [F1, Ch.1].

In particular, for M ∈ Mod−P , [M,M ]P is an operad. Moreover, for M,N ∈ Mod−P ,
[M,N ]P is an [N,N ]P−[M,M ]P-bimodule, and

[P ,P ]P = P (2.34)
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as an P−P-bimodule, and
[P ,M ]P = M (2.35)

as right P-module.
One can define the relative composition product M ◦PN ∈ Vect(k)Σ, for M ∈ Mod−P ,

N ∈ P−Mod, as the corresponding coequalizer.
Moreover, for M an A−B-bimodule, N a B−C-bimodule, one defines M ◦B N ∈

A−Mod−C. It gives rise to a functor

− ◦B − : A−Mod−B ×B−Mod−C → A−Mod−C (2.36)

One has the adjunction:

HomΣ,A−Mod−C(M ◦B N,L) = HomΣ,A−Mod−B(M, [N,L]C) (2.37)

It implies

2.8. Lemma. Let A,B be operads, X ∈ Vect(k) an A−B-bimodule. Then there is a
canonical map of operads

φ : A→ [X,X]B (2.38)

Indeed, by the adjunction above, maps A → [X,X]B are in 1-to-1 correspondence
with the maps of right B-modules A ◦AX → X. We know that A ◦AX = X, so the map
φ is the map corresponding to the identity map of right B-modules.

2.8.1. The operadic shift. Let X be a symmetric sequence in Vect(k). Define another
symmetric sequence X{1}, called the operadic shift of X, as

X{1}(n) = X[−n+ 1]⊗Σn sgnn (2.39)

where sgnn denotes the (1-dimensional) sign representation of σn.
We list the compatibility properties of the operadic shift with the monoidal structures

and Hom’s on Vect(k)Σ:

2.9. Lemma. Let X, Y ∈ Vect(k)Σ. The following statements are true:

(i) (X ◦ Y ){1} = X{1} ◦ Y {1},

(ii) [X, Y ]{1} = [X{1}, Y {1}],

(iii) (X ⊗lev Y ){1} = (X{1})⊗lev Y = X ⊗lev (Y {1}),

(iv) Homlev(X{1}, Y {1}) = Homlev(X, Y ),



ON A HIGHER STRUCTURE ON OPERADIC DEFORMATION COMPLEXES 1001

2.10. Corollary. Let P be an operad in Vect(k). Then P{1} is again an operad.
Similarly, C{1} is a cooperad as soon as C is a cooperad.

We denote
X{n} = (. . . ((X{1}){1}) . . . ){1} (2.40)

where the operation −{1} is applied n times.
Let X be a vector space considered as the symmetric sequence X(0) = (X

n=0
, 0, 0, . . . ).

Then
X(0){n} = (X[n])(0) (2.41)

and
EndOp(X){1} = [X(0), X(0)]{1} = EndOp(X[1]) (2.42)

where −[n] is the conventional shift of degree of a vector space.

2.11. Koszul operads. We refer the reader to [GK] and [LV, Ch. 7] for theory of
Koszul operads.

Here we just fix some notations.
For a quadratic operad O we denote by O! the quadratic dual cooperad. As well, we

denote
O¡ = (O{1})! = O!{−1} (2.43)

For any quadratic operad O there is a map of dg operads

BarOp(O¡)→ O (2.44)

inducing an isomorphism on H0. A quadratic operad O is called Koszul if (2.44) is a
quasi-isomorphism of dg operads. (See [LV, Section 6.5] for the definition of BarOp(O)).

Many classical operads are Koszul, among them Assoc,Comm, Lie, en. Their (shifted)
Koszul dual are:

Assoc¡ = Assoc∗{−1}
Comm¡ = Lie∗{−1}
Lie¡ = Comm∗{−1}
e¡
d = e∗d{−d}

(2.45)

2.12. Convolution complexes.

2.12.1. The convolution complex for (co)operads. Let P be an operad, and C
a finite cooperad. Then Homlev(C,P) is naturally an operad. Recall that its components
are

Homlev(C,P)(n) = Homk(C(n),P(n)) (2.46)

and the symmetric group Σn acts on HomOp(C,P)(n) as

(σ(f))(x) = σ(f(σ−1x))
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The operad structure is given as

Homlev(C,P) ◦ Homlev(C,P)→ Homev(C ◦1 C,P ◦ P)→ Homlev(C,P) (2.47)

Here the first arrow is (2.27), and the second arrow is given by the (co)operad structure
maps C → C ◦1 C and P ◦ P → P .

We denote this operad structure on Homlev(C,P) by HomOp(C,P).
There is another construction, introduced in [KM], which associates a dg pre-Lie

algebra PΣ with a dg operad P .
The underlying complex of PΣ is defined as

PΣ =
⊕
n≥1

P(n)Σn = P ◦ k(0) (2.48)

(we assume that P is a non-unital operad, that is, P(0) = 0).
The formula for Ψ1 ◦Ψ2 ∈ P(m+ n− 1), for Ψ1 ∈ P(m) and Ψ2 ∈ P(n), reads:

Ψ1 ?Ψ2 =
m∑
i=1

±Ψ1 ◦i Ψ2 (2.49)

where
Ψ1 ◦i Ψ2 = Ψ1(id⊗(i−1)⊗Ψ2 ⊗ id⊗(m−i)) (2.50)

The associated dg Lie algebra is also denoted by PΣ. For Ψ1,Ψ2 as above,

[Ψ1,Ψ2] = Ψ1 ?Ψ2 − (−1)|Ψ1||Ψ2|Ψ2 ?Ψ1 (2.51)

See [MK, Sect. 1.7] for more detail.
We can apply the above construction to the operad HomOp(C,P), see (2.47). We get

the operadic convolution Lie algebra on the dg vector space

Conv(C,P) = HomOp(C,P)Σ =
∏
k≥1

Homlev(C(k),P(k))Σk
(2.52)

2.13. Remark. Assume an operad P in Vect(k) acts on a (dg) symmetric sequence X ∈
Vect(k)Σ. Then the operad P acts on the (dg) vector space XΣ. Indeed, XΣ = X ◦ k(0),
and one has

P ◦ (X ◦ k(0)) = (P ◦X) ◦ k(0) mX◦id−−−−→ X ◦ k(0)

where mX : P ◦X → X defines the P-action on X.

2.13.1. The convolution complex for (co)algebras. Let P be an operad, C a
finite cooperad.

A coalgebra C over C is given by its structure map ∆C : C → C◦̂1C. A coalgebra C is
called finite if the map ∆C factors as

C → C ◦1 C → C◦̂1C
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Let A ∈ Vect(k)Σ be an algebra over P , and C ∈ Vect(k)Σ a finite coalgebra over C.
Consider the symmetric sequence Homlev(C,A). We claim that it becomes an algebra

over the operad HomOp(C,P).
Indeed, there are maps

Homlev(C,P) ◦ Homlev(C,A)→ Homlev(C ◦1 C,P ◦ A)→ Homlev(C,A) (2.53)

The first map is given by (2.27), and the second map is given by the compositions C →
C ◦1 C and P ◦ A→ A.

There is a differential on Homlev(C,A), defined for a homogeneous Ψ as

(dΨ)(x) = dA(Ψ(x))− (−1)|Ψ|Ψ(dC(x)) (2.54)

where dA and dC are the differentials in A and C, correspondingly.
When P is a dg operad and C is a dg cooperad, the operad HomOp(C,P) is a dg operad,

with the differential defined similarly to (2.54), via the differentials in C and P .
We get:

2.14. Lemma. Let P be an operad, C a finite cooperad over Vect(k). Let A ∈ Vect(k)Σ be
an algebra over P, C ∈ Vect(k)Σ a finite coalgebra over C. Then the construction above
makes the symmetric sequence Homlev(C,A) a dg algebra in Vect(k)Σ over the dg operad
HomOp(C,P).

2.15. Corollary. In the notations as in Lemma 2.14, the dg operad HomOp(C,P) acts
on the dg vector space HomΣ(C,A)

Proof. It follows from Lemma 2.14 and Remark 2.13.

2.15.1. Let O be a Koszul operad. Let C be a coalgebra over O¡, and A an algebra
over O. Consider the symmetric sequence Homlev(C,A). By (2.53), it is an algebra over
the operad HomOp(O¡,O). The following property is very important for the deformation
theory:

2.16. Lemma. For any Koszul operad O with finite-dimensional O(2), there is a map of
operads

φ : Lie{1} → HomOp(O¡,O) (2.55)

The map φ was constructed in [GK] via the operadic analogues of Manin’s black and
white products of quadratic algebras, see [GK, 2.2], [LV, 8.8].

