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TUBE REPRESENTATIONS AND TWISTING OF GRADED
CATEGORIES

JYOTISHMAN BHOWMICK, SHAMINDRA GHOSH, NARAYAN RAKSHIT, AND
MAKOTO YAMASHITA

Abstract. We study deformation of tube algebra under twisting of graded monoidal
categories. When a tensor category C is graded over a group Γ, a torus-valued 3-cocycle
on Γ can be used to deform the associator of C. We show that it induces a 2-cocycle on
the groupoid of the adjoint action of Γ. Combined with the natural Fell bundle structure
of tube algebra over this groupoid, we show that the tube algebra of the twisted category
is a 2-cocycle twisting of the original one.

1. Introduction

In the theory of quantum symmetries, the concept of quantum double provides a powerful
guiding principle to understand various aspects of quantum groups. There are several
ways to precisely realize it mathematically: originally it appeared as the Drinfeld double
of Hopf algebras which provides a uniform way to produce solutions of the Yang–Baxter
equation, and can be regarded as a Hopf algebraic analogue of the complexification of
compact semisimple Lie algebras. A closely related notion is the Drinfeld center, as
formulated by Drinfeld, Majid, and Joyal and Street independently, in the more general
context of tensor categories which generalizes the Drinfeld double. Besides producing
braided tensor categories, it turned out to have far reaching roles in the theory of tensor
categories, such as a natural framework to consider algebra objects encoding various
categorical structures of interest.

While there are several other notable approaches, tube algebra is perhaps the most con-
crete (and combinatorial) formalism to define the quantum double for tensor categories,
which was introduced by Ocneanu [Ocn94] in his pioneering study of subfactors and topo-
logical quantum field theory. Although at first sight this looks quite different from other
definitions of the Drinfeld center, its precise correspondence was clarified through the
subsequent work of Longo and Rehren [LR95], and Izumi [Izu00], to name a few.

The goal of this work is to understand the change of tube algebra induced by a change
of associator on the tensor category. To be more specific, we consider a change of associator
on a tensor category C graded by a discrete group Γ, induced by group 3-cocycles on Γ,
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inspired by the work of Kazhdan and Wenzl [KW93] on the classification of the tensor
categories with the fusion rules of quantum SL(n) groups.

A key insight is that the tube algebra T (C) has a structure of Fell bundle [Yam90,
Kum98] over the action groupoid G of Γ acting on itself by the adjoint action. Extending
the analysis of pointed categories by Bisch, Das, and the second and the third named
authors [BDGR17] (a scheme which was also known to Bántay and others in a slightly
different framework, see [Bán90, ACM04, Wil08]), we show that T (Cω), the tube algebra
of C with its associator twisted by ω, is isomorphic to the 2-cocycle twist of T (C) by a
2-cocycle on G induced by ω.

When Γ is a cyclic group, this implies that the Drinfeld center Z(Cω) of the twisted
category is equivalent to Z(C) as a linear category. The monoidal structure still needs to
be modified in the presence of ω, and we give an explicit formula for this twisting. For
one thing, when C is braided and Z(C) admits a good description as a tensor category,
this allows us to determine whether Cω is braided or not which we will explain in detail
for the Kazhdan–Wenzl categories (Example 5.4).

This paper is organized as follows: in Section 2 we recall basic concepts and fix no-
tation, which can be easily skipped by an expert. In Section 3 we present the precise
structure of tube algebras for nonstrict tensor categories, which serves as a basis for the
twisting argument. Our main result is in Section 4. Finally, we present several examples
in Section 5.

Acknowledgements It is our pleasure to thank Masaki Izumi, Corey Jones, Madhav
Reddy, and Shigeru Yamagami for fruitful discussions at various stages of the project.

2. Preliminaries

In this paper, all categories are assumed to be small, and we mostly work with C∗-
categories, although most of our constructions can be carried out in the setting of semisim-
ple tensor categories over more general coefficients. We denote the unit circle by T = {z ∈
C | |z| = 1}.

2.1. C∗-tensor categories. We mainly follow the convention of [NT13].
When C is a category and X, Y are objects of C, the morphism space from X to Y will

be denoted by MorC(X, Y ) or more simply by C(X, Y ). The identity morphism of X is
denoted by 1X . For C∗-categories, we always assume that direct sum of objects and images
of projections exist in the category. We say that X ∈ Obj(C) is simple if dim C(X,X) = 1,
and that C is semisimple if C(X, Y ) is finite dimensional for any X, Y ∈ Obj(C).

A C∗-tensor category is given by a C∗-category C, a C∗-bifunctor ⊗ : C × C → C, a
distinguished object 1 ∈ Obj(C), and natural unitary transformations λX : 1 ⊗X → X,
ρX : X ⊗ 1→ X, and

αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)
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satisfying a standard set of axioms, most notably the pentagon equation saying that the
diagram

((U ⊗ V )⊗W )⊗X

(U ⊗ (V ⊗W ))⊗X

U ⊗ ((V ⊗W )⊗X) U ⊗ (V ⊗ (W ⊗X))

(U ⊗ V )⊗ (W ⊗X)

αU,V,W⊗1X

αU,V⊗W,X

1U⊗αV,W,X

αU,V,W⊗X

αU⊗V,W,X

is commutative. In the following we always assume that 1 is simple.
When C and C ′ are such categories, a C∗-tensor functor from C to C ′ is given by

(F, F0, F2) consisting of:

• a C∗-functor F : C → C ′,

• a unitary morphism F0 : 1C′ → F (1C), and

• a natural unitary transformation F2 : F (X)⊗ F (Y )→ F (X ⊗ Y ),

satisfying a standard set of compatibility conditions for λ, ρ, and α of C and C ′. If F is an
equivalence of categories, we say that the above C∗-tensor functor is a (unitary monoidal)
equivalence of C∗-tensor categories.

A variant of Mac Lane’s coherence theorem implies that any C∗-tensor category is
equivalent to a strict one, the latter being a C∗-tensor category where λX , ρX , and αX,Y,Z
are all given by identity morphisms. In this paper we carry out various constructions
for categories with nontrivial associator α but still with λX and ρX given by identity
morphisms. In practice, we still assume that the ‘starting point’ is given by a strict C∗-
tensor category, and deform it to another one in which α is given by scalar multiples of
identity morphisms.

In a rigid C∗-tensor category C any object X ∈ Obj(C) has a dual, that is, there exist
X̄ ∈ Obj(C) and R ∈ C(1, X̄⊗X), R̄ ∈ C(1, X⊗ X̄) satisfying the conjugate equation for
X:

(1X̄ ⊗ R̄∗)αX̄,X,X̄(R⊗ 1X̄) = 1X̄ , (1X ⊗R∗)αX,X̄,X(R̄⊗ 1X) = 1X .

(Recall that we are assuming λX = 1X = ρX in C.) The number d(X) = min(R,R̄) ‖R‖
∥∥R̄∥∥

is called the intrinsic dimension of X, where the minimum is taken over all pairs (R, R̄)
as above. A solution (R, R̄) satisfying ‖R‖ = d(X)1/2 =

∥∥R̄∥∥ is called a standard solution,
which we denote by (RX , R̄X). Standard solutions are unique up to unitary morphisms.
It implies that for any X ∈ Obj(C), the functional TrX on C(X) defined by

R∗X ◦ (1X̄ ⊗ x) ◦RX = TrX(x)11 (x ∈ C(X))
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is a tracial positive functional, called the canonical picture trace or categorical trace. Hav-
ing fixed (RX , R̄X) and (RY , R̄Y ), whenever x ∈ C(X, Y ) we denote by x∨ the morphism
in C(Ȳ , X̄) satisfying (1X̄ ⊗ x)RX = (x∨ ⊗ 1Y )RY .

Rigid C∗-tensor categories with simple units are automatically semisimple, and we
work within this framework.

2.2. Graded tensor categories. In a C∗-category C, two full subcategories D and E
are called mutually orthogonal if C(D,E) = {0} holds for all D ∈ Obj(D) and E ∈ Obj(E).
We write C = D ⊕ E if in addition any object in C is isomorphic to a direct sum D ⊕ E
for some D ∈ Obj(D) and E ∈ Obj(E), and say that C is a direct sum of D and E . Of
course, this has a straightforward extension to a family of subcategories {Cj}j∈J .