Later we use the following explicit formula for the arity component φ(2).
Let E = O(2), E[1] = O¡(2). Take any basis t1, . . . , tm in E. Denote by t1[1], . . . , tm[1]

the corresponding basis in E[1]. Then the map φ sends the canonical generator ω = [−,−]
in Lie{1}(2) to

φ(ω) =
m∑
i=1

ti[1]∗ ⊗ ti ∈ HomΣ2(O¡(2),O(2)) (2.56)

As the operad Lie is quadratic, the component φ(2) defines the map φ.
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2.17. Corollary. In the assumptions as above, the symmetric sequence

Homlev(C,A){−1}

has a natural structure of a Lie algebra.

The symmetric sequence Homlev(C,A){−1} with its Lie algebra structure is often
called the convolution symmetric sequence.

Consider an element f ∈
∏

n≥1 Homlev(C,A){−1}(n)1 satisfying the Maurer-Cartan
equation:

d0f +
1

2
[f, f ] = 0 (2.57)

In this situation, one can twist the differential in Homlev(C,A){−1} by ad(f), defined as
ad(f)(−) := [f,−], where [−,−] is the convolution Lie bracket, and get a dg Lie algebra

(HomΣ(C,A){−1}, d0 + ad(f)) (2.58)

3. The bar-cobar adjunction and its relative version

3.1. Pro-conilpotent O-coalgebras. Let O be an operad, V ∈ Vect(k)Σ a sym-
metric sequence. Denote by Alg(O) the category of non-unital O-algebras in Vect(k)Σ.

The forgetful functor Alg(O)→ Vect(k)Σ, from O-algebras in Vect(k)Σ to symmetric
sequences, admits a left adjoint. It is given by the free algebra over O, generated by V :

FO(V ) = O ◦ V (3.1)

HomAlg(O)(FO(V ), A) = HomVect(k)Σ
(V,A) (3.2)

It is a non-unital O-algebra.
There is a version of it for the unital augmented O-algebras. Denote by Algu,aug(O)

the category of such algebras over k. For A ∈ Algu,aug(O), define the functor

R(A) = A+ = Ker(ε : A→ k(0)) (3.3)

where ε : A→ k(0) is the augmentation, which is assumed to be a map of O-algebras. The
functor R admits a left adjoint:

FuO(V ) = (O ◦ V )⊕ k(0) (3.4)

One has:
HomAlgu,aug(O)(F

u
O(V ), A) = HomVect(k)Σ

(V,A+) (3.5)

Such a (right) adjoint functor to the forgetful functor does not exist, in general, for the
coalgebras over an operad. One should restrict ourselves to a class of coalgebras, called
pro-conilpotent. (In [T2], they are called pro-coartinian. In [Q, Appendix B] they are
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called connected.) In this paper, we consider pro-conilpotent C-coalgebras in symmetric
sequences, where C is a finite cooperad, see (2.10).

For simplicity, assume that the finite cooperad C is quadratic (it is the only case
we deal in this paper with). Assume that C is an biaugmented cooperad, where by a

biaugmentation we mean operad maps I
η−→ C ε−→ I.

Let C be a quadratic biaugmented cooperad. We denote

C(n)+ = Ker(ε : C(n)→ I(n))

By a C-coalgebra we understand an object C ∈ Vect(k)Σ with a structure map ∆: C →
C◦̂1C and with a counit ε1 : C → k(0), satisfying the natural axioms. By a coaugmentation
of the coalgebra C we mean a map η1 : k(0) → C of C-coalgebras, such that ε1 ◦ η1 = id.

Set F 0C = Im(η1) ' k(0). The symmetric sequence C/F 0C gets a structure of a
non-counital C-coalgebra. Define an ascending filtration on C/F 0C, as follows.

Set
F i(C/F 0C) =

{
x ∈ C/F 0C|∆(x) = (0

1
, . . . , 0

i
, ti+1, ti+2, . . .

}
where t` ∈ (C(`)⊗ C⊗`)Σ` .

One has
0 ⊂ F 1(C/F 0C) ⊂ F 2(C/F 0C) ⊂ F 3(C/F 0C) ⊂ . . .

A coaugmented C-coalgebra C is called pro-conilponent if the ascending filtration
{F i(C/F 0C)}i≥1 is exhausted.

Denote the category of pro-conilpotent counital coaugmented coalgebras over a coop-
erad C by Coalgcu,caugpronilp (C).

Consider the forgetful functor V : Coalgcu,caugpronilp (C)→ Vect(k)Σ, defined as

V(C) = C/F 0C (3.6)

One has:

3.2. Lemma. Let C be a finite quadratic biaugmented cooperad. Then the functor

V : Coalgcu,caugpronilp (C)→ Vect(k)Σ

admits a right adjoint F, given by the direct sum cofree coalgebra

FC(V ) =
(⊕
n≥1

(C(n)⊗ V �n)Σn
)
⊕ k(0) (3.7)

See e.g. [T2, Prop. 2.3] for a proof.
We refer to FC(V ) as the cofree C-coalgebra cogenerated by V .
One also has:
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3.3. Lemma. Let C be a finite quadratic biaugmented cooperad, C a pro-conilpotent coal-
gebra over C. Then the structure map

∆: C/F 0C → C◦̂1(C/F 0C)

factors as
C/F 0C → C ◦1 (C/F 0C)→ C◦̂1(C/F 0C)

where the second map is the canonical imbedding.

See [T2, Lemma 2.2] for a proof.

3.4. The bar dg symmetric sequence. Let X ∈ Vect(k)Σ be a symmetric sequence,
O a biaugmented Koszul operad with finite-dimensional components O(n). Denote by O¡

the shifted Koszul dual cooperad, see (2.43).
Let X ∈ Vect(k)Σ be an O-algebra. Then the cofree O¡-coalgebra FO

¡
(V ) is endowed

with a component-wise differential, as follows.
Recall the twisting morphism κ : O¡ → O of degree 1, see Lemma 2.16. One has the

following composition

O¡ ◦1 X
canO¡,X−−−−→ O¡ ◦X κ◦id−−→ O ◦X mX−−→ X (3.8)

see (2.14) for the map can.
It is a map of symmetric sequences of degree +1. It can be extended to a coderivation

of O¡ ◦X as of O¡-coalgebra, see [LV, 11.2.2]. All maps used in this extension are maps
of symmetric sequences.

One denotes dBar the corresponding map. One has

d2
Bar = 0

We denote by BarO(X) the cofree coalgebra FO¡(X) over O¡ endowed with this dif-
ferential. The differential agrees with the cooperations by the Leibniz rule, and acts
component-wise. As well, the differential commutes with the action of symmetric group(s).

It is a pro-conilpotent coalgebra over O¡ in Vect(k)Σ.
When X is an arity 0 symmetric sequence, BarO(X) is an arity 0 symmetric sequence

as well, and agrees with the conventional definition.

3.5. The cobar dg symmetric sequence. Let Y be a pro-conilpotent O¡-coalgebra
in Vect(k)Σ. One defines its cobar dg symmetric sequence as

CobarO¡(Y ) = (FO(Y/F 0Y ), dCobar) = (O ◦ (Y/F 0Y ), dCobar) (3.9)

where the cobar-differential dCobar is defined as follows.
The symmetric sequence O ◦ (Y/F 0Y ) is an O-algebra. The differential is defined to

satisfy the Leibniz rule, so it is defined by its restriction to the generators. Consider a
map of symmetric sequences of degree +1

dCobar : Y/F 0Y → O ◦ (Y/F 0Y ) (3.10)
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defined as

Y/F 0Y → O¡ ◦1 (Y/F 0Y )
canO¡,Y/F0Y−−−−−−−→ O¡ ◦ (Y/F 0Y )

κ◦id−−→ O ◦ (Y/F 0Y ) (3.11)

Here the first map is given by the O¡-coalgebra structure on Y/F 0Y (inherited by the
O¡-coalgebra structure on Y ).

One has
d2

Cobar = 0

As for the case of the bar-differential, the extension of (3.11) by Leibniz rule as an
O-algebra derivation, uses only maps of symmetric sequences. Therefore, the differential
dCobar acts component-wise.

3.6. The bar-cobar adjunction. Let O be a Koszul operad in Vect(k), with finite-
dimensional O(2), such that the cooperad O¡ is bi-augmented, X an O-algebra, Y a
pro-conilpotent O¡-coalgebra. Consider the dg vector space HomΣ(Y/F 0Y,X). The sym-
metric sequence Y/F 0Y is a coalgebra over O¡. Then it follows from Lemma 2.14 that
HomΣ(Y/F 0Y,X) is an algebra over the operad Homlev(O¡,O). By Lemma 2.16, there is
a map of operads Lie{1} → Homlev(O¡,O). Therefore, by Remark 2.13 (or by Corollary
2.15), the dg vector space HomΣ(Y/F 0Y,X)[−1] gets a (dg) Lie algebra structure.