2.3. Definition. [cf. [Tur10]] Let Γ be a group. A C∗-tensor category C is called Γ-graded
if there exists a collection of mutually orthogonal full subcategories {Cγ}γ∈Γ such that

(i) C =
⊕

γ∈Γ Cγ, and

(ii) X ⊗ Y is isomorphic to an object in Cγη for all γ, η ∈ Γ, X ∈ Obj(Cγ), and
Y ∈ Obj(Cη).

2.4. Remark. The tensor unit 1, being simple, must belong to Obj(Ce) by conditions
(i) and (ii) where e is the unit of Γ. It then follows that X̄ ∈ Obj(Cγ−1) (if it exists) for
all X ∈ Obj(Cγ).

Note that if C is graded over Γ, the ‘support’ of a grading defined as

{γ ∈ Γ | Cγ contains a nonzero object}

is a subgroup of Γ. Without losing generality we may assume that the support is always
the entire group. Let us also note that when C is Γ-graded and π : Γ→ Λ is a (surjective)
group homomorphism, we obtain a Λ-grading on C by setting Cγ′ =

⊕
π(γ)=γ′ Cγ for γ′ ∈ Λ.

Any rigid semisimple C∗-tensor category C with simple unit admits a grading C =⊕
γ∈Ch(C) Cγ over the universal grading group Ch(C) (also called the chain group) in the

sense that any Γ-grading on C is induced by a unique homomorphism q : Ch(C) → Γ as
above.

Concretely, Ch(C) is constructed as follows. Fix a set I = Irr(C) of representatives
from isomorphism classes of simple objects. The elements of Ch(C) are represented by
symbols [X] for X ∈ I, different symbols possibly representing the same element, subject
to the rule [Z] = [X][Y ] whenever there is a nonzero morphism from Z to X ⊗ Y , or
equivalently, when Z is isomorphic to a subobject of X ⊗ Y . From this description
it immediately follows that [1] is the unit of Ch(C), [X]−1 =

[
X̄
]
. For γ ∈ Ch(C),

define Cγ as the full subcategory of C, whose objects decompose as direct sum of simple
objects X satisfying [X] = γ. Clearly, {Cγ}γ∈Ch(C) is a mutually orthogonal collection of
subcategories satisfying conditions of Definition 2.3.
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2.5. Example. [Temperley–Lieb category] Consider the Temperley–Lieb category CTL
δ,ε

with modulus δ ≥ 2 and the associativity sign ε ∈ {±1}, which can also be seen as the cat-
egory of finite dimensional representations of the compact quantum group SUq(2) [Wor87],
with q ∈ R× satisfying |q + q−1| = δ and ε = − sgn(q). The set of isomorphism classes of
simple objects of CTL

δ,ε is countably infinite. In fact, there is a set {Xn}n≥0 of representatives
of such classes indexed by nonnegative integers satisfying:

(i) X0 is the trivial object 1,

(ii) Xm ⊗Xn
∼= X|m−n| ⊕X|m−n|+2 ⊕ · · · ⊕X(m+n)−2 ⊕Xm+n, and

(iii) Xm
∼= Xm

for all m,n ≥ 0. The parameters δ and ε (which do not affect Ch(CTL
δ,ε )) appear as follows:

there is a morphism R : X0 → X1 ⊗X1, unique up to T, such that

R∗R = δ1X0 , (1X1 ⊗R∗)αX1,X1,X1(R⊗ 1X1) = ε1X1

Condition (ii) implies that every Xn is a subobject of X⊗n1 . It follows that the universal
grading group Ch(CTL

δ,ε ) has to be cyclic generated by [X1]. Again, using condition (ii),
one can easily show that [Xn] is either equal to [1] or to [X1] according as n is even or
odd, which implies Ch(CTL

δ,ε ) ∼= Z/2Z.

2.6. Group and groupoid cohomology. Let Γ be a (discrete) group, and M be
a left Γ-module. The group cochain complex C∗(Γ;M) is given by the mapping spaces
Cn(Γ;M) = Map(Γn,M) endowed with the coboundary maps δn : Cn(Γ;M)→ Cn+1(Γ;M)
given by

δn(φ)(γ1, γ2, . . . , γn+1) = γ1φ(γ2, . . . , γn+1)

+
n∑
i=1

(−1)iφ(γ1, γ2, . . . , γi−1, γiγi+1, γi+2, . . . , γn+1) + (−1)n+1φ(γ1, . . . , γn). (2.1)

A cochain φ ∈ Cn(Γ;M) is normalized if φ(γ1, . . . , γn) = 0 whenever one of γi is e. The
subcomplex C̄∗(Γ;M) of normalized cochains have the same cohomology as C∗(Γ;M).

Next let G be a groupoid. As usual let us denote by G(0) its object set, and by G(n) the
set of n-tuples (g1, . . . , gn) of composable arrows. Thus, there are maps dom and codom
from G = G(1) to G(0) so that g1 and g2 are composable if and only if dom(g1) = codom(g2).
We also identify G(0) as a subset of G by the embedding x 7→ idx.

When M is a commutative group, the complex of normalized cochains on G with
coefficient M is given by [Wes69]

C̄n(G;M) = {ψ : G(n) →M | ψ(g1, . . . , gn) = 0 if ∃i : gi ∈ G(0)},
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together with the differential δn : C̄n(G;M)→ C̄n+1(G;M) given by

δn(ψ)(g1, . . . , gn+1) = ψ(g2, . . . , gn+1) +
n∑
i=1

(−1)iψ(g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1ψ(g1, . . . , gn).

Its cohomology is denoted by H∗(G;M). Of course, we could have used the complex of
non-normalized cochains, Cn(G;M) = Map(G(n),M), to compute H∗(G;M).

We are particularly interested in the action groupoid ΓnX arising from an action of
a group Γ on a set X. This groupoid has the object set X, and ΓnX = Γ×X as a set,
with domain and codomain maps defined by dom(γ, x) = x and codom(γ, x) = γx, and
composition given by (γ, x).(η, y) = (γη, y) whenever x = ηy. In this case C̄n(G;M) is
nothing but the space C̄n

Γ(X;M) of normalized equivariant cochains on the (discrete) setX
with coefficient in M , or what amounts to the same thing, the space C̄n(Γ; Map(X,M))
of normalized cochains on Γ with coefficient Map(X,M), where Γ acts on Map(X,M)

from left by (γf)(x) = f(γ−1x). An explicit cochain isomorphism C̄n(G;M) 3 ψ 7→ ψ̃ ∈
C̄n(Γ; Map(X,M)) is given by

ψ̃[γ1, . . . , γn](x0) = ψ(g1, . . . , gn), (2.2)

where gi = (γi, xi) ∈ G and xi = γ−1
i xi−1 for all 1 ≤ i ≤ n.

2.7. Twisting monoidal categories by group 3-cocycles. Again let Γ be a
group, and let ω be a cocycle in C̄3(Γ;T). So ω is a map from Γ × Γ × Γ to T satis-
fying

ω(γ1, γ2, γ3)ω(γ1, γ2γ3, γ4)ω(γ2, γ3, γ4) = ω(γ1γ2, γ3, γ4)ω(γ1, γ2, γ3γ4) (γi ∈ Γ),

and ω(γ1, γ2, γ3) = 1 whenever at least one of γi is the unit e of Γ.
When C is a Γ-graded C∗-tensor category, we can consider a new category Cω which

• is same as C as a C∗-category,

• has the same tensor bifunctor and left and right unit constraints, but

• has the associativity constraint αω given as a twist of that of C by the cocycle ω:

αωX1,X2,X3
= ω(γ1, γ2, γ3)αX1,X2,X3 (Xi ∈ Obj(Cγi)).

The new associator αω still satisfies the same compatibility conditions as α because ω is
a normalized 3-cocycle.

Note that Cω has the same fusion rules as C, and in particular it inherits the Γ-grading
of C. However, typically they are monoidally equivalent (if and) only if ω is a coboundary.