3.7. Proposition. Let O be a Koszul operad with finite-dimensional components O(n),
X an O-algebra, Y a pro-conilpotent O¡-coalgebra. Assume that the cooperad O¡ is finite
and biaugmented. One has the following functorial isomorphisms of sets:

HomΣ,Alg(O)(CobarO¡(Y ), X) = MC(HomΣ(Y/F 0Y,X)[−1]) = HomΣ,Coalg(O¡)(Y,BarO(X))
(3.12)

where Coalg(O¡) stands for the category of pro-conilpotent O¡-coalgebras.

The set in the middle of (3.12) is called the set of twisted morphisms.

Proof. The proof repeats the well-known argument for the case when X and Y are
dg vector spaces (considered as arity-zero symmetric sequences), see e.g. [LV, 11.3.1].
We make use the adjunction given by Lemma 3.2 (as well as its more straightforward
counter-part for Alg(O)). The compatibility with the (co)bar-differentials is translated
to the Maurer-Cartan equation in HomΣ(Y/(F 0Y ), X)[−1].

3.8. A fragment of the P-relative bar-cobar adjunction. Recall that a sym-
metric sequence Z is a right P-module, where P is an operad, if there is a map

mZ : Z ◦ P → Z

satisfying the natural associativity and unit axioms.
Let Z be a pro-conilpotent coalgebra over a cooperad C and a right module over an

operad P .
We say that these two structures are compatible, if the following conditions are fulfilled:
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(i) the right P-module structure on Z descents to a right P-module structure on
Z/(F 0Z), that is

mZ(F 0(Z) ◦ P) ⊂ F 0(Z) (3.13)

(ii)

(Z/F 0Z) ◦ P mP //

∆Z◦id
��

Z/F 0Z
∆Z // C ◦1 (Z/F 0Z) can // C ◦ (Z/F 0Z)

=

��

(C ◦1 (Z/F 0Z)) ◦ P can // (C ◦ (Z/F 0Z)) ◦ P // C ◦ ((Z/F 0Z) ◦ P) // C ◦ (Z/F 0Z)

(3.14)
Here can denotes the canonical isomorphism (2.13).

We denote by C(C,P) the category of symmetric sequences Z with the above condi-
tions.

For any right P-module Z and any cooperad C, the cofree coalgebra FC(Z) is naturally
an object of C(C,P).

One has:

3.9. Lemma. Let O be a Koszul operad, P an operad, X a O−P-bimodule. Then the bar
dg symmetric sequence BarO(X) is a dg object of the category C(O¡,P), what amounts to
say that the bar-differential is compatible with the right P-action.

For two right P-modules M,N ∈ Vect(k)Σ, define Homlev ,Mod−P(M,N) ∈ Vect(k)Σ as
the equalizer

Homlev ,Mod−P(M,N)→ Homlev(M,N)
u

⇒
v

Homlev(M ◦ P , N) (3.15)

where, for f ∈ Homlev(M,N), u(f) is defined as the composition M ◦ P µM−−→ M
f−→ N ,

and v(f) is defined as the composition M ◦ P f◦id−−→ N ◦ P µN−−→ N .
One easily shows that

HomΣ,Mod−P(M,N) = Homlev ,Mod−P(M,N) ◦ k(0) (3.16)

(the functor of invariants is right adjoint and thus commutes with the limits, and in the
case of char k = 0 the spaces of invariants and coinvariants are canonically isomorphic).

Let O be a Koszul operad, P an operad, X an O-P-bimodule, Y ∈ C(O¡,P).
Below we construct a dg Lie algebra structure on HomΣ,Mod−P(Y/k, X)[−1]. (For the

case P = I, this Lie algebra coincides with the one which figures in the middle term of
(3.12)).

To this end, we construct an operad action

Homlev(O¡,O) ◦ Homlev ,Mod−P(Y/F 0Y,X)→ Homlev ,Mod−P(Y/F 0Y,X)
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For a general functor F : C→ D, and a diagram D : I → C, there is a canonical morphism
in D:

ξ : F (limD(i))→ limF (Di) (3.17)

Therefore, one has a morphism in Vect(k)Σ:

ξ : Homlev(O¡,O) ◦ Homlev ,Mod−P(Y/F 0Y,X)→

lim
(

Homlev(O¡,O) ◦ Homlev(Y/F 0Y,X)
id ◦u
⇒

id ◦v
Homlev(O¡,O) ◦ Homlev((Y/F 0Y ) ◦ P , X)

)
(3.18)

The limit in the r.h.s. of (3.18) is further mapped to

lim
(

Homlev(O¡,O) ◦ Homlev(Y/F 0Y,X)
id ◦u
⇒

id ◦v
Homlev(O¡,O) ◦ Homlev((Y/F 0Y ) ◦ P , X)

)
(2.27)
→ lim

(
Homlev(O¡ ◦ (Y/F 0Y ),O ◦X)

u1

⇒
v1

Homlev(O¡ ◦ ((Y/F 0Y ) ◦ P),O ◦X)
)

= lim
(

Homlev(O¡ ◦ (Y/F 0Y ),O ◦X)
u2

⇒
v2

Homlev((O¡ ◦ (Y/F 0Y )) ◦ P),O ◦X)
)
∗→

lim
(

Homlev(Y/F 0Y,X)
u

⇒
v

Homlev((Y/F 0Y ) ◦ P , X)
)

= Homlev ,Mod−P(Y/F0Y,X)
(3.19)

(the arrows u1, v1 and u2, v2 are clear, and we skip their definitions). Here the crucial point
is the arrow marked by ∗ in the third line. It encodes both diagram (3.14) (expressing
that Y ∈ C(O¡,P)), and the property of X being an O−P-bimodule. Indeed, the equality
follows from commutativity of the two diagrams, corresponded to the cases ω = u and
ω = v of the diagram below:

Homlev(O¡ ◦ (Y/F 0Y ),O ◦X)
ω2 //

��

Homlev((O¡ ◦ (Y/F 0Y )) ◦ P ,O ◦X)

��

Homlev(Y/F 0Y,X) ω // Homlev((Y/F 0Y ) ◦ P , X)

(3.20)

The commutativity of (3.20) follows from (3.14), whereas its commutativity for ω = v
follows from the fact that X is an O−P-bimodule.

One easily shows that the constructed map of symmetric sequences

Homlev(O¡,O) ◦ Homlev ,Mod−P(Y/F 0Y,X)→ Homlev ,Mod−P(Y/F 0Y,X)

gives rise to an action of the operad Homlev(O¡,O) (see Corollary 2.7) on

Homlev ,Mod−P(Y/F 0Y,X) ∈ Vect(k)Σ

One has a map of operads Lie{1} → HomOp(O¡,O), by Lemma 2.16. Therefore,
Homlev ,Mod−P(Y/F 0Y,X) becomes a Lie{1}-algebra. The same is true for
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Homlev ,Mod−P(Y/F 0Y,X) ◦ k, see Remark 2.13. The latter space is identified with
HomΣ,Mod−P(Y/F 0Y,X), see (3.16).

It is an algebra over Lie{1}. Therefore, HomΣ,Mod−P(Y/F 0Y,X)[−1] is a dg Lie algebra
(the differential is d0, that is, it comes from the inner differentials on X and Y ).

Now we can formulate our statement:

3.10. Proposition. Let O be a Koszul biaugmented operad, P an operad, X a O−P-
bimodule, Y an object of the category C(O¡,P). One has:

MC(HomΣ,Mod−P(Y/(F 0Y ), X)[−1]) = HomΣ,C(O¡,P)(Y,BarO(X)) (3.21)

Proof. After all preparations, the statement becomes almost trivial. A map t : Y →
BarO(X) of the underlying coalgebras is the same that a map t′ : Y/F 0Y → X, by Lemma
3.2. The map t is a map of right P-modules if and only if the map t′ is. Finally, the
compatibility of t with the bar-differential results in the Maurer-Cartan equation on t′.

4. Deformation theory of a morphism of operads en → P with a cocom-
mutative base

4.1. The case P = [X,X].

4.1.1. Let V ∈ Vect(k) be a (dg) vector space over k, X ∈ Vect(k)Σ a symmetric
sequence. Recall the symmetric sequence V ? X := V (0) � X (that is, (V ? X)(n) =
V ⊗X(n)).

One has the adjunction

HomΣ(V ? X, Y ) = Homk(V,HomΣ(X, Y )) (4.1)

One has the following fact:

4.2. Lemma. Let V ∈ Vect(k), X ∈ Vect(k)Σ. The following statements are true:

(i) Let P1,P2 are operads, V is an algebra over P1, X an algebra over P2. Then V ?X
is an algebra over the operad P1 ⊗lev P2.