2.8. Proposition. When C is a rigid C∗-tensor category, Cω is also rigid.
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Proof. It is enough to see that for any γ ∈ Γ and X ∈ Cγ, there is a dual object of X
in Cω. By our standing assumption X admits a dual object in C, say given by (Y,R, R̄).
Then Y is an object of Cγ−1 . Moreover we have ω(γ, γ−1, γ) = ω̄(γ−1, γ, γ−1), since by the
3-cocycle identity on (γ, γ−1, γ, γ−1) we have

ω(γ−1, γ, γ−1)ω̄(e, γ, γ−1)ω(γ, e, γ−1)ω̄(γ, γ−1, e)ω(γ, γ−1, γ) = 1

and the terms involving e are 1 by the normalization condition on ω. Consequently R′ = R
and R̄′ = ω(γ−1, γ, γ−1)R̄ satisfy

(1Y ⊗ R̄′∗)αωY,X,Y (R′ ⊗ 1Y ) = ω̄(γ−1, γ, γ−1)ω(γ−1, γ, γ−1)1Y = 1Y ,

(1X ⊗R′∗)αωX,Y,X(R̄′ ⊗ 1X) = ω(γ, γ−1, γ)ω(γ−1, γ, γ−1)1X = 1X .

Thus, the triple (Y,R′, R̄′) gives a dual of X in Cω.

2.9. Example. The first basic example comes from pointed categories, that is, when the
tensor product of every simple object with its dual is isomorphic to the unit object. The
category CΓ of finite dimensional Γ-graded Hilbert spaces is such an example. Generally,
the isomorphism classes of simple objects in a pointed category automatically becomes a
group with respect to tensor product where the inverse is given by taking dual; this is the
universal grading group. In fact, any pointed C∗-tensor category is unitarily monoidally
equivalent to CωΓ for some group Γ and a (normalized) T-valued 3-cocycle ω on Γ.

3. Some formulas for nonstrict categories

3.1. Annular algebras. In [GJ16], annular algebras were defined assuming strictness
of the tensor structure. While the C∗-variant of Mac Lane’s coherence theorem guarantees
that there is no loss of generality in doing so, for our purposes it will be useful to work out
concrete formulas for non-strict ones. In this section C denotes a rigid C∗-tensor category
with simple unit, and we denote a set of representative of isomorphism classes of simple
objects in C by I = Irr(C).

Suppose that X = {Xj}j∈J is a family of objects of C which is full in the sense
that any S ∈ I is isomorphic to a subobject of Xj for some j. In order to simplify the
notation, let us use the index j in place of Xj when they appear in subscripts, so that
αS,T,Xj becomes αS,T,j for example.

For j, k ∈ J , let Ak,j denote the quotient of the vector space⊕
S∈Obj(C)

C(S ⊗Xj, Xk ⊗ S)

over the subspace generated by elements of the form

f(f ′ ⊗ 1j)− (1k ⊗ f ′)f, (f ∈ C(T ⊗Xj, Xk ⊗ S), f ′ ∈ C(S, T )) . (3.1)
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Further, we will write ASk,j for the image of C(S ⊗Xj, Xk ⊗ S) under the quotient map,
and the map ψSk,j : C(S⊗Xj, Xk ⊗S)→ ASk,j will stand for the restriction of the quotient
map.

The vector space Ak,j can be identified with the direct sum
⊕

S∈I C(S ⊗Xj, Xk ⊗ S),
hence each ψSk,j is injective (thus bijective) for S ∈ I. Indeed, for a general S ∈ Obj(C)
we can take an irreducible decomposition S ∼=

⊕
α Sα with Sα ∈ I. Let vα : Sα → S be

the corresponding isometry. When f ∈ C(S⊗Xj, Xk⊗S), we have f =
∑

α f(vαv
∗
α⊗ 1j).

From the formula (3.1) with f(vα ⊗ 1j) in place of f and v∗α ⊗ 1j in place of f ′, we see
that f and

∑
α(1k⊗v∗α)f(vα⊗1j) represent the same element in Ak,j. This already shows

that Ak,j is a quotient of
⊕

S∈I C(S⊗Xj, Xk⊗S). Since for different S, T ∈ I there is no
nonzero morphism f ′ ∈ C(S, T ), the images of C(S ⊗Xj, Xk ⊗ S) for S ∈ I are linearly
independent.

Let us put A = A(X ) =
⊕

j,k∈J Ak,j, and define a bilinear operation • on A charac-
terized by

ψSm,k(f) • ψTk′,j(f ′) = δk,k′ψ
S⊗T
m,j

(
αm,S,T (f ⊗ 1T )α−1

S,k,T (1S ⊗ f ′)αS,T,j
)

(3.2)

for f ∈ C(S⊗Xk, Xm⊗S) and f ′ ∈ C(T⊗Xj, Xk′⊗T ). This is a straightforward adaptation
of the product formula in [GJ16], by putting the associator α in appropriate places so
that the overall formula makes sense in the current nonstrict setting. Independence of the
definition of • on the choice of f and f ′ easily follows from the naturality of α.

The space Ak,j can be presented in a more categorical way as follows. Let ι ⊗Xj be
the endofunctor of C given by Y 7→ Y ⊗ Xj, and similarly consider Xk ⊗ ι. Denote by
Nat00(ι⊗Xj, Xk⊗ ι) the space of natural transformations (fY : Y ⊗Xj → Xk⊗Y )Y ∈Obj(C)
from the functor from ι ⊗ Xj to Xk ⊗ ι, such that fX = 0 for X ∈ I except for finitely
many of them. Then, using semisimplicity of C, one can check that the map

Nat00(ι⊗Xj, Xk ⊗ ι)→ Ak,j, f 7→
∑
S∈I

ψSk,j(fS)

is a vector space isomorphism. Moreover,
⊕

j,k∈J Nat00(ι⊗Xj, Xk ⊗ ι) can be equipped
with a canonical algebra structure • for which the above mentioned map becomes an
algebra isomorphism. Concretely, for f ∈ Nat00(ι ⊗ Xk, Xm ⊗ ι) and f ′ ∈ Nat00(ι ⊗
Xj, Xk⊗ ι), f • f ′ is characterized by the following: given X ∈ I, the morphism (f • f ′)X
can be expressed as

(f • f ′)X =
∑
Y,Z∈I,

va : X→Y⊗Z

(1m ⊗ v∗a)αm,Y,Z(fY ⊗ 1Z)α−1
Y,k,Z(1Y ⊗ gZ)αY,Z,j(va ⊗ 1j),

where va : X → Y ⊗Z runs through an orthonormal basis of C(X, Y ⊗Z) for each Y and
Z. It follows that, for f ∈ C(S ⊗Xk, Xm⊗ S) and f ′ ∈ C(T ⊗Xj, Xk ⊗ T ), their product
in terms of ψ can be written as

ψSm,k(f) • ψTk,j(f ′) =
∑
U,w

ψUm,j
(
(1m ⊗ w∗)αm,S,T (f ⊗ 1T )α−1

S,k,T (1S ⊗ f ′)αS,T,j (w ⊗ 1j)
)
,

where U runs through I and w through an orthonormal basis of C(U, S ⊗ T ).



972 J. BHOWMICK, S. GHOSH, N. RAKSHIT, AND M. YAMASHITA

3.2. Lemma. (A, •) is an associative algebra.

Proof. Take indices j, k,m, n ∈ J , objects S, T, U ∈ Obj(C), and morphisms

f ∈ C(S ⊗Xm, Xn ⊗ S), f ′ ∈ C(T ⊗Xk, Xm ⊗ T ), f ′′ ∈ C(U ⊗Xj, Xk ⊗ U).

On the one hand, (ψSn,m(f) • ψTm,k(f ′)) • ψUk,j(f ′′) is the image under ψ
(S⊗T )⊗U
n,j of

αn,S⊗T,U
(
(αn,S,T (f ⊗ 1T )α−1

S,m,T (1S ⊗ f ′)αS,T,k)⊗ 1U
)
αS⊗T,k,U(1S⊗T ⊗ f ′′)αS⊗T,U,j. (3.3)

On the other, ψSn,m(f) • (ψTm,k(f
′) • ψUk,j(f ′′)) is the image under ψ

S⊗(T⊗U)
n,j of

αn,S,T⊗U(f⊗1T⊗U)α−1
S,m,T⊗U

(
1S ⊗ (αm,T,U(f ′ ⊗ 1U)α−1

T,k,U(1T ⊗ f ′′)αT,U,j)
)
αS,T⊗U,j. (3.4)

Using ψ
S⊗(T⊗U)
n,j ((1n ⊗ α)f ′(α−1 ⊗ 1j)) = ψ

(S⊗T )⊗U
n,j (f ′) together with the naturality and

the pentagon equation for α, we indeed obtain that (3.3) and (3.4) are equal.
Let us indicate the first step. In the expression (3.3), by the naturality of α we can

insert α−1
S,m⊗T,U and αS,T⊗k,U around (1S ⊗ f ′) ⊗ 1U , and α−1

S,T,k⊗U and αS,T,U⊗j around
1S⊗T ⊗ f ′′. Then between (1S ⊗ (f ′ ⊗ 1U)) and (1S ⊗ (1T ⊗ f ′′)) we have

αS,T⊗k,U(αS,T,k ⊗ 1U)α−1
S⊗T,k,Uα

−1
S,T,k⊗U : S ⊗ (T ⊗ (Xk ⊗ U))→ S ⊗ ((T ⊗Xk)⊗ U),

which is equal to 1S ⊗ α−1
T,k,U by the pentagon identity. This is exactly what we have

between in f ′ and f ′′ in (3.4). The rest of the proof proceeds in a similar way.

Let us next describe the ∗-structure on A. We will denote this one by # in order to
avoid confusion with the involution of morphisms of C. Define a conjugate linear map
#: A → A by sending ψSk,j(f) ∈ ASk,j to

ψS̄j,k

(((
(R∗S ⊗ 1j)α

−1
S̄,S,j

)
⊗ 1S̄

)(
(1S̄ ⊗ f ∗)⊗ 1S̄

)
α−1
S̄,k⊗S,S̄

(
1S̄ ⊗

(
α−1
k,S,S̄

(1k ⊗ R̄S)
)))

(3.5)

in AS̄j,k, where (RS, R̄S) is a standard solution to conjugate equations for S. Note that
by the naturality of α and the quotient map ψ, this becomes well-defined as well as
independent of the choice of S̄ and (RS, R̄S). Moreover, # is indeed an antimultiplicative
involution; to see this, one argues along the same lines as in the proof of Lemma 3.2, using
the fact that {w∨∗i }i is an orthonormal basis of C(Ū , T̄ ⊗ S̄) if {wi}i is a one of C(U, S⊗T )
with respect to a standard solution (RU , R̄U) for U , (RT , R̄T ) for T , and the associated
one(
αT̄⊗S̄,S,T (α−1

T̄ ,S̄,S
⊗ 1T )

(
(1T̄ ⊗RS)⊗ 1T

)
RT , αS⊗T,T̄ ,S̄(α−1

S,T,T̄
⊗ 1S̄)

(
(1S ⊗ R̄T )⊗ 1S̄

)
R̄S

)
(3.6)

for S ⊗ T .

3.3. Proposition. Let F : C → C ′ be a unitary monoidal equivalence of rigid C∗-tensor
categories with simple units. Furthermore let X = {Xj}j∈J be a full family in C, and put
X ′ = {F (Xj)}j∈J . Then A(X ) is isomorphic to A(X ′).



TUBE REPRESENTATIONS AND TWISTING OF GRADED CATEGORIES 973

Proof. By definition F comes with a C∗-functor C → C ′ (again denoted by the same
symbol F ) and a natural unitary transformation F2 : F (X)⊗F (Y )→ F (X⊗Y ) satisfying
compatibility conditions for the monoidal structures. We then have a linear map

C(S ⊗Xj, Xk ⊗ S)→ C ′(F (S)⊗ F (Xj), F (Xk)⊗ F (S)), f 7→ F−1
2 F (f)F2

which induces a linear map A(X )k,j → A(X ′)k,j. A tedious but straightforward compu-
tation yields that this is indeed a ∗-isomorphism.

3.4. Definition. [cf. [Ocn94,Jon01,GJ16]] The ∗-algebra (A(X ), •,#) is called the an-
nular algebra of C associated with the family X = {Xj}j∈J . When X = Irr C, a set of
representatives of the simple objects, we call T = T (C) = A(X ) the tube algebra of C.

The results of [GJ16] apply to our construction by Proposition 3.3. Let us summarize
some important consequences:

• any element of A(X ) has a uniform bound on the norm under the ∗-representations
of A; hence A admits a universal C∗-envelope.

• there is a canonical faithful positive trace on τ : A → C given by

ASk,j 3 ψSk,j(f) 7→ δj,k
∑
w

Trj
(
(1j ⊗ w∗) f (w ⊗ 1j)

)
,

where w runs through an orthonormal basis of C(1, S). (We suppressed the structure
morphisms for 1 as before.) Note that simplicity of 1 is crucially used here, and the
definition of τ is indeed independent of the choice of the orthonormal basis.

• the subspaces ASk,j of Ak,j for different S ∈ I are orthogonal with respect to the inner

product defined by 〈a1, a2〉 = τ
(
a1 • a#

2

)
.

• if X = {Xj}j∈J and Y = {Yj′}j′∈J ′ are two full families, the algebras A(X ) and
A(Y ) are strongly Morita equivalent.

3.5. Half-braiding and monad. When X is an object of a C∗-tensor category C, a
unitary half-braiding on X is a natural family of unitary morphisms cY : Y ⊗X → X⊗Y
for Y ∈ Obj(C) such that

αX,Y,Z(cY ⊗ 1Z)α−1
Y,X,Z(1Y ⊗ cZ)αY,Z,X = cY⊗Z . (3.7)

A morphism of half-braidings from (X, c) to (X ′, c′) is a morphism x from X to X ′ (in C)
which satisfies (x⊗ 1Y )cY = c′Y (1Y ⊗ x) for all Y . The category Z(C) of the pairs (X, c)
as above is the (unitary) Drinfeld center.

Recall that we can enlarge C to the ind-category ind-C whose objects are direct limits
lim−→Xi for some inductive system (Xi, vji)i,j∈Λ of objects labeled over a directed set Λ,
with connecting isometries vji : Xi → Xj for i < j [NY16]. For semisimple C, with a
representative of irreducible classes I as before, such a limit can always be represented
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as ‘infinite direct sum’
⊕

S∈I HS ⊗ S. Here HS ⊗ S is an amplification of S by a Hilbert
spaces HS, and the morphism space of two such direct sums is concretely given by

Morind-C

(⊕
S∈I

HS ⊗ S,
⊕
S∈I

H ′S ⊗ S
)

= `∞-
∏
S∈I

B(HS, H
′
S),

where the right hand side denotes the space of uniformly bounded sequences of operators
with respect the operator norm.

Then the category ind-C is again a (non-rigid) C∗-tensor category, and we can again
form the Drinfeld center category Z(ind-C), which is often the ‘correct’ model of quantum
double of C when the number of simple classes are infinite. As explained in [Izu00,PSV18],
the category of ∗-representations of the tube algebra T (C) is equivalent to Z(ind-C) as a
C∗-category.

The structure of the annular algebra can be understood using the monadic formulation
of the quantum double [Müg03, BV12]. Since there is a slight issue of encoding the
relevant structures only using uniformly bounded families of morphisms, let us consider
purely algebraic direct sums, so that we just present our construction on each direct
summand. Given X ∈ Obj(ind-C), consider Z(X) =

⊕alg
S∈I S̄ ⊗ (X ⊗ S) as a direct

sum ‘without completion over the S’. Then the monoidal structure of C induces natural
transformations µ : Z2 → Z and η : IdC → Z satisfying certain set of conditions analogous
to monoids [ML98]. To be specific, let us fix a standard solution (RS, R̄S) for each S ∈ I,
and also an orthonormal basis (wi)i of C(U, S⊗T ) for each S, T, U ∈ I. Then the part of
µ from the summand T̄ ⊗ ((S̄ ⊗ (X ⊗ S))⊗ T ) to Ū ⊗ (X ⊗ U) is given by∑

i

(w∨i ⊗ (1X ⊗ w∗i ))(1T̄⊗S̄ ⊗ αX,S,T )α−1
T̄ ,S̄,(X⊗S)⊗T (1T̄ ⊗ αS̄,X⊗S,T ), (3.8)

where w∨i is calculated using standard solutions (RT , R̄T ), (RU , R̄U), and (3.6).
An ind-object X with a (non-unitary) half braiding c admits a structure of Z-module,

that is, a morphism Z(X) → X which is compatible with µX : Z2(X) → Z(X). Con-
cretely, the module structure is given by the collection of

(1X ⊗R∗S)αXS̄,S(cS̄ ⊗ 1S)α−1
S̄,X,S

: S̄ ⊗ (X ⊗ S)→ X.