(ii) Let C1, C2 are cooperads, V is a coalgebra over C1, X is a coalgebra C2. Then V ?X
is a coalgebra over C1 ⊗lev C2.

Proof.
(i): One has maps

P1(k)⊗Σk
V ⊗k → V

and
P2(k)⊗Σk

Ind
Σn1+···+nk
Σn1×···×Σnk

(X(n1)⊗ · · · ⊗X(nk))→ X(n1 + · · ·+ nk)

They give

(P1(k)⊗lev P2(k))⊗Σk
Ind

Σn1+···+nk
Σn1×···×Σnk

(V ⊗k ⊗X(n1)⊗ · · · ⊗X(nk))→ V ⊗Xn1+···+nk

which gives a structure of an algebra over P1 ⊗lev P2 on V ? X.
(ii): is analogous.
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4.2.1. Let O be a Koszul operad, X ∈ Vect(k)Σ an O-algebra. Recall the dg sequence

BarO(X) = (O¡ ◦X, d0 + dBar)

see Section 3.4. It is a coalgebra over the cooperad O¡.
Let X, Y ∈ Vect(k)Σ be O-algebras, f : X → Y a map of O-algebra. It defines a map

Bar(f) : BarO(X)→ BarO(Y )

of dg symmetric sequences of coalgebras over O¡.
We prefer to deal with coalgebras over finite biaugmented cooperads, as the concept of

a pro-conilpotent coalgebra over a cooperad, see Section 3.1, necessary for the adjunction
in Proposition 3.7, exists only for such cooperads. In our case, O = en, the cooperad e¡

n is
not biaugmented. On the other hand, e¡

n = e∗n{−n}, and the cooperad e∗n is biaugmented.
Therefore, we replace the map Bar(f) of e!

n-coalgebras by the corresponding map of
e¡
n{n} = e∗n-coalgebras.

Consider
Bar(f){n} : Bare¡

n
(X){n} → Bare¡

n
(Y ){n}

One has:
(e¡
n ◦X){n} = (e¡

n{n}) ◦ (X{n}) = e∗n ◦ (X{n}) (4.2)

Denote
Barn(X) = (e∗n ◦ (X{n}), dBar{n}) (4.3)

By abuse of notations, we will use the notation dBar for both the shifted differential dBar{n}
and the original bar differential.

Let a be a coalgebra over Comm∗. By Lemma 4.2,

a ? Barn(X)

is a coalgebra over Comm∗ ⊗ e∗n = e∗n.
Let f : X → Y be as above. Denote by

Coalg = Coalg(Comm∗)

the category of pro-conilpotent cocommutative coalgebras over k. Define the functor

F f
X,Y : Coalg → Sets

, as follow:

F f
X,Y (a) =

{
φ ∈ HomΣ,Coalg(e∗n)

(
a ? Barn(X),Barn(Y )

)
, φ ◦ η = Bar(f){n}

}
(4.4)

Here η : k→ a is the coaugmentation of a.
Our first task is to show that this functor is representable.
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4.2.2. The following Proposition easily follows from the bar-cobar duality in symmetric
sequences, proven in Section 3.6.

4.3. Proposition. Let X ∈ Vect(k)Σ be a en-algebra, and let C ∈ Vect(k)Σ be a pro-
conilpotent e∗n-coalgebra. One has:

HomΣ,Coalg(e∗n)(C,Barn(X)) = MC
(

HomΣ(C/F 0C,X{n})[−1]
)

(4.5)

where Coalg(e∗n) stands for the category of pro-conilpotent e∗n-coalgebras.

Proof. It follows from Proposition 3.7 for O = en{n}.

4.3.1. By Proposition 4.3, one has:

F f
X,Y (a) =

{
θ ∈ MC

(
HomΣ((a ? Barn(X))/k, Y {n})[−1]

)
, θ ◦ η = Bar(f)pr

}
(4.6)

where
Bar(f)pr ∈ MC(HomΣ(Barn(X{n})/k, Y {n})[−1]) (4.7)

is the element corresponded to Bar(f) by (4.5).
One further has:

F f
X,Y (a) =

{
θ ∈ MC

(
Homk(a,HomΣ(Barn(X{n})/k, Y {n})[−1])

)
, θ ◦ η = Bar(f)pr

}
(4.8)

We made use the adjunction (4.1).
Consider the graded vector space

HomΣ(Barn(X)/k, Y {n}) = HomΣ(e∗n ◦X{n}, Y {n})

By Lemma 2.14, it is an algebra over the operad HomOp(e
∗
n, en{n}) = HomOp(e

¡
n, en).

By Lemma 2.16, there is a map of operads

Lie{1} → HomOp(O¡,O) (4.9)

for any Koszul operad O.
It makes HomΣ(O¡◦X, Y )[−1] is an algebra over the same operad Lie. In our situation,

it implies that HomΣ(e∗n ◦X{n}, Y {n})[−1] is a graded Lie algebra. One easily sees that
the inner differential d0 (which is equal to 0 provided the differentials on X, Y are 0), and
the differential dBar, are compatible with this Lie algebra structure.

Consider the dg Lie algebra

Def0(X, Y ) =
(
HomΣ(Barn(X)/k, Y {n})[−1], d = d0 + dBar

)
=
(
HomΣ(e∗n, [X{n}, Y {n}])[−1], d = d0 + d∼Bar

) (4.10)

where d∼Bar is the differential corresponded to dBar by the adjunction, and [X{n}, Y {n}] =
[X, Y ]{n} by Lemma 2.9.
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The element Bar(f)pr is a degree 1 Maurer-Cartan element in Def0(X, Y ). Denote

df = ad(Bar(f)pr) (4.11)

and define

Def(X
f−→ Y ) =

(
HomΣ(Barn(X)/k, Y {n})[−1], d = d0 + dBar + df

)
=
(
HomΣ(e∗n, [X, Y ]{n})[−1], d = d0 + d∼Bar + d∼f

) (4.12)

It is a dg Lie algebra.

4.3.2. One has:

4.4. Proposition. Let X, Y be en-algebras in Vect(k)Σ, and let f : X → Y be a map of
en-algebras. The functor F f

X,Y is representable, by the dg coalgebra

arep = CCE(Def(X
f−→ Y ),k) (4.13)

which is the Chevalley-Eilenberg chain complex of the dg Lie algebra Def(X
f−→ Y ).

Proof. (Cf. [T2, Prop. 3.2]). By (4.8), one has

F f
X,Y (a) =

{
θ ∈ MC

(
Homk(a,HomΣ(Barn(X)/k, Y {n})[−1])

)
, θ ◦ η = Bar(f)pr

}
(4.14)

Denote

L0 =
(
HomΣ(Barn(X)/k, Y {n})[−1], d = d0 + dBar)

La =
(
Homk(a,HomΣ(Barn(X)/k, Y {n})[−1]), d = d0 + da + dBar

) (4.15)

where da is the component coming from the differential on the dg coalgebra a.
There are maps of coalgebras

k η−→ a
ε−→ k, ε ◦ η = id (4.16)

where ε is the counit, and η is the coaugmentation.
They induce maps of dg Lie algebras:

L0
ε∗−→ La

η∗−→ L0 (4.17)

such that η∗ ◦ ε∗ = id.
By (4.14), we are interested in

F f
X,Y (a) = {θ ∈ MC(La), η∗(θ) = Bar(f)pr} (4.18)

where Bar(f)pr is considered as a solution of the Maurer-Cartan equation in L0.
We identify this MC solution in L0 with θ0 = ε∗(Bar(f)pr), regarded as a Maurer-

Cartan element in La.
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Then any Maurer-Cartan element in (4.18) is of form

θ = θ0 + ξ (4.19)

where
ξ ∈ Ker(η∗) = Homk(a/k,HomΣ(Barn(X), Y {n})[−1]) = L′a (4.20)

We want to rewrite the Maurer-Cartan equation on θ ∈ La as some equation on ξ ∈ L′a.
The Maurer-Cartan equation on θ is

dθ +
1

2
[θ, θ] = 0 ⇔ d1ξ + [Bar(f)pr, ξ] +

1

2
[ξ, ξ] = 0 (4.21)

where d1 = d0 + da + dBar.
The conclusion is that the Maurer-Cartan equation on θ is the same that the Maurer-

Cartan equation on ξ in the dg Lie algebra

L′′a =
(
Homk(a/k,HomΣ(Barn(X), Y {n})[−1]), d = d0 +da+dBar +ad(Bar(f)pr)

)
(4.22)

Note that, as a dg Lie algebra,

L′′a = Homk(a/k,Def(X
f−→ Y )) (4.23)

Then the adjunction in Proposition 3.7 gives

F f
X,Y (a) = {ξ ∈ MC(Homk(a/k,Def(X

f−→ Y )))}

= HomCoalg(Comm)(a, CCE(Def(X
f−→ Y ), k)) (4.24)

4.4.1. Now turn back to our original definition of the functor F f
X,Y as (4.4). It follows

immediately that, for a chain of maps of en-algebras in Vect(k)Σ

X
f−→ Y

g−→ Z (4.25)

there is a map of sets
F g
Y,Z(a′)× F f

X,Y (a)→ F gf
X,Z(a⊗ a′) (4.26)

what gives rise to a map of bifunctors Coalg × Coalg → Sets:

F g
Y,Z(−1)× F f

X,Y (−2)→ F gf
X,Z ◦

⊗
(−1,−2) (4.27)

Plugging in the representative objects for −1 and −2 and the identity maps, one gets a
map of dg cocommutative coalgebras:

Tf,g : CCE(Def(Y
g−→ Z),k)

⊗
CCE(Def(X

f−→ Y ),k)→ CCE(Def(X
gf−→ Z),k) (4.28)

These maps of dg cocommutative coalgebras are associative:

Tgf,h ◦ (id⊗Tf,g) = Tf,hg ◦ (Tg,h ⊗ id) (4.29)
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4.4.2. Plug X = Y = Z, f = g = id to (4.28).

It follows that A = CCE(Def(X
id−→ X),k) is a monoid object in the category cocom-

mutative dg coalgebras. That is, it is a cocommutative dg bialgebra.
It follows from the Milnor-Moore theorem [Q, Appendix B] that, as a graded Hopf

algebra, A = U(g), where g is the Lie algebra of primitive elements. In our case,

g = Def(X
id−→ X)[1] (4.30)

Thus, the product (4.28) gives some Lie algebra structure on

Def(X
id−→ X)[1] =

∏
`≥1

HomΣ`
((e∗n ◦X{n})(`), X{n}(`)) (4.31)

It is a Gerstenhaber-like Lie bracket, which has been obtained from the convolution Lie
bracket.

4.5. Lemma. The Lie bracket on Def(X
id−→ X), defined in Section 4.2.1, is equal to 0.

Proof. We know that CCE(Def(X
id−→ X, k) is a dg Hopf algebra. It is of the form

U(g), where g = Def(X
id−→ X)[1] is the space of primitive elements. The Chevalley-

Eilenberg chain differential is equal to 0 on g. As a conclusion, we get that the Chevalley-

Eilenberg differential on any power Sk(Def(X
id−→ X)[1]) is 0. It is equivalent to saying

that Def(X
id−→ X) is an abelian Lie algebra.

4.5.1.

4.6. Lemma. The Lie bracket on Def(X
id−→ X)[1] given by the Milnor-Moore theorem

is identified with the bracket given by the commutator of coderivativations of the cofree
e∗n-coalgebra Barn(X{n}).

4.7. The case P = [X,X]Q.

4.7.1. Recall some useful adjunction.
Let Q be an operad, X, Y ∈ Vect(k) right Q-modules, S ∈ Vect(k)Σ. One has:

HomΣ,Mod−Q(S ◦X, Y ) = HomΣ(S, [X, Y ]Q) (4.32)

See Section 2.7.2 for the definition of [X, Y ]Q ∈ Vect(k)Σ.

4.7.2. Let Q be an operad, O a Koszul operad, X a symmetric sequence in Vect(k),
with a O−Q-bimodule structure:

m : O ◦X ◦ Q → X (4.33)

Recall that a O−Q-bimodule structure on a symmetric sequence X gives rise to an operad
map:

O → [X,X]Q (4.34)

See Section 2.7.2 for detail.
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4.7.3. Let X be an O−Q-bimodule, as above.
Consider the bar-complex

BarO(X) = (O¡ ◦X, dBar)

The underlying symmetric sequence O¡ ◦ X is clearly a right Q-module. It is shown in
Section 3.8 that BarO(X) becomes an object of the category C(O¡,Q), defined there.

The shifted symmetric sequence X{n} becomes an O{n}−Q{n}-bimodule.
Consider the case O = en.
Then the complex

Barn(X) = (e∗n ◦ (X{n}), dBar)

is an object of the category C(e∗n,Q{n}).
Let f : X → Y be a map of en−Q-bimodules, X, Y symmetric sequences. We define

a functor

QF
f
X,Y : Coalg → Sets (4.35)

as follows:

QF
f
X,Y (a) =

{
φ ∈ HomC(e∗n,Q{n})(a ? Barn(X),Barn(Y )), φ ◦ η = Bar(f)

}
(4.36)

We use Proposition 3.10. It gives:

QF
f
X,Y (a) =

{
θ ∈ MC(HomΣ,Mod−Q{n}(a ? Barn(X)/k, Y {n})[−1]), θ ◦ η = Bar(f)pr

}
(4.37)

One further has:

QF
f
X,Y (a) =

{
θ ∈ MC(Homk(a,HomΣ,Mod−Q{n}(Barn(X)/k, Y {n})[−1]), θ ◦ η = Bar(f)pr

}
=
{
θ ∈ MC(Homk(a,HomΣ(e∗n, [X{n}, Y {n}]Q{n}))), θ ◦ η = Bar(f)∼pr

}
(4.38)

where by Bar(f)∼pr is denoted the element corresponded to Bar(f)pr by the adjunction
(4.32).

4.7.4. Here we endow HomΣ(e∗n, [X{n}, Y {n}]Q{n})[−1] with a dg Lie algebra structure.
Consider the symmetric sequence

D = Homlev(e∗n, [X{n}, Y {n}]Q{n}) (4.39)

The graded vector space HomΣ(e∗n, [X{n}, Y {n}]Q{n}) is equal to DΣ.
On the other hand, the operad [Y {n}, Y {n}]Q{n} acts on [X{n}, Y {n}]Q{n} from the

left:
[Y {n}, Y {n}]Q{n} ◦ [X{n}, Y {n}]Q{n} → [X{n}, Y {n}]Q{n} (4.40)

see Section 2.7.2.
Therefore, the convolution operad

HomOp(e
∗
n, [Y {n}, Y {n}]Q{n}) (4.41)
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acts on D, by Lemma 2.14. Therefore, the same operad acts on the graded space DΣ =
HomΣ(e∗n, [X{n}, Y {n}]Q{n}).

There is a map of operads

en{n} → [Y {n}, Y {n}]Q{n}

Therefore, D and DΣ become algebras over the operad HomOp(e
∗
n, en{n}).

Now we proceed as in Section 4.2.1. There is a map of operads Lie{1} → HomOp(e
∗
n, en{n}),

by Lemma 2.16. Therefore, the graded space

HomΣ(e∗n, [X{n}, Y {n}]Q{n})[−1] (4.42)

is a graded Lie algebra. One easily checks that the differentials d0 and dBar differentiate
this Lie algebra structure.

Denote

Def0(X, Y )Q := (HomΣ(e∗n, [X{n}, Y {n}]Q{n})[−1], d = d0 + d∼Bar) (4.43)

We claim that the map f : X → Y of en−Q-bimodules defines a degree 1 element in
Def0(X, Y )Q, satisfying the Maurer-Cartan equation.

Indeed, f defines a map of shifted bar-complexes

Bar(f){n} : Barn(X)→ Barn(Y )

which is a map of e∗n-coalgebras and of right Q{n}-modules. The map Bar(f){n}pr is
defined by the projection to the cogenerators Bar(f){n}pr : Barn(X) → Y {n}. It is a
map of right Q{n}-modules. Now the adjunction (4.32) gives the corresponding degree 0
map in HomΣ(e∗n, [X{n}, Y {n}]Q{n}). After the shift [−1] it gives a degree 1 element in
Def0(X, Y )Q. One checks that it satisfies the Maurer-Cartan equation.

Denote the obtained element by Bar(f){n}∼pr, and

df = ad(Bar(f){n}∼pr)

One gets that

Def(X
f−→ Y )Q :=

(
HomΣ(e∗n, [X{n}, Y {n}]Q{n})[−1], d = d0 + dBar + df

)
(4.44)

is a dg Lie algebra. We call it the Q-relative deformation dg Lie algebra.
Note that

[X{n}, Y {n}]Q{n} = ([X, Y ]Q){n} (4.45)

Therefore, one has:

Def(X
f−→ Y )Q =

(
HomΣ(e¡

n, [X, Y ]Q)[−1], d = d0 + dBar + df

)
(4.46)

4.7.5. We have:
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4.8. Proposition. The functor QF
f
X,Y : Coalg(Comm)→ Sets is representable, by the dg

coalgebra arep = CCE(Def(X
f−→ Y )Q, k):

QF
f
X,Y (a) = HomΣ,Coalg(Comm)(a, CCE(Def(X

f−→ Y )Q,k)) (4.47)

where Coalg(Comm) denotes the category of pro-conilpotent cocommutative coalgebras in
Vect(k)Σ, and CCE(−) stands for the chain Chevalley-Eilenberg complex of a (dg) Lie
algebra.