The (non-unitary) Drinfeld center can be identified with the category Z-mod of Z-
modules, which contain objects of the form Z(X) as ‘free’ Z-modules. We have natural
isomorphisms Ak,j ∼= C(Xj,Z(Xk)), and the usual adjunction

C(Xj,Z(Xk)) ∼= MorZ-mod(Z(Xj),Z(Xk))

induces a ∗-algebra structure onA from that of EndZ-mod(
⊕

j∈J Z(Xj)), which is precisely
the structure of tube algebra.
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4. Twisting and annular algebras

Let C be a Γ-graded rigid C∗-tensor category with simple unit. For simplicity, we will
assume that it is strict. Given a normalized 3-cocycle ω on Γ, our goal is to describe
the tube (and more generally annular) algebra of Cω in terms of that of C. Let X be a
family of objects in C. Since both C and Cω are identical as semisimple C∗-categories, A =
A(X ) admit two different ∗-algebra structures. Our goal is to extend the computation
of [BDGR17] about CωΓ to Cω when X is compatible with the grading as we specify below.
In order to avoid confusion we denote by • and # (resp. by •̄ and ?) the multiplication
and the involution on A induced by C (resp. by Cω).

4.1. Fell bundle structure of the tube algebra. As before, let I be a set of
representatives of isomorphism classes of simple objects. Let us denote the map I → Γ
corresponding to the Γ-grading by S 7→ γS.

4.2. Definition. Let C be a Γ-graded category. A family of objects X = {Xj}j∈J of C
is adapted to the grading when each Xj is isomorphic to an object of Cγj for some γj ∈ Γ.

4.3. Example. For example, I is adapted for a trivial reason. Another important exam-
ple comes from the representation of a compact quantum group G. Let {Ui}i be a set of
representatives of irreducible representations, and Hi be the underlying Hilbert space of
Ui. Then the family X = {H̄i⊗Ui}i in RepG is adapted to the grading. The associated
annular algebra A(X ) is isomorphic to the Drinfeld double of G [NY15b].

We start with giving several convenient direct sum decompositions of the annular alge-
bra A = A(X ) for an adapted family X . Recall that we have direct sum decompositions

A =
⊕
j,k∈J

Ak,j, Ak,j =
⊕
S∈I

C(S ⊗Xj, Xk ⊗ S)

as vector spaces. Note that the direct summand ASk,j = C(S⊗Xj, Xk⊗S) is nonzero only
if both S ⊗Xj and Xk ⊗S have subobjects isomorphic to a common element in I, which
will then imply γSγj = γkγS. Thus, if ASk,j is nonzero then γj and γk are conjugate to each

other implemented by γ±1
S . This leads us to the following constructions. For γ, η, s ∈ Γ

such that sγ = ηs, set

Asη,γ =
⊕

j,k∈J ,S∈I
γj=γ,γk=η,

γS=s

ASk,j, Aη,γ =
⊕

t : tγ=ηt

Atη,γ.

Finally, let Σ be the set of conjugacy classes of Γ, and define Aσ =
⊕

γ,η∈σAη,γ for σ ∈ Σ.

4.4. Lemma. The ∗-algebra (A, •,#) decompose into the direct sum
⊕

σ∈ΣAσ of ∗-sub-
algebras. Thus, every representation of the tube algebra is an orthogonal direct sum of
representations of Aσ for σ ∈ Σ.
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Proof. By the above discussion we have A =
⊕

σ∈ΣAσ as a vector space. The multipli-
cation formula 3.2 tells us that Aσ is closed under •, and elements from different conjugacy
classes are orthogonal. More precisely Attηt−1,ηAssγs−1,γ contains a nonzero element (if and)

only if η = sγs−1, in which case it is in Atstsγs−1t−1,γ. From the explicit formula, we can see

that # sends elements of Assγs−1,γ to As−1

γ,sγs−1 , so Aσ is stable under involution.

4.5. Remark. In terms of the Drinfeld center, the above direct sum decomposition cor-
responds to the fact that any object (X, c) of Z(ind-C) decomposes as a direct sum⊕

σ∈Σ(Xσ, c
σ) for some objects Xσ ∈ ind-

⊕
γ∈σ Cγ and unitary half braidings cσ on the

Xσ. Indeed, we can take a decomposition X ∼=
⊕

γ Xγ as an object in ind-C and put
Xσ =

⊕
γ∈σXγ. If Y is an object in Cη, the morphism cY from

⊕
σ Y ⊗Xσ to

⊕
σXσ⊗Y

has to be diagonally represented in σ, since there are no nontrivial morphisms between
objects of ind-Cηγ and of ind-Cγ′η if γ and γ′ are not conjugate in Γ. Thus, each Xσ

inherits a half braiding cσ by restricting c.

Let G = ΓnAd Γ be the action groupoid of Γ acting on itself by the adjoint action. The
above argument shows that A is a Fell bundle over G [Yam90,Kum98]: to each g = (s, γ)
we have the direct summand Ag = Assγs−1,γ such that the ∗-algebra structure of A =⊕

g∈G Ag is compatible with the groupoid structure of G, in the sense that AgAg′ ⊂ Agg′
for (g, g′) ∈ G(2) and (Ag)# = Ag−1 .

From now on, we will assume that the adapted family X is full.

4.6. Proposition. Let σ be a conjugacy class of Γ. For any a ∈ σ, Aa,a is strongly
Morita equivalent to Aσ via the completion of

⊕
b∈σAa,b inside Aσ.

Proof. Because of Proposition 3.3 we may assume that C is strict. Let b be an element
of σ, and j ∈ J be any index satisfying γj = b. The assertion holds if we can show that
Ab,aAa,b contains the unit of Aj,j. In fact, we claim that if S is any irreducible object
such that aγS = γSb, then the unit of Aj,j is contained in the span of AS̄j,kASk,j where k

runs through the indices of J satisfying γk = γSγjγ
−1
S .

Let v : T → S ⊗Xj ⊗ S̄ be an isometry giving a irreducible subobject of S ⊗Xj ⊗ S̄,
and put

f (v) = d(S)−
1
2 (R∗S ⊗ 1j⊗S̄)(1S̄ ⊗ v) ∈ C(S̄ ⊗ T,Xj ⊗ S̄),

g(v) = d(S)−
1
2 (v∗ ⊗ 1S)(1S⊗j ⊗RS) ∈ C(S ⊗Xj, T ⊗ S),

where RS is a part of a standard solution to the conjugate equation of the dual pair (S, S̄).
Then, by the product formula 3.2, we get

ψS̄j,T (f (v)) • ψST,j(g(v)) = d(S)−1ψS̄⊗Sj,j

(
(R∗S ⊗ 1j⊗S̄⊗S)(1S̄ ⊗ vv∗ ⊗ 1S)(1S̄⊗S⊗j ⊗RS)

)
Taking the summation on v over a maximal system of orthogonal embeddings of irreducible
subobjects of S ⊗Xj ⊗ S̄, we obtain∑

v

ψS̄j,T (f (v)) • ψST,j(g(v)) = d(S)−1ψS̄⊗Sj,j (R∗S ⊗ 1j ⊗RS) = ψ1j,j(1j).
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Since X is full, each T , being irreducible, must be a subobject of some Xk ∈X . Again,
X is adapted and v is nonzero; so, indeed γk = γSγjγ

−1
S .

4.7. Remark. The above proposition shows that this Fell bundle satisfies the assumption
of [MW08], namely, for each g = (s, γ) in G, Ag is an imprimitivity bimodule between
Adom(g) = Aeγ,γ and Acodom(g) = Aesγs−1,sγs−1 . See [IKSW18] for further implications on the
structure of the C∗-envelope of A.