Proof. The proof is analogous to the proof of Proposition 3.10, and we omit the detail.
The only difference is that we use Proposition 3.10 here, instead of Proposition 3.7.

4.8.1. Turn back to the definition of the functor QF
f
X,Y , given in (4.36). It follows from

this definition that, for a chain of maps of en−Q-bimodules in Vect(k)Σ

X
f−→ Y

g−→ Z

one gets a map of sets

QF
g
Y,Z(a′)×Q F f

X,Y (a)→Q F gf
X,Z(a⊗ a′) (4.48)

which gives rise to a map of bifunctors Coalg × Coalg → Sets:

QF
g
Y,Z(−2)×Q F f

X,Y (−1)→Q F gf
X,Z ◦

⊗
(−1,−2) (4.49)

Denote by afrep the representing coalgebra for the functor QF
f
X,Y (−). Then (4.48) gives a

map:
afrep ⊗ agrep → agfrep (4.50)

of dg coalgebras, which enjoys the natural associativity for a chain of four maps X →
Y → Z → W .

We know that
afrep = CCE(Def(X

f−→ Y )Q,k)

Consider the case X = Y , f = idX . Then (4.50) gives a dg bialgebra structure on

aid
rep(X) = CCE(Def(X

id−→ X)Q,k)

4.9. Proposition. Let X be a en−Q-bimodule. Then

aid
rep(X) = CCE(Def(X

id−→ X)Q,k)

is a cocommutative dg bialgebra.

One can apply the Milnor-Moore theorem to this cocommutative bialgebra, which
gives that, as a graded bialgebra,

CCE(Def(X
id−→ X)Q,k) = U(g) (4.51)
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where
g = Def(X

id−→ X)Q[1]

is the space of primitive elements. It becomes a Lie algebra, with the bracket [x, y] =
x ∗ y ∓ y ∗ x.

One has

4.10. Lemma. The Lie bracket on Def(X
id−→ X)Q defined in Section 4.7.4 is equal to 0.

Proof. The proof is similar to Lemma 4.5, and we omit the detail.

4.11. The case of general P.

4.11.1. Recall the general definition of the deformation complex DefOp(O
g−→ P) of a

morphism of operads. To define DefOp(O
g−→ P), one replaces O by a cofibrant resolution

R(O), and one considers the operad maps MapOp(R(O),P) in a formal neighborhood

of the composition R(O) → O g−→ P . In our case, when O is Koszul, one chooses
R(O) = CobarOp(O¡).

We get:

MapOp(R(O),P) = MC
(

HomΣ(O¡,P), d = d0 +Dg

)
(4.52)

Here we consider the convolution Lie algebra HomΣ(O¡,P), see Section 2.12.1. The differ-
ential component d0 comes from the inner differential on P . The condition of compatibility
with the cobar-differential is translated to the Maurer-Cartan equation, see [LV, Section

6.5]. The composition CobarOp(O¡) → O g−→ P defines a Maurer-Cartan element ωg in
the convolution Lie algebra, and the differential component Dg = ad(ωg) is defined as the
adjoint action of this element.

Finally we define the deformation complex of the operad morphism g as

DefOp(O
g−→ P) =

(
HomΣ(O¡,P), d0 +Dg

)
One has the following general statement:

4.12. Lemma. Let O be a Koszul operad, Q an operad, X an O−Q-bimodule. Then

the deformation complex Def(X
id−→ X)Q[1] is isomorphic to the deformation complex

Def(O f−→ [X,X]Q):

Def(X
id−→ X)Q[1] ' Def(O f−→ [X,X]Q) (4.53)

where the operad map f : O → [X,X]Q is obtained from the bimodule structure on X, as
in Section 4.7.2.
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Proof. The isomorphism (4.53) holds for the underlying graded vector spaces. Let us
compare the differentials on both sides. The differential components d0 are equal on the
both sides. We claim that, up to the shift by [1],

Dg = dBar + did (4.54)

where we use the notations from (4.44). Indeed, Dg looks like the Hochschild cochain
differential, it contains the regular and the two extreme terms, corresponded to ωg ◦− and
−◦ωg, correspondingly. These two summands are equal to dBar and did, correspondingly.

One can alternatively describe the Lie bracket, given on Def(X
id−→ X)Q[1] by the

Milnor-Moore theorem [Q, Appendix B], as follows.

4.13. Lemma. The Lie bracket on Def(X
id−→ X)Q[1] defined via by the Milnor-Moore

theorem is equal to the Lie bracket obtained from the convolution pre-Lie bracket on the
operadic deformation complex DefOp(en

g−→ [X,X]Q). For the case Q = I, this Lie bracket
can be also described as the Lie bracket on the graded space of coderivations of the cofree
e¡
n-coalgebra e¡

n ◦X.

It is a direct check.

4.13.1. One particular case of previous construction is obtained when X = Q = P , with
the tautological right P-action on X = P . We know that [P ,P ]P = P , see Section 2.7.2.
We assume we are given a map of operads g : en → P , which gives, after the operadic
shift, a map of operads g{n} : en{n} → P{n}. Then P{n} becomes a e−nP{n}-bimodule.
Lemma 2.8 gives a map of operads

en{n} → [P{n},P{n}]P{n} = P{n}

which is equal to the map g{n}.
Moreover, one easily shows that the deformation complexes

DefOp(O
g−→ P) and DefOp(O{n}

g{n}−−→ P{n})

are isomorphic.
Therefore, the results of Section 4.7 are applied to a general map of operads g : en → P .

5. Deformation theory of a morphism of operads f : en → P with en-
coalgebra base

5.1. The Hopf algebra structure on the operad en.
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5.1.1. Let E be a topological operad. Then the diagonal maps ∆(n) : E(n)→ E(n)×E(n),
which gives rise to a map of operads ∆: E → E × E . That is, any topological operad is
Hopf.

When we apply the monoidal functor of singular homology, we get an operad H q(E ,k)
in graded vector spaces, such that for any n one has a map

∆(n) : H q(E(n),k)→ H q(E(n),k)⊗H q(E(n),k)

It is compatible with the operad compositions, and gives rise to a map of operads

∆: H q(E ,k)→ H q(E ,k)⊗H q(E ,k)

The conclusion is that the homology operad of a topological operad is always a Hopf
operad (in graded vector spaces).

5.1.2. It is applied to the operad en = H q(En,k), what makes it a Hopf operad.
One can write down the Hopf structure on en explicitly. The suboperad Comm ⊂ en is

“group-like”: the element cs ∈ Comm(s) ⊂ en(s), equal to the composition of the product
operation c2 ∈ Comm(2), satisfies

∆(cs) = cs ⊗ cs (5.1)

The suboperad Lie{−n+ 1} ⊂ en forms the subspace of primitive elements in each arity,
in the sense that

∆(`s) = `s ⊗ cs + cs ⊗ `s (5.2)

for any `s ∈ Lie{−n+ 1}(s).
As en = Comm ◦Lie{−n+ 1}, the condition that ∆ is an operad map defines it on any

component en(s).

5.1.3. One has:

5.2. Lemma. Consider the map of operads

Lie{1} → en{n}
Hopf−−→ en{n} ⊗lev en = Homlev(e∗n{−n}, en) = Homlev(e¡

n, en) (5.3)

where the leftmost map is the shifted map Lie{−n + 1} → en. Then the composition is
equal to the map defined in Lemma 2.16.

Proof. We deal with two a priori different maps Lie{1} → O to an operad O. The
operad Lie is quadratic, therefore the two maps coincide if they coincide on Lie{1}(2).
But for arity 2 it is checked by an explicit computation, using (5.1) and (5.2), on one side,
and (2.56), on the other side.
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5.2.1. An immediate consequence of the Hopf structure on the operad en is:

5.3. Lemma. Let b1, b2 be two en-algebras. Then the tensor product of the underlying (dg)
vector spaces b1 ⊗ b2 is naturally a en-algebra. Similarly, let a1, a2 be two e∗n-coalgebras.
Then the tensor product of the underlying (dg) vector spaces is naturally a e∗n-coalgebra.

Proof. We prove the first statement, the second is analogous. For x an algebra over an
operad O1 and y an algebra over an operad O2, the tensor product x ⊗ y is an algebra
over the operad O1 ⊗O2. In our case, b1 ⊗ b2 is an algebra over the operad en ⊗ en. The
diagonal map ∆: en → en ⊗ en makes b1 ⊗ b2 an algebra over en.

We will use the following variation of the lemma:

5.4. Lemma. Let b ∈ Vect(k), X ∈ Vect(k)Σ be algebras over the operad en. Then b?X =
b(0) �X is an algebra over the operad en. Similarly, for an e∗n-coalgebra a ∈ Vect(k), and
an e∗n-coalgebra Y ∈ Vect(k)Σ, the symmetric sequence a ? Y is a coalgebra over e∗n.

See Section 4.1.1 for the definition of a?X. The statement is proven analogously with
the Lemma above, using Lemma 4.2.

5.5. The functor QG
f
X,Y and its representability.

5.5.1. Let X be an en-algebra in Vect(k)Σ. Then the bar-complex

Barn(X) = (e∗n(X{n}), dBar)

is an e∗n-coalgebra, see (4.2), (4.3).
Let a be another e∗n-coalgebra. Then a ? Barn(X) is a en-coalgebra, by Lemma 5.4.
We consider directly the “relative” case here.
Let Q be an operad, X, Y -two en−Q-bimodules, f : X → Y a bimodule map. The

map f defines a map Bar(f) : Barn(X) → Barn(Y ). It is a morphism in the category
C(e∗n,Q{n}), see Section 3.8.

Denote by Coalgn = Coalgn(k) the category of pro-conilpotentent e∗n-coalgebras over
k.

Define the functor

QG
f
X,Y : Coalgn → Sets

as follows:

QG
f
X,Y (a) =

{
φ ∈ HomC(e∗n,Q{n})(a ? Barn(X),Barn(Y )), φ ◦ η = Bar(f)

}
(5.4)

Here η : k→ a is the coaugmentation map.
Proposition 3.10 gives:

QG
f
X,Y (a) = {θ ∈ MC(HomΣ,Mod−Q{n}((a ? Barn(X))/k, Y {n})[−1], θ ◦ η = Bar(f)pr}

= {θ ∈ MC(Homk(a,HomΣ,Mod−Q{n}(Barn(X)/k, Y {n})[−1]), θ ◦ η = Bar(f)pr}
= {θ ∈ MC(Homk(a,HomΣ(e∗n, [X{n}, Y {n}]Q{n}))), θ ◦ η = Bar(f)∼pr}

(5.5)
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5.5.2. Denote

Defn0 (X
f−→ Y )Q[1] = Def0(X

f−→ Y )Q[1] = (HomΣ(e∗n, [X{n}, Y {n}]Q{n}), d = d0 + d∼Bar)
(5.6)

cf. (4.43).

5.6. Lemma. In the notations as above, the complex Defn0 (X
f−→ Y )Q[1] enjoys a natural

en{n}-algebra structure. Moreover, the underlying Lie{1}-algebra structure on Defn0 (X
f−→

Y )Q[1] agrees with the Lie algebra structure on Def0(X
f−→ Y )Q given in Section 4.7.4.

Proof. By Lemma 2.14, the convolution operad Homlev(e∗n, [Y {n}, Y {n}]Q{n}) acts on
the symmetric sequence Homlev(e∗n, [X{n}, Y {n}]Q{n}) and, therefore, on

HomΣ(e∗n, [X{n}, Y {n}]Q{n})

This action is compatible with the differential d0 + d∼Bar, which, in turn, acts on the
components of the level Hom. Now we recall the operad map en → [Y, Y ]Q, coming from
the en−Q-bimodule structure, see Section 4.7.2. Then there is the shifted operad map
e∗n{n} → [Y {n}, Y {n}]Q{n}, and the convolution operad Homlev(e∗n, en{n}) = en ⊗ en{n}
becomes acting on Defn0 (X

f−→ Y )Q[1]. Now the Hopf structure on the operad en (see
Section 5.1.2) gives an operad map en{n} → en⊗ en{n}, which proves the first statement.

For the second statement, we notice that the Lie algebra structure on Def0(X
f−→ Y )Q

given in Section 4.7.4 was constructed in the similar way, considering the action of the
operad Homlev(e∗n, [Y {n}, Y {n}]Q{n}) as the first step, followed by restricting this action
to the action of operad Homlev(e∗n, en{n}), and then restricting it to the operad Lie{1},
by Lemma 2.16. So the claim is that the two Lie{1} actions coincide, and it follows from
Lemma 5.2.

5.6.1. We can twist the differential of deformation complex Defn0 (X
f−→ Y )Q (which, as a

dg Lie algebra, does not depend on the map f) by the adjoint action df = ad(Bar(f){n}∼pr)
of the Maurer-Cartan element Bar(f){n}∼pr, as in Section 4.7.4:

Defn(X
f−→ Y )Q :=

(
HomΣ(e∗n, [X{n}, Y {n}]Q{n})[−1], d = d0 + dBar + df

)
(5.7)

The new thing is that this twisting preserves the operad en{n} acting on the shifted by

[1] complex Defn(X
f−→ Y )Q[1].

It can be checked by hand, of course. A more conceptual explanation goes through
the second statement of Lemma 5.6. By this statement, the operad acting on the twisted
complex is the operadic twisting Tw(Lie{1} → en{n}), see [DW]. This operad is well-
known to be weak equivalent to the operad en{n}, see loc.cit., Sect. 4.3.

We conclude, that Defn(X
f−→ Y )Q[1], defined in (5.7), is a dg en{n}-algebra.
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5.7. Remark. Note that Defn0 (X
f−→ Y )Q is well-defined as a symmetric sequence, and

only the last differential component df mixes the components of the symmetric sequence
up. As well, the operadic twisting is a useful tool to be applied at this “last step”, when
the components of the symmetric sequence from the previous steps are being mixed up,
and we are interesting which operad acts on the resulting complex. Many non-trivial
examples of this idea in use can be found in [W], [CW], [DW], ...

5.7.1. Consider the bar-complex Baren{n}(Defn(X
f−→ Y )Q[1]) over the operad en{n}. It

is a e∗n-coalgebra.
One has:

5.8. Proposition. The functor QG
f
X,Y : Coalgn → Sets from the category of pro-conil-

potent e∗n-coalgebras to the category of sets is representable, by the e∗n-coalgebra

Afrep = Baren{n}(Defn(X
f−→ Y )Q[1]):

QG
f
X,Y (a) = HomC(e∗n,Q)(a ? Barn(X),Barn(Y ))

= HomCoalgn(a,Baren{n}(Defn(X
f−→ Y )Q[1])) (5.8)

Proof. We start with the last line of (5.5), and then continue as in the proof of Proposi-
tion 4.4, using the adjunction given in Proposition 4.3. We skip the detail, as the argument
is analogous to the proof of Proposition 4.4 (which is, by its own, borrowed from [T2,
Prop. 3.2]).

5.9. Turn back to the definition of the functor QG
f
X,Y , given in (5.4). It follows from

this definition that, for a chain of maps of en−Q-bimodules in Vect(k)Σ

X
f−→ Y

g−→ Z

one gets a map of sets

QG
g
Y,Z(a′)×Q Gf

X,Y (a)→Q Ggf
X,Z(a⊗ a′) (5.9)

which gives rise to a map of bifunctors Coalgn × Coalgn → Sets:

QG
g
Y,Z(−2)×Q Gf

X,Y (−1)→Q Ggf
X,Z ◦

⊗
(−1,−2) (5.10)

Denote by Afrep the representing n-coalgebra for the functor QG
f
X,Y (−). Then (4.48) gives

a map:
Afrep ⊗ Agrep → Agfrep (5.11)

of dg coalgebras, which enjoys the natural associativity for a chain of four maps X →
Y → Z → W .

We know from Proposition 5.8 that

Afrep = Baren{n}(Defn(X
f−→ Y )Q[1])

Consider the case X = Y , f = idX . Then (5.11) gives a monoid in the category of dg

n-coalgebras structure on Aid
rep(X) = Baren{n}(Defn(X

id−→ X)Q):
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5.10. Proposition. Let X be a en−Q-bimodule. Then

Aid
rep(X) = Baren{n}(Defn(X

id−→ X)Q[1])

is a monoid in the category of e∗n-coalgebras.

5.11. Definition. Let A be a e∗n-coalgebra, endowed with a monoid structure, that is,
with a map

A⊗ A→ A (5.12)

of e∗n-coalgebras, which is associative, and has a unit given by the coaugmentation map
of A. Then we say that A is a e∗n-bialgebra.

Proposition 5.8 says that the e∗n-coalgebra

Aid
rep(X) = Baren{n}(Defn(X

id−→ X)Q[1])

is a e∗n-bialgebra.