4.8. Tube algebra of twisted categories. Continuing to denote A = A(X ) for
a full and adapted family X = {Xj}j∈J , consider ψSk,j′(f1) ∈ ASk,j′ and ψTj,i(f2) ∈ ATj,i for
some indices i, j, j′, k ∈ J and irreducible objects S, T ∈ I. From the comparison of (3.2)
for C and Cω, we have

ψSk,j′(f1) •̄ ψTj,i(f2) = δj,j′ω(γk, γS, γT )ω̄(γS, γj, γT )ω(γS, γT , γi)ψ
S
k,j(f1) • ψTj,i(f2).

Note that this equation is meaningful only when γS (resp. γT ) conjugates γj′ to γk (resp. γi
to γj); otherwise, both sides will become zero by the discussion preceding Lemma 4.4. In
terms of the Γ-grading, we may rewrite the above equation as

χ1 •̄ χ2 = δγ2,g′2ω(γ3, s, t)ω̄(s, γ2, t)ω(s, t, γ1)χ1 • χ2 (4.1)

for all χ1 ∈ Asγ3,g′2 and χ2 ∈ Atγ2,γ1 .
Similarly, combining (3.5) for the category Cω with Proposition 2.8, we see that the

∗-structures are related by

χ? = ω̄(s−1, s, γ1)ω̄(s−1, γ2s, s
−1)ω̄(γ2, s, s

−1)ω(s−1, s, s−1)χ# (4.2)

for χ ∈ Asγ2,γ1 .

4.9. Proposition. [cf. [Wil08, Theorem 3]] Let us regard Γ as a Γ-set by the adjoint
action. The normalized equivariant cochain Ψ ∈ C̄2

Γ(Γ;T) defined by

Ψ[s, t](γ) = ω(γ, s, t)ω̄(s, s−1γs, t)ω(s, t, t−1s−1γst),

is a cocycle.

Proof. By adapting (2.1) in the context of the adjoint action of Γ on X = Γ, we see that
a normalized equivariant 2-cocycle in C̄2

Γ(Γ;T) is a map Ξ: Γ×Γ→ Map(Γ,T) such that

Ξ[t, u](s−1γs)Ξ[st, u](γ)Ξ[s, tu](γ)Ξ[s, t](γ) = 1.

Expanding the left hand side for Ξ = Ψ, we obtain

ω(s−1γs, t, u)
:::::::::::::

ω̄(t, t−1s−1γst, u)ω(t, u, u−1t−1s−1γstu)

× ω̄(γ, st, u)
. . . . . . . . . .

ω(st, (st)−1γst, u)ω̄(st, u, u−1(st)−1γstu)

× ω(γ, s, tu)
. . . . . . . . . .

ω̄(s, s−1γs, tu)
::::::::::::::

ω(s, tu, (tu)−1s−1γstu)

× ω̄(γ, s, t)
. . . . . . . .

ω(s, s−1γs, t)
:::::::::::::

ω̄(s, t, t−1s−1γst).

By the 3-cocycle relation, the terms with:
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• dotted underline give ω(s, t, u)ω̄(γs, t, u),

• dashed underline give ω(s, t, t−1s−1γstu)ω̄(s, t, u),

• wave underline give ω(γs, t, u)ω̄(s, s−1γst, u), and those with

• double underline give ω(s, s−1γst, u)ω̄(s, t, t−1s−1γstu).

Multiplying these terms we indeed obtain 1.

The corresponding groupoid 2-cocycle on G = ΓnAd Γ (via Equation 2.2) is given by

ψ(g1, g2) = Ψ[s1, s2](s1g1s
−1
1 ) = ω(s1g1s

−1
1 , s1, s2)ω̄(s1, g1, s2)ω(s1, s2, g2) (4.3)

for (g1, g2) ∈ G(2) with gi = (si, gi). Thus, we can twist any Fell bundle A over G by ψ to
another Fell bundle Aψ = 〈a(ψ) | a ∈ Aγ, γ ∈ G〉 by

a(ψ)b(ψ) = ψ(g1, g2)(ab)(ψ) ((g1, g2) ∈ G(2), a ∈ Ag1 , b ∈ Ag2).

Note however that ψ is normalized only in the sense that ψ(g1, g2) = 1 when either g1 or
g2 is in G(0). Using this, one can easily check that a(ψ)∗ = ψ̄(g−1, g)a∗(ψ) for a ∈ Ag gives
a ∗-structure.

4.10. Theorem. The ∗-algebra (A, •̄, ?) can be regarded as the 2-cocycle twist of the Fell
bundle (A, •,#) by the 2-cocycle ψ on G.

Proof. Take gi = (si, γi) (i = 1, 2) in G such that (g1, g2) ∈ G(2). The product map
Ag1 × Ag2 → Ag1g2 in (A, •)ψ is different from • by the factor of (4.3). Since Ag1 =
As1
s1γ1s

−1
1 ,γ1

and Ag2 = As2γ1,γ2 , this is indeed the factor in (4.1).

It remains to compare the involutions. If g = (s, γ1) ∈ G, the involution of (A, •,#)ψ
on the summand Ag is different from # by the factor of

ψ̄(g−1, g) = Ψ̄[s−1, s](γ1) = ω̄(γ1, s
−1, s)ω(s−1, sγ1s

−1, s)ω̄(s−1, s, γ1).

On the other hand, ? on Ag is different from # by the factor of

ω̄(s−1, s, γ1)ω̄(s−1, sγ1, s
−1)ω̄(sγ1s

−1, s, s−1)ω(s−1, s, s−1).

By the 3-cocycle condition of ω̄ on quadruple (s−1, sγ1, s
−1, s), we have

ω̄(sγ1, s
−1, s)ω̄(s−1, sγ1, s

−1) = ω̄(γ1, s
−1, s)ω(s−1, sγ1s

−1, s)ω̄(s−1, sγ1, e)

= ω̄(γ1, s
−1, s)ω(s−1, sγ1s

−1, s).

Eliminating these terms and the common factors ω̄(s−1, s, γ1) and ω̄(s−1, sγ1, s
−1), we are

reduced to checking

ω̄(sγ1s
−1, s, s−1)ω(s−1, s, s−1) = ω̄(sγ1, s

−1, s).

This equality follows from the 3-cocycle condition (and normalization condition) of ω̄ on
the quadruple (sγ1, s

−1, s, s−1).
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Let us also present a normalized version.

4.11. Lemma. When ψ is a 2-cocycle on G satisfying ψ(g, dom(g)) = 1 = ψ(codom(g), g),
we have ψ(g, g−1) = ψ(g−1, g) for any g ∈ G.

Proof. Using the 2-cocycle condition on (g, g−1, g) ∈ G(3), we obtain

ψ(g−1, g)ψ̄(codom(g), g)ψ(g, dom(g))ψ̄(g, g−1) = 1.

Since ψ is normalized, the middle two terms are trivial.

It follows that we can choose a function ξ : G → T satisfying

ψ(g, g−1) = ξ(g)2, ξ(g) = ξ(g−1), ξ(x) = 1 (x ∈ G(0)).

Then the cohomologous cocycle ψ′ = ψ.δ1ξ̄ satisfies

ψ′(g, g−1) = ψ(g, g−1)ξ̄(g−1)ξ̄(g)ξ(codom(g)) = 1,

ψ′(g, dom(g)) = ψ(g, dom(g)) = 1 = ψ′(codom(g), g)

for any g ∈ G. Thus, ψ′ is a normalized 2-cocycle in the stronger sense, and (A, •̄, ?) is
isomorphic to the twisting of (A, •,#) by ψ′ by the map χ 7→ ξ(g)χ on Ag.

Up to strong Morita equivalence, we can pick up one element from each orbit of G
(conjugacy class of Γ) and look at the stabilizers. In our setting, this means that choosing
a ∈ σ for each σ ∈ Σ, and considering the centralizer subgroup CΓ(a) = {γ ∈ Γ | aγ = γa}
in Γ. Then ψ induces a 2-cocycle on CΓ(a),

ϕa(s, t) = ω(a, s, t)ω̄(s, a, t)ω(s, t, a),

see [Wit96; BDGR17, Lemma 2.1].
The Fell bundle structure on A implies that the ∗-algebras (Aa,a, •,#) and (Aa,a, •̄, ?)

are graded over CΓ(a).

4.12. Corollary. Let a be an element of Γ. Then (Aa,a, •̄, ?) is isomorphic to the twist
of the CΓ(a)-graded ∗-algebra (Aa,a, •,#) by the normalized 2-cocycle ϕ′a = ϕa.dξ̄.

4.13. Remark. Since the 3-cocycle ω of Γ is normalized, the 2-cocycle ϕe on CΓ(e) = Γ
turns out to be constant function 1. Consequently, if we consider the tube algebras, the
two ∗-algebra structures are identical on Te,e = T{e}. Note that Te,e contains the fusion
algebra T1,1 as a full corner by Proposition 4.6. Recall that analytic properties C, such
as, amenability, Haagerup and property (T), are defined using admissible representations
of the fusion algebra, that is, those representations of the fusion algebra which can be
extended to the whole tube algebra (see [PV15, GJ16]). Since Te,e is a ∗-ideal in T ,
any admissible representation of T1,1 can extend up to Te,e. So, C is amenable, has the
Haagerup property, or has property (T) if and only if Cω exhibits the corresponding
properties.
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4.14. Remark. Let us describe the corresponding deformation of monad as in Section
3.5. Let Zω denote the corresponding monad of the tensor category Cω. Suppose that X
has degree γ, and S, T, U ∈ I respectively have degree s, t, u. Then, from Proposition 2.8
and formulas (3.8), (3.6), we see that the morphism µωX : (Zω)2(X)→ Zω(X) is given by
the collection of morphisms from T̄ ⊗ ((S̄ ⊗ (X ⊗ S))⊗ T ) to Ū ⊗ (X ⊗ U) given by

ω(γ, s, t)ω̄(t−1, s−1, γst)ω(s−1, γs, t)ω̄(t−1s−1, s, t)ω(t−1, s−1, s)µX

which appears only when U is isomorphic to a subobject of S⊗T , hence in particular u =
st. This factor can be interpreted as a 2-cochain ψ̃(g1, g2) on G by setting g1 = (s, s−1γs)
and g2 = (t, (st)−1γst). As expected, it is cohomologous to ψ via the coboundary of
ξ(g) = ω(s−1, s, γ) for g = (s, γ), hence is a 2-cocycle in particular.

5. Examples

5.1. Grading by cyclic groups. Let Γ be a cyclic group. Since H3(Z;T) is trivial, we
concentrate on the case of finite cyclic group Γ = Z/nZ. The considerations in the previous
section become rather simple. As Γ is commutative, the direct sum decomposition of
Lemma 4.4 becomes T (C) =

⊕n−1
a=0 T{a}(C). Moreover, as H2(Γ;T) is trivial, Corollary 4.12

implies that T{a}(Cω) is isomorphic to T{a}(C).

5.2. Example. The group Z/2Z has essentially just one nontrivial 3-cocycle, ω(a, b, c) =
(−1)abc. For the categories of Example 2.5 we have (by [NY15a]) (CTL

δ,+1)ω = CTL
δ,−1
∼=

Rep SUq(2) for positive q satisfying q + q−1 = δ. This explains why the computation of
the spectrum of annular algebra for the category CTL

δ,+1 in [GJ16] gives exactly the same
answer as the computation for the Drinfeld double of SUq(2) with positive q in [Pus93].

By the discussion made above, there is a ‘natural’ equivalence of the Drinfeld centers
Z(ind-C) and Z(ind-Cω) as C∗-categories, compatible with the associated gradings by
Z/nZ. While a general description of the monoidal structure in terms of the tube algebra
(cf. [DGG14]) will give a description of Z(ind-Cω) as a monoidal category, there is a more
concrete description available in this setting, as follows.

It is well known that the 3-cocycles on Z/nZ can be represented (up to coboundary)
by

ωk(a, b, c) = exp

(
2π
√
−1k

(⌊
a+ b

n

⌋
−
⌊a
n

⌋
−
⌊
b

n

⌋)
c

n

)
(k = 0, 1, . . . , n− 1). (5.1)

Note that ωk(a, b, c) is invariant under congruence modulo n for a, b, c ∈ Z. We will work
with this concrete formula of ωk. Thus, the associated 2-cocycle is

ϕka(s, t) = exp

(
2π
√
−1k

(⌊
s+ t

n

⌋
−
⌊ s
n

⌋
−
⌊
t

n

⌋)
a

n

)
.
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Let us introduce a new monoidal structure ⊗(k) on Z(ind-C). When (X, c) and (X ′, c′)
are objects of Z(ind-C) such that X ∈ Obj(ind-Ca) and X ′ ∈ Obj(ind-Cb), we set

(c⊗(k) c′)Y = ω̄2k(a, b, s)(c⊗ c′)Y
when Y ∈ Obj(Cs) and extend by linearity to the general case, and put (X, c)⊗(k)(X ′, c′) =
(X ⊗ X ′, c ⊗(k) c′). This still defines a structure of monoidal category (with the same
associator as Z(ind-C)) because ω is a 2-cocycle in the first two variables.

5.3. Proposition. Let C be a C∗-tensor category graded by Z/nZ, and ωk be the 3-cocycle
as above. Then Z(ind-Cωk) is unitarily monoidally equivalent to (Z(ind-C),⊗(k))ω

k
.

Proof. Let X be an object of ind-C, and (cY : Y ⊗ X → X ⊗ Y )Y be a unitary half
braiding on X (with respect to the structure of C). We first define a half braiding c̃ on X
as an object of Cω. By Remark 4.5, it is enough to consider (X, c) ∈ Obj(Z(ind-C)) with
homogeneous object X ∈ Obj(ind-Ca).

For m ∈ Z, let r(m) denote the unique integer 0 ≤ r(m) < n such that m ≡ r(m) mod
n; in other words, r(m) = m− nbm

n
c. When Y is an object in Cs, put

c̃Y = exp

(
−2π
√
−1k

r(s)r(a)

n2

)
cY : Y ⊗X → X ⊗ Y,

and extend it to general Y using direct sum decomposition into homogeneous components.
We claim that (X, c̃) is a half braiding in Cωk . In view of (3.7), this amounts to verifying

ωk(a, s, t) exp

(
−2π
√
−1k

r(s)r(a)

n2

)
ω̄k(s, a, t) exp

(
−2π
√
−1

n2
r(t)r(a)

)
ωk(s, t, a)

= exp

(
−2π
√
−1k

r(s+ t)r(a)

n2

)
.

This is indeed the case, since the terms involving ω give ωk(s, t, a), and we also have

r(s) + r(t)− r(s+ t) = n

(⌊
s+ t

n

⌋
−
⌊ s
n

⌋
−
⌊
t

n

⌋)
. (5.2)

This way we obtain a C∗-functor F : Z(ind-C)→ Z(ind-Cωk) given by F (X, c) = (X, c̃). It
is an equivalence of categories, since we can ‘untwist’ Cωk by ω̄k to recover C, and perform
the same construction to produce an inverse of F .

It remains to show that F can be enriched to a C∗-tensor functor if we first replace the
monoidal structure of Z(ind-C) by ⊗(k), and then twist it by ωk. We claim that the natural

unitary transformation F2 : (X, c̃)⊗ (X ′, c̃′)→ (X⊗X ′, ˜c⊗(k) c′) is simply represented by
1X⊗X′ . Now, 1X⊗X′ is a morphism of half braiding if and only if the diagram

Y ⊗ (X ⊗X ′) (X ⊗X ′)⊗ Y

Y ⊗ (X ⊗X ′) (X ⊗X ′)⊗ Y

1

c̃⊗c̃′

1

˜c⊗(k)c′
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commutes. To check this, as before we can also assumeX ∈ Obj(ind-Ca), X ′ ∈ Obj(ind-Cb),
and Y ∈ Obj(Cs). Then, the top row picks up the factor of

exp

(
−2π
√
−1k

r(s)(r(a) + r(b))

n2

)
exp

(
−2π
√
−1k

(⌊
a+ b

n

⌋
−
⌊a
n

⌋
−
⌊
b

n

⌋)
s

n

)
,

while the bottom row picks up

exp

(
−4π
√
−1k

(⌊
a+ b

n

⌋
−
⌊a
n

⌋
−
⌊
b

n

⌋)
s

n

)
exp

(
−2π
√
−1k

r(s)(r(a+ b))

n2

)
.