We know from Lemma 4.12 that, as a complex, Defn(X
id−→ X)Q[1] = DefOp(en →

[X,X]Q).
Then Proposition 5.10 gives:

5.12. Corollary. Let X be a en{n}−Q-bimodule, g : en{n} → [X,X]Q the associated

map. Then the operadic deformation complex DefOp(en{n}
g−→ [X,X]Q) is a en{n}-algebra,

and Baren{n}(DefOp(en{n}
g−→ [X,X]Q)) has a e∗n-bialgebra structure.

One particular case of previous construction is obtained when X = Q = P , with the
tautological right P-action on X = P . We know that [P ,P ]P = P , see Section 2.7.2. We
assume we are given a map of operads f : en → P , then f{n} : en{n} → P{n}, which
makes P{n} a en{n}−P{n}-bimodule. Lemma 2.8 gives a map of operads

en{n} → [P{n},P{n}]P{n} = P{n}

which is equal to the map f{n}. We mention that DefOp(O
f−→ P) = DefOp(O{k}

f{k}−−→
P{k}), for any k.

One gets:

5.13. Corollary. Let f : en → P be an operad map. Then DefOp(en
f−→ P) is a en{n}-

algebra, and Baren{n}(DefOp(en
f−→ P)) is a e∗n-bialgebra.

In the next Section, we link the dg cocommutative bialgebra aid
rep(X) and the dg e∗n-

bialgebra Aid
rep(X), and investigate the higher structure we have found.
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6. A proof of Theorem 1.2

Section 6.1 just reproduces arguments from [T2]. For convenience of the reader, we briefly

recall them here. It shows that DefOp(en{n}
f{n}−−→ P{n})[−n] is a homotopy (n + 1)-

algebra. Note that here we only use the deformation theory with en-coalgebra base, see
Section 5.

In Section 6.2, we give an explicit description of the underlying (homotopy) Lie bracket

on DefOp(en{n}
f{n}−−→ P{n})[−n][n] = DefOp(en{n}

f{n}−−→ P{n}) of this homotopy en+1-
algebra as the strict operadic convolution Lie bracket. It is proven by comparison of the
representation objects arep(X) and Arep(X) for the deformation theories with cocommu-
tative and en-coalgebra bases, correspondingly. Our argument here is hopefully somewhat
more transparent than the one in [T2].

6.1. Let f : en → P be a morphism of operads; it defines the shifted map of operads

f{n} : en{n} → P{n}. The deformation complex DefOp(en
f−→ P) = DefOp(en{n}

f{n}−−→
P{n}) enjoys a structure of en{n}-algebra, by Lemma 5.6 and the discussion thereafter.

Consider the bar-complex Baren{n}(DefOp(en{n}
f{n}−−→ P{n})) which is an e∗n-coalgebra.

In general, the underlying complex of Baren{n}(X) is e∗n◦X. As en = Comm◦Lie{−n+
1}, the underlying graded space of

e∗n ◦X = Comm∗ ◦ (Lie∗{n− 1} ◦X) (6.1)

Denote X = DefOp(en{n}
f{n}−−→ P{n}).

Corollary 5.13 says that Baren{n}(X) is a e∗n-bialgebra. Consider the underlying co-
commutative bialgebra. Then the Milnor-Moore theorem [Q, Appendix B] gives a Lie
algebra structure on the graded space of primitive elements. The space of primitive ele-
ments is Lie∗{n− 1} ◦X. In general, if we have a dg cocommutative coalgebra, the space
of primitive elements is a subcomplex. The space of primitive elements is closed under
the bracket ab ∓ ba; therefore, Lie∗{n − 1} ◦ X becomes a Lie algebra. The Lie algebra
structure on Lie∗{n−1}◦X is compatible with the cofree Lie∗{n−1}-coalgebra structure,
by

δ([x, y]) = [δx, y] + (−1)|x|(d−1)[x, δy] (6.2)

where δ is the Lie∗{n− 1}-cobracket.
The Chevalley-Eilenberg chain complex of the Lie algebra

Lie∗{n− 1} ◦X

is Comm∗{−1}◦Lie∗{n−1}◦X The identity (6.2) is translated to the statement that the
Chevalley-Eilenberg differential differentiates the Lie∗{n−1}-coalgebra structure, making
Comm∗{−1} ◦ Lie∗{n− 1} ◦X a dg Comm∗{−1} ◦ Lie∗{n− 1}-coalgebra.

One has:

Comm∗{−1} ◦ Lie∗{n− 1} ◦X = (Comm∗{−n− 1} ◦ Lie∗{−1} ◦X{−n}){n}
= (e∗n+1{−n− 1} ◦X[−n])[n]
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As (Comm∗{−1}◦Lie∗{n−1}◦X, d) is a dg coalgebra over the cooperad Comm∗{−1}◦
Lie∗{n−1}, the shifted by [−n] complex Comm∗{−n−1}◦Lie∗{−1}◦X{−n} is a coalgebra

over the cooperad
(
Comm∗{−1} ◦ Lie∗{n− 1}

)
{−n} = e∗n+1{−n− 1}.

Here have we repeatedly used Lemma 2.9(i).
The conclusion is that e∗n+1{−n− 1} ◦ (X[−n]) is a dg coalgebra over e∗n+1{−n− 1}.

By definition, it means that X[−n] is a homotopy (n+ 1)-algebra.

6.2. It remains to prove the second claim of Theorem 1.2, describing the Lie bracket of
degree −n in terms of the operadic convolution bracket.

6.2.1. The idea is to link the commutative coalgebra arep(f) representing the functor

QF
f
X,Y with the n-coalgebra Arep(f) representing the functor QG

f
X,Y .

There is the inclusion functor i : Coalg → Coalgn. It admits a right adjointR : Coalgn →
Coalg, defined as follows. The cocommutative coalgebra R(a) is defined as the biggest
cocommutative coalgebra contained in Ker δ, where δ is the cobracket (see [T2, Prop.
4.4]).

Therefore, for any a ∈ Coalg, one has:

HomCoalgn(i(a), Arep(f)) = HomCoalg(a,R(Arep(f))) (6.3)

On the other hand,

HomCoalgn(i(a), Arep(f)) =Q G
f
X,Y (i(a)) =Q F

f
X,Y (a) = HomCoalg(a, arep(f)) (6.4)

It follows from the Yoneda lemma that

R(Arep(f)) = arep(f) (6.5)

The functor R is lax-monoidal (it follows either from an explicit computation, or from the
general fact that a right adjoint to a colax-monoidal functor is lax-monoidal; the functor
i is strict monoidal and in particular colax-monoidal). Moreover, (6.5) is compatible with
the composition properties

arep(f)⊗ arep(g)→ arep(gf)

and
Arep(f)⊗ Arep(g)→ Arep(gf)

for a chain of morphisms X
f−→ Y

g−→ Z, in the sense that the diagram

R(Arep(f)⊗ Arep(g)) // R(Arep(gf)) = // arep(gf)

R(Arep(f))⊗R(Arep(g))

OO

=⊗=
// arep(f)⊗ arep(g)

OO
(6.6)

commutes, where the left vertical arrow is the lax monoidal map. It is straightforward.
Thus we get:
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6.3. Proposition. Let X be a en−Q-bimodule. Denote by arep(idX) (corresp., Arep(idX))
the commutative coalgebra (corresp., the n-coalgebra), representing the functor QF

id
X,X

(corresp., QG
id
X,X). Then the functor R defined above yields a map R : Arep(idX) →

arep(idX) which is a map of monoid objects.

6.3.1. In the case of a cofree n-coalgebra e∗n ◦ V , the result of application of the functor
R is the cofree cocommutative coalgebra cogenerated by V :

R(e∗n ◦ V ) = Comm∗ ◦ V (6.7)

In our case

Arep(f) = Baren{n}(Def(X
f−→ Y )Q) =

(
e∗n ◦ (Def(X

f−→ Y )Q), d
)

(6.8)

and

arep(f) = BarLie{1}(Def(X
f−→ Y )Q) =

(
Comm∗ ◦ (Def(X

f−→ Y )Q[1])), d′
)

(6.9)

We have a priori two different Lie algebra structures on Def(X
id−→ X)Q[1], defined from

the monoid structures on arep(idX) and on Arep(idX). Proposition 6.3 and the computation
thereafter imply that these two Lie algebra structures are equal. On the other hand, we
know the one obtained on arep(idX), from Lemma 4.13. It completes the proof of Theorem
1.2.
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Gabriella Böhm, Wigner Research Centre for Physics: bohm.gabriella (at) wigner.mta.hu

Valeria de Paiva: Nuance Communications Inc: valeria.depaiva@gmail.com
Richard Garner, Macquarie University: richard.garner@mq.edu.au
Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Dirk Hoffman, Universidade de Aveiro: dirk@ua.pt
Pieter Hofstra, Université d’ Ottawa: phofstra (at) uottawa.ca

Anders Kock, University of Aarhus: kock@math.au.dk
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