These are indeed equal by (5.2).
It remains to check the compatibility of (F, 11, F2) with the associators of categories

(Z(ind-C),⊗(k))ω
k

and Z(ind-Cωk), but it is obvious from the definitions.

The structure ⊗(k) agrees with the original one when n = 2, or more generally if
n divides 2k in the parametrization of (5.1). Moreover, the above proposition has an
obvious parallel for Z(Cωk), and also for nonunitary variants.

Suppose that C is (resp. unitarily) braided, or equivalently, that there is a (resp. C∗-
)tensor functor F : C → Z(C) of the form X 7→ (X, c). If n divides 2k, the above
result implies that X 7→ (X, c̃) is a (resp. C∗-)tensor functor from Cωk to Z(Cωk), hence
Cωk is again (resp. unitarily) braided. If n does not divide 2k the situation looks more
complicated, but at least we can say that Cωk is not braided when C is either CZ/nZ or
Rep SUq(n) as discussed below, cf. [NY15a, Remark 4.4].

5.4. Example. Let us describe the case of Rep SUq(n) for the root of unity q = e
π
√
−1
m ,

with m ≥ n− 1. Then it makes sense as a rigid C∗-tensor category C (see, e.g., [Wen88])
which we assume to be strict. Its irreducible classes are parametrized by the dominant
integral weights λ of sln such that (λ+ ρ, αmax) < m, where ρ is the half sum of positive
roots, αmax is the highest root, and (λ, µ) is the invariant inner product on the weight
space normalized so that each root α satisfies (α, α) = 2. If we denote the fundamental
weights by ω1, . . . , ωn−1, the above condition on λ is equivalent to λ =

∑
i νiωi with νi ≥ 0

and
∑

i νi ≤ m− n. Then C is generated by the object X1 (the ‘defining representation’)
corresponding to λ = ω1, and X⊗n1 contains 1 with multiplicity 1. It follows that the
universal grading group of C is Z/nZ such that X1 belongs to the homogeneous component
C1. Moreover, the classes U i (i = 1, 2, . . . , n − 1) corresponding to λ = (m − n)ωi
exhaust the nontrivial invertible classes of C, and the class of U1 satisfies (U1)⊗k ∼= Uk,
(U1)⊗n ∼= 1 [Bru00]. Now, since C is a modular tensor category, its Drinfeld center Z(C)
is equivalent to the Deligne product C � Cβop as a braided category, where βop denotes
taking the opposite braiding [Müg03]. Indeed, the equivalence F : C � Cβop → Z(C) is
given by F (X �X ′) = (X ⊗X ′, c), where c = (cY )Y is the half braiding on X ⊗X ′ given
by cY = (1X ⊗ β−1

X′,Y )(βY,X ⊗ 1X′), with βX,Y : X ⊗ Y → Y ⊗ X denoting the braiding
of C. In this picture the half braidings on the distinguished object X1 are represented
by (X1 ⊗ U i) � Un−i and Un−i � (X1 ⊗ U i) with the convention U0 = Un = 1. In the
notation of Proposition 5.3, the n-th tensor power of (X1⊗U i)�Un−i with respect to ⊗(k)
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is the product of F (X⊗n1 � 1) with the half braiding on 1 given by exp(−4π
√
−1ks/n)ιY

for Y ∈ Obj(Cs) up to the natural identification of 1 ⊗ Y and Y ⊗ 1 with Y . Thus, it
contains the trivial half braiding if and only if n divides 2k, and the same can be said for
Un−i � (X1 ⊗ U i). In view of Proposition 5.3, there is a (C∗-)tensor functor from Cωk to
Z(Cωk) which is identity on objects, or equivalently Cωk is (unitarily) braided, if and only
if n divides 2k.

5.5. Free product. For ε ∈ {+,−}, let Cε be rigid semisimple C∗-tensor categories with
simple units 1ε respectively. Let Iε be a set of representatives of isomorphism classes of
simple objects in Cε, and Γε be the universal grading group. Consider the free product
category C = C+ ∗C−. Then the universal grading group Γ of C is isomorphic to the group
free product Γ+ ∗ Γ−. Indeed, if W is the set of words (including the empty one) whose
letters alternately belong to I+ \ {1+} and I− \ {1−}, then C has a set of representatives
of simple objects enumerated by W , say I = {Xw}w∈W such that:

(i) X∅ = 1,

(ii) Xw1⊗Xw2
∼= X(w1,w2) whenever the last letter of w1 and the first of w2 have opposite

signs (that is, if one is in I+, then other is in I−),

(iii) if w1 = (w′2, Y ), w2 = (Z,w′2) ∈ W such that Y and Z have the same sign ε = ±,
then the direct sum decomposition of Xw1⊗Xw2 into simple objects can be obtained
inductively on the lengths of w1 and w2 by the following rule:

(a) Xw1 ⊗Xw2
∼=
⊕
U∈Iε

(
X(w′1,U,w

′
2)

)⊕ dim(Cε(U,Y⊗Z))
when Y � Z̄,

(b) Xw1 ⊗Xw2
∼=
(
Xw′1
⊗Xw′2

)
⊕
( ⊕
U∈Iε\{1}

(
X(w′1,U,w

′
2)

)⊕ dim(Cε(U,Y⊗Z))
)

when Y ∼=

Z̄.

Using (i), (ii), and (iii), it is completely routine to check that the map

Γ 3 [Xw] 7→ Y1 · · ·Yn ∈ Γ+ ∗ Γ− where w = (Y1, . . . , Yn)

is an isomorphism.
The cohomology of free product group is given by H3(Γ+ ∗ Γ−;T) ∼= H3(Γ+;T) ×

H3(Γ−;T) (see, e.g., [Wei94, Section 6.2]). This allows us to decompose the twisting
procedure to the cases when ω on Γ+ ∗ Γ− is induced from a 3-cocycle ω0 on Γε through
the canonical quotient map Γ+ ∗ Γ− → Γε. This induces a groupoid homomorphism (a
functor) GΓ+∗Γ− → GΓε , and the associated map H2(GΓε ;T)→ H2(GΓ+∗Γ− ;T). If Ψ0 is the
2-cocycle on GΓε associated with ω0, its pullback Ψ on GΓ+∗Γ− is the one associated with
ω.
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5.6. Direct product. Next let us consider grading by direct product groups. One
source of such a structure is the Deligne product C1 � C2 of C1 and C2. In this case we
have Ch(C1 � C2) = Ch(C1)× Ch(C2).

Suppose moreover that the grading is by a finite commutative group. The T-valued
3-cocycles on such groups are concretely characterized in [NY15a, Proposition A.3], as
follows. Write Γ = (Z/n1Z) × · · · × (Z/nkZ) for ni ∈ N. Then a set of generators on
H3(Γ;T) is given by:

(i) those of the form (5.1) (with k = 1) for some factor Z/niZ,

(ii) for distinct indices i, j:

φij(a, b, c) = exp

(
2π
√
−1

(⌊
ai + bi
ni

⌋
−
⌊
ai
ni

⌋
−
⌊
bi
ni

⌋)
cj
nj

)
,

(iii) for distinct indices i, j, k:

φijk(a, b, c) = exp

(
2π
√
−1

gcd(ni, nj, nk)
aibjck

)
.

5.7. Example. Consider the case Γ = (Z/2Z)× (Z/2Z)× (Z/2Z), and let a = (0, 0, 1).
Then, the 3-cocycle φ123 gives ϕa(s, t) = exp(π

√
−1s1t2), or in a normalized form

ϕ′a(s, t) = exp

(
π
√
−1

2
(s1t2 − s2t1)

)
.

The tube algebra of CΓ is a commutative algebra of dimension 26, while that of the twisted
category Cφ123Γ has a noncommutative direct summand Ta,a. In particular, the number of

irreducible classes in Z(Cφ123Γ ) is smaller than that of Z(CΓ).
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Julie Bergner, University of Virginia: jeb2md (at) virginia.edu
